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Abstract With the introduction of Adiabatic Quantum Computation (AQC) and its
implementation on D-Wave annealers, there has been a constant quest for benchmark
problems that would allow for a fair comparison between such classical combinatorial
optimization techniques as Simulated Annealing (SA) and AQC-based optimization.
Such a benchmark case-study has been the scheduling problem to avoid interference
in the very specific Dirichlet protocol in wireless networking, where it was shown
that the gap expansion to retain noninterference solutions benefits AQC better than
SA. Here we show that the same gap expansion allows for significant improvement
of the D-Wave 2X solution compared with that of its its predecessor, the D-Wave II.

1 Introduction

Since the first proposal of the Quantum Turing Machine by David Deutsch in 1985
[52], quantum computation has seen fast evolution in recent decades [91]. It has pro-
vided a revolutionary transformation of the notion of feasible computability, with the
most celebrated Shor’s factoring algorithm [53] and Grover’s search algorithm [54].
Adiabatic Quantum Computation (AQC), first proposed in the year 2000 [51], has
been a very promising candidate for future quantum computation models. Resem-
bling the classical metaheuristic of Simulated Annealing (SA) [39], AQC aims to
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solve hard optimization problems with promise of utilizing quantum tunneling ef-
fects so as to more efficiently explore the search space.

With the introduction of the world’s first programmable quantum annealing plat-
form (known as D-Wave) in 2011, more research efforts have been put into such
endeavors as benchmarking, error correction, quantumness test and applications, all
of which led to the following hotly debated questions:

1. Does AQC involve quantum effects? The short answer is ‘most likely yes.’ In
Apr. 2013, by performing experiments on D-Wave with random instances with
different level of hardness [41, 42], and comparing the experimental results with
classical models of simulated annealing, spin dynamics and Quantum Monte
Carlo, a unique bimodal distribution of success probability of quantum anneal-
ing was observed to be in agreement of Quantum Monte Carlo. This rules out
simulated annealing and spin dynamics models. In May 2014, Lanting et al. [55]
experimentally determined the existence of entanglement inside D-Wave. In Nov.
2014, evidence of quantum tunneling was experimentally observed [56].

2. Does AQC have speedup over classical computer? The short answer is ‘con-
vincing evidence of speedup has been slow to show.’ Definition of the term
‘speedup’ is more subtle than it appears to be, and speed itself is very problem
dependent. Early efforts have been made at showing quantum advantage [41–43],
and general speedup has not yet been detected. Katzgraber et al. gave a possible
reason for why speedup has not been detected [57], that random Ising problems
might be too easy, and that 20µs annealing time might be too long. With the
introduction of D-Wave 2X with 1152 qubits in Aug. 2015, D-Wave released
benchmark results claiming that time-to-target measure on D-Wave is 8 to 600
times faster than competing algorithms on all input cases tested [58]. In 2016, an
arXiv preprint by Google [86] claimed that with the new D-Wave 2X, a speedup
as high as a factor of 108 has been observed, but this work received mixed re-
views for the main reason that the problem appears to be quite an artificial one,
and that the annealing time might be too long for easier cases and hides the expo-
nential scaling. More recently [88], a “first quantum speed up” was claimed when
simulating Hamiltonian systems of spin rings with Heisenberg coupling subject
to self-thermalization on quantum circuit models where classical simulations fail
beyond 22 spins.

3. Does AQC require error correction? The short answer is ‘at this stage most
definitely yes.’ In Jul. 2013, Pudenz et al. proposed quantum annealing correc-
tion on D-Wave [59] by using multiple qubits to represent one qubit and properly
setting the penalty weights between such redundancy qubits, and observed signif-
icant improvements in experiments. Unlike traditional quantum error correction
where many-body interaction is required and overhead is usually too large to be
implementable on D-Wave, Pudenz code is specifically designed for D-Wave’s
Chimera architecture. Note, however, that it has been claimed [87] that, in order
to achieve an objective comparison between quantum and classical computers,
quantum computers should not be allowed to have error corrections. In this con-
text, a case for quantum supremacy could be claimed if quantum computers could
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sample the output of random quantum circuits in a manner that state-of-the-art
classical computers could not achieve.

4. What are the obstacles to AQC?
(a) Minor embedding: In Feb. 2015, Wu [63] singled out minor embedding as

No. 1 challenge in applying AQC to practical problems. The hardware graph,
known as ‘Chimera’ architecture, is a fixed graph composed of a lattice of
K4,4 bipartite cells; thus, while mapping a real world arbitrary graph into
Chimera architecture, the NP-hard process of minor embedding has to be per-
formed. This greatly increases the overall complexity of solving such prob-
lems.

(b) Analog control errors: Weights on Ising Hamiltonian is problem-defined and
can be anything. King et al. [64] claimed that the analog control errors on bias
fields h and spin coupling J follow Gaussian distributions with σh ≈ 0.05
and σJ ≈ 0.035 on the available scale of [−2, 2] on D-Wave II. Such value is
believed to be significantly reduced on the D-Wave 2X.

1.1 Contribution

1.1.1 Main

In the present paper, we contribute mainly to Problem #2, but with “speed-up” un-
derstood in a very specific way. More broadly speaking than “speedup,” it is of over-
riding importance to find a problem, a Machine Learning “killer application” [89]
that could at least potentially justify the use of a quantum annealer. By comparing
it to classical methods, including exact algorithms, metaheuristics, problem-specific
heuristics, the quantum annealer should at least have a practical advantage, show
some “quantum enhancement” [89], if not faster.

We found that the wireless network scheduling problem (Sec. 2) of moving pack-
ets from sources to destination optimally in the sense of delay and subject to interfer-
ence constraints at the router nodes is such a ‘good quantum problem’ that shows a
definite advantage over simulated annealing. More specifically, our benchmark prob-
lem involves the new Dirichlet protocol (Sec. 3), a particular case of the Heat Diffu-
sion (HD) suite of protocols [71–75], which outperforms the original Back-Pressure
(BP) protocol [22]. As already noted in [83], the gap expansion technique to move
those annealing runs that satisfy the interference constraints to the bottom of the
energy spectrum so that minimum energy solutions are network-relevant (Sec. 6.3)
benefits quantum annealing much better than simulated annealing [83]; furthermore,
as major result of the present paper, this improvement is more pronounced in D-Wave
2X than in its D-Wave II predecessor (Sec. 8).

Specifically, the improvement of D-Wave 2X over D-Wave II is two-fold. First,
D-Wave 2X has 1152 qubits over 512 and, second, D-Wave 2X has better error con-
trol over the coupling and bias parameters. The latter improvement is significant and
probably most relevant. It has indeed been shown that such benchmark problems
as Grover search when mapped to AQC-amenable problem involve quadratic maps
defined over the complex projective space that are unstable in the sense of differen-
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tial topology [65, 66]. This has the consequence that, while, in theory, the spectral
gap might be large enough for theoretical AQC computation, under parameter vari-
ation the spectral gap reduces dramatically making the process diabatic with the in-
eluctable consequence that the correct minimum energy solution is missed. The gap
expansion technique utilized here and in [83] pushes the noninterference solutions
down the energy spectrum and better error control prevents the run to deviate from
the minimum energy solution making the D-Wave 2X runs much more successful
than those of its predecessor.

1.1.2 Other contributions

Our main contribution to Problem #2 appears to leave the other problems in the dark.
However, we feel that Problems #1 and #3 have been and are still adequately ad-
dressed by many groups. Regarding the remaining problems, we contributed to Prob-
lem #4(a) in [84, 85] using the Ollivier-Ricci curvature technique [78, 79]. The im-
portance of Problem 4(b), as formulated in Sec. 5.2, is at least practically illustrated
here; indeed, the improvement afforded by D-Wave 2X (Sec. 8) is, as we conjecture,
due to better analog control errors in the latter than in D-Wave II. Along a much more
theoretical line, the effect of analog control errors on the differential topology of the
annealing run is considered in [65].

1.2 Summary

The workflow of this paper is depicted in Fig. 1. The top lines denotes the classical
weighting-scheduling-forwarding sequence of the BP and HD protocols (Sec. 3). The
new, nonclassical part of the paper is the “bypass” of the classical scheduling. This
bypass comprises the embedding preprocessor (Sec. 6.2) to partially solve the minor
embedding challenge of Problem 4(a) and the mapping preprocessor (Sec. 6.1) to
greatly improve solution quality of quantum annealing by gap expansion (Sec. 8).

2 Wireless network scheduling—Weighted Maximum Independent Set

A Wireless Sensor Network (WSN) typically consists of a large number of low-power
computation-capable autonomous nodes. Unlike wired networks where node-to-node
delay is usually the only optimization objective, in WSNs power conservation is also
a major concern. Sensor nodes usually carry generally irreplaceable power sources,
densely deployed within frequently changing network topology [68]. This is also the
reason why a power-conservative routing protocol is usually preferred in sensor net-
works instead of network flooding. However, certain applications still require lower
delay, which generally entails a trade-off with power consumption. SEAD (Scalable
Energy-Efficient Asynchronous Dissemination [69]) is an example of a protocol that
proposes to trade-off between node-to-node delay and energy saving. Likewise, our
suite of Heat Diffusion protocols [71–75] allows for Pareto-optimal tradeoff between
routing energy (7) and delay as expressed by queue occupancy (Little’s theorem)
in (19). Here, however, we will focus on delay.
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Fig. 1: Proposed workflow of quantum wireless application. The workflow features the standard 3-step pro-
cess of weighting, scheduling and forwarding discussed in detail in Section 3, with the D-Wave “bypass”
of classical heuristics expanded upon in Sec. 6.

2.1 Network interference

One of the fundamental problems in multi-hop wireless networks is network schedul-
ing. Signal-to-Interference-plus-Noise Ratio (SINR) has to be maintained above a
certain threshold to ensure successful decoding of information at the destination. For
example, IEEE 802.11b requires minimum SINR of 4 and 10 dB corresponding to
11 and 1Mbps channel [19]. Consequently, only a subset of edges in a network can
be activated at the same time, since every link transmission causes interference with
nearby link transmissions. The fundamental mechanism in IEEE 802.11 uses the Dis-
tributed Coordination Function (DCF), which attempts to access wireless medium in
a distributed way and backs off for a random time following exponential distribution.
Despite its simplicity to implement, DCF has serious drawbacks mainly for its poor
throughput [20, 21].

Different networks and protocols usually use different interference models. The
most commonly used model is the 1-hop interference model (node exclusive model),
in which only one link among those sharing a node in common can be activated in
the same timeslot, with the restriction extended to every node.

There are two major models for analyzing network interference: one is the graph
based model for solving the Weighted Maximum Independence Set (WMIS) prob-
lem on a conflict graph [14–18], the other for optimizing the geometric-based SINR
[9–12]. The former is sometimes argued as being an overly idealistic assumption;
however, the Maximum Independent Set (MIS) problem is still involved in the latter
model [13] and is of interest in its own right. Thus, we base our abstraction on solving
the MIS in a centralized scheduler in Medium Access Control (MAC) layer.

To summarize, here, the centralized scheduler, aware of the global network topol-
ogy, performs best-effort scheduling on a timeslot basis in order to
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1. maximize the number of simultaneous transmissions from non-interfering sta-
tions (throughput optimality);

2. minimize average network delay (19).

2.2 Weighted Maximum Independent Set (WMIS)

To give formal definitions, the network is abstracted as a graph G = (V, E), where the
vertex set V denotes the transceiver nodes (including sources and sinks d ∈ D ⊂ E)
and the edge set E denotes the wireless links. Let δS(u, v) denote the hop distance be-
tween u, v ∈ V . Consider edges eu, ev ∈ E and let ∂eu = {u1, u2}, ∂ev = {v1, v2}.
We then define

δ(eu, ev) = min
i,j∈1,2

δS(ui, vj) (1)

to be the distance between edges. Similar to the definition in [8], a subset of edges E ′
is said to be valid subject to the K-hop interference model if, for all eu, ev ∈ E ′ with
eu 6= ev , we have δ(eu, ev) ≥ K. Let SK denote the set of subsets E ′ ⊂ E that are
K-hop valid.

Let w`∈E be the wireless networking link weights. They are usually related to the
queue differential at the end nodes of the link (Eqs. (5), (10)), with the convention
that the destination node is a sink with vanishing queue occupancy. The weight w`

therefore indicates the need to “service” the link `. The weighting makes the whole
difference between the BP and the various HD protocols. Regardless of the particular
weighting, the network scheduling under the K-hop interference model is

E ′opt = arg max
E′∈SK

∑
`∈E′

w`. (2)

In the K = 1 case, the problem is a max-weight matching problem and thus has
polynomial time solution (Edmonds’ blossom algorithm [38]). However, for the case
K > 1, the problem is proved to be NP-hard and non-approximable [8]. In most
cases, the network scheduling problem has to be solved in every timeslot during net-
work operation; thus, the time complexity of the exact scheduling problem becomes
critical.

Max-Weight scheduling by solving a Weighted Maximum Independence Set prob-
lem is a proved classical throughput optimal algorithm [22], that is, the scheduling
set can stabilize all traffic arrival rates that are within the capacity region. However,
in real-world applications, such algorithm is unrealistic due to its NP-hardness and
time constraints. Instead, heuristics are widely used and well-studied, such as greedy
style Longest-Queue-First (LQF) algorithm [1–6], random access algorithm [7] and
classical probabilistic algorithms including simulated annealing, genetic algorithm,
etc., discussed in more detail in Section 4.1. LQF algorithm, in particular, has been
claimed to achieve satisfactory throughput optimality in K-hop interference model
[4,6], and is guaranteed to achieve at least 1/6 of optimal throughput for K-hop, and
1/4 of it for 2-hop [4] with less than 20 nodes.
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3 Dirichlet protocol—specific weighting

Least Path Routing is simple to implement in wireline networks, but subject to heavy
congestion at the centroid of the network if the network is negatively curved [70].
However, in wireless sensor networks, the global topology information is not gen-
erally available to every node, so that access to a global routing table is no longer
a valid assumption. Thus, a dynamic routing protocol referred to as Backpressure
(BP) [22] routing has been proposed. It achieves maximum throughput in the pres-
ence of varying network topology without knowing neither arrival rates nor global
topology. There are, however, other protocols that are throughput optimal and that
might in addition have other optimal properties.

3.1 Preamble: Heat Diffusion

Heat Diffusion (HD) protocol, originally proposed in [71], is a dynamic routing pro-
tocol with the unique feature that it mimics the heat diffusion process on a capacitated
graph using information only from neighboring nodes. The graph is capacitated in the
sense that the flow through the link ij is bounded by µij , referred to as link capac-
ity. It is proved that HD stabilizes the network for any rate matrix in the interior of
the capacity region. The Heat Diffusion protocol is briefly formulated as follows: At
timeslot k, let Q(d)

i (k) denote the number of d-packets (those packets bound to desti-
nation d ∈ V) queued at the network layer in node i. HD is designed along the same
3-stage process as BP: weighting-scheduling-forwarding.

– HD Weighting: At each timeslot k and for each link ij, the algorithm first finds
the optimal d–packets to transmit as

Q
(d)
ij (k) = max

{
0, Q

(d)
i (k)−Q(d)

j (k)
}
, (3)

d∗ij(k) = arg max
d∈D

Q
(d)
ij (k).

To attribute a weight to each link, the HD algorithm performs the following:

f̂ij(k) = min
{⌈

1/2 Q
(d∗)
ij (k)

⌉
, Q

(d∗)
i (k), µij(k)

}
, (4)

wij(k) =
(
f̂ij(k)

)(
Q

(d∗)
ij (k)

)
, (5)

where f̂ij(k) denotes the number of packets that would be transmitted from i to
j if the link ij were activated by the scheduling phase.

– HD Scheduling: After assigning the optimal weight (5) to each link, the schedul-
ing set S(k) at timeslot k is chosen in a non interference set SK=1 as in Eq. (2),

S(k) = arg max
E′∈SK=1

∑
`∈E′

w`, (6)

where scheduling set comprises the set of links to be activated satisfying the hop
constraint defined in Section 2.1.

– HD Forwarding: Subsequent to the scheduling stage, each activated link trans-
mits f̂ij (k) number of packets in accordance with (4).
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3.2 Dirichlet protocol

The Dirichlet protocol (a variant of HD) was originally proposed in [72]. It involves
a link cost factor ρ(d)ij (k), the cost of transmitting a d-class packet along link ij at

time slot k. Define Dij(k) to be the set of d-classes such that Q(d)
i (k)−Q(d)

i (k) =:

Q
(d)
ij (k) > 0. Specifically, the Dirichlet protocol minimizes the Dirichlet routing

energy

R̄ = lim sup
K→∞

1

K

K−1∑
k=0

E

∑
ij∈E

∑
d∈Dij(k)

ρ
(d)
ij (k)

(
f
(d)
ij (k)

)2 , (7)

where E denotes the expectation relative to arrival statistic. As a corollary, it mini-
mizes the average queue occupancy (Eq. 19), itself proportional, by Little’s theorem,
to the average delay.

– Dirichlet Weighting: The Dirichlet weighting proceeds from the problem of find-

ing f̂ (d)ij (k) to minimize

∑
d∈Dij(k)

(
ρ
(d)
ij (k)−1Q

(d)
ij (k)− f̂ (d)ij (k)

)2

, (8)

subject to

∑
d∈Dij(k)

f̂
(d)
ij (k) ≤ µij(k) and 0 ≤ f̂ (d)ij (k) ≤ Q(d)

ij (k). (9)

Then the weight to each class d ∈ Dij(k) is assigned as:

w
(d)
ij (k) := 2ρ

(d)
ij (k)−1Q

(d)
ij (k)f̂

(d)
ij (k)−

(
f̂
(d)
ij (k)

)2

(10)

and the final link weight is

wij(k) =
∑

d∈Dij(k)

w
(d)
ij (k). (11)

– Dirichlet Scheduling: It is the same as the HD scheduling with 1-hop interfer-
ence model.

– Dirichlet Forwarding: Subsequent to the scheduling stage, each activated link

transmits a number f̂ (d)ij (k) of d-packets.
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4 Simulated versus quantum annealing

4.1 Simulated Annealing (SA)

Among all classical heuristics, simulated annealing (SA) is the most important one.
First proposed by Kirkpatric et al. [39], SA emulates the process of first melting a
solid by heating it up and then slowly cooling it down to the lowest-energy state of
pure lattice structure. SA is designed as a general probabilistic algorithm for search-
ing a cost function minimum formulated as a metaphoric lowest energy state. SA is
formulated as follows:

pk+1 =

{
1 if f(xk+1) < f(xk),

exp
(
− f(x(k+1))−f(xk)

T (k)

)
otherwise,

(12)

where T (k) denotes the temperature at iteration step k and is monotone decreasing
with k, f(x) denotes the cost function, and pk+1 denotes the probability of accepting
state xk+1 at iteration k + 1. A properly chosen set of parameters is essential to
obtain good results from SA, with the cooling schedule T (k) being one of the most
important ones. SA has been well studied as applied to MIS both as a standalone
problem [23, 24] and as its applications to wireless networks [25, 26]. It is claimed
that simulated annealing is superior to other competing methods with experimental
instances of up to 70, 000 nodes [23].

Several other classical heuristics have also been applied to the MIS problem, in-
cluding neural networks [27–29], genetic algorithm [30–32], greedy randomized ge-
netic search [33], Tabu search [34–37]. However, throughout this paper, SA will be
our primary benchmark technique.

4.2 Quantum Annealing (QA)

Adiabatic Quantum Computation (AQC), a subcategory of quantum computing first
proposed in [51], and later physically implemented by D-Wave, maps a Quadratic
Unconstrained Binary Optimization (QUBO) problem defined as

min
X

E(x1, x2, ..., xN ) = c0 +

N∑
i=1

cixi +

N∑
1≤i<j

cijxixj ,

xi ∈ {0, 1},

(13)

to the problem of computing the ground state of the Ising network

HIsing =

N∑
i=1

hiσ
z
i +

N∑
1≤i<j

Jijσ
z
i σ

z
j , (14)

where σz
i = I⊗(i−1) ⊗

(
0 0
0 1

)
⊗ I⊗(N−i) is the computationally-relevant [67] z-

Pauli operator of spin-i, Jij the coupling between spin i and spin j, and hi is the
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static bias field applied to spin i. The annealer prepares an initial transverse magnetic
field, an equal superposition of 2N computational basis states, as

Htrans = −
N∑
i=1

σx
i , (15)

where σx
i = I⊗(i−1) ⊗ 1

2

(
1 −1
−1 1

)
⊗ I⊗(N−i). During adiabatic evolution, the

Hamiltonian evolves smoothly from Htrans to HIsing with the scheduler s(t) mono-
tonically increasing from s(0) = 0 to s(tf ) = 1,

H(t) = (1− s(t))Htrans + s(t)HIsing, s ∈ [0, 1]. (16)

From the adiabatic theorem [67], if the evolution is “slow enough,” the system would
remain in its ground state. Thus, the solution of the original QUBO problem could be
obtained by measurement on the Ising problem with a certain probability of success.

QUBO is widely studied and applied in many research fields that feature op-
timization, graphical models, Bayesian networks, etc. One of the specific areas is
the computer vision approach that involves minimizing energy functions. Felzen-
szwalb [40] provides an insightful survey of the applications of QUBO in computer
vision. QUBO is proved to be NP-hard. There is some evidence that the D-Wave
quantum computer gives a modest speed-up over classical solvers for QUBO prob-
lems, and may provide a large speed-up for some instances of QUBO problems [42].
Recently, on D-Wave 2X with 1152 qubits, the speedup reaches up to three orders of
magnitude for a subset of scenarios in multiple query optimization problems [44].

5 Adiabatic Quantum Computation Applications

In this short review, we consider only two D-Wave machines, those on which we have
evaluated the Dirichlet wireless scheduling algorithms.

5.1 D-Wave II

D-Wave launched D-Wave Two with 512 physical qubits. Two applications to quan-
tum annealing emerged, both led by a group from NASA Ames.

One such application is Bayesian network structure learning [46], where for the
first time sufficiency of suboptimal solution is proposed, with the claim that global
optimum is not required. They also studied penalty weights and pointed to proba-
ble problem of analog control error caused by precision constraints. However, by
claiming that only 7 logical qubits could be embedded, no experimental results were
shown.

The other application is the operational planning problem [45]. For the first time,
three high-level research challenges were identified, namely (1) Finding appropriate
hard problems suitable for quantum annealing, (2) Mapping to QUBO with good
choices of parameters, (3) Minor embedding into hardware. They used qubits in the
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range of 8 − 16, with expected annealing runs in the range of 10 − 10000 to reach
ground state with 99% certainty.

The same NASA Ames group applied quantum annealing to electric power sys-
tem fault detection [47] on D-Wave II, and again emphasized that analog control error
is a major obstacle in working with real world problem-defined graphs. They utilized
as many as 340 physical qubits, reaching typically 9000 ST99 measure (expected
repetitions to reach ground state with 99% certainty). They compared results with
classical exact solver and claimed a comparative speedup. However, general quan-
tum speedup was not claimed.

A group as USC also applied graph isomorphism problem to D-Wave II [48],
which involves reducing baseline Hamiltonian to a more compact Hamiltonian. The
solved problem size is as large as 18 logical qubits, with ST99 time around 1 second
in the 18-qubit case.

5.2 D-Wave 2X

D-Wave launched D-Wave 2X with 1152 physical qubits. The first application on D-
Wave 2X was database optimization [44], and they claimed to have found a subset
of problems that demonstrated a speedup up to three orders of magnitude and for the
first time used over 1000 qubits. However, another group at NASA while testing the
new machine on deep learning application [49] claimed that no speedup was found
compared to other competing classical heuristics.

Interestingly, in late 2015, Google announced a result [86] claiming a 108 speedup
on D-Wave 2X compared to classical simulated annealing and simulated quantum
annealing based on carefully crafted ‘artificial problems.’ However, this claim has
been challenged in academia and is still in debate, for the same reason mentioned
before: 1) the problem artificial nature and 2) suboptimal annealing time on easier
cases may be hiding the exponential scaling.

6 Embedding preprocessor and mapping preprocessor

Here we essentially follow the “bypass” of the classical scheduling as shown in Fig. 1.
The two preprocessors implement the various steps needed to convert the wireless
scheduling problem to a format amenable to AQC.

6.1 Mapping to conflict graph

Given G = (V, E), the corresponding conflict graph GC = (VC = E , EC) has its
vertex set equal to the edge set of G and its edge set consisting of those pairs (eu, ev)
of E edges such that their distance as defined by (1) in G is ≤ K. Also, we set the
vertex weight in GC to be the link weight in G and the edge weight in GC is set to
1, to denote a violation of the interference constraints. The time complexity of such
conversion process is O(|E|2).
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Now, by solving the WMIS of the conflict graph, we solve the network scheduling
problem of the original graph. As first proposed in [80], the WMIS problem can be
formulated as the QUBO problem of finding the minimum of the binary function:

f(x1, ..., xN ) = −
∑
`∈VC

c`x` +
∑

k`∈EC

Jk`xkx`. (17)

The binary variable x` = 1 if node ` in GC (link ` in G) is in the WMIS (edge ` of G
is activated) and 0 otherwise. c` is set to the (Dirichlet) weight w` of link ` in G. Jk`
is a penalty for allowing links k and ` of G to be simultaneously activated.

It is proved [80] that a sufficient condition for the ground state of the Hamiltonian
to be the optimal solution to the WMIS problem is that Jk` > min(ck, c`) for k` ∈
EC . Thus, the energy spectrum of the QUBO problem relates to the spectrum of the
corresponding Ising formulation in Eq. (14), with the ground state energy of the Ising
problem giving the solution to the network scheduling problem.

Note that the network scheduling problem has an Ising Hamiltonian with natu-
ral two-body interaction. Thus, unlike some other applications [40, 50], additional
reduction is not needed. Such many-body reductions would cause sizable overhead,
resulting in the practical problem size to be very small due to hardware constraints.

6.2 Minor embedding preprocessor

Fig. 2: Complete picture of proposed framework with amplification of the embedding preprocessor and
the mapping preprocessor
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The next block in the scheduling bypass of Fig. 1 is the embedding preprocessor,
which in its simplest interpretation would embed the problem graph GC in the hard-
ware architecture graph H. The latter requires that the problem graph be a subgraph
of the architecture graph. For general problems, this is a very strong requirement,
since the hardware graph is fixed. In the D-Wave architecture, minor embedding in-
stead of subgraph embedding is used to allow 1-to-many vertex mapping [80]. By
properly adjusting the coupling strengths of particular edges and nodes [81], more
than one physical qubits can represent the same logical qubit, thus greatly increasing
the range of graphs that can be minor embedded to a fixed hardware graph, at the cost
of using more resources (more physical qubits).

The minor embedding φ : GC → H is defined such that (i) each vertex v in
GC is mapped to a connected subtree Tv of H; (ii) for each vw ∈ EC , there are
corresponding iv ∈ Tv and iw ∈ Tw with iviw ∈ EH. Crucially related to minor
embedding is the concept of tree decomposition T of GC . Each vertex i ∈ I of the
tree T abstracts a subset Vi, called a “bag,” of vertices of GC such that (i) ∪i∈IVi =
VC ; (ii) for any vw ∈ EC , there is a i ∈ I such that v, w ∈ Vi; (iii) for any v ∈ VC
the set {i ∈ I : v ∈ Vi} forms a connected subtree of T . The width of a tree
decomposition is maxi(|Vi|−1). The treewidth τ is the minimum width over all tree
decompositions. A theorem, crucial to rule out some candidate embeddings, says that
necessary for existence of an embedding GC → H is that τ(GC) ≤ τ(H). Since the
tree width is difficult to compute, we derived an estimate of it based on the Ollivier-
Ricci curvature [84, 85]. The embedding preprocessor block of Fig. 1 is amplified in
Fig. 2, which shows how tree width and Ollivier-Ricci curvature in particular lead to
a new heuristic embedding.

Different heuristic embeddings and different runs of them, if successful, will lead
to different minor embedded graphs. Different embeddings do not significantly affect
the final results, since the gap expansion—instrumental in making the method work—
is decoupled from the minor-embedding. Thus, multiple embeddings were tried and
results remained similar.

6.2.1 Error correction

In Jul. 2015, Vinci et al. proposed error correction in conjunction with minor embed-
ding [60]. By solving encoded problems experimentally, significant improvements on
minor-embedded instances are detected. There also exist other error correction efforts
on adiabatic quantum computing, in particular Vinci [61] and Mishra [62] both in late
2015.

6.3 Gap expansion to favor noninterference solutions

Here, by “gap,” we do not specifically mean the classical minimum gap between
the ground energy level and the first excited one along the adiabatic evolution, but
rather the gap between energy evolution curves satisfying the interference constraints
and those violating such constraints. This is with the hope that the ground energy
(max weight) curve would be nonviolating and well separated from the violating
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curves. Another motivation for this separation is to make the computation insensitive
to analog errors.

We try to achieve the aforementioned goals by properly setting the h` and Jk`
terms in Eq. (17). We introduce a scaling factor βk` that multiplies the quadratic part
of the QUBO formulation and as such scales the various terms so as to put more
penalty weight on the independence constraints if βk` > 1:

f(x1, ..., xN ) = −
∑
`∈VC

c`x` +
∑

k`∈EC

βk`Jk`xkx`. (18)

In theory, βk` = 1 would suffice as long as Jk` > min(ck, c`), as the ground state
has already encoded the correct solution of the WMIS problem [80]. However, since
measuring the ground state correctly is not guaranteed, increasing βk` becomes nec-
essary to enforce the independence constraints, so that the energy spectrum of the
non-independence states is raised to the upper energy spectrum and the feasible en-
ergy states are compressed to the lower spectrum.

Figure 5 of [83] illustrates this concept via the intuitive idea of plotting the energy
levels versus s. However, as emphasized in [65], the deeper justification of the separa-
tion of the energy levels is to be found in the numerical range ofHtrans + HIsing(β).
For small β, the numerical range is highly singular, mixing the various energy lev-
els, whereas as β increases, the numerical range becomes “dis-singularized” and the
energy levels are better separated.

There exist several strategies in setting heavier penalty weights to expand the gap.
Set

Jk` := max(ck, c`), ∀k` ∈ EC ; Jmax := max
k`∈EC

Jk`.

Then define

– Global gap expansion: Pick βglobal and set βk`Jk` = βglobalJmax,∀k` ∈ EC .
– Local gap expansion: Pick βk` > 1, ∀k` ∈ EC .

In the local adjustment [80], the constraint on Jk` depends only on the fields at
∂k`, whereas in the global adjustment, contrary to [80], Jk` depends on all fields.

The D-Wave II is subject to an Internal Control Error (ICE) that gives Gaussian
errors with standard deviations σh`

≈ 0.05 and σJk`
≈ 0.035 [64]. Putting too large

a βk` penalty would incur two problems: 1) The local fields would become indistin-
guishable and 2) The minimum evolution gap would become too small. Accordingly,
a few parameter values have been tried out and the results are shown in Table 4,
which corroborates the experimental results of Section 8 indicating that gap expan-
sion would significantly influence the optimality of the returned solution.

7 Quality metrics

Among the wireless network protocols that have been demonstrated to be throughput-
optimal (e.g., Backpressure and Heat-Diffusion), network delay came out as a metric
that can be optimized subject to throughput optimality.
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(Average Network Delay) Since Poisson arrival rate is commonly assumed in wire-
less network studies, the Dirichlet protocol minimizes the expected long-term time-
averaged total queue congestion

Q̄ = lim sup
K→∞

1

K

K−1∑
k=0

E

(∑
i∈V

∑
d∈D

Q
(d)
i (k)

)
, (19)

where Q(d)
i (k) is the d-packets occupancy at queue i at time slot k. By Little’s theo-

rem, Q̄ is proportional to the long-term averaged node-to-node network delay. Thus,
it is sufficient to work with average queue occupancy over all nodes in the network.

(Extended Throughput Optimality) The classical solver is exact, that is, it has no
interference constraint violations and it achieves the true maximum throughput. The
quantum solver may or may not satisfy the interference constraints. In the former case
(no violations), its quality factor is defined as the ratio of the quantum throughput and
the exact throughput and is ≤ 1. In the latter case (violations), the quantum solver
may or may not have its quality factor ≤ 1 and its definition is split into two cases:

no violations

{
Avg Opt =

∑
ij∈E′S

fij∑
kl∈E′opt

fkl
≤ 1,

violations


Avg Opt =

∑
ij∈E′′S

fij∑
kl∈E′opt

fkl
≤ 1,

Avg Opt = 1−
∑

ij∈E′′S
fij∑

kl∈E′opt
fkl
≤ 0,

(20)

where fij denotes the forwarding amount as defined in Section 2.2, E ′S denotes the set
of edges in the scheduling set S computed by QUBO without violations, E ′′S the same
set but with violations, and E ′opt denotes the set of edges in the optimal scheduling set
solved by the exact solver, without violations.

(ST99[OPT]) Along the line of other benchmarking methods [41–43], we define a
slight variant of speed measure, ST99(OPT), as the expected number of repetitions
to reach at least a certain optimality level OPT with 99% certainty,

ST99[OPT] =
log(1− 0.99)

log(1− POPT)
, (21)

where POPT is the probability of reaching a state with at least OPT optimality. Note
that this is of practical significance for time-sensitive problems like wireless network
scheduling, where enough time might not be available within a timeslot for the quan-
tum annealer to reach the ground state.

8 Results: D-Wave II versus D-Wave 2X

8.1 Experimental setup

It is known that SA can boost the overall performance of classical heuristic algo-
rithms in solving WMIS problems [23]. Thus, it is worth comparing the latter with
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Table 1: Search range for best parameters for simulated annealing

Range
Number of sweeps 400-10000

Number of repetitions 300-5000
Initial temperature 0.1-3
Final temerature 3-13
Scheduling Type linear/exponential

Table 2: Problem size of Erdös-Rényi random graphs used in experiment. The link capacities were setup
as µij = ∞, ∀ij. The third column represents the actual physical qubits used after minor embedding.

Problem Size QUBO Size Physical Qubits
Graph1 15 31 164
Graph2 20 57 405
Graph3 25 68 759
Graph4 30 84 783

our QA results. Here, we adapt a highly optimized Simulated Annealing algorithm
(an ss ge fi vdeg) from reference [82], compiling the C++ source code with gcc 4.8.4
with MATLAB® C-mex API. Additionally, a wide range of parameters, shown in
Table 1, were tested to ensure near optimal performance of the algorithm within a
reasonable run time.

We performed experiments on both D-Wave II and D-Wave 2X, and showed that
QA has an advantage over SA after gap expansion—thus a potential general quantum
speedup. We also showed that performance is improved significantly in D-Wave 2X
compared to its predecessor. At the time the experiment was done, lower level API
was not made available; thus, parameters like anneal length were all default values
set by D-Wave.

Table 2 shows the parameters of the 4 randomly generated Erdös-Rényi graphs
being tested on D-Wave II and D-Wave 2X, where the link capacities µij were all set
to∞. The “problem size” is the order |V| of the problem (wireless network) graph,
the “QUBO size” represents |E|, and the “physical qubits” are those nodes utilized
after minor embedding in the architecture H. With the effect of minor-embedding, a
significantly large proportion of all available qubits are utilized (402 out of 502 on
D-Wave II for Graph 2 and 783 out of 1098 on D-Wave 2X for Graph 4).

8.2 Average network delay

In Figure 3, we show that D-Wave 2X gains an advantage over D-Wave II, which itself
gains an advantage over SA in terms of average network delay after gap expansions
in Graph 2 test case. (The conflict graphs of Graph 3 and Graph 4 could not be
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minor embedded in the limited architecture of D-Wave II.) In the experiment, should
the lowest energy solution not conform to the K-hop interference model, we skip
the timeslot and no forwarding is allowed. The benefit afforded by D-Wave 2X is
conjectured to be its better analog error control.

In Fig. 4, we compare various solutions in terms of delay for Graph 2 and Graph
3 on D-Wave 2X. Again, gap expansion appears essential for QA and SA to be com-
petitive with the exact solver. After gap expansion, QA shows an advantage over SA.
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Fig. 3: D-Wave 2X noise improvement compared to D-Wave II. Noise reduction is sufficient enough to
demonstrate a quantum advantage over SA after gap expansion.

8.3 Throughput optimality

As already said, the solutions given by the QA and SA solvers may or may not satisfy
the independent constraints and, in the latter case, the transmission is skipped. It is
of vital importance to determine how this affects throughput optimality as defined in
Section 7. The ratio of Eq. (20) may exceed 1 because solutions that do not satisfy
the independent condition may have a bigger total weight, in which case the Avg
Opt is redefined as negative as a warning. We refer to those solutions do not satisfy
the independent condition as violations. From Table 3, we can see that energy com-
pression directly results in less violations of the independent condition in the case of
QA rather than SA, especially with D-Wave 2X. This could explain the performance
improvement afforded by D-Wave 2X.

There is a relatively large number of violations in SA even after gap expansion.
This agrees with our previous knowledge about SA that it is designed to find the
ground state and it is not optimized to search for the sub-optimal results. This is
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Fig. 4: D-Wave 2X: Network delay of classical exact algorithm, quantum annealing, quantum annealing af-
ter gap expansion with mild and strong strategies (representing local and global adjustment, respectively).
Simulated annealing are performed on two networks randomly generated also with mild and strong strate-
gies. The top one is a graph with 25 nodes and 68 edges, the bottom one is with 30 nodes and 84 edges,
both randomly generated using Erdös-Rényi model.

especially true for larger Graph 4, of which SA violates the independence constraint
in almost all cases (146 out of 150).

8.4 ST99[OPT]

From optimality data returned from D-Wave, we plot ST99 related to level of opti-
mality as shown in Fig. 5. Note that our ST99 definition relies on optimality level,
which could typically be 80% or 90% depending on user’s needs. In network setup,
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Table 3: Optimality & violation performance after gap expansion for Graphs 2,3, and 4

G2 Number of violations
(out of 120)

G2 Average optimality
(without violations)

QA on D-Wave II 13 0.8129
QA on D-Wave 2X 0 0.8746

SA 31 0.9935
G3 Number of violations

(out of 120)
G3 Average optimality

(without violations)
QA on D-Wave 2X 0 0.8737

SA 98 0.7434
G4 Number of violations

(out of 150)
G4 Average optimality

(without violations)
QA on D-Wave 2X 0 0.8714

SA 146 0.7613

this optimality of classical heuristic relies heavily on topology (Ollivier-Ricci curva-
ture [76–79]) of such network and traffic rate model. Again, gap expansion is indis-
pensable to obtain competitive results.

8.5 Throughput optimality versus delay versus gap expansion

Although gap expansion in itself is a classical method, we showed that such proce-
dure can help QA improve its results, and thus help demonstrate potential quantum
advantage over SA. In Table 4, we show how setting the penalty weight β in local
or global approach would affect the quality of the returned solutions. We found that
setting βglobal = 1 would yield the best performance so far. We do not have a quanti-
tative explanation for the wrong solutions; potential explanations on small problems
have been discussed in [41–43]. Intuitively, as the problem size grows, it is much
more difficult even to find close to ground states; indeed, as the penalty weight grows
too large, the local fields begin to vanish, thus making the problem effectively more
difficult since all weights have to be scaled to [−2,+2]. The problem of quantitative
connection among quality measure, network stability, and throughput optimality re-
mains open.

9 Conclusion

We have further developed the complete Adiabatic Quantum Computation (AQC)
approach to wireless network scheduling, already proposed in [83] and depicted in
Fig. 2, by comparing the newer D-Wave 2X versus the older D-Wave II results. The
newer machine allows for simulations on higher order graphs (G3, G4) afforded by
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Fig. 5: ST99, defined as log(1−0.99)
log(1−POPT)

relative to required optimality specified by network, before and
after gap expansion on four test graphs. Note that probability is calculated based on all solutions returned
by D-Wave; thus ST99 of 103 corresponds to one set of annealing runs, which in our case costs 20ms. The
curve for graph 2 ends at 0.9 optimality because there is no solution that satisfies such optimality after a
total of 120, 000 annealing runs. Also note that the top figure is run on D-Wave II while the bottom figure
is run on D-Wave 2X.

the 1152 qubits versus the 512 qubits of the older machine. Remarkably, even on
higher order graphs (G3, G4), the “gap expanded” Quantum Annealing (QA) runs on
D-Wave 2X result in no interference constraint violations, while on smaller graphs
(G1,G2) D-Wave II still had some violations. Across the board (G2-G4), Simulated
Annealing (SA) experienced violations. On a small order graph (G2), SA was show-
ing some optimality level advantages over QA, which disappeared on higher order
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Table 4: Penalty weight with different β setup and resulting quality measure of returned solution averaged
over 120 timeslots. Graph 2 is a larger size instance than Graph 1. Delay refers to average network delay
in steady state, and NC refers to the non-convergent case where steady state is not reached within tested
time span.

Avg. Opt. - G1 Delay - G1 Avg. Opt. - G2 Delay - G2
βkl = 1 + ε 0.781 384.9 0.077 NC
βkl = 2 0.928 376.3 0.312 1213
βglobal = 1 0.974 268 0.741 566.1
βglobal = 1.5 -0.165 NC -0.331 NC
βglobal = 2 -0.185 NC -0.356 NC

Avg. Opt. - G3 Delay - G3 Avg. Opt. - G4 Delay - G4
βkl = 1 + ε 0.8585 743 0.8478 1168.9
βglobal = 1 0.8737 762.9 0.8714 975.8

graphs on D-Wave 2X. Probably the better analog control error on the newer con-
tributes to this significant improvement.

Fundamentally, the scheduling part of this AQC approach to wireless network
scheduling aims at solving the Weighted Maximum Independent Set (WMIS) prob-
lem in general, and thus can be trivially applied to other problems involving WMIS.

By comparing QA with SA, though omitting Quantum Monte Carlo (QMC), we
have strengthened our earlier finding [83], claiming a potential comparison point
where QA outperforms SA in the sense of benefit from gap expansion. Although,
as seen from Table 3, SA has an optimality advantage in non-violation cases in test
case G2, it is however interesting to observe that among suboptimal solution cases
QA has less violations than SA. For larger graphs tested on D-Wave 2X, SA lost such
only advantage in terms of optimality.

It is also important to notice that the algorithm on D-Wave 2X “scales up” better
than on its predecessor. In Table 3, the optimality level for test graphs ranging from
size 405 to 783 remains at the very close to optimality level of 0.87.

Despite encouraging results, due to the very limited experimental data, we cannot
positively assert a general sizable advantage of QA against SA. However, it is our
hope that such study could be the inspiration for future general speedup demonstra-
tions.
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