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Abstract— Control of quantum systems via time-varying external
fields optimized to maximize a fidelity measure at a given time
is a mainstay in modern quantum control. However, current
analysis techniques for such quantum controllers provide no
analytical robustness guarantees. In this letter we provide
analytical bounds on the differential sensitivity of the gate
fidelity error to structured uncertainties for a closed quantum
system controlled by piecewise-constant, optimal control fields.
We additionally determine those uncertainty structures that
result in this worst-case maximal sensitivity. We then use
these differential sensitivity bounds to provide conditions that
guarantee performance, quantified by the fidelity error, in the
face of parameter uncertainty.

I. INTRODUCTION

Control based on the optimal tuning of time-varying external
fields forms the backbone of effective control for current
quantum technology [1]. Such open-loop techniques have
been successfully applied in areas from the implementation
of quantum gates based on superconducting qubits [2], to
quantum metrology [3], and temperature and magnetic field
sensing via large defect ensembles of Nitrogen-Vacancy Cen-
ters in diamond [4]. Despite these successes of quantum
optimal control, robustness issues remain. Even with the
best modeling, uncertainty in the underlying Hamiltonian
persists [1], and is aggravated for artificial atoms and man-
ufactured systems such as superconducting qubits comprised
of Josephson junctions [5]. Such issues generate the potential
for sub-optimal performance of an optimized controller as the
true plant diverges from the model system.

Closed-loop or robust control techniques provide options to
improve robust performance. It terms of the latter, inclusion
of a sensitivity-type penalty function in the optimal control
synthesis algorithm is a popular method for implementing
robustness to internal uncertainty or external perturbations.
For example in [4], inclusion of a penalty based on the
differential sensitivity resulted in controllers with good robust-
ness to small deviations in detuning frequency as measured
for the gate fidelity of a superconducting fluxonium qubit-
based gate. Despite these successes, robustness properties
are generally only apparent through testing via Monte-Carlo
simulations or in experiments over a range of conditions.
Additionally, current techniques lack an analytic basis for
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determining bounds that quantify the worst-case robustness
and fundamental limitations on performance associated with
such worst-case scenarios.

This touches on the need for a formal theory of robust
quantum control. The survey [6] highlights the issues with
robust control of quantum systems via open-loop and feed-
back approaches while revealing the nascent stage of de-
velopment of robustness considerations in quantum control.
In [7], Horowitz makes the point that a good theory of
sensitivity should guarantee tolerances on performance over a
range of parameter uncertainty, while in [8] Safonov outlines
the performance and robustness trade-offs inherent in the
application of frequency-domain robust control. This letter
is a step in the direction of such a theory for quantum control
aimed at providing reliable analytic bounds on the differ-
ential sensitivity for controllers optimized for high fidelity
of quantum gates. We then use these sensitivity bounds to
provide guarantees on the gate fidelity in the face of the
uncertainty. Further, since coherent quantum systems must
remain oscillatory, and hence marginally stable, to retain their
quantum properties, time-domain techniques are the natural
choice to approach control at the edge of stability. This
is the approach taken here, departing from the established
frequency-domain techniques of classical robust control [9].

The nominal system model and performance metrics are
defined in Section II, followed by the uncertainty model
in Section III. The differential sensitivity of the controlled
system for a given uncertainty model is derived in Section IV,
followed by bounds on the differential sensitivity and the
uncertainty structures that maximize the sensitivity in Sec-
tion V. In Section VI we leverage these bounds to provide
performance guarantees in terms of the structure and size of
the uncertainty. The results are illustrated for a gate fidelity
optimization problem in Section VII.

II. PRELIMINARIES

Consider a closed quantum system of Q qubits with un-
derlying Hilbert space of dimension N = 2Q. The state is
characterized by the wavefunction ψ(t) ∈ CN with nominal
drift Hamiltonian H0 ∈ CN×N . To control the evolution
of ψ(t), introduce M control fields that optimally steer the
trajectory of the wavefunction from an initial state ψ0 to a
final state ψf at a readout time tf . The control fields take on
constant values at κ uniform time intervals of length ∆ so
that tf = κ∆ = ∆k where the initial time is ∆0 = 0 and any
intermediate time is given as ∆k = k∆, k ≤ κ. Each control



pulse fmk ∈ R enters the dynamics through an interaction
Hamiltonian Hm so that in the interval 1 ≤ k ≤ κ

Hk = H0 +

M∑
m=1

Hmfmk. (1)

Here fmk is the strength of the mth control field in the time
interval ∆k−1 ≤ t < ∆k. Let uk be a pulse of unit magnitude
that is only non-zero for the interval ∆k−1 ≤ tk ≤ ∆k (if
u(t) is the standard unit step then uk = u(∆k−1)− u(∆k)).
Then the total Hamiltonian is the sum of Hk over time

H(t) =

κ∑
k=1

Hkuk = H0 +

κ∑
k=1

M∑
m=1

Hmfmkuk. (2)

The wavevector dynamics are governed by

ψ̇(t) = H(t)ψ(t) , ψ(0) = ψ0 (3)

with solution at the readout time tf

ψ(t) = Φ(κ,0)ψ0 =
κ∏

k=1

Φ(k,k−1)ψ0 =

Φ(κ,κ−1)Φ(κ−1,κ−2) . . .Φ(1,0)ψ0

(4)

where
∏κ

k=1 indicates an ordered product. Here

Φ(k,k−1) = e−iHk(∆k−∆k−1) (5)

is the solution to the Schrödinger equation on the interval
[∆k−1,∆k] and Φ(κ,0) is the concatenation of the state
transition matrices from k = 1 through k = κ covering the
evolution from t = 0 to t = tf .

Equivalently, we can optimize to produce a unitary operator
U(tf ) = Φ(κ,0) ∈ U(N) with target Uf ∈ U(N) where
ψ(tf ) = U(tf )ψ(0). In this case the dynamics are governed
by U̇(t) = −iH(t)U(t) with U(0) = I , where I is the
identity on CN , and the solution is

U(tf ) = Φ(κ,0)U0 =

κ∏
k=1

Φ(k,k−1)U0. (6)

The figure of merit is the normalized gate fidelity at tf ,

F(tf ) =
1

N

∣∣∣Tr [U†
fΦ(κ,0)

]∣∣∣ (7)

and the corresponding fidelity error is e(tf ) = 1−F(tf ).

III. UNCERTAINTY MODEL

Consider an uncertain parameter in H(t) modeled as δĤµ

where δ ∈ [δ1, δ2] is the scalar deviation of the uncertain
parameter from its nominal value, structured as Ĥµ ∈ CN×N

and normalized such that
∥∥∥Ĥµ

∥∥∥
F
= 1. Ĥµ must be Hermitian

as the Hamiltonian of a closed system must remain Hermitian
under the uncertainty. The uncertain Hamiltonian is

H̃(t) =

κ∑
k=1

H̃kuk, (8a)

H̃k = H0 +
M∑

m=1

Hmfmk + δĤµαµk. (8b)

We consider the following uncertainty cases:

• Collective uncertainty in H0: In this case H̃0 = H0 +
δĤ0 so that Ĥµ = Ĥ0, αµk = 1 for all k, and Ĥ0 =
H0/ ∥H0∥F is the normalized structure matrix for H0.

• Collective uncertainty in interaction Hamiltonian Hm: In
this case fmkH̃m = fmk(Hm + δĤm) so that the final
term in (8) is δfmkĤm and αµk = αmk = fmk. Here
Ĥµ = Ĥm which is the normalized structure matrix for
Hm.

The perturbed solution to Eq (6) at tf is given by

Ũ(tf ) = Φ̃(κ,0) =

κ∏
k=1

Φ̃(k,k−1), (9a)

Φ̃(k,k−1) = e−iH̃k(∆k−∆k−1). (9b)

and the perturbed fidelity error due to the uncertainty Ĥµ

ẽµ(tf ) = 1− F̃µ(tf ) = 1− 1

N

∣∣∣Tr [U†
f Φ̃(κ,0)

]∣∣∣ . (10)

IV. DIFFERENTIAL SENSITIVITY

Taking the derivative of ẽµ(tf ) with respect to the uncertain
parameter δ structured as Hµ yields the following from Eq.
(11) of [10] and Eq. (28) of [11] when evaluated at δ = 0

∂ẽµ(tf )

∂δ

∣∣∣∣
δ=0

= −
ℜ
{
Tr
[
UfΦ

†
(κ,0)

]
Tr
[
U†
f

∑κ
k=1 Λ(κ,k)

]}
N
∣∣∣Tr [U†

fΦ(κ,0)

]∣∣∣ .

(11)
We may equivalently write this as

∂ẽµ(tf )

∂δ

∣∣∣∣
δ=0

= ℜ

{
−e

−iϕ

N
Tr

[
U†
f

κ∑
k=1

Λ(κ,k)

]}
(12)

where ϕ = ∠Tr
[
U†
fΦ(κ,0)

]
and Λ(κ,k) is defined as

Λ(κ,k) = Φ(κ,k)

∂Φ̃(k,k−1)

∂δ
Φ(k−1,0) (13)

where ∂
∂δ Φ̃(k,k−1) is given by Eq. (28) of [11]∫ ∆k

∆k−1

e−iHk(∆k−τ)
(
−iĤµαµk

)
e−iHk(τ−∆k−1)dτ (14)

and αµk takes values in {1, fmk} based on the type of
uncertainty as described in Section III. For brevity in what
follows, we define ∂

∂δ ẽµ(tf ) = ζµ(tf ) as the derivative of
fidelity error in the direction Ĥµ evaluated at δ = 0.

V. DIFFERENTIAL SENSITIVITY BOUNDS

We now consider bounds on the size of the differential
sensitivity. To provide an initial bound on the differential



sensitivity, we directly bound the absolute value of Eq. (12):

|ζµ(tf )| ≤
∣∣∣∣e−iϕ

N

∣∣∣∣ ·
∣∣∣∣∣Tr
[
U†
f

κ∑
k=1

Λ(κ,k)

]∣∣∣∣∣
≤ 1

N

κ∑
k=1

∣∣∣Tr [U†
fΛ(κ,k)

]∣∣∣ . (15)

Invoking the von Neumann trace inequality, and noting that
all singular values σℓ(U

†
f ) of U†

f are 1, gives the bound

|ζµ(tf )| ≤
1

N

κ∑
k=1

N∑
ℓ=1

σℓ
(
Λ(κ,k)

)
= B1. (16)

As all Φ(κ,k) are unitary we can bound the singular values

σℓ(Λ(κ,k)) = σℓ

(
Φ(κ,k)

∂Φ̃(k,k−1)

∂δ
Φ(k−1,0)

)

= σℓ

(
∂Φ̃(k,k−1)

∂δ

)
≤

∥∥∥∥∥∂Φ̃(k,k−1)

∂δ

∥∥∥∥∥
2

= σ̄
(
Λ(κ,k)

)
where σ̄(A) is the maximum singular value of A. Further∥∥∥∥∥∂Φ̃(k,k−1)

∂δ

∥∥∥∥∥
2

≤
∫ ∆k

∆k−1

∥∥∥e−iHk(∆k−τ)
∥∥∥
2
×
∥∥∥αµkĤµ

∥∥∥
2

×
∥∥∥e−iHk(τ−∆k−1)

∥∥∥
2
dτ = ∆ |αµk|

∥∥∥Ĥµ

∥∥∥
2

(17)

now yields the bound

∥ζµ(tf )∥ ≤ ∆
∥∥∥Ĥµ

∥∥∥
2

κ∑
k=1

|αµk| = B2. (18)

This bound is conservative and only relevant to a specific
perturbation structure Ĥµ. However, being based solely on the
parameters that define the control scheme, it is independent
of the size of the perturbation δ.

To obtain tighter bounds locally about δ = 0, applicable to
a more general uncertainty structure, we unpack the latter
from the differential sensitivity to make the reliance on the
uncertainty structure more transparent. Employing the cyclic
property and linearity of the trace, we rewrite the last term
of Eq. (12) as

Tr

[
U†
f

κ∑
k=1

Λ(κ,k)

]
=

κ∑
k=1

Tr

[
Φ(k−1,0)U

†
fΦ(κ,k)

∂Φ̃(k,k−1)

∂δ

]
where Ĥµ is restricted to a subset of the N × N Hermitian
matrices, which is justified as the perturbations are necessarily
Hermitian and constrained to the drift and interaction Hamil-
tonian matrices by the assumptions of Section III. Define a
basis for this subset of the Hermitian matrices as {Hm}Mm=0

for M < N2. An arbitrary, normalized uncertainty structure
is represented as

Ĥµ =

M∑
m=0

smĤm. (19)

If sµ ∈ RM+1 is a column vector of the scalars sm and∥∥∥Ĥm

∥∥∥
F

= 1, i.e., the uncertainty structure matrices are

normalized as per Section III, then retaining normalization

requires
∥∥∥Ĥµ

∥∥∥
F

=

√
Tr
[
Ĥ†

µĤµ

]
= 1, which holds if

∥sµ∥2 = 1. With this expansion for Ĥµ Eq. (14) gives

∂Φ̃(k,k−1)

∂δ
=

M∑
m=0

X(k)
m sm = X(k)sµ (20)

where X(k) ∈ CN×N(M+1) is a row of N ×N matrices

X(k)
m = −i

∫ ∆k

∆k−1

e−iHk(∆k−τ)Ĥmαmke
−iHk(τ−∆k−1)dτ.

(21)
Defining

ℜ
{
−e

−iϕ

N
Tr
[
Φ(k−1,0)U

†
fΦκ,kX

(k)
m

]}
= Zkm (22)

the differential sensitivity has the compact expression

∂ẽµ(tf )

∂δ

∣∣∣∣
δ=0

= 1TZ(tf , f)sµ = Γ(tf , f)sµ (23)

where 1 ∈ R1×κ is the row vector of κ 1s that sum the
vectorized components of ∂Φ̃(k,k−1)

∂δ . The tf and f in Z and
Γ indicate the dependence of these matrices on the read-out
time and control fields.

Before deriving the improved upper bound on the sensitivity,
note that (23) facilitates two interpretations of the differen-
tial sensitivity based on the constraints of the uncertainty.
Specifically, if the uncertainty is constrained to be constant
for the entire evolution, then sµ is a constant vector so that
Γ(tf , f)(·) can be viewed as a function that accepts as input
a single uncertainty structure, sµ and provides as output, the
sensitivity in that direction. This interpretation lends itself to
an uncertainty in the Hamiltonian that does not vary with
time. In this case, we provide the following maximum bound
on the differential sensitivity at δ = 0:

Theorem 1: The maximum of ∂
∂δ ẽµ(tf )

∣∣
δ=0

= ζµ(tf )|δ=0
in Eq. (23) with constant sµ is B3 := ∥Γ∥2. Further, the
uncertainty that maximizes |ζµ(tf )|δ=0 is given by H̄µ =∑M

m=0 vmĤm where {vm} are the components of the nor-
malized vector v̂ = Γ/B3.

Proof: Following directly from (23) and for a normalized
uncertainty structure ∥sµ∥2 = 1, |ζµ(tf )| = ∥Γsµ∥2 ≤
∥Γ∥2 · ∥sµ∥2 = ∥Γ∥2 = B3. Noting that Γ is simply a
real M + 1-dimensional row vector, the sµ that maximizes
the inner product Γsµ with ∥sµ∥2 = 1 is v̂ = ΓT /B3.
The maximum uncertainty direction H̄µ in terms of the
Hamiltonian uncertainty basis {Ĥm} directly follows.

Alternatively, consider an uncertainty that is constant over
each time step but varies over the evolution. Then we have for
each time step k, Ĥ(k)

µ =
∑M

m=0 s
(k)
m Ĥm with a correspond-

ing s
(k)
µ in the vectorized representation, and the following



differential sensitivity

ζ{µ }(tf ) =
∂ẽ{µ }(tf )

∂δ

∣∣∣∣
δ=0

=

κ∑
k=1

(
M∑

m=0

Zkmsm
(k)

)
=

κ∑
k=1

Zks
(k)
µ =

κ∑
k=1

ςk (24)

where Zk is the kth row of Z(tf , f) in (23) and ẽ{µ } indicates
that Hµ is not fixed over all time steps but given by the
sequence {H(k)

µ }
κ

k=1. This leads to the following alternative
bound to the differential sensitivity.

Theorem 2: The maximum size of
∣∣ζ{µ }(tf )

∣∣
δ=0

for the
formulation of (24) with uncertainty defined by the sequence
{ s(k)µ } and

∥∥∥s(k)µ

∥∥∥ = 1 for all k is ∥{ ς̄k }∥ℓ1 =: B4 where

ς̄k = ∥Zk∥2. Further the sequence { s̄(k)µ } that achieves the
bound B4 is given by s̄

(k)
µ = ZT

k /ς̄k for 1 ≤ k ≤ κ.

Proof: Suppose s
(k)
µ is normalized for all k and the

differential sensitivity is given by (24). Then
∣∣ζ{µ }(tf )

∣∣ =∣∣∣∑κ
k=1 Zks

(k)
µ

∣∣∣ ≤ ∑κ
k=1

∣∣∣Zks
(k)
µ

∣∣∣ = ∥ςk∥ℓ1 . It follows that
this sum is maximized if each term ςk is of the same sign and
takes on the maximum ς̄k = |max

s
(k)
µ

Zks
(k)
µ | for each k ∈

{ 1, 2, . . . , κ }. Since s
(k)
µ is normalized, we have that ς̄k =

∥Zk∥2. As such the maximum sensitivity is given by B4 :=∑κ
k=1 |ς̄k| = ∥ς̄k∥ℓ1 . Turning to the sequence of uncertainty

structures s
(k)
µ , we have that for each k, the inner product

Zks
(k)
µ is maximized by s

(k)
µ = ZT

k / ∥Zk∥ = ZT
k /ς̄k. The

sequence { s̄(k)µ } = {Zk/ς̄k } that maximizes the sensitivity
directly follows.

VI. GUARANTEED PERFORMANCE

We now seek to leverage the sensitivity bound B2 of (18) to
guarantee performance in the face of uncertainty structured
as Hµ with strength δ. For a given controller, characterized
by the set of control fields {fmk} and read-out time tf , we
view the perturbed error in the direction Hµ as a function of
the uncertain parameter δ, ẽµ(δ). We likewise consider the
differential sensitivity as a function of δ so that

ζµ(δ) =
∂ẽµ(δ)

∂δ
= lim

∆δ→0

ẽµ(δ +∆δ)− ẽµ(δ)

∆δ
.

We consider the case where Hµ is one of the matrices from
the set {Ĥm}. Our goal is to determine a bound on δ ∈
[δ1, δ2] such that ẽµ(δ) ≤ ϵ for the error threshold ϵ. Here δ1
and δ2 determine the endpoints of the uncertainty set for the
parameter δ admitted by the physical model. Before providing
the main result, we establish a pair of lemmas.

Lemma 1: On any interval [δ1, δ2] ⊂ R such that the fidelity
F̃µ(δ) ̸= 0, the function ẽµ(δ) is locally Lipschitz.

Proof: To establish that ẽµ(δ) is locally Lipschitz it
suffices to show that ẽµ(δ) is real analytic in δ. We rewrite

−iH̃k as −i (Ak + δBk) with

Ak = H0 +

M∑
m=1

Hmfmk, Bk = Ĥµαµk.

Allowing a non-vanishing, complex perturbation η = x +
iy and considering deviations ∆x and ∆y we have F (η) =
exp [−i(∆k −∆k−1)(Ak + ηBk)] is complex analytic as

∂F (η)

∂x

∣∣∣∣
η ̸=0

=
∂F (η)

i∂y

∣∣∣∣
η ̸=0

=∫ ∆k

∆k−1

e−i(∆k−τ)(Ak+ηBk) (−iBk) e
−i(τ−∆k−1)(Ak+ηBk)dτ.

Then F (η) restricted to δ = ℜ{η} is real analytic and has a
convergent power series in δ ∈ [δ1, δ2]. Given the product of
real analytic functions is real analytic and, by the Faà di Bruno
formula, the composition of real analytic functions is real
analytic [12], Tr

[
U†
f Φ̃(κ,0)(δ)

]
= g(δ) ∈ C is real analytic.

Employing the same argument for |g(δ)| =
√
g(δ)g∗(δ), we

have that
∣∣∣Tr [U†

f Φ̃(κ,0)(δ)
]∣∣∣ is real analytic except for when

g(δ) = 0, where F̃µ(δ) = 0. It then follows that ẽµ(δ) =
1−F̃µ(δ) is locally Lipschitz on an arbitrary interval [δ1, δ2]
if F̃µ(δ) ̸= 0.

Lemma 2: On the interval [δ1, δ2] and given that H̃k remains
Hermitian, |ζµ(δ)| is uniformly bounded with Lipschitz con-
stant B2 established by (18).

Proof: Given that B2 is an upper bound at δ = 0,
it suffices to show that if B2 is independent of δ, the
bound holds on an arbitrary interval [δ1, δ2]. To establish the
independence, consider evaluation of ζµ(δ) at some δ0 ̸= 0.
Then we have from (14)

∂Φ̃(k,k−1)

∂δ

∣∣∣∣∣
δ=δ0

=

∫ ∆k

∆k−1

e−iH̃k(δ0)(∆k−τ)×(
−iαµkĤµ

)
e−iH̃k(δ0)(τ−∆k−1)dτ (25)

where the perturbed Hamiltonians are

H̃k(δ0) = H0 +

M∑
m=1

Hmfmk + αµkĤµδ0. (26)

Given that Ĥµ is still Hermitian, it follows that the terms∥∥e−iHk(∆k−τ)
∥∥
2

and
∥∥e−iHk(τ−∆k−1)

∥∥
2

in (25) are still
unitary, and the bounds in (17) and (18) remain unchanged.
As such we have |ζµ(δ)| ≤ B2 on [δ1, δ2].

We now state the main result and provide a bound on δ to
guarantee a given performance requirement.

Theorem 3: Given a maximum allowable error ϵ and uncer-
tainty structure Ĥµ, the perturbed fidelity error ẽµ(δ) < ϵ for
all |δ| < δ̄ = ϵ−e(0)

B2
.

Proof: From Lemma 1, ẽµ(δ) is locally Lipschitz on
[δ1, δ2]. It follows that |ẽµ(δa)− ẽµ(δb)| ≤ Lab |δa − δb|



on each open interval (δa, δb) ⊂ [δ1, δ2] with Lipschitz
constant Lab. From Lemma 2, the bound B2 for a given
Ĥµ for a given controller provides a uniform upper bound
on Lab over the interval [δ1, δ2] so that ẽµ(δ) is Lipschitz
on [δ1, δ2] with Lipschitz constant B2. Then, since δ = 0
(the ”nominal” uncertainty) necessarily lies in the interval
[δ1, δ2] of allowable uncertainty, |ẽµ(δ)− e(0)| ≤ B2 |δ − 0|.
Since the fidelity error is always non-negative, the perturbed
error is bounded by ẽµ(δ) ≤ e(0) + B2|δ| where e(0) is
the nominal error. We now have the performance condition
ẽµ(δ) ≤ e(0)+B2|δ| ≤ ϵ from which the bound |δ| ≤ ϵ−e(0)

B2

guarantees ẽµ(δ) ≤ ϵ.

Although the bound δ̄ = ϵ−e(0)
B2

above guarantees that ẽµ(δ)
does not exceed the threshold ϵ, the conservative bound
B2 yields a highly conservative performance bound on δ.
Further, evaluation of a minimum δ that violates the perfor-
mance criteria by this procedure is valid only for a specific
uncertainty structure Ĥµ = Ĥm. However, we can apply
an iterative process based on the local bounds established
by Theorem 2 to determine a bound on δ that guarantees
a given performance criterion. Specifically, quantizing the
uncertainty size δ into uniform steps of a given magnitude
δ0, we compute the directions of the maximum sensitivity
of the fidelity error over every piecewise interval at uniform
perturbation strength nδ0 = δn. These maximum sensi-
tivity directions computed from Theorem 2 take the form

s
(k)
µ (δn) =

[
s
(k)
0 (δn), s

(k)
1 (δn), . . . , s

(k)
M (δn)

]T
generated by

the Hamiltonian H̃k(δn) at strength δn (and associated Z(δn)
as per (24)). Computing the Hamiltonian for a perturbation
of size δ0 in direction s

(k)
µ yields the recursive definition

H̃k(δ1) = H0 +

M∑
m=1

Hmfmk + δ0

M∑
m=0

αmkĤms
(k)
m (δ0),

H̃k(δn) = H̃k(δn−1) + δ0

M∑
m=0

αmkĤms
(k)
m (δn−1).

The perturbed error at this δn, ẽµ(δn) is then calculated from
Eq. (9b) and (10) using the sequence of Hamiltonian matrices
{ H̃k(δn) }. If ϵ− ẽµ(δn) > 0, increment n by one, compute
the gradient from Theorem 2, evaluate ẽµ(δn+1). For some
n̄ we have ϵ − ẽµ(δn̄) ≥ 0. We then have the minimum
perturbation that guarantees performance in any direction as
δ̄ = δn̄. We demonstrate this process in the following section.

VII. CASE STUDY: GATE OPTIMIZATION

To illustrate the results of the previous sections, we consider
dynamic controllers optimized for maximum gate fidelity for
a three-spin chain with Heisenberg coupling [10]. As opposed
to full spin addressability, we consider the case of control only
applied to the initial spin of the chain, a more challenging
optimization problem. For brevity, we refer to this system as
an A00-chain indicating control only on the first qubit. The

Fig. 1: Semilog plot of
∣∣∣∂ẽµ∂δ

∣∣∣
δ=0

= |ζµ(tf )| versus controller
index for the A00-chain gate problem. The red line indicates
the upper bound B4 for a variable uncertainty structure while
the yellow line indicates the upper bound B3 for a static
structure. Controllers are ordered in decreasing value of B3

Fig. 2: Semilog plot of ẽ1(δ̄) and δ̄ versus controller index
with ϵ = 0.01. Here δ̄ is calculated directly from Theorem 3.
Controllers are sorted in decreasing value of δ̄.

drift and interaction Hamiltonian matrices are:

H0 =
1

2

2∑
ℓ=1

(
σ(ℓ)
x σ(ℓ+1)

x + σ(ℓ)
y σ(ℓ+1)

y + σ(ℓ)
z σ(ℓ+1)

z

)
, (27)

H1 =
1

2
σ1
x, H2 =

1

2
σ1
y, (28)

where σ{ x,y,z } are the Pauli spin operators. Here σ(ℓ)
{x,y,x} is

given by σ{x,y,z} ⊗ I2 ⊗ I2 for ℓ = 1, I2 ⊗ σ{x,y,z} ⊗ I2 for
ℓ = 2, and I2 ⊗ I2 ⊗ σ{ x,y,z } for ℓ = 3. The target gate
Uf is a randomly generated unitary gate, and the initial gate
is taken as the identify matrix I8. The choice of a randomly-
generated unitary gate as the target is justified in the desire to
make the optimization target as challenging as possible. The
read-out time is tf = 15 with κ = 32 time steps.

As discussed in Sections III and V we choose as a basis for the
perturbation structure {Ĥµ} for µ = 0 to 2. We first examine
the bound on all perturbations at δ = 0. Figure 1 shows the
tightness of the bounds B3 and B4 obtained from Theorems 1
and 2 for ζµ(tf ) localized around δ = 0, nearly matching
the sensitivity generated by the uncertainty structure Ĥ0. As
expected, the bound for a non-static uncertainty structure is



Fig. 3: Semilog plot of ẽµ(δ̄) versus δ̄ versus controller index
with ϵ = 0.01. Here δ̄ computed by iterating on B4 based on
Theorem 2. Controllers are ordered in decreasing value of δ̄.
A perturbation of size δ̄ in any of the principal directions Ĥµ

does not produce an error that exceeds ϵ.

slightly larger than B3, but not significantly greater.

Turning to performance, we examine the closeness of the
performance guarantees of Theorem 3 to the actual perturbed
error based on the predicted value of δ̄. We set the value
of ϵ at 0.01, so that a gate fidelity of 99% is the minimum
performance threshold. As shown in Figure 2, perturbing
the system in the direction Ĥ1 at the value of δ̄ given
by Theorem 3 does not violate the performance criteria
ẽ1(δ̄) < ϵ. However, the plot reveals the conservativeness
of δ̄ calculated this way. Specifically, the predicted value of δ̄
results in a fidelity error e1(δ̄) with a margin of ≈ 102 before
exceeding the performance criteria ϵ = 10−2 in roughly
half of the controllers. Surprisingly, for seven controllers, the
conservative δ̄ pushes ẽ1(δ̄) to within an order of magnitude
of the limiting error ϵ, providing some utility to the first order,
differential-based performance bound. Still, the overall result
indicates the limitation of differential sensitivity techniques
to guarantee performance for non-vanishing perturbations.
However, as noted in Section VI, we can use Theorem 2 to
iterate a computational search for the minimum value of δ that
exceeds the performance bounds in any uncertainty direction
Ĥµ. Figure 3 shows the results of iterating on δ to find the
smallest δ such that a violation ẽµ(δ) ≥ ϵ of the performance
criteria occurs. Values of δ̄ average two magnitudes greater
than those predicted by Theorem 3. As seen in the figure, the
iterative procedure results in a δ̄ such that the sequence of
perturbations { δ0s(n)µ } pushes the fidelity error to the limit
of the performance criteria ϵ indicated by ẽmax. Additionally,
we note that in the perturbative regime around δ = 0,
perturbations structured as Ĥ0 show the greatest sensitivity.
As seen in Figure 3, perturbations of this same structure lead
to those values of ẽµ(δ) that most closely approach the ϵ-
threshold. This suggests that the sensitivity properties gleaned
form the differential sensitivity at δ = 0 are indicative of
sensitivity to the error at non-vanishing values of δ, at least
for this controller set.

VIII. CONCLUSION

We have shown that the calculation of the differential sensi-
tivity as in [13] is easily extended to the case of piecewise
constant controls generated by quantum optimal control al-
gorithms. Further, the differential sensitivity can be reliably
bounded for small perturbations about the nominal operating
point and those uncertainty structures that generate this max-
imum sensitivity can be deduced. However such differential
sensitivity techniques have limited applicability beyond the
realm of vanishing perturbations, suggesting the need for a
coherent theory to accommodate performance guarantees for
larger perturbations.
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