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Abstract

In this paper, the δ-hyperbolic concept, originally developed for infinite
graphs, is adapted to very large but finite graphs. Such graphs can indeed
exhibit properties typical of negatively curved spaces, yet the traditional
δ-hyperbolic concept, which requires existence of an upper bound on the
fatness δ of the geodesic triangles, is unable to capture those properties,
as any finite graph has finite δ. Here the idea is to scale δ relative to
the diameter of the geodesic triangles and use the Cartan-Alexandrov-
Toponogov (CAT) theory to derive the thresholding value of δ/diam below
which the geometry has negative curvature properties.

1 Introduction

A graph property, fundamentally important both in terms of its coarse geometry
significance [23] and its potential applicability to networks [15, 10, 13], is prob-
ably most easily formulated as the graph looking like a tree when viewed from
a distance. A tree is defined as a connected graph such that, given any three
vertices, the geodesic triangle made up with the minimum length paths joining
them is star shaped. To provide a formal definition of an infinite graph that is
nearly a tree, define the fatness δ(4) of a geodesic triangle 4 as the minimum
of the perimeter of all triangles inscribed to 4. Should the graph be a tree,
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1



clearly, δ(4) = 0 for all triangles 4 embedded in the graph. Then a graph G
(or a geodesic metric space X) is said to be δ-hyperbolic if there exists a bound
δmax such that δ(4) < δmax no matter how distant the vertices of 4 are. The
least such bound is δ(G) (δ(X)). Such spaces, even though they need not have
manifold structure, nevertheless exhibit properties similar to those of simply
connected complete Riemannian manifolds M of curvature uniformly bounded
from above by κmax < 0.

Some finite graphs (like trees) unmistakenly exhibit negative curvature prop-
erties, other finite graphs (like complete graphs) rather exhibit positive curva-
ture properties, a third class of finite graphs (e.g., those obtained by gluing a
tree on a complete graph) have mixed curvature properties, yet the δ-hyperbolic
concept is unable to discriminate between the three, as any finite graph G no
matter how awesome its size has finite δ. The purpose of this paper is to show
that, for very large but finite diameter (geodesic) metric spaces X, the appro-
priate definition of nonpositive curvature is that the ratio δ(4)/diam(4) be
less than or equal to 3/2 for all geodesic triangles 4 embedded in X (Theo-
rems 2 and 3). The threshold value is derived from a comparison argument
with Euclidean space. Such spaces are referred to as scaled δ-hyperbolic.

The preceding concept can be transcribed, with some extra caution, to posi-
tively curved spaces. Indeed, it can be shown that, for Riemannian manifolds of
curvature bounded from below by κmin > 0, we have sup δ(4)/diam(4) > 3/2,
at an appropriate scale of the triangle 4 (see Section 3.2.1).

A variant of the above, which consists in scaling δ relative to the perime-
ter rather than the diameter, is also considered and is shown to provide an
alternative formulation of essentially the same concept. The motivation for the
latter is that it is closely related to the more traditional concept of Busemann
nonnegatively curved space [16].

The proposed concept allows for some flexibility, as the δ(4)/diam(4) ≤ 3/2
condition could be enforced only for triangles of a diameter bounded from below
by some scale R. While the large scale concept would be in the spirit of coarse
geometry, the small scale version is related to nonpositive local combinatorial
curvature [9] (see, e.g., Theorem 8).

An outline of the paper follows. Section 2 reviews the background material
necessary for the understanding of the paper. Section 3 introduces the new
concept of scaled δ-hyperbolic spaces. Section 4 develops the local structure
compatible with the scaled δ-hyperbolic property. Section 5 shows the relevance
of the concept to scale free, heavy tailed graphs [1]. Finally, Section 6 is the
conclusion.

2 Background

The context here is that of a metric space (X, d). A path in X is a contin-
uous mapping p : [a, b] → X. The length of a path is defined as `(p) =
supa=a0<a1<...<an−1<an=b

∑n−1
i=0 d(ai, ai+1). A geodesic is path p : [a, b] → X

such that d(p(s), p(s′)) = |s− s′|, ∀s, s′ ∈ [a, b]. The metric space X is geodesic
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if any two points x, y can be joined by a geodesic of length d(x, y).
If va, vb, vc are three points in a geodesic metric space, a geodesic triangle

4vavbvc is defined as [vavb] ∪ [vbvc] ∪ [vcva], where [vavb] denotes a geodesic
joining va to vb.
M2

κ denotes the standard 2-dimensional Riemannian manifold of constant
curvature κ. For κ < 0, it is a hyperboloid; for κ = 0, it is the Euclidean plane
E2; for κ > 0, it is the sphere of radius 1/

√
κ. By the Hopf-Rinow theorem [17,

Th. 1.4.8], M2
κ is a geodesic metric space.

To metrize a graph G = (V,E), where V is the vertex set and E is the
edge set, it is convenient to introduce a length function ` : E(G) → R>0. By
topologizing each edge as the unit interval [0, 1] (see [21, Sec. 4.1]), the length
function is easily affinely extended to all paths p in G. Then the graph becomes
a length space. Next, the distance between two points x, y of a graph is defined
as the infimum of the length of all paths joining x to y. As such, the graph
becomes a metric space. A locally finite graph is geodesic.

Motivated by networking applications where most of the communication
cost between vertices x, y is incurred by the routing decision at the vertices
traversed by the message, the edge lengths will sometimes be normalized to
1. In those applications, like in Cayley graphs, the distance is relevant only
between vertices.

The topological inclusion relation 4 ⊆ G does not preclude the vertices of
4 to be in the interior of the edges. We use the notation 4 ¹ G to indicate
that 4 is a subgraph of G, in which case the vertices of 4 are vertices of G.

2.1 Comparison theory

The gist of comparison theory is that the metric properties of two triangles
isometrically drawn in M2

κ and M2
κ′ are strongly dependent on whether κ ≤ κ′

or κ ≥ κ′.

Definition 1 ([6, Def. 4.1.8], [5, Chap. II.1],[3, p. 19]) Given a geodesic
triangle 4vavbvc in some geodesic metric space (X, d), the comparison triangle
4̄v̄av̄bv̄c in the standard constant curvature manifold (M2

κ, d̄) is a triangle such
that

d̄(v̄a, v̄b) = d(va, vb)
d̄(v̄b, v̄c) = d(vb, vc)
d̄(v̄c, v̄a) = d(vc, va)

In general, an overbar (̄·) is a generic notation to denote a point, a triangle,
or the distance in the comparison space.

Proposition 1 ([5, Lemma 1.2.14]) With the same notation and terminol-
ogy as above, for κ ≤ 0, the comparison triangle always exists and, for κ > 0,
the comparison triangle exists iff perim(4vavbvc) ≤ 2π√

κ
, where perim denotes

the perimeter.
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Definition 2 With the same notation and terminology as the above, given
x ∈ [vbvc], its comparison point in 4̄v̄av̄bv̄c is the point x̄ ∈ [v̄bv̄c] such that
d(vb, x) = d̄(v̄b, x̄).

The comparison triangle also allows a concept of angle to be defined solely
in terms of the distance, independently of the concept of inner product.

Definition 3 ([5, Def. 1.12], [6, 4.3]) The Alexandrov angle ∠vcvavb at the
vertex va of a geodesic triangle 4vavbvc is defined as

∠vcvavb = lim sup
ȳ,z̄→v̄a

∠ȳv̄az̄

where ∠ȳv̄az̄ denotes the usual angle at the vertex v̄a in the comparison triangle
4v̄av̄bv̄c in M2

κ, and ȳ ∈ [v̄cv̄a], z̄ ∈ [v̄av̄b] are the comparison points of y ∈
[vcva], and z ∈ [vavb], respectively.

The angle ∠ȳv̄az̄ depends on the metric ofM2
κ, but the limit does not depend

on what comparison space is chosen [5, Prop. 2.9], [20].

2.2 CAT spaces

Definition 4 ([18, Sec. 3.2],[3, p. 19], [19, Th. VIII.4.1],[6, Sec. 4.1.4])
The metric space (X, d) is said to be a Cartan-Alexandrov-Toponogov or
CAT(κ ≤ 0)-space if for every geodesic triangle 4vavbvc, every point z ∈ [vavb],
and every point y ∈ [vavc] along with their comparison points in M2

κ≤0, we have

d(z, y) ≤ d̄(z̄, ȳ)

The above is called CAT(κ ≤ 0)-inequality.

It is easy to see that, for κ′ ≤ κ, every CAT(κ′) space is also a CAT(κ)
space.

The concept of CAT(κ ≤ 0) space should be obvious: A CAT(κ ≤ 0) space
is characterized by geodesic triangles that look thinner than those redrawn iso-
metrically in a Riemannian manifold of curvature κ ≤ 0. Since thin triangles
are symptomatic of negatively curved spaces, it can be said that a graph has
nonpositive curvature if it is a CAT(κ ≤ 0) space.

The problem with this nonpositive curvature definition is that all triangles
at all scales must satisfy the CAT(0)-inequality, and this is unlikely to happen
in networks, which are too heterogeneous and in which the hyperbolic property
occurs only at a large scale. This motivates the new concept introduced in this
paper.

2.3 Large scale δ-hyperbolic spaces

We now proceed to a large scale curvature concept for possibly infinite diam-
eter graphs. Because Riemannian manifolds of positive sectional curvature κ
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uniformly bounded from below as κ(m) ≥ κmin > 0, ∀m ∈ M , have bounded
diameter, and because graphs with positive local combinatorial curvature are
finite [9, 24, 7], it follows that, at large scale, only nonpositive curvature is rel-
evant. To define such a concept, let (X, d) be a geodesic metric space. The
fatness of a geodesic triangle 4vavbvc is defined as

δ(4vavbvc) := (1)

inf



d(x, y) + d(y, z) + d(z, x) :

x ∈ [vbvc]
y ∈ [vavc]
z ∈ [vavb]





Next, define
δ(X) := sup{δ(4vavbvc) : 4vavbvc ⊆ X} (2)

Definition 5 A geodesic metric space X is said to be (Gromov) δ-hyperbolic if
δ := δ(X) < ∞.

To understand the spirit of this definition, it is instructive to go back to
Riemannian geometry.

Proposition 2 ([23, pp. 84-85]) Let M be a simply connected complete Rie-
mannian manifold of sectional curvature bounded from above as κ(m) ≤ κmax <
0, ∀m ∈ M . Then

δ(M) ≤ 6√−κmax

In a certain sense, a metric space is δ-hyperbolic if it behaves metrically in
the large scale as a negatively curved Riemannian manifold.

Since a locally finite graph is a geodesic metric space, we define such a graph
G to be δ-hyperbolic if δ := δ(G) < ∞. It will be shown in Theorem 1 that, for
4 ¹ G, the infimum in (1) occurs on the vertices of the sides of 4.

3 New concept: scaled δ-hyperbolic space

Here, instead of the CAT(0) approach outlined in Section 2.2, we develop a
Gromov-like analysis. Since for any finite graph δ is finite, the Gromov concept
becomes meaningful only after scaling δ(4) by the diameter (or the perimeter)
of the triangle 4.

The diameter of a triangle, or any subset of a geodesic metric space for that
matter, is defined as diam(4) := supx,y∈4 d(x, y). In M2

κ≤0, diam(4vavbvc) =
max{d(va, vb), d(vb, vc), d(vc, va)}. Indeed, for each κ ≤ 0, the manifold M2

κ is
a CAT(0) space [16, Corollary 2.1.3] and therefore the above diameter prop-
erty follows from [16, 2.3.1]. For 4 ¹ G, it is not in general true that the
diameter is achieved on the vertices and this motivates the vertex diameter,
vdiam(4vavbvc) = max{d(va, vb), d(vb, vc), d(vc, va)}. The perimeter of a tri-
angle 4vavbvc in a geodesic space, on the other hand, does not involve the sub-
tleties of the diameter and is trivially defined as perim(4vavbvc) = d(va, vb) +
d(vb, vc) + d(vc, va).
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The proposed concept, δ(4)/diam(4) ≤ 3/2, is related, but not quite equiv-
alent, to the CAT(0) inequality. The CAT(0) inequality implies δ(4)/diam(4) ≤
3/2 (Corollary 2), the converse holds for a surface (Theorem 4), but as we prove
by a counterexample (end of Section 3.2), on a discrete structure, δ(4)/diam(4) ≤
3/2 does not in general imply CAT(0).

3.1 Combinatorial fatness

Since the new concept emerged out of graph problems, before looking at the
scaling of δ, we first investigate the combinatorial aspect of the fatness.

Theorem 1 For a metric graph (G = (V, E), d), given a geodesic triangle
4vavbvc with its vertices va, vb, vc in V (G), there exists a solution x, y, z
of (1) on the vertices, that is,

inf



d(x, y) + d(y, z) + d(z, x) :

x ∈ [vbvc]
y ∈ [vavc]
z ∈ [vavb]





= inf



d(x, y) + d(y, z) + d(z, x) :

x ∈ V ([vbvc])
y ∈ V ([vavc])
z ∈ V ([vavb])





where V ([vavb]) denotes the vertex set of the side [vavb] of the triangle.

Proof. Let the optimum points x, y, z be in edges [bicj ] ⊆ [vbvc], [cka`] ⊆
[vcva], [ambn] ⊆ [vavb], respectively. Assume first that the edges [bicj ], [cka`],
[ambn] are pairwise nonintersecting. Assume by contradiction that the infimum
is reached for x in the open edge (bi, cj) := [bicj ] \ {bi, cj}. Clearly, in this
case, [yx] 3 bi or [yx] 3 cj , since bi, cj are the only end vertices from x to y,
which by assumption lies in another edge. Then either both geodesics [yx] and
[zx] pass through the same end vertex of [bicj ] or they pass through different
end vertices. The first case where the two geodesics [yx], [zx] pass through the
same vertex, say bi, is impossible, because taking x = bi would result in a lower
length. The remaining possibility is both geodesics passing through different
end vertices, say, [zx] 3 bi and [yx] 3 cj . In the latter case, the length is
independent on the position of x ∈ [bicj ]. Hence we have the freedom to choose,
say, x = bi so that the optimum length can be achieved for x on a vertex. By
a similar argument, the optimum length can be achieved for y, z on vertices as
well. Again, a similar argument takes care of the case where any pair of vertices
x, y, z are in intersecting edges. ¥

3.2 Diameter scaling

Theorem 2 Fix κ < 0 and let R > 0 be a scale. Then

sup
4 ⊂ M2

κ<0

diam(4) ≥ R

δ(4)
diam(4)

< sup
4 ⊂ E2

δ(4)
diam(4)

(3)
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Proof. Let 4vavbvc be a triangle in M2
κ<0, which, in addition to the diameter

constraint, satisfies insize(4vavbvc) ≥ ε for some ε > 0. (The insize is the
diameter of the inscibed triangle [5, Chap. III.H, Def. 1.16].) Define c :=
d(va, vb), a := d(vb, vc), b := d(vc, va). Because of the insize condition, the
quantities a, b, c satisfy the strict triangle inequalities, i.e., the triangle 4vavbvc

is not flat [5, Def. III.H.1.16]. Let 4v̄av̄bv̄c be a comparison triangle in E2.
Take x ∈ [vbvc], y ∈ [vavc], z ∈ [vavb] and let x̄ ∈ [v̄bv̄c], ȳ ∈ [v̄av̄c], z̄ ∈ [v̄av̄b]
be the corresponding comparison points in E2. Since M2

κ is a CAT(κ) space,
and hence a CAT(0) space (see [5, Th. II.1.12]), the CAT(0) inequality yields

d(x, y) ≤ d(x̄, ȳ)
d(y, z) ≤ d(ȳ, z̄)
d(z, y) ≤ d(z̄, ȳ)

We now prove that the inequalities can be strengthened to strict inequalities,
e.g., d(x, y) < d(x̄, ȳ). Let 4ṽcx̃ỹ ⊂ M2

κ be a comparison triangle of 4v̄cx̄ȳ ⊂
E2. Draw the geodesic rays ṽc/x̃ and ṽc/ỹ and pick points ṽb ∈ ṽc/x̃ and ṽa ∈
ṽc/ỹ such that d(ṽc, ṽb) = a and d(ṽc, ṽa) = b. Let c̃ := d(ṽb, ṽa). To disprove
d(x, y) = d(x̄, ȳ), it suffices to show that c̃ < c. To prove the latter, it suffices to
show that ∠ṽc < ∠v̄c. Since ∠ṽc ≤ ∠v̄c by the Rauch-Toponogov comparison
theory [17, Sec. 4.5, Perspectives], it suffices to disprove ∠ṽc = ∠v̄c. But the
latter equality, along with the hyperbolic law of cosines in 4x̃ṽcỹ,4vbvcva ⊂
M2

κ, yields c = |a ± b| (see Appendix), which contradicts the hypothesis that
the triangle cannot be flat. Hence,

d(x, y) + d(y, z) + d(z, y) < d(x̄, ȳ) + d(ȳ, z̄) + d(z̄, ȳ)

Taking the minimum of the right-hand side yields

d(x̂, ŷ) + d(ŷ, ẑ) + d(ẑ, ŷ)

< min



d(x̄, ȳ) + d(ȳ, z̄) + d(z̄, ȳ) :

x̄ ∈ [v̄bv̄c]
ȳ ∈ [v̄av̄c]
z̄ ∈ [v̄av̄b]



 = δ(4v̄av̄bv̄c)

where x̂ ∈ [vbvc], ŷ ∈ [vavc], ẑ ∈ [vavb] are the comparison points in M2
κ of the

optimal x̄, ȳ, z̄ points in E2. Taking the minimum of the left-hand side of the
preceding inequality yields,

min



d(x, y) + d(y, z) + d(z, y) :

x ∈ [vbvc]
y ∈ [vavc]
z ∈ [vavb]



 < δ(4v̄av̄bv̄c)

Hence
δ(4vavbvc) < δ(4v̄av̄cv̄c)

Recall that, in a nonpositively curved CAT(0) space, the diameter of a triangle
is the largest side length. By construction, the two triangles have the same side
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lengths, so that
δ(4vavbvc)

diam(4vavbvc)
<

δ(4v̄av̄cv̄c)
diam(4v̄av̄cv̄c)

Next, we take the supremum of the right-hand side and show that the strict
inequality prevails. Since δ(4)/diam(4) ≤ (6/

√−κ)/diam(4), the supremum
can be sought over triangles of bounded diameter, say, diam(4) ≤ R′. The
supremum can also be sought without the insize contraint, since insize(4) = 0
would imply δ(4) = 0. Hence, the supremum can be sought over the compact
set {(a, b, c) ∈ R3

+ : a ≥ b, a ≥ c, a ≤ R′, a ≤ b + c}. Consequently, after taking
the supremum, the strict inequality still holds:

sup
4vavbvc ⊂M2

κ

diam(4vavvvc) ≥ R

δ(4vavcvc)
diam(4vavcvc)

<
δ(4 ¯̂va ¯̂

vb ¯̂vc)

diam(4 ¯̂va
¯̂
vb ¯̂vc)

where ¯̂va,
¯̂
vb, ¯̂vc are the comparison points in E2 of the optimum points v̂a, v̂b, v̂c

achieving the left hand side supremum. Finally, taking the supremum of the
right-hand side yields

sup
4vavbvc ⊂M2

κ

diam(4vavbvc) ≥ R

δ(4vavbvc)
diam(4vavbvc)

< sup
4v̄av̄bv̄c ⊂ E2

diam(4vavbvc) ≥ R

δ(4v̄av̄bv̄c)
diam(4v̄av̄cv̄c)

Finally, observing that the right-hand side fraction is scale-independent, the
restriction on the diameter can be dropped and the result follows. ¥

Theorem 3

sup
4 ⊂ E2

δ(4)
diam(4)

=
3
2

for the Euclidean space endowed with the usual metric.

Proof. Consider a Euclidean triangle 4vavbvc. Take x ∈ [vbvc], y ∈ [vavc], and
z ∈ [vavb]. The incidence angle at x is defined as ∠vbxz and the reflection angle
at x is defined as ∠vcxy. Recall that, by the Fermat principle, at optimality,
that is, when the fatness is achieved, the incidence angle equals the reflection
angle. Set ιx = ∠vbxz = ∠vcxy, with a similar definition at y, z. Let α, β, γ be
the angles at the vertices va, vb, vc, respectively. It is readily seen that

β + ιx + ιz = π

γ + ιx + ιy = π

α + ιz + ιy = π

and solving the above for ιx, ιy, ιz yields

ιx = α, ιy = β, ιz = γ
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It follows that 4vazy is similar to 4vavbvc, with similar statements for 4vbzx
and 4vcxy. This yields,

|vaz|
b = b−|vcy|

c = |yz|
a

|vcy|
a = a−|vbx|

b = |yx|
c

|vbx|
c = c−|vaz|

a = |zx|
b

where | · | denotes the usual length of a Euclidean line segment. Solving the
above for |vbx|, |vcy|, |vaz| and plugging the solution in

δ = |xy|+ |yz|+ |zx| = a|vaz|
b

+
c|vcy|

a
+

b|vbx|
c

yields

δ(4vavbvc) =
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

2abc

To prove that δ/diam ≤ 3
2 , take, without loss of generality, a, b ≤ c = 1, in

which case, it suffices to show that

f(a, b) ≡ a4 + b4 + 1− 2a2b2 − 2a2 − 2b2 + 3ab ≥ 0

∀(a, b) ∈ [0, 1]2 satisfying the triangle inequality 1 ≤ a + b. Nominally, such
a problem would be tackled as a Tarski-Seidenberg decision problem, but the
latter does not, to our knowledge, exploit the symmetric property of the poly-
nomial, viz., f(a, b) = f(b, a). To exploit this symmetry, recall that any smooth
symmetric function can be written as a smooth function of the elementary sym-
metric functions [2, Sec. 10.7], which in this case reduce to σ1 = a + b and
σ2 = ab. The triangle inequality reads σ1 ≥ 1. Next to this, we have σ2 ≤ 1
and σ1 ≤ 2. Also we need σ2

1 ≥ 4σ2 to secure real a, b. Applying this basic fact
about symmetric functions, it is easily observed that

f(a, b) = σ2(−4σ2
1 + 7) + (σ2

1 − 1)2

and we have to show that the above function is nonnegative for all σ’s satisfying

the constraints. The problem is that −4σ2
1 +7 < 0 for

√
7
4 < σ1 < 2. Therefore

the minimum of f is attained by taking σ2 as large as possible, that is, σ2 = σ2
1
4

so that it suffices to verify that

σ2
1

4
(−4σ2

1 + 7) + (σ2
1 − 1)2 ≥ 0

for all σ1 ∈ (1, 2). But the above is equivalent to

−σ2
1 + 4 ≥ 0

and the inequality is obvious under the constraint σ1 < 2.
¥

9



The preceding theorem holds true in R2 endowed with an arbitrary positive
definite metric. Indeed, such a Riemannian metric on R2 is flat, hence has the
same geodesics as in Theorem 3, and everything follows.

Observe that failure to enforce a lower bound on the scale R in Eq. (3) the
strict inequality would not hold. The reason is that the supremum would be
reached for an arbitrarily small triangle. Indeed, an infinitesimally small triangle
can be thought to be in the tangent space, in which Euclidean geometry prevails,
hence making sup δ(4)/diam(4) = 3/2. Hence,

Corollary 1 sup4⊂M2
κ

δ(4)/diam(4) is constant for κ < 0 and left-continuous
at κ = 0.

It is observed that this continuity no longer holds for the δ of the Gromov
4-point condition [12].

With the above, we can define the new concept:

Definition 6 A metric space (X, d) is said to be (diameter) scaled Gromov
hyperbolic if

sup
4 ⊆ X

diam(4) ≥ R > 0

δ(4)
vdiam(4)

<
3
2
.

We now investigate the extent to which this new definition is related to the
more traditional nonpositive curvature concepts.

Corollary 2 Let X be a CAT(0) (resp., CAT(κ < 0)) metric space. Then, for
any scale R > 0,

sup
∆⊆X

δ(4)
vdiam(4)

≤ 3
2




resp., sup
∆ ⊆ X

diam(∆) ≥ R

δ(4)
vdiam(4)

<
3
2




Proof. Let va, vb, vc be 3 vertices in a CAT(0) space and let v̄a, v̄b, v̄c be the
comparison points in E2. Next, if we pick x ∈ [vbvc], y ∈ [vavc], z ∈ [vavb], the
CAT(0) inequality yields

d(x, y) + d(y, z) + d(z, x) ≤ d(x̄, ȳ) + d(ȳ, z̄) + d(z̄, x̄)

and an argument similar to that of Theorem 2 yields

inf



d(x, y) + d(y, z) + d(z, x) :

x ∈ [vbvc]
y ∈ [vavc]
z ∈ [vavb]





≤ inf



d(x̄, ȳ) + d(ȳ, z̄) + d(z̄, x̄) :

x̄ ∈ [v̄bv̄c]
ȳ ∈ [v̄av̄c]
z̄ ∈ [v̄av̄b]




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Using vdiam(4vavbvc) = vdiam(4v̄av̄bv̄c) and Theorem 3, it follows that

δ(4)
vdiam(4)

≤ δ(4̄)
vdiam(4̄)

≤ 3
2

and the corollary is proved for κ = 0. The proof for κ < 0 is the same, except
that we use M2

κ as comparison space and invoke Theorems 2 in addition to
Theorem 3. ¥

The converse of the preceding corollary does not hold. Specifically, if a
triangle 4 in a metric space has the property δ(4)/vdiam(4) < 3/2, it need
not satisfy even the CAT(0) inequality. Indeed, consider a metric space made
up of a circle of length 18 on which 3 line segments [xy], [yz], [zx], metrized as

`([xy]) = 4, `([yz]) = 0.5, `([zx]) = 4,

have been attached. In this metric space, construct 4vavbvc such that

d(y, va) = 3, d(va, z) = 3
d(z, vb) = 3, d(vb, x) = 3
d(x, vc) = 3, d(vc, y) = 3

It is trivial to verify that d(x,y)+d(y,z)+d(z,x)
(v)diam(4vavbvc)

< 3
2 , so that δ(4vavbvc)

(v)diam(4vavbvc)
< 3

2

for both diameter concepts. Clearly, in the comparison triangle 4v̄av̄bv̄c ⊂ E2,
we have d(z̄, x̄) = 3. Since 4 = d(z, x) > d(z̄, x̄) = 3, the CAT(0) inequality
does not hold.

Despite the above counterexample, the following is true:

Theorem 4 If a simply connected complete 2-dimensional manifold S is such
that, for some ε > 0, we have δ(4)

diam(4) ≤ 3
2 , ∀4 ⊂ S, diam(4) < ε, then

κ(s) ≤ 0, ∀s ∈ S, so that S is a CAT(0)-space.

Proof. Indeed, if there exists a point s such that κ(s) > 0, there exists a
neighborhood ball Br≤ε/2(s) of s, such that, ∀q ∈ Br(s), 0 < κmin ≤ κ(q).
Construct an equilateral (i.e., a = b = c) geodesic triangle 4vavbvc in Br(s)
along with its comparison triangle4v̄av̄bv̄c inM2

κmin
. By the Rauch-Toponogov

comparison theory (see [17, Sec. 4.5, Perspectives], [6, Sec. 10.3]), it follows
that ∠v̄bv̄av̄c ≤ ∠vbvavc. Now, take z ∈ [vavb] and y ∈ [vavc] along with their
comparison points z̄, ȳ. From [6, Th 4.3.5], it follows that d(ȳ, z̄) ≤ d(y, z).
Hence

d(x̄, ȳ) + d(ȳ, z̄) + d(z̄, x̄) ≤ d(x, y) + d(y, z) + d(z, x)

where x ∈ [vbvc] and x̄ is its comparison point. Using an argument similar to
the one of Theorem 2 (but with the reverse inequality since here the curvature
is nonnegative) we get

δ(4vavbvc) ≥ δ(4v̄av̄bv̄c)

11



In the comparison triangle, because of the symmetry of the problem (4v̄av̄bv̄c

is equilateral), it is easily seen that the δ is achieved for x̄, ȳ, z̄ at the midpoints.
From there on, a little bit of spherical trigonometry yields

δ(4v̄av̄bv̄c)
a

>
3
2

where a = `([vbvc]). It follows that

δ(4vavbvc)
a

>
3
2

A contradiction. ¥

3.2.1 positive curvature

It transpires from the preceding theorem that, in the standard manifold M2
κ>0,

we have sup4
δ(4)

diam(4) > 3
2 , at a scale not too small (diam(∆) > 0) and not too

large (before the geodesics converge, that is, diam(∆) < π
2
√

κ
).

As an illustration, it is instructive to consider the complete graph Kn on n
vertices, all of unit length. First, it is easily observed that the complete graph
is positively curved by the intuitive clustering coefficient definition of [8]. From
a more precise standpoint, as a consequence of [7, Theorem 1.7], Kn has a 2-cell
embedding in either S2 of PR2. As far as isometric embedding is concerned, the
following can be said (see [15]):

Proposition 3 The complete graph Kn with unit length edge is isometrically
embeddable in the (n− 2)-sphere of radius 1

cos−1(− 1
n−1 )

, and (n− 2) is the least
such dimension.

Proof. Let V = {vi : i = 1, ..., n} be a vertex set along with a distance
function d. A general result [4, Chap. VII] says that the metric space (V, d) is
isometrically embeddable in a sphere of least dimension iff the n×n Gram matrix
{cos(d(vi, vj)

√
κ)}1≤i,j≤n is positive semidefinite of least rank for some κ such

that diam(V ) ≤ π/
√

κ. In this particular case, the Gram matrix is Toeplitz,
with 1’s on the diagonal, and c := cos(

√
κ) < 1 off the diagonal. A little bit of

analysis shows that the k × k principal minor is (1 − c)k−1((k − 1)c + 1). It is
also easily verified that the sequence of nested principal minors decreases with
k. Hence to secure minimum dimension embedding (n−1)c+1 = 0, from which
the result follows. ¥

It turns out that Kn is also positively curved by our definition: indeed, it is
readily verified that ∀4 ¹ Kn, δ(4)

vdiam(4) = 2 > 3/2.

3.3 Perimeter scaling

Theorem 5 Fix κ < 0 and let R > 0 be a scale. Then

sup
4 ⊂ M2

κ<0

diam(4) ≥ R

δ(4)
perim(4)

< sup
4 ⊂ E2

δ(4)
perim(4)

12



Proof. Same as that of Theorem 2. ¥

Theorem 6

sup
4 ⊂ E2

δ(4)
perim(4)

=
1
2

for a Euclidean space endowed with the usual metric.

Proof. Consider a Euclidean triangle4vavbvc. Using the result of the diameter-
scaled case, we get

δ(4vavbvc)
perim(4vavbvc)

=
2a2b2 + 2a2c2 + 2b2c2 − a4 − b4 − c4

2abc(a + b + c)

To prove that δ/perim ≤ 1
2 , take, without loss of generality, a, b ≤ c = 1, in

which case, it suffices to show that

f(a, b) ≡ a4 + b4 + 1− 2a2b2 − 2a2 − 2b2 + (a + b + 1)ab ≥ 0

∀(a, b) ∈ [0, 1]2 satisfying the triangle inequality 1 ≤ a + b. As in the proof of
Theorem 3, let σ1 = a + b and σ2 = ab. The triangle inequality reads σ1 ≥ 1.
Next to this, we have σ2 ≤ 1 and σ1 < 2. Also we need σ2

1 ≥ 4σ2 to secure real
a, b. Applying this basic fact about symmetric functions, it is easily observed
that

f(a, b) = σ2(−4σ2
1 + σ1 + 5) + (σ2

1 − 1)2

and we have to show that the above is nonnegative for all σ1 and σ2 satisfying
the constraints. The problem is that −4σ2

1 + σ1 + 5 < 0 for 5
4 < σ1 < 2.

Therefore the minimum of f is attained by taking σ2 as large as possible, that
is, σ2 = σ2

1
4 so that it suffices to verify that

σ2
1

4
(−4σ2

1 + σ1 + 5) + (σ2
1 − 1)2 ≥ 0

for all σ1 ∈ (1, 2). But the above is equivalent to

(σ1 − 2)2(σ1 + 1) ≥ 0

and the inequality is obvious. ¥

3.3.1 positive curvature

The complete graph Kn is also positively curved by the perimeter scaling crite-
rion. Indeed, ∀4 ¹ Kn, δ(4)/perim(4) = 2/3 > 1/2.
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3.4 Connection with Busemann nonnegatively curved spaces

The perimeter scaled case has a close connection with the Busemann concept of
nonnegatively curved spaces. Recall that a metric space (X, d) is said to be a
global Busemann nonnegatively curved space [16, Def. 2.2.4, 2.2.5] if ∀va, vb, vc ∈
X, d(m(va, vb),m(va, vc)) ≤ 1

2d(vb, vc), where m(v, w) denotes a midpoint of
a geodesic [vw]. If we strengthen this condition to d(m(va, vb),m(va, vc)) <
1
2d(vb, vc), but to hold at a scale bounded from below, the latter implies that
for any geodesic triangle 4vavbvc of positive diameter,

perim(4m(va, vb)m(vb, vc)m(vc, va))
perim(4vavbvc)

<
1
2

Since the perimeter scaled inequality is achieved for the triangle inscribed at the
midpoints, it surely holds for the minimum perimeter triangle; hence δ(4)/perim(4) <
1/2. Thus a space enjoying the strengthened version of the Busemann inequality
is perimeter-scaled Gromov-hyperbolic, but the converse does not hold. This
aspect is further developed in [11].

4 local structure

The new relative δ concept allows for flexibility in its implementation, as it can
be enforced at various scales, preferably at large scale as per the traditional
coarse geometry paradigm. However, as we show in this section, enforcing the
condition δ(4)/vdiam(4) < 3/2 or its perimeter scaled counterpart all the way
down to the mesh reveals some local structure, itself related to a local curvature
concept.

To reach this low scale, we recursively decompose a triangle by drawing the
minimum perimeter inscribed triangle: 4vavbvc is broken down into 4vayz,
4vbxz, 4vcxy, 4xyz; then each such triangle is itself broken down into 4
triangles using the same procedure; etc. The recursion will end up with three
branch stars and/or cycles that can no longer be decomposed. (Formally, these
cycles c cannot be decomposed by surgering c along an edge-path with its end
points on c (see [5, Chap. III.H, Def. 210]).) By local structure, we mean the
restriction on those indecomposable cycles imposed by the scaled δ-hyperbolic
condition. The motivation for looking at those indecomposable cycles is two-
fold:

1. As we show in this Section, the indecomposable cycles turn out to be
m-gons on specific numbers of edges. Consequently, a scaled Gromov
hyperbolic graph would consist, locally around a vertex va, of m-gons
glued along common edges incident upon va. As such, this local structure
allows for a connection with a local graph curvature concept [7, 9, 24], a
concept heavily dependent on the number of edges of those faces of the
graph incident upon va.

2. Those indecomposable cycles provide an area functional, A(4), defined
to be the number of cells bounded by the indecomposable cycles. (The
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triangle ∆ along with the geodesics beginning/ending on its vertices make
a graph G∆ that can be embedded in the compact surface Sg [22, Sec. 3.3];
the cells are formally defined as the connected components of Sg \G∆.) It
is conjectured that, in a scaled δ-hyperbolic space, A(4) is subquadratic,
superlinear in perim(4) [11].

Let c{m} denote the cycle graph on m edges. We begin by computing the
δ(c{m}) as per the traditional Gromov analysis and then we consider the various
scalings.

Any triangle 4 ¹ c{m} is uniquely characterized up to isometry by the
number of unit length edges in each of its sides, say m1, m2, m3, with m1 +
m2+m3 = m and subject to the triangle inequalities. By the S3-symmetry of the
problem, it can be assumed that m1 ≤ m2 ≤ m3, and the triangle inequalities
reduce to m3 ≤ m1 + m2.

Proposition 4
max

4¹c{m}
δ(4) = 2

⌊m

3

⌋

Proof. Clearly,

max
4¹c{m}

δ(4) = max
m1+m2+m3=m

2min{m1,m2,m3}

Write m = 3k+l, where l = 0, 1, 2. Consider the subset of points (m1,m2,m3) ∈
N3 such that m1 + m2 + m3 = m. Taking the equality constraint into consid-
eration, the string of inequalities becomes m1 ≤ m2 ≤ m − m1 − m2. Write
m2 = m1 +µ, with µ ∈ N, and the string becomes m1 ≤ m1 +µ ≤ m−2m1−µ.
Clearly, min{m1,m2,m3} = m1. In order to maximize m1, the only constraint
is m1 + µ ≤ m − 2m1 − µ, that is, 3m1 ≤ (3k + l) − 2µ. Hence max m1 is
attained for µ = 0 and max m1 = k. For this solution, it is easily verified that
the triangle inequality reads k ≥ l, which is obviously satisfied for k ≥ 2. Hence
max4¹c{m=3k+l} δ(4) = 2k for k ≥ 2. The case k = 1 is treated separately; it
only involves three regular polygons: the triangle, the square and the pentagon;
it is easily seen that for all such polygons δ = 2. Hence the general result holds
for k ≥ 1. ¥

Observe that, if the constraint that the triangles have their vertices in V (G)
is dropped, we obtain δ(c{m}) := sup4⊆c{m} δ(4) = 2m/3, as easily proved.

4.1 Diameter-scaled spaces

Here we compute max (δ(4)/vdiam(4)) of the cycle graph c{m} on m edges
of equal length, and we identify what cycles are consistent with the scaled δ-
hyperbolic condition.

Proposition 5

max
4¹c{m}

δ(4)
vdiam(4)

=
{

2 for m = 3k
2k

k+1 for m = 3k + 1, 3k + 2
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Proof. Clearly,

max
4¹c{m}

δ(4)
vdiam(4)

= max
m1+m2+m3=m

2min{m1, m2, m3}
max{m1,m2,m3}

As in Proposition 4, we set m1 ≤ m2 ≤ m3.
For m = 3k, it is claimed that

max
m1+m2+m3=m

2min{m1, m2,m3}
max{m1,m2,m3} = 2

Indeed, it suffices to show that

2m1

m3
≤ 2

and that equality can be reached. The ≤ inequality is pretty straightforward;
moreover, since m1 +m2 +m3 = 3k, equality is reached for m1 = m2 = m3 = k.
This optimal solution obviously satisfies the triangle inequality.

For m = 3k + l, l 6= 0, it is claimed that

max
m1+m2+m3=m

2min{m1,m2,m3}
max{m1,m2,m3} =

2k

k + 1

Indeed, it suffices to show that

2m1

m3
≤ 2k

k + 1

and that equality can be reached. The above is easily seen to be equivalent to
2k(m3 −m1) − 2m1 ≥ 0. Since m3 −m1 ≥ 1, it follows that 2k(m3 −m1) −
2m1 ≥ 2(k − m1), so that it suffices to show that k ≥ m1. Indeed, clearly,
3m1 < m = 3k+ l, so that k > m1− l

3 . But since k is integer, k ≥ m1. Equality
of the above is achieved for m1 = k, m3 = k + 1 (and m2 = k + l − 1). For
this latter solution, the triangle inequality reads k ≥ 2 − l, which is obviously
satisfied for k ≥ 2. As before, the case k = 1 is treated separately and it is
easily seen that for the triangle, the square and the pentagon the general result
holds true. ¥

Observe that, if the graph structure of c{m} is traded for a purely topological
space, diam(4) = m/2, ∀4 ⊆ c{m}, so that sup4⊆c{m} δ(4)/diam(4) =
(2m/3)/(m/2) = 4/3.

Let us come back to the recursive procedure of decomposing a triangle. As-
sume the procedure stops with a triangle with its vertices on a cycle c{m}. If the
δ(4)/vdiam(4) < 3/2 condition holds for all triangles, it is clear that the pro-
cedure cannot stop with a triangle embedded in a cycle on m = 3k vertices, be-
cause by Proposition 5 the latter would yield sup4¹c{m=3k} δ(4)/vdiam(4) =
2. Hence m = 3k + 1 or m = 3k + 2. In the latter case, the scaled δ-hyperbolic
condition along with the preceding theorem yields 2k

k+1 < 3
2 , which yields k < 3.

Hence we have the following:
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Theorem 7 Let the graph G be such that sup4¹G δ(4)/vdiam(4) < 3/2.
Then for an arbitrary 4vavbvc, the procedure of recursively decomposing the
triangle stops with stars and/or triangles embedded in cycles on 4, 5, 7, or 8
vertices.

The combinatorial local curvature of a graph defined in [9, 24, 7], specifically,
k(v) = 1− deg(v)

2 +
∑

φkºv
1
|φk| , where |φk| is the number of edges of the regular

face φk incident upon v, shows some connection with the above result. As
an illustration, consider 3 pentagons, u1u2u3u4u5, v1v2v3v4v5, w1w2w3w4w5,
where the vertices are ordered counterclockwise. Glue the 3 pentagons along
their edges, [v1v2] = [u1u5], [u1u2] = [w1w5], [w1w2] = [v1v5], so that the vertex
v1 = u1 = w1 is common to the 3 pentagons, and let G denote the resulting
graph. The Higuchi local combinatorial curvature is k(v1) = 1− 3

2+3 1
5 = 1

10 > 0.

On the other hand, δ(4v3u3w3)
vdiam(4v3u3w3) = 6

3 , so that max4¹G
δ(4)

vdiam(4) ≥ 6
3 > 3

2 ,
hence violating the scaled Gromov-hyperbolic condition, as expected.

4.2 Perimeter scaled spaces

For the perimeter scaled case, sup4¹c{m} δ(4)/perim(4) is clearly achieved
when, topologically, 4 = c{m}, for otherwise the triangle is flat and δ(4) = 0.
But all such triangles have the same perimeter m; hence,

sup
4¹c{m}

δ(4)
perim(4)

=
2

⌊
m
3

⌋

m

=
2b 3k+l

3 c
3k + l

=
2k

3k + l

In order to have 2k
3k+l < 1

2 , the only possible cycle is k = 1 and l = 2; hence the
pentagon is the only building block in this case. In this perimeter scaled case,
it is possible to establish a connection with the local combinatorial curvature,
stronger than in the case of the diameter scaled case.

Theorem 8 Let G be the (plane) graph obtained after gluing d pentagons of
unit edge length around a common vertex v and such that every edge incident
upon v is common to exactly 2 pentagons. Then, for d ≥ 4, k(v) < 0 and

sup
4 ¹ G
4 63 v

δ(4)
perim(4)

<
1
2

The restriction that4 is not allowed to contain v is to make the scaled δ relevant
to the local curvature around v. Indeed, a triangle containing v would disregard
some of the pentagons incident upon v and would not be representative of the
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curvature at v.

Proof. Trivially, k(v) = (10 − 3d)/10 and the local combinatorial curvature
claim holds.

If 4 does not contain v, then either the triangle is flat and δ(4) = 0 or
perim(4) = 3d and δ(4) ≤ 6. In the former case, the result is proved. In
the latter case, δ(4)/perim(4) ≤ 2/d. So, only the case d = 4 needs to be
examined more carefully. In this case, perim(4vavbvc) = 12 and the triangle is
topologically the union of those edges not common to two pentagons. It follows
that there exists at least one side of the triangle, say [vavb], of a length at least 4.
But it is easily seen that there exist two points such that any geodesic between
them must pass through v, a contradiction. ¥

5 Relevance

5.1 A large scale computationally simplified concept

Computing δ(4)/vdiam(4) for all geodesic triangles 4 ¹ G is very intensive.
However, it need not be that way in the broad class of problems where the
primary concern is the behavior of the graph at large scale. In those problems
where the coarse geometry paradigm prevails, the issue is the limit

lim
R↑vdiam(G)

sup
4 ¹ G

vdiam(4) ≥ R

δ(4)
vdiam(4)

The above limiting concept easily leads to a computationally simplified proce-
dure via the inequality:

sup
4 ¹ G

vdiam(4) = vdiam(G)

δ(4)
vdiam(4)

≤ sup4¹G δ(4)
vdiam(G)

The right-hand side of the above inequality is much more easily computable than
the main concept; furthermore, it provides an upper bound on the large scale
limit of the early concept; in particular, should sup4¹G δ(4)/vdiam(G) < 3/2,
then the graph is scaled Gromov hyperbolic.

5.2 Large scale curvature behavior of classical graph mod-
els

To show the relevance of the proposed concept, we investigate the computation-
ally simplified scaled δ-hyperbolic property of four graph models. Recall that
the Erdös-Rényi random graph R(n,M) is characterized by n vertices and M
edges distributed uniformly at random among all possible

(
n
2

)
edges. However,
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here, in order to avoid disconnected graphs for which δ = ∞, a random tree
of order n is first generated and then the remaining M − (n − 1) edges are
distributed uniformly at random over the remaining

(
n
2

)− n + 1 possible edges.
Call this new model R′(n, M). The Small World W (n, d, β) model of Watts and
Strogatz [25] is constructed from a regular lattice of n vertices of homogeneous
degree d, after rewiring every link with probability β to another node chosen
uniformly at random over the entire graph. The scale-free or growth/preferential
attachment model B(n0,M0, n, m) of Barabási et al. [1] is constructed from a
core network of n0 vertices and of size M0 after recursively adding n− n0 new
vertices each carrying m new edges attached to the previous vertices with a
probability proportional to the degree, referred to as preferential attachment.
A slight variant is the uniform attachment probability U(n0,M0, n, M) model.

To draw a fair comparison among all four generators despite their different
parameterization, we fix the order of the graphs n and utilize the total number
of edges M as crucial connectivity parameter. For the Small World model, the
constraining relationship is M = bdn

2 c, where d is the lattice degree; for the
scale-free and uniform attachment models, we have M = M0 + (n − n0)m. To
make the topological graphs generated by all four models geodesic spaces, each
edge is declared bi-directional with unit length.

Let EM denote the mathematical expectation relative to the probability
measure of the graph generators R′, W , B and U of fixed order n and variable
size M . As explained in Section 5.1, the objective here is to evaluate

EM

(
max4vavbvc¹G δ(4vavbvc)

vdiam(G)

)

Monte Carlo simulation results of the above mathematical expectation ver-
sus M for the R′, W , B and U generators with n = 50 are plotted in Fig. 1.
The overall shape of the curves can be explained as follows: In all four cases, the
start-up graph is a random tree; when vertices and edges are being added, the δ
initially increases rapidly because the tree is being “fattened,” while the diame-
ter remains roughly constant; then the fatness decreases because the new edges
start creating some shortcuts, while the diameter still remains constant; then as
M keeps on increasing we reach the most interesting region, half-way between
the minimum and the maximum M , because there the geometry is hyperbolic
without trivial tree structure; after that, there are too many edges, which has
the effect of decreasing the diameter while the fatness remains constant, hence
the curve goes up, to approach the value of 2, which as easily seen is exactly

δ(K50)
vdiam(K50)

, where K50 denotes the complete graph on 50 vertices.
It is claimed that the region in which the four generators show different

results is the one representative of the asymptotic situation n →∞. Indeed, in
this asymptotic situation, we have m×#vertices = #edges. In the discrepancy
region, we have n = 50 vertices and M = 200 edges. The parameter m is given
as solution to the edge counting equation, viz., 200 = 10 − 1 + (50 − 10)m,
which yields m ≈ 5. With these values, the asymptotic condition (m = 5) ×
50 vertices ≈ 200 edges approximately holds.
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Figure 1: The mathematical expectation of max (δ(4)/diam(G)) versus the
total number of edges M for all 4 graph generators. Observe that the scale free
graph is the most hyperbolic.

Probably the most important observation in the discrepancy region is that
the scale-free model is the most hyperbolic while the Small World model is
the least hyperbolic. Another observation is that the preferential attachment
graphs are more hyperbolic than the uniform attachment graphs, which is not
surprising since the preferential attachment generator has heavy-tailed degree
distribution as n →∞ while the uniform attachment generator does not.

6 Conclusions and further prospects

In this paper, we have shown that, by proper scaling, the Gromov hyperbolic
δ can be made relevant to finite diameter spaces. If the scaled δ of a finite
diameter metric space is less than the maximum that it can achieve in Euclidean
space, then the metric space is said to be scaled Gromov-hyperbolic. Because
such spaces share the same fundamental metric property as negatively curved
Riemannian manifolds, scaled Gromov hyperbolic spaces are expected to enjoy
such archetypical properties as subquadratic isoperimetric inequality, bounded
slimness, and the confinement of quasi-geodesics in an identifiable neighborhood
of the geodesic. In [11], it is shown that negatively curved Busemann spaces, a
closely related concept, enjoy these properties, and it is conjectured that these
properties hold for the spaces introduced in this paper.

The 4-point condition is another way to define the Gromov-hyperbolic prop-
erty and the same scaling of the 4-point δ leads to results in the same spirit as
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those developed here (see [12]). In particular,

sup
¤⊂M3

κ<0

δ4(¤)
diam(¤)

< sup
¤⊂E3

δ4(¤)
diam(¤)

=
√

2− 1√
2

where ¤ denotes a quadruple of points (va, vb, vc, vd). Contrary to Corollary 1,
the left-most hand side of the inequality is neither left not right continuous at
κ = 0.

Finally, the so-called algebra of bounded propagation operators has been
shown to be relevant to infinite diameter Gromov hyperbolic graphs [23, Prop.
9.17]. In the same spirit as this paper, some indications as to how the bounded
propagation concept could be made relevant to finite graphs are available in [14].
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Appendix: Proof of c = ±(a± b) in Proof of The-
orem 2

Since the points x, y can be taken arbitrarily on [vbvc], [vavc], respectively, they
can be chosen such that d(x, vc) = λa and d(y, vc) = λb, for some λ ∈ (0, 1).
The hyperbolic law of cosines in 4x̃ṽcỹ,4vavbvc ⊂M2

−1 reads, respectively,

cosh λc = cosh λa cosh λb− sinhλa sinh λb cos γ̃

cosh c = cosh a cosh b− sinh a sinh b cos γ̄

By contradicting hypothesis, it is assumed that cos γ̃ = cos γ̄, so that

Fa,b(c) := fλa,λb(λc)− fa,b(c) = 0

where
fa,b(c) :=

cosh a cosh b− cosh c

sinh a sinh b

It is easily seen that Fa,b(±(a±b)) = 0. Next, MAPLE symbolic software shows
that c = ±(a± b) are the only real solutions 1, of which only c = |a± b| are the
relevant ones.

In case λ = 1
2 , a more direct way to get to the same four solutions is through

the change of variable p = 2 cosh λa, q = 2 cosh λb, and r = 2 cosh λc, in which
case the equation Fa,b(c) = 0 reduces to r2 − pqr + p2 + q2 − 4 = 0. From the
latter, it is an elementary exercise to show that there are only 4 real z-solutions,
which traced back to the original parameters are c = ±(a± b).

1Thanks to Mrs. F. Ariaei, a graduate student, for her assistance with the MAPLE analysis.
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