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The smart grid has many facets 
 Large movement of power across geographically large areas  
 Economic dispatch 
 Line overloading  
 Stochastic fluctuations induced by renewables  
 Storage elements  
 Integration with electric vehicles  
 Phasor Measurement Unit (PMU) technology 
 Privacy concern over smart meters  
 Security (“black energy”) 
 etc. 

Lots of mathematics & new concepts 
 Is that all??? 



Plan of Action 
 The catalyst: Evidence of fractal PMU signals 
 Review of Detrented Fluctuation Analysis 
 Texas & EPFL (Switzerland) normal PMU data 

 Inadequacy of swing model 
 Why are PMU signals fractal??? 
 Fractional dynamics load modeling 
 Load aggregation 

 Voltage stability 
 The loads are the “villains” 

 Early warning of imminent blackout 
 Increase of Hurst exponent before blackout 
 Statistical confirmation by Kendall tau 
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Long-Range Dependence or Memory 
(in PMU data) 

Long-range memory is one of the characteristics of 
fractal patterns. It relates to slow decay of the 
correlation as the lag between samples increase.    
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 Number of incrementation or differentiation steps (d): 
 
 

 
 Power Spectral Density exponent (β): 

 
 

 Hurst exponent (α): 
It relates to the autocorrelation of time series and the rate at 
which these decrease as the lag increases.  

Long-Range Dependence or Memory 

 

S( f ) ∝
1

βf

 There are several parameters that quantify the severity of 
the fractal behavior in a time series: 
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 ε t , φ1 = AR(1)



 Steps: 
1. Subtract average and integrate the data set: 

 
 
 

 

Detrended Fluctuation Analysis (DFA) 
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2. Divide the data into n equal-sized boxes and find the Linear 
Least Squares (LLS) line inside each box. 

3. Subtract the LLS fitting from the integrated data to generate the 
detrended data:  

Detrended Fluctuation Analysis (DFA) 
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4. Find the Root Mean Square (RMS) fluctuation of the detrended 
data: 

 

 

 

4. The second and third steps  
     are repeated  
     at different box sizes: 
 

Detrended Fluctuation Analysis (DFA) 
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Texas Synchrophasor Network 
 Several PMUs are installed at 120V and 69KV over 

several locations:  
 Baylor University (Waco),  
 Harris Substation, and  
 McDonald Observatory. 

 The data we analyzed here are  
 voltage magnitude,  
 frequency, and  
 phase angle. 

 The sampling rate of the data is  
    30 samples/second. 



PMU Time Series (Texas) 



 

            Details of Long-range dependence in PMU data 
 
 

 
 
 
 
 

 

 Voltage Magnitude (V)                                              Pink noise (      ) 
 Frequency (f)                                                               Brownian noise (       )   
 Phase Angle (θ)                                                           Long-range/Power-law                                                                           

 

α= 0.71  

α= 1.54  

α= 1.11  (d) 

α ≈ 1.00  
α ≈ 1.50   
α ≈ 0.70  



Hurst Exponent (Texas) 

α = 1.11  

α = 1.54  

α = 0.71  

α = 0.92  

α = 1.54  

α = 0.75  
 

0.5 ≤ α ≤1: long range with power law
        α > 1: long range but no power law



Hurst Exponent (Texas) 

 Frequency and angle data are consistent across the 3 stations.  
 Voltage definitely has higher Hurst exponent at McDonald… Why??? 

 Proximity of wind farm? 
 Is the Hurst exponent of voltage a sign of penetration of 

renewables in the larger grid? 



PMU-Based Monitoring in EPFL 
(Ecole Polytechnique Fédérale de Lausanne) 

PMUs installed in EPFL campus perform real time 
monitoring of the EPFL pilot smart grid. 

The PMUs were  
installed on medium  
voltage buses (12KV) 

The sampling rate is  
50 samples/second 
 



PMU Time Series (EPFL) 



Hurst Exponents (EPFL) 

Voltage magnitude  Frequency  Phase angle  

 

α =1.20

 

α =1.55

 

α =1.27

Amazing consistency between the frequency α in Texas (1.54) and Switzerland (1.55)  



Hurst Exponent Histograms (EPFL) 

Voltage magnitude  Frequency  Phase angle  

mean(α)=1.23 mean(α)=1.51 mean(α)=1.23 
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Fractal Dimension 
 Capacity (Box Counting) 

 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

where N(𝜖)  - number of cubes to cover a surface 
          𝜖  -  cubes with sides of length 𝜖  
 
Said to be fractal for non-integer dimension dC 



Measures of Fractal Dimension 
 Pointwise Dimension 
 Time-sample the trajectory to set of N points 
 Place a sphere of radius r at some point and count the number of 

points N(r) within sphere  
 Probability of finding a point in sphere of radius r 

 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Averaged pointwise dimension 

Pointwise dimension 



 Correlation dimension (Grassberger and Proccacia, 1983) 
 Discretizes trajectory to set of N points  

 One can also create a pseudo-phase-space 

 Calculates distances between pairs of points xi and xj 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Correlation function: 

Fractal dimension: 

Power law dependence on r 

Measures of Fractal Dimension 

*slope of the log C(R) vs log r curve 



 Effective implementation 

 

Bounds: 

Only consider computations for C(r) within bounds  

Measures of Fractal Dimension 

Where: 
Heaviside function: 

Distance: 



 Duffing Strange Attractor 
 Two-well potential strange attractor 

Moon, F. C. Chaotic and Fractal Dynamics: An Introduction to Applied Scientist and Engineers. 1992. 

Strange Attractor Example 

Damping γ Dimension dG 

0.19 1.08 

0.15 1.14 

0.115 1.32 

Poincaré Map and Fractal Dimension 



Swing Equation Model 

where 

- Mechanical power 

- Electrical power 
- Damping coefficient 
- Moment of inertia of the rotor 
- Phase angle of the rotor with respect to the rotating frame 

- Generator voltage 
- Internal resistance of generator 
- Reactance of transmission line 
- Load bus voltage magnitude 

Noise perturbation at V2 



Swing Equation Simulation Results 

initial conditions [-0.8:0.25:0.8] 
N 10001 
size(alpha) 1089 
mean(d) 0.016572 
std(d) 0.001675 

𝑉2 𝑡 = 1 + 𝑁 0,𝜎𝑣 , 𝜎𝑣 = 0.01 Noise added at V2: 



Indian Blackout PMU Time Series Data 

N 10000 
size(alpha) 140 
mean(d) 1.506059 
std(d) 0.026241 



Indian Blackout PMU Time Series Data 

N 20000 
size(alpha) 140 
mean(d) 1.532877 
std(d) 0.017066 



Texas (Station 1) PMU Time Series Data 

N 10000 
size(alpha) 180 
mean(d) 0.868504 
std(d) 0.030948 



Texas Station 1 PMU Time Series Data 

N 20000 
size(alpha) 176 
mean(d) 0.910081 
std(d) 0.019405 



Statistical Test 
 Kolmogorov-Smirnov Test (Two-sampled) 
 tries to determine if two datasets differ significantly 
 has the advantage of making no assumption about the distribution 

of data. 
 
 
 
 
 

 The K-S test was performed on the simulated swing equation data 
(with Gaussian noise (sigma = 0.01) vs. the PMU data (for both 
Indian blackout and Texas station 1) 

 Both tests reject the null hypothesis (that the two sample sets are 
from the same distribution) at the 5% significance level 

 

where: F1,n , F2,m  -  empirical distributions 
 with n and m sizes for the  
 and second samples, respectively 

Null hypothesis is rejected at level 𝛼 



Hurst Exponent Analysis of the Swing Equation 

<<<Insert comment here>> 
Not sure if this slide is necessary 



Hurst Exponent Analysis of the Swing Equation 

• Hurst exponent of the frequency remains almost constant near the bifurcation.  
• The Hurst exponent is equal to 2 for the noiseless frequency and approximately 1.55 for 

the frequency time series with 50% and 100% noise 
• These results show that driving the swing equation to the unstable region by increasing Pm 

does not reproduce the increasing trend in Hurst exponent as in the 2012 Indian blackout.  



• These results show that 
driving the swing 
equation to the unstable 
region by increasing Pm 
does not reproduce the 
increasing trend in Hurst 
exponent as in the 2012 
Indian blackout 

 
• The swing equation with 

added noise do not 
show an increase in the 
Hurst exponent like the 
one in the Indian 
blackout.  

 

Hurst Exponent Analysis of the Swing Equation 
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Static versus Dynamic Load Models 

• Static load model: 
 

 
 Constant Power            
 Constant Current  
 Constant Impedance 

• Dynamic load model (Hill): 

 

LP = pK LV pv

 

LQ = qK LV qv

 

v
p =

v
q = 0

 

v
p =

v
q =1

 

v
p =

v
q = 2

 

TP Pd

•

+ Pd = Ps(VL ) + kp (VL )V
•

L

 

Should be 

PL VL ,ω( )



Berg Data-Driven Load Modeling Experiment  
in a real microgrid  

Electric Reduction Furnace (Berg) Mechanical Plant (Berg) 
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Load Type pv pω qv qω 

Filament lamp 
Fluorescent lamp 
Heater 
Induction motor (HL) 
Induction motor (FL) 
Reduction furnace 
Aluminum plant 
Regulated aluminum plant 

1.6 
1.2 
2.0 
0.2 
0.1 
1.9 
1.8 
2.4 

0 
-1.0 

0 
1.5 
2.8 
-0.5 
-0.3 
0.4 

0 
3.0 
0 

1.6 
0.6 
2.1 
2.2 
1.6 

0 
-2.8 

0 
-0.3 
1.8 
0 

0.6 
0.7 

LLL jQPS +=


 

PL = KPVL
pvω pω

 

QL = KQVL
qvω qω

Berg load model involves frequency to a 
noninteger exponent 



Load Type Describing Function 
Filament lamp 
Fluorescent lamp 
Heater 
Induction motor (HL) 
Induction motor (FL) 
Reduction furnace 
Aluminum plant 
Regulated aluminum plant 

 

−1

( pK LV −0.4 − qjK LV −2)

 

−1

( pK LV −0.8 −1ω − qjK LV −2.8ω )

 

−1

( pK − qjK LV −2)

 

−1

( pK LV −1.8 1.5ω − qjK LV −0.4 −0.3ω )

 

−1

( pK LV −1.9 2.8ω − qjK LV −1.4 1.8ω )

 

−1

( pK LV −0.1 −0.5ω − qjK LV 0.1)

 

−1

( pK LV −0.2 −0.3ω − qjK LV 0.2 0.6ω )

 

−1

( pK LV 0.4 0.4ω − qjK LV −0.4 0.7ω )

Impedance Describing Function 



Analytic Extension of Describing Function 

Crude way:  
Leaves some coefficients complex, not completely in line with formal circuit theory 

Better way: 
Coefficients are kept real, in line with formal circuit theory; 
However, positive realness does not hold unless the load is a heater 

 

ω →ω − jσ

( ) ( ) ( ) ( ) ( ) ( )
  valued.real are (.) and (.) where

extension

BA
sVBsVAjVBjVAY LLLLL
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Can we replace s by 𝑑
𝑑𝑑

??? 
Yes, but subject to correct interpretation: 

 Caputo, D* (initial conditions in terms of integer derivatives) 
 Riemann-Liouville, D (initial conditions in terms of fractional derivatives) 
 Grunwald-Leitnikov, d (close to ARFIMA model) 
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Plan of Action 
 The catalyst: Evidence of fractal PMU signals 
Review of Detrented Fluctuation Analysis 
Texas & EPFL (Switzerland) normal PMU data 

 Why are PMU signals fractal??? 
 Fractional dynamics load modeling 
 Load aggregation 

 Voltage stability 
 The loads are the “villains” 

 Early warning of imminent blackout 
 Increase of Hurst exponent before blackout 
 Statistical confirmation by Kendall tau 
 



Hidden Feedback in Power Systems 

+

−

+

−

Deliberately simplified  
model of the generator…  

to put the load  
in the spotlight. 



Feedback Model of Power System 

 

G =
YLine YLine

0 ω 0
2

 

 
 

 

 
 

 

F =
−ZL 0

0 −s−2

 

 
 

 

 
 

 

y = (I − GF)−1Gu

 

u = u1 u2[ ]t

 

y = y1 y2[ ]t

+
+ −
−

+

+

Simplification:  
No back-action of the load to the generator 



Towards more Complicated 
Feedback Models of Power System 



Time to Conceptualize 

Nominal impedance, line  Zi, Yii 

Connecting lines 1, 2, …, ≠i, …, m 

Are we sure that 

( ) ( )iii GFIGFI −Π≠− detdet

: . 

: . 

: . 

: . 



D(U1) 

D(U2) 

D(U3) D(U4) 

Σ Σ ZLoads 

Ylines 

IL VL 

Vl Il 

- 

Egenerators 

Iother D(U) 

Decomposition of Digraph into  
Strongly Connected Components D(Ui) 

Feedback connections, if any, are lumped  
into strongly connected subsets 

No large scale feedback connections  
at the large scale of the structure graph 



Bus model 

Circuit model 

Graph model 



Bus model 

Circuit model 

Graph model 



Bus model 

Circuit model 

Graph model 





No loss of strong connectivity!  

Effect of Single Contingency  

Single transmission line 5-6 tripping:  



Effect of Single Contingency  

Three-phase fault at Load 1:  

Loss of strong connectivity: two strongly connected components!  



Loss of connectivity: two connected components!  

Effect of Double Contingency  

Double transmission line 5-6, 2-3 tripping:  



Effect of Double Contingency  

Two three-phase faults at Loads 1 and 4:  

Loss of strong connectivity:  four strongly connected components!  



Main Theorem 
Theorem: Under the conditions that  
 

 the bus system is connected,   
 all generators have nonvanishing internal impedance,  

 
and the contingencies are restricted to 
 

 single transmission line tripping, 
  
the graph model is strongly connected. 
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Voltage Collapse 
Definition:  
Voltage collapse is critical phenomena that threatens the 
power infrastructure, and that manifests itself by a sudden 
and fast collapse of the system voltage. 
Source of problem: 
Traditionally, it is blamed on a supply-demand imbalance…    

Voltage collapses Damping increases Frequency is disrupted!!! 



“Wehenkel stated that better modeling of loads and demand is also needed; 
specifically, better dynamic models that respond to voltage/frequency variations 
over shorter time periods (seconds and minutes) are needed for stability analysis” 

‘’This model was motivated by voltage stability studies; frequency dependence of 
the load has not been considered’’  

‘’The differences in time constants have led many researchers to only consider 
voltage dynamics for the analysis of bifurcations problems, ignoring frequency 
dynamics. However, the previous example clearly shows that this assumption is 
not completely justifiable’’ 

Prof. Claudio Cañizares 

Prof. David Hill 

Government Report 

The Frequency Dependence Debate 



Feedback Model of Power System 
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Deliberately simplified  
model of the generator…  

to put the load  
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Feedback Model of Power System 

 

G =
YLine YLine

0 ω 0
2

 

 
 

 

 
 

 

F =
−ZL 0

0 −s−2

 

 
 

 

 
 

 

y = (I − GF)−1Gu

 

u = u1 u2[ ]t

 

y = y1 y2[ ]t

+
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+

Simplification:  
No back-action of the load to the generator 



Voltage Collapse Solution 

• Power system represented by the feedback model has a solution if  
  
 
                                    Purely harmonic solution                     

                                    Voltage collapsing solution                         
 
• The voltage collapsing solution exists if 
   

   

   

   

 
 
 
 
 

 

(I − GF)−1G = 1+ ZLYLine( )1+ω 0
2 s2( )= 0

 

1+ ZLYLine = 0

 

YL VL ,ω − jσ( )+YLine ω − jσ( )= 0
 

VLeσtcos(ωt)

 

VLcos(ω 0t)

 

1+ω 0
2 s2( )= 0

 

1+ ZLYLine( )= 0

 

pK LV pv −2
pωω− jσ( ) ω0( ) −

q
jK LV qv −2

qωω− jσ( ) ω0( ) + KLine σ + jω( )= 0

 

pK − j ω 0( )pω

LV pv −2
pω +1s −

q
jK − j ω 0( )qω

LV qv −2
qω +1s + KLine = 0



Voltage Collapse Solution - Special Case 

 

s = σ + jω = αVL
β

α = (−KLine ((− j ω 0)pω (K p − jKq )))
β = (2 − pv ) ( pω −1)

Fr
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Voltage exponent (pv) 

• The voltage collapse solution exists in case of special loads  
     (pv=qv and pω=qω) if 

 
 
 
 

• Voltage collapse conditions: 
1)                 and  

2)  
 

 
 
 

   
 

 
 
 
 



Sigma (σ) and Frequency (ω) for Different 
Special Loads 

Voltage decreases and  
damping increases 

Frequency is disrupted  
as well 



Sigma (σ) and Frequency (ω) for  
Induction Motor (Stable)   

Voltage decreases and 
damping decreases 

Frequency is disrupted 
as well 



Sigma (σ) and Frequency (ω) for 
Regulated Aluminum Plant (Unstable) 

Voltage decreases  
and damping increases 

Frequency is disrupted 
as well 



The Relationship Between Transmission  
Line Coefficient (KLine) and Sigma (σ) 

Kline is directly 
proportional  
to maximum 

power transfer 



The Relationship Between Active Power 
Coefficient (Kp) and Sigma (σ) 



The relationship Between Reactive Power 
Coefficient(Kq) and Sigma (σ) 



Conclusions and Future Work 
• While voltage collapse is usually blamed on a generation-load imbalance, it 

is shown here that a more subtle phenomenon could contribute. 
• This subtle phenomenon is a nonlinear feedback effect creating an 

increasing damping when the load voltage decreases. 
• By the same token, we provide a theoretical explanation of the frequency 

dependence in the voltage collapse. 
• The Berg model involves noninteger exponents of the frequency, which can 

be reinterpreted as fractional derivatives, leading to   
 
 
 
 
 

• This new state space model involving fractional derivatives is corroborated 
by PMU signal analysis, showing long range dependence [Power and 
Energy Society General Meeting (PESGM), Boston, 2016].  
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Critical Transition in  
Harvested Population 



blackout! 

2012 Indian Blackout 

 The blackout occurred on July 30, 2012 and affected 
more than 300 million people living in Northern India. 
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 Increase in Hurst Exponent  
before Blackout  
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 Concordant pair          xi > xj & yi > yj  or xi < xj  & yi < yj  
 Discordant pair           xi > xj & yi < yj  or xi < xj  & yi > yj 

 

   

Kendall’s tau 
 Kendall’s tau is a rank correlation coefficient that is 

used to measure—in a statistically meaningful sense—
the ordinal association between two datasets, {(ti,αi)}.  

 Assuming that we have n pairs of x and y data  
 ((x1,y1); (x2,y2); …; (xn,yn)),     
 Kendall’s tau is defined as 
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τ = 0.92 τ = 0.86 

Kendall’s Tau of  
AR(1) Coefficient versus Hurst Exponent 



AR(1) versus Hurst Exponent 
Sample Distributions 

Normal frequency data  Frequency data before blackout 



Future Work  
 
 With more blackout data points, we hope to demonstrate—with 

enough confidence—that the empirical distributions of the 
normal and blackout Hurst frequency data are random draws 
from different distributions.    

Kendall tau of Hurst exponent of frequency 

normal blackout 



Conclusions 
 The fractal behavior of the PMU signals is puzzling… 
 Its potential for anticipating black-out and/or cyber attacks 

has been demonstrated. 
 So, it is of paramount importance to understand why the PMU 

signals are fractal. 
The Berg load models provide a clue with their fractional 

exponents of ω. 
 In the Berg experiment, the load is modeled in its 

microgrid environment. 
The aggregation of the loads combines a great many 

lumped parameter circuit elements to make distributed 
parameter elements. 
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