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Abstract Spin networks are endowed with an Information Transfer Fidelity (ITF),
which defines an absolute upper bound on the probability of transmission of an
excitation from one spin to another. The ITF is easily computable but the bound
can be reached asymptotically in time only under certain conditions. General con-
ditions for attainability of the bound are established and the process of achiev-
ing the maximum transfer probability is given a dynamical model, the transla-
tion on the torus. The time to reach the maximum probability is estimated using
the simultaneous Diophantine approximation, implemented using a variant of the
Lenstra-Lenstra-Lovéasz (LLL) algorithm. For a ring with uniform couplings, the
network can be made a metric space by defining a distance (satisfying the triangle
inequality) that quantifies the lack of transmission fidelity between two nodes. It
is shown that transfer fidelities and transfer times can be improved significantly
by means of simple controls taking the form of non-dynamic, spatially localized
bias fields, opening up the possibility for intelligent design of spin networks and
dynamic routing of information encoded in them, while being more flexible than
engineering fixed couplings to favor some transfers, and less demanding than con-
trol schemes requiring fast dynamic controls.
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1 Introduction

Efficient and controllable transport of information is crucial for information pro-
cessing, both classical and quantum. While bosonic channels [1] are the most at-
tractive option for long-distance communication, efficient on-chip interconnectivity
in a quantum processor based on atomic, ionic or quantum dot-based qubits, or
quantum spintronic devices [2] will require direct information transport through
networks of coupled solid-state qubits. Such networks can be modeled via inter-
acting spins and are therefore generally referred to as spin networks. Initiated
Bose’s [3] seminal work, spin networks have received considerable attention in re-
cent years (see review articles [4,[5] and references therein). Most of the work has
focused on information transmission through linear chains as prototype quantum
wires, starting with unmodulated chains [3] and later perfect state transfer in
chains with fixed, engineered couplings |6}7], and finally controlled state transfer
in spin chains, e.g., via adiabatic passage |[§], ac modulation to achieve reno-
malization of the couplings between adjacent qubits [9], single-node bang-bang
controls [10] or global dynamic controls [11]. Perfect state transfer in more gen-
eral networks has also been considered and some interesting results for complete
graphs were obtained in [12].

Nonetheless, the information-theoretic properties of spin networks are not fully
understood. Information encoded in excitations of a network of coupled spins prop-
agates, even under ideal conditions when quantum coherence is maintained, in a
non-classical way determined by the Schrodinger equation. Under best possible
circumstances, this propagation of excitations determines the Information Trans-
fer Fidelity (ITF) between various nodes of the networkﬂ Perfect state transfer
between two nodes can only be achieved when the Information Transfer Fidelity
between the respective nodes is unity. However, this condition is not sufficient.
For example, while it is satisfied for the end nodes of a chain with uniform cou-
plings [13] such chains are usually not considered to admit perfect state transfer
except for chains of length two or three.

This raises the question of the attainability of the upper bound given by the
Information Transfer Fidelity. Attainability in general also depends on time con-
straints, i.e., attainable in what time, and the margins of errors we are willing
to accept. In practice, some margin of error is unavoidable, and the real question
of interest is therefore not whether we can achieve, e.g., perfect, i.e., unit fidelity,
state transfer in time ¢y, but rather whether we can achieve state transfer with
a fidelity 1 — ¢, where ¢ is an acceptable margin of error, in a reasonable amount
of time. We may be willing to accept a slightly increased margin of error for a
significant reduction in the transfer time. In this work, we are interested in such
fundamental questions for spin networks subject to coherent dynamics in general,
and specifically simple configurations such as a circular arrangement of spins (or
spin ring for short), which could serve as basic building blocks for more complex
architectures.

After introducing some basic definitions and basic results in Section [2] the
concept of asymptotic ITF, i.e., maximum Information Transfer Fidelity attainable
absent constraints on the transfer times, between nodes in a network of spins is

1 Previously [13], this concept was named Information Transfer Capacity, but we refrain
here from using this terminology to avoid confusion with the Shannon channel capacity [1].
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introduced in Section [3] Conditions for attainability of the bounds are derived
using dynamic flows on tori and the simultaneous Diophantine approximation,
computationally implemented using the Lenstra-Lenstra-Lovasz (LLL) algorithm.
Under certain conditions, the information transfer infidelity induces a metric that
captures how close two nodes in a spin network are from an information theoretic
point of view. This information transfer geometry is investigated in Section [}
Finally, in Section [5} we investigate how the information transfer geometry of a
network can be changed by means of simple controls in the form of fixed biases
applied to individual nodes, and how this principle could be employed for dynamic
routing in a spin network with ring topology without the requirement of fast-
switching controls.

2 Basic Definitions and Results

We consider networks of N spins arranged in some regular pattern with either XX
or Heisenberg interaction [14] specified by the Hamiltonian

N
H = Z Jij (O’;EO';‘C + O’?O’? + 170?0;7) . (1)
ij=1

We specifically focus on networks with XX coupling (n = 0) and Heisenberg cou-
pling (n = 1), although most of the concepts and analysis in the following are not
limited to these types of coupling. J;; is the strength of the coupling between spin
i and spin j. The factor o;"¥* is the Pauli matrix along the z,y, or z direction of
spin i, i.e.,

PV =Ty ®... Q@ Iax2 @07V P @ Iaxa ® ... ® Iaxa,

K2

where the factor ¢”¥"* occupies the ith position among the N factors and o*¥°?
is either of the single spin Pauli operators

o) () ()
10)° 1 0 )’ 0-1
The system Hilbert space H on which H acts is conveniently taken as C2". We can
abstract the network of spins as a graph G = (V, ), where the vertices represent
the spins and the edges indicate the presence of couplings.

A particular configuration considered in this paper is that of spin rings, i.e.,
spin networks defined by a circular arrangement of spins, described by a J-coupling
matrix that is circulant with nearest neighbor coupling:

N-1
Tr T z __z X xr 1 z z
H= Z Jiit1 (Ji oip1 + Uf(rfﬂrl + no; Ui+1) +JNn1 (UN01 + a‘{vall’ + nUNal) .

i=1
(2)
The term Jy ; represents the coupling energy between the two ends, spins 1 and N,
closing the ring. For networks with uniform couplings, i.e., all non-zero couplings
have equal strength J (in units of Hz), we can set J = 1 by choosing time in units
of J71L.
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2.1 Single Excitation Subspace

Although many of the results in the following sections are more widely applicable,
we primarily concern ourselves here with the single excitation subspace of the
network [5], spanned by the N single excitation quantum states {|i) : i = 1,..., N},
where |¢) = |11 ... N1 ... 1) with | in the ¢th position indicating that spin ¢ carries
the excitation. The natural coupling among the spins allows the excitation at ¢ to
drift towards an excitation at j with an Information Transfer Fidelity (ITF) that
can be quantified by the maximum transition probability pmax(7,7). This concept
will be precisely defined in the next section, but in this introductory exposition
we could think of “maximum” as the process of giving the transition from spin 4
to j the correct amount of time so that it is most likely to occur. The concepts
behind these ideas are lying at the foundation of quantum mechanics as embodied
in the Feynman path integral. These concepts reveal that, contrary to classical
least-cost-path routing that follows a single path from a source to a destination in
a classical network, quantum networks follow all possible paths from the state |3)
to the state |j).

2.2 Eigendecomposition of the Hamiltonian

Restricted to the single excitation subspace H = CV, the eigen-decomposition
of the Hamiltonian reads H = Y, ApIl, where X; for k = 1,...,N < N are
the distinct real eigenvalues and Il are the projectors onto the corresponding
eigenspaces.

For a spin ring of size N with uniform XX-coupling between adjacent spins,
Jij=Jfori=j+1, (i,5) = (1,N), (4,5) = (N,1), and J;; = 0 otherwise. In this
case, the single excitation subspace Hamiltonian in the Dbasis

liy = (0,0,...,0,1,0,...,0)T becomes the circulant matrix
010 ... 01
101 00
010 . 00
Hy=1|: . (=: Cp), (3)
000 .01
10 0 ... 10

where the subscript N is utilized to indicate that the system has N spins. For
uniform Heisenberg coupling the Hamiltonian is the same except for the addition
of a multiple of the identity, which simply shifts the eigenvalues by a constant and
does not affect the eigenvector structure or differences between eigenvalues. The
eigenvalues and eigenvectors of circulant matrices are well known and shown in
Table [I} The N single excitation eigenvalues are conveniently parameterized by
an integer k running from 0 to N — 1 or 1 to N with the cyclic condition that
Ao = AN
The following lemma regarding the eigenvalues will be helpful later.
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Table 1 Eigenvalues and eigenvectors of Hamiltonian H over single excitation subspace |15]
in the basis where |i) = e; := (0...010...0)T. py = exp(2m/N) and |vg); denotes the jth
component of |vg).

l [ Me=0,..N—1 | [vk)j=0,...N—1 |
XX-coupling (n = 0) 2 cos <%> \/% pécv(j—l)

Heisenberg coupling (n =1) | 2cos (%) +1 /%plj\f(jfl)

Lemma 1 For a spin ring of size N with uniform XX-couplings we have:

— For N even, but not divisible by 4, then the spectrum of Hy has mirror symmetry
relative to the origin; precisely, we have Ay = AN_k = —An/2—k = —AN/24k # 0,
i.e., there are %N—l distinct pairs of double eigenvalues, and two single eigenvalues
+2, giving a total of]\~f = (N + 2)/2 pairwise distinct eigenvalues:

{-2,M\p,2:k=1,..., 3N —1}.

If N is divisible by 4 then the spectrum has a total of N = (N + 2)/2 pairwise
distinct eigenvalues and a double eigenvalue at O (for k = %N, %N}.

— For N odd, we have An_j, = A\ # 0 and there are (N — 1)/2 distinct pairs of
double eigenvalues and a single eigenvalue +2, giving a total of N = (N+1)/2

distinct eigenvalues:
N, +2:k=1,... . 3(N-1)}.

— In either case, the number of pairwise distinct eigenvalues is

-]

Moreover, the eigenvalues of Cn and Cn_1 are interlaced.

Proof The listed items are trivial. The last claim is the Cauchy interlacing prop-
erty [16].

For a double eigenvalue A\, = Ay _, denote the projection on the corresponding

eigenspace as Iy, := |vg) (vg|+ |[vn_k) (VN _k|, Where the eigenvectors can be chosen
such that vy_g = vj. Moreover, for the single eigenvalue Ao = +2, define Iy :=
[vo)(vo| to be its eigenprojection. If N is even, the single eigenvalue Ay /o, = —2 has

its eigenprojection denoted as ITy /5 1= |vn/2){(vn/2l- If; in addition, N is divisible
by 4, denote the eigenprojection of the double eigenvalue An/a = dsnja = 0
as Iy = |on/a)(Unyal + [vanya)(van/al- With this notation, the Hamiltonian
restricted to the single excitation subspace can be written as

H=">" ATl

k=0

The above can easily be extended to the Heisenberg case by globally shifting the
eigenvalues by 1.
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3 Maximum Transfer Fidelity and Attainability

Let |i) € H be a quantum state with excitation localized at spin i. The quantum
mechanical probability of transition from state |¢) to state |j) in an amount of time
t is given by
pe (i,5) = [(ile™ ™),

where we choose energies in units of //J allowing us to assume i = 1 and omit &
in the following. This formula is a corollary of the Feynman path integral |17}[1§].
To circumvent the difficulty posed by the time-dependence of this probability,
we proceed as in |13| and define the mazimum transition probability pmax(i,j) also
referred to as Information Transfer Fidelity (ITF):

2

N-1
2
. - . . N —aA
piing) = [(ile™ | = | 3 gl
k=0
i ) (4)
N-—1
< Z | brailly|j)| = Pmax (i, 7).
k=0

Clearly, pmax(i,7) < 1. Observe that, instead of taking the sum of the absolute
values of all (i|II;|7) terms, we could take the sum of the absolute values of some
partial sums of such terms and derive other upper bounds. Note that the upper
bound is valid for any spin network, no matter how many spins, no matter how
many multiple eigenvalues, no matter the topology. Since the upper bound depends
only on the eigenvectors of the Hamiltonian and since those are continuously de-
pendent on the strengths of the couplings, the upper bound is continuous relative
to the Jz]

3.1 Attainability of Bounds

The ITF pmax(i,5) is an upper bound on p; (4, j), which acquires its full significance
if pmax is achievable, that is, if there exists a sequence of time samples {¢; j(n) :
n € N} such that limn—oo P, ;(n)(4:5) = Pmax(i,7). Observing that the absolute
value in Eq. will absorb any global phase factor, the attainability condition is
that there exists ¢ € [0, 00) such that

e = (0, ), VE=0,..., N1, (5)

where s;.(7,7) := Sgn({i||IIx|j)) € {0,%1} is a sign factor and ¢ is a global phase,
which is arbitrary but must be the same for all k’s. Eigenspaces with s, = 0 (where
the (i,7) dependency is suppressed to avoid the clutter) have no overlap with the
initial and/or target state and do not contribute to the sum. We shall refer to them
as dark state subspaces. They can be ignored and we can restrict ourselves to the
set K’ € {0,1,..., N-— 1} of indices k for which s, # 0. The physical interpretation
of K’ is the set of eigenspaces IT; 7 that have non-trivial overlap with the initial
and target state. Noting that s, = +1 for k € K', and exp[—15 (s — 1)] = 1 for
sk =1 and exp[—1 5 (s —1)] = —1 for s, = —1, we can write

S}, = exp [—m (2ny, + (s — 1))} , VkeK', (6)
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where nj € Z is an arbitrary integer. Inserting this into , taking the logarithm
and dividing by — yields

At =2mng + Z(sp, — 1) — ¢, Vke K (7)

This condition is not directly useful as ¢ can be arbitrary, but we obtain meaningful
constraints if we subtract the equations in a pairwise manner, with k # £:

(M — M)t =27 (ng —ng) + Z(sgp — s¢0), Yk, L€K' (8)

We can also write the attainability constraints more explicitly:

(Ak - )‘Z)t = 27T(nk - ’I'L[), if  sp= sy,
(A = M)t =2m(ng, — ny) +, if sp=-—sp=1,
()\kf/\g)tZQW(nkfng)*ﬂ', if S = 75@2*1.

These conditions are necessary and sufficient for attainability. They are physical,
only involving differences of the eigenvalues, which are observable and independent
of arbitrary phases. Vanishing left-hand sides in the above are not an issue, as we
are only looking at the differences, which are non-zero by definition as A\, k € K,
are the distinct eigenvalues of H.

Observe that all of the equations are compatible. Indeed, adding Eq. for
(k,¢) and (¢,m) yields for (k,m). Naturally, these equations are redundant,
but we obtain a set of linearly independent equations if we exclude the dark state
subspaces and restrict ourselves to a suitable subset of equations, e.g., (k;_1,k;)
or (ko, k;) for K' = {kj, k5, ..., K}.

Example 1 (Dark States for Rings.) For ring systems with uniform XX cou-
pling, the distinct eigenvalues are A\, = 2cos(2wk/N). For eigenvalues of multiplic-
ity 1, which occur for k = 0, and k = 4N if N is even, (i|Ilo|j) = (1/N) # 0
and (i|lIn/5|5) = (1/N)(=1)i7 % 0; therefore, there are no dark states associated
with these eigenvalues. For eigenvalues with multiplicity 2, (i|IIi|7) = % cos(5n) with
n = 4k(i — j)/N for k = 0,...,[(N — 4)/2]; therefore, there are dark states if and
only if n is an odd integer. This can happen only if N is divisible by 4. The same holds
of rings with uniform Heisenberg coupling as they have the same eigenspace structure
and the differences between eigenvalues are the same.

3.2 Simultaneous Attainability and Flows on the Torus

Excluding dark state subspaces, restricting (§]) to a subset S C K’ x K’ of linearly
independent equations, and setting wy ¢ = (A, — Ag) /7, the attainability conditions
become

twie = %(Sk — Sg) mod 2, W0 1= ()‘k — )\g)/ﬂ', V(k‘,ﬁ) eS. (9)

The left-hand side of the above is the solution of the flow on the torus @ = wyy, with
z(0) = 0. In this dynamic formulation, the question is whether the flow starting at
x(0) = 0 passes through the point with coordinates 0 or 1, depending on whether
Sp = 8¢ Or s # sy, respectively. It is well-known [19] Prop. 1.5.1] that the flow
starting at an arbitrary xz(0) (which includes z(0) = 0) passes arbitrarily close to
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an arbitrary point on the torus if and only if the wy ,’s are linearly independent
over the rationals Q. This property of the flow getting arbitrarily close to an
arbitrary point from an arbitrary initial condition is very strong and referred to
as minimality. Observe that for the flow to be minimal it suffices that, starting at
z(0) = 0, it gets arbitrarily close to any point. Obviously, minimality is sufficient
but not necessary for attainability, as the latter only requires the flow to pass
arbitrarily close to a specific point on the torus, while minimality guarantees that
the flow can get arbitrarily close to any point.

Recall that Eq. refers to a specific but arbitrary transfer |¢) — |j), as the
signs depend on i,j. We could consider all Eq. ’s for all ¢ # j and ask the
question as to whether there exists a unique ¢ such that attainability holds for all
1 # 7. We refer to this stronger version of attainability as simultaneous attainability.

If for a given pair (i, j) there are at least three non-dark eigenspaces correspond-
ing to sq, Sm, sn € {£1}, then there must exist a pair, say (m,n), with s; —sn = 0.
In this case, setting ¢ = 27/wmn for 7 € N ensures that the (m,n) Eq (9) holds
ezactly and the remaining attainability equations become

Orem = 5 (s, — s¢) mod 2, Ore := 2wpp/wmn, V(k,€)€So:=8\{(m,n)}.
(10)
The left-hand side 0,7 of the preceding equation is the solution of the translation
on the torus, that is, z(7 + 1) = (1) + 0y mod 2 with initial condition z(0) = 0.
By |19} Prop. 1.4.1], the translation on the torus can come arbitrarily close to any
point iff the elements in the set {1} U {0y, : (k,€) € So} are linearly independent
over Q. As before, the linear independence is sufficient, but not necessary for
attainability. Note that we can in principle always reorder the eigenvalues so that
the reference transition is (m,n) = (1,2).
It should be noted that the attainability criteria above apply to any spin net-
work. For specific types of networks, we can derive more explicit criteria.

Example 2 (Attainability Condition for Rings.) Given the formula for the eigen-
values for homogeneous rings, A\, = 2 cos(2mwk/N), elementary trigonometry shows that

wre = (A — A) = — 2 sin(F (k4 ¢)) sin(F (k — £)). (11)

There are N = | N/2]+1 eigenspaces and N —1 independent transition frequencies wjy.
Choosing the subset of linearly independent equations S = {(k,k+1): k=0,... , N},
N:=N - 2, with the ordering of the eigenspaces as defined above, the attainability
conditions can be written as

2sin(F(2k+ 1)) sin(F) = 5(sg — s41) mod 2, Vk=0,...,N.

If s;n = Sm+1, then setting t = 27 /wm m+1 for 7 € N ensures wm,m+1t = 27 =0
mod 2 and the attainability conditions become

9kT:%(3k*3k+1) mod 2, Vk=0,...,N,

with 0, = sin(§; (2k + 1))/ sin(&(2m + 1)). Notice that the signs of the projections
of the initial state |i) and target state |j), s = (j|II|i), depend on the choices of the
latter, and it may happen that the signs s; are alternating, si41 = —sy, for all k. In
this case, the problem can easily be rectified by reordering the eigenvalues, e.g., so that
that sj = sy with the new ordering.
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Example 3 (Rational Independence.) Applying the previous results to a ring of
N = 5 spins, the number of pairwise distinct eigenvalues of the single excitation Hamil-
tonian H is N = 3 and there are two Iinearly independent transition frequencies
wo1 = — = sin(gm) Sin(lw) and w1z = — 2 sin($)sin(r). To verify linear indepen-
dence of {sm(57r) sin(gm)} over Q, we must show that the equation

alsln( )+a381n(35 ) =0 for a1,as € Q,

has only the trivial solution a1 = a3 = 0 over Q. Using sin (%) = %\/ 10 — 2v/5 and
sin (32) = $1/10 + 2v/5 we can rewrite the equation as a3(10-2v5) = a2(10+2V5).
Viewing the field Q(\/g) as a two-dimensional vector space over Q with basis 1,5
gives two equations a3 = a3 and o = —a2, which much be simultaneously satisfied.
This is possible only for a1 = a3 = 0. Thus the flow on the torus is minimal and
Pmax(i,7) is attainable for all (i,7).

Example 4 (Rational Dependence for Even Rings.) For a ring with N = 10
spins there are N = 6 distinct eigenva]ues and five primary transition frequencies
Wi p+1 fork=0,...,4. Noting that sin(3%) = 1, sin () =sin (§F) = (-1 +v5)
and sin (35) = sm( %) = 1(1+V5). It is easily seen that a = (2,-2,1) is a Q-
solution to the linear dependence equation

alsln( )—I—agsm( )—|—4a351n( =) =0.

Hence, the pmax (i, j) are not simultaneously attainable — although pmax (i, j) may be
attainable for some (i, j).

More generally, for a ring with N even there are %N transition frequencies

Wi k41 = 2 sin ((2k+ 1)) sin (),

which occur in pairs wy k11 =Wy _g y_g1 With N = %N — 1, precluding rational
independence.

Example 5 (Rational Dependence for Odd Rings.) Similarly, we can easily
verify that for a ring with N = 9 spins the transition frequencies are not ratio-
nally independent, as we have, e.g. sin(7m/9) — sin(57/9) + sin(n/9) = 0 and thus
w3,4 — w23 +wo,1 = 0.

In general, rational independence of the transition frequencies for homogeneous
rings does not hold when N is not prime.

3.3 Simultaneous Diophantine Approximation

Instead of checking rational independence of {1} U {0, : (k,£) € So}, a less conser-
vative approach is to proceed, either analytically or computationally [20,[21], via
the simultaneous Diophantine approzimation [22H25] by finding integers pyy, ¢ such
that

C
= q1+67

‘eke _ Pre V(k, 0) € So,

q
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and € > 0. With 7 = ¢, the above yields
OkeT — Prel < %7 V(k, £) € So.
In the single-dimensional case, the solution is well-known to be given by the
continued fraction expansion of §. Truncating the continued fraction expansion
yields convergents, i.e., rational fractions p/q, with errors bounded as |0g—p| < 1/q,
which is optimal among all rational approximations of denominators less than or
equal to ¢. The major hurdle at extending this result to the multi-dimensional
case is that there is an incompatibility between the unimodular property of the
Multi-dimensional Continued Fraction (MCF') solution and optimality.
Nevertheless, the celebrated Dirichlet box principle shows that there are multi-
dimensional approximations with ¢ = 1 and e = 1/N, where in the present context
N = |Sp|. Moreover, there are infinitely many integer solutions ¢ to the simultaneous
Diophantine approximation; in other words, as 7 is allowed to become arbitrarily
large, the above error can be made arbitrarily small. The constant ¢ = 1 can
hardly be improved as for ¢ < 1 there are “badly approximable vectors” 6 € RN
defined by liminfy— e ¢*/Vd(6q,Z") > 0 such that the simultaneous Diophantine
approximation has only finitely many solutions [22}/28, Sec. 5]. If, however, c is
allowed to depend on N, refined bounds (¢ < 1) can be derived on ¢(N) due to
the existence of infinitely many solutions [23|. Specializing the approximation to
N = 2, it can be shown [29] that the bound can be improved down to ¢ = 8/13,
along with ¢ = 1/2. In the 1-dimensional case Hurwitz’s theorem says that one
can take ¢ = 1/v/5 and € = 1. On a general tone, the Dirichlet approximation can
only be improved slightly and at the expense of considerable extra difficulties; we
will therefore work exclusively with the Dirichlet approximation in the following.
Assuming we have obtained a Dirichlet-good simultaneous Diophantine ap-
proximation, the approximate attainability conditions become

Pre = (sk —s¢) mod 2, V(k,{) € So. (12)

The difficulty is to find, if it exists, a simultaneous Diophantine approximation
of Dirichlet accuracy that satisfies the above conditions on the numerators. The
following example demonstrates that it is not, in general, possible to achieve the
even/odd conditions on the numerators py, without compromising on the ac-
curacy of the Diophantine approximation. To be more specific, arbitrary accuracy
can still be achieved with Conditions , but a larger denominator is required
to achieve the same level of accuracy in the presence of the constraints.

Example 6 (Simultaneous Diophantine Approximation with Constraints.)
In Example [3 the flow on the torus for a ring with N = 5 was found to be minimal,
implying that we can get arbitrarily close to an arbitrary point on the torus. By the
preceding argument, this guarantees existence of simultaneous Diophantine approxi-
mations of arbitrary accuracies with prescribed even/odd numerators. Furthermore, it
is readily found that

912 = M - 1 + \/g: [3;4747474747"']7
sin(m/5)

where the final expression denotes the continued fraction expansion giving the optimal
rational approximations [26, Chap. 10]. It is known that quadratic irrationality leads
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to continued fractions that eventually stabilize. The first convergents are
13 55 233 987 4181 17711 75025 317811 1346269

147177 727305712927 5473 7231847 98209 * 416020

Observe that all of them have odd numerators, while the approximations we require
must have even numerators since for the N = 5 ring so = s1 = 1. This can be rectified
by using the so-called semi-convergents |27, Sec. V.4], |21]. Given two convergents
ordered as pn—1/qn—1 < Pn/qn one can easily squeeze a semi-convergent between
them as follows:

Pn-1 _ Pn—1 + Pn < P

dn—1 qn—1+ qn dn
The semiconvergent has even numerator and has the accuracy of the convergents
Pn—1/qn—1 and pn/qn but at the cost of doubling the denominator. To prove that
the semiconvergents provide approximations of arbitrary accuracy, it suffices to show
that there are infinitely many n’s such that pp—1/gn—1 < pn/qn. This is a corollary
of the unimodular property of continuous fractions, saying that pn—1qn — pnqn—1 is
alternately +1.

We propose a general iterative method to deal with the even/odd constraints.
To simplify the notation, let 6 € RY, p € Z", be column-vectorizations of the s,
Pres, Tespectively, where N := |Sp|. We want to come up with a Dirichlet-good
approximation, 6 ~ p/q, where p € ZN . q € N, with even/odd constraints on the
numerators p;. By “Dirichlet-good,” we mean that the infinity-error is bounded
as ||0q — plleo < /g™, where c is a constant independent of N and ¢. The idea
is to iteratively scale § by (the inverse of) a diagonal matrix of positive rational
numbers, § = Y(n)fle, compute a Dirichlet-good approximation of § using, e.g.,
the Dirichlet box principle, or the LLL-algorithm, or Lagarias’ Multidimensional
Continued Fractions (MCFs), and then revise the scaling to meet the even/odd
constraints, with the hope that the procedure will converge. Write the Dirichlet-
good approximation 6 ~ p/q and manipulate it as follows:

16q = Pl <
ming (Y (n) ;)10 = Y (n)plle < Y (n) 7100 = Y (m)p)loc < _ipw-

It follows that
g =¥ ()P ()l < — g max Y (s

In other words, Y (n)p/q is a Dirichlet-good approximation of 6 provided max; Y (n);;
can be dominated by a bound independent of ¢ and N. Because the initial choice
of Y (n) is arbitrary it is not guaranteed that Y (n)p has the correct even/odd prop-
erty. Nevertheless, we could revise Y (n) to meet those properties. If a component
p; comes out to be odd and needs to be even, we choose Y (n + 1);; = 2. If the
algorithm has converged, that is Y (n + 1) = Y(n), then the bound becomes

_ 1

160 =¥ (n+ Dp(Y ()l < 2 (13)

q
Conversely, if p; comes out to be even with 2¢ in its prime number decomposition,
we take Y(n+1);; = 1/2d and, at convergence, the bound on the ith component

becomes L
L o—d-. —d
|91q 2 pz|§2 7(]1/]\7.
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Then this procedure is repeated with the scaling § = Y(n + 1)6, in the hope that
it converges.

Theorem 1 Given 6 € RY , assuming {Y(n)} converges, there exists a simultaneous
Diophantine approzimation 6 ~ p/q satisfying prescribed even/odd constraints on the
numerators p;, i = 1,..., N, with an error bound ||0q — p|lco < 2/q1/N that is off the
usual Dirichlet bound by a factor not exceeding 2.

Example 7 (Simultaneous Diophantine Approximation with Constraints.)
We consider the same situation as in Example where all convergents of 012 have odd
numerators while attainability calls for an even numerator. We initiate the algorithm
with Y(0) = 1, that is, § = 0 = 1 + /5. Whatever convergent p/q we pick, it has
odd numerator, hence we take Y (1) = 2. We hence rewrite the continued fraction
decomposition with § = (1/2)0 = (1 ++/5)/2, which gives the convergents

3 5 8 13 21 34 55 89 144 233 377 610 987

To secure convergence, Y (3) = Y (2) = 2, we need to pick a convergent with odd
numerator, say, 377/233, and the new Diophantine approximation of 612 is 2x 377 /233.
This give an error |012 x 233 — 754| = 0.0038 < 2/233 = 0.0086, as claimed.

3.4 (Weighted) LLL-Algorithm

Even though Theorem [I] guarantees that, under convergence conditions, Dirichlet-
good simultaneous Diophantine approximations can be manipulated so as to yield
numerators that have prescribed even/odd properties, we are still left with the
problem of coming up with simultaneous Diophantine approximations in the first
place.

One of the first computational solutions to the simultaneous Diophantine ap-
proximation was the so-called LLL-algorithm by Lenstra, Lenstra and Lovdsz |21}
24,|31]. An alternative algorithm based on geodesic multi-dimensional continued
fraction expansion was proposed by Lagarias [32]. Both approaches proceed by
reduction of the basis of the lattice generated by the columns of

56 = (v 7).

O1xn s

where s | 0 is a scaling parameter. Observing that B(s)(p, T = (p—0q,5¢)7, it
follows that a short vector in the lattice B(S)ZN *1 yields a good approximation.
The numerator of this good approximation could be “fixed” by the procedure of
Sectionto satisfy the even/odd requirement. However, it is proposed to combine
the two procedures into a single one—computation of a good approximation from
a short lattice vector and fixing the numerator—

by introducing a nonuniform diagonal scaling and work on the lattice A(s, X)
generated by the columns of

X 7X0>
1xN S 7

B(s, X) = (0
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where X = diag (z1,...,25). Note that for s=1 and X =z, 5, we recover the
scaling of [21]. Like the algorithm of Section this procedure is not guaranteed
to be successful, but if it is, it yields solutions guaranteed to be optimal relative to
some criterion. The LLL-algorithm produces a basis of short Euclidean norm vec-
tors

(b" (s, X)1,b%(s, X)2,...,b%(s, X) 1) =: B*(s, X) such that

6% (s, X)all < 1% (s, X)ll, 5=2,...N+1.

The b*(s, X )1 vector is very close to the shortest one. A refined version of the
LLL-algorithm captures the genuinely shortest vector of the lattice A(s, X) as
follows: Given the reduced basis {b*(s,X); : 4 = 1,...,N + 1}, it can be shown
that the shortest (in the sense of the Euclidean norm) lattice vector is to be sought
among all lattice vectors of the form ), 8;6™(s, X);, |Bi| < (2/\/§)N+1. Lagarias’
theorem |24, Lemma 5] then implies that a shortest Euclidean norm vector of the
lattice is a best X-weighted Diophantine approximation. Observing that

() (")

and taking s | 0, it becomes clear that a short vector in the lattice B(s, X)
provides a good X-weighted Diophantine approximation:

= B (s X)Dnpan (B X))y

s T;

ZN-H

+0;q. (14)

With the shortest vector, we construct the best approximation, that is, the approx-
imation that minimizes

X (0 — p)l|2,

in the same way as for the good approximation.

Before proceeding any further, we take care of a technicality: As one would
expect, the simulations also suggest that ¢ grows without bound as s decreases to
zero. For the weighted LLL-algorithm, we can prove the following;:

Theorem 2 For the weighted LLL-algorithm to solve

il N

where || - || xq1 ts the Euclidean norm weighted by the direct sum of X and 1, we have
limg g G(s) = oc.

(p(s),4(s)) = arg  min_
(p,q)€ZN+?

Proof Assume that there exist spin and gmax such that, Vs < sy, we have g <
Gmax. Consider for any 0 < s < spin. By contradicting hypothesis, ¢(s) < gmax.
The above yields a Diophantine approximation of § but not the optimal one as
s # 0. Now define
(p,q) =arg min_|[jp—0q|x
(p,g)€ZN+1

q

along with
3(s) = [15(s) — 0d(s) 1% — 15 — 04l
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Observe that there exists a lower bound d,,i, such that §(s) > dmin > 0 as ||p(s) —
04(s)||x cannot reach its minimum since §(s) < gmax. Now, consider the original

problem with s < min {7“5\/5(1 smm}. With this choice, we have

7 < g < 52 <50

Then we have

el

= |Ip — 0% + (sq)?

diag(X,1)
< |18(s) — 04(s) 1% — 8(s) + (sd(s))? + 2
= [Ip(s) — 04(s)[I% + (si(s))* — 25

- -5

L2
<ﬁ<s)sd—(f)c1(s)) i _ émT

The above is clearly a contradiction to the optimality of (p(s), 4(s)).

Note that the result appears trivial from Eq. except that the behavior
of the last component of the first vector of the reduced basis has not yet been
explored in the weighted case.

Comparison between the weighted LLL-algorithm, X (6q — p), and the one of
Section Y ~1(6g — Yp), indicates that a good choice of the weighting might be
X =Y L. This is only a guiding idea, as X = Y ! would mean that Y = p, that
is, Y x Dirichlet numerator(Y ~!6) = Dirichlet numerator(#), which does not hold
exactly.

For practical computation of the time steps 7 = ¢, we must find numerators
pre that fulfill the odd/even constraints using the LLL-algorithm. The nonuniform
variant introduced above makes it simpler to find suitable parameters X and s,
but a search is still required. To automate the search we use a standard genetic
algorithm to find weight vectors X with a user-defined s that minimize the number
of parity constraint violations of the p;,. This works well in most cases, requiring
only a few iterations (typically up to 5) for reasonably sized populations (about
200). We suggest that the standard crossover and mutation operators could be
adjusted to improve the performance of the search. In particular, increasing the
likelihood of changing the X values corresponding to denominators py, that violate
a constraint, and increasing the likelihood of retaining X values for which the
corresponding pgy do not violate the constraints may improve performance.

Example 8 (Weighted LLL-Algorithm.) Consider a ring with N = 7 spins and
Pmax(1,3). There are four eigenspaces with projectors I}, and three rationally inde-
pendent transition frequencies wy, 11 = (—0.7530, —1.6920, —1.3569) /7. Noting that
sp = Sgn(3|II|1) for k = 0,...,3 yielding s = (so,s1,52,s3) = (1,—1,—1,1), we
choose w12 as reference frequency and set

6 = 2wy (wor,wa3)” = (0.8901,1.6039)” (16)
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Diophantine approx (Ring N=7, p_.): no constraints Dix;phantine approx (Ring N=7, p,.}: constraints satisfie:ﬂ}
10° 0% 10 10

108 100 10 10°
102 10715 10710 10°% 10° 10720 10715 10710 10°° 10°
scaling parameter s scaling parameter s

(a) Unweighted LLL-algorithm (b) Weighted LLL-algorithm

Fig. 1 Behavior of LLL-algorithm applied to the simultaneous Diophantine approximation
to determine attainability of pmax(1,3) in a N = 7 ring. The left vertical axis in both plots
corresponds to the error of the approximation (thick broken line) while the right vertical axis
corresponds to the transfer time (thin solid line).

with corresponding constraints s’ = (1,1), which means that the numerators py, in the
simultaneous Diophantine approximation of @ must both be odd.

Applying the classical LLL-algorithm to solve the simultaneous Diophantine ap-
proximation for 0 yields rational approximations of very high accuracy, as shown in
Fig. However, most of the resulting approximations py/q do not satisfy the parity
constraints. Using the weighted LLL-algorithm and varying the diagonal scaling vector
X enables us to find solutions of arbitrary accuracy, shown in Fig. all of which
satisfy the parity constraints for the numerators py,.

For the approximation p = (170921, 307989) and q = 192028 we obtain the trans-
fer time ty = 2q/wi2 = 7.1308 x 10° (in units of J~1) and corresponding transfer
fidelity
4 2
pey(1,8) = | e MBI )| &~ 04122, (17)

k=0

which is within 1—py (1,3)/pmax(1,3) = 2.41x 107 of the maximum transfer fidelity
pmax(L 3)

The previous example illustrates how we can use the weighted LLL-algorithm
to find optimal transfer times that yield very high transfer fidelities, and how we
can control the margins of error and ensure the parity constraints are satisfied by
adjusting the scaling parameter and diagonal weights in the algorithm.

3.5 Estimate of Time to Attain Maximum Probability

Our objective is to find an upper bound on the amount of time ¢ it takes to achieve
Pt(4,5) > Pmax(4,5) — €prob, 1-€., Pmax(i,J) — pt(i,5) < €prob. The approach is to
translate the specification on the probability eprop to a specification on the infinity-
norm of the simultaneous Diophantine approximation ||épa||co, Where ep, = 0g—p.
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Proceeding from , recalling that Sgn ((¢|IIg|5)) =: s = eV (sk—1)/2=2miny
where ny, is some integer, we obtain
N-1
Pmax(i,7) = Z i|Pig|j)s

k=0

_ Z ‘Hk‘j —15 (sp—1)—2mng
keK’

= ZO"H}A]) —15(sk—1)— 27T’Lnk 5 (se—1)+2mang
keK’

_|' S mpestnmo-ammmal
keK’

In the second equation, the sum over k has been replaced by a sum over k € K’
as states with (i|I1;|j) = 0 do not contribute to the sum. The third equality stems
from the fact that for fixed ¢, 'z (5¢=D+2mne jg 5 global phase factor that is
absorbed by the absolute value.

Next, we introduce the attainability condition , which is only approximately
satisfied using the simultaneous Diophantine approximation. The idea is to expose
the gap between the left-hand side and the right-hand side of when ¢ is con-
strained to emerge from the Diophantine approximation:

Vv pmaX(iv j)

_ Z ((ﬂnk“)e*l()\k*)\e)t + (i| T, |5) (6*1%(81«782)*27”(%7712) _ 61(>\k>\e)t>)‘
keK’

S Z <Z|Hk|j>€—l()\k—>\@)t + Z <'L|Hk|]> (e—z%(sk—sz)—Zwl(nk—n[) _ e—l()\k—)\[)t)
keK' keK’

= | S Glmlie ™ + | 3 Gilil) (e—zask—sz)—m(nk—m)_e—zm—mt)
keK' keK'

< V) + Y ‘;z%(skfsz)fzm(nrnw 7efz<xkfxz>t’,

keK’

It follows that /pmax(i,5) — v/Pe(i,5) < Y ek
trivial identity

o5 (sk—s0) _ e—z(Ak—Mt‘_ The

Pmax — Pt = (\/pmax - \/pTS) (\/pmax + \/st)

then shows that to secure pmax(i,J) — p¢(i,5) < €prob, it suffices to require

>

keK'

e*lf(sk S@) 71()\)€7>\g)t < m (18)

= 2 I

where it is observed that ¢ € K’ is arbitrary.
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The last step is to relate the left-hand side of to the simultaneous Dio-
phantine approximation error. Define
epa(k, £) = |0req — prel , llepallo = max epa(k,£), (19)
(k,0)€S
where S is the subset of linearly independent attainability equations chosen. By
definition any constraint cgy := wiet — 3 (s — s¢) = 0 mod 2 with wy, = (A —
X\¢)/m can be written as a linear combination of constraints with (k¥',¢) € S,
Ckt = Z(k',(')es birgrcrer, with coefficients bgpr € {0,£1}. Furthermore, given
wmn € S with sm = sp and setting ¢t = 27/wmn with 7 € N and 0y = 2wiy/wmn,
we can write the constraints as cpy = 07 — 5 (s, — s¢) for (k,€) € S. Given a
Diophantine approximation that satisfies the parity constraints, cyy = epa(k,£)
mod 2 for (k,£) € S, and ¢y < N|lepalloo for (k,£) ¢ S, where N = |S| — 1 is the
number of independent constraints reduced by 1. Thus we have

— Z )1 _ e—l‘n'ckg

—Z%(Sk—sw _ e_“TWklt

D e
keK'’ keK’
< |K'| max ‘1 — e Teke
keK'’

< 2|K’|

. ™ =
sin (§N\|EDH\|M)‘.

From the above string of inequalities, it follows that for the attainability accuracy
€prob t0 be reached, it is sufficient to take

2/K|[sin (5 Nlepa(a)llo0) | < 2522 (20)

We now summarize the situation we have reached:

Theorem 3 For homogeneous rings the ITF specification pt(,§) > Ppmax(i,7) — €prob
s achieved at time t = 2q/wmn (in 1/J units) if q is chosen so that simultaneous
Diophantine approzimation error epa(q) := p—0q has its infinity norm satisfying ([20)
and wmn 1s the reference transition with respect to which @ = (0y;) was defined in ((10]).

There are many simultaneous Diophantine approximation schemes. If we re-
tain the Dirichlet-good one with even/odd constraints on the numerators, under
the assumption that the algorithm of Section converges, the error bound is
lepalloo < 2/¢* Y, and we obtain the further sufficient condition

. 7TN €prob
Sin (ql/IV> ’ < 5 -

A minimum ¢ that guarantees e, is easily extracted from the above inequality

2|K|

N _
- - N
4rN|K'
RS - (M) , (21)
) ) "o

where the latter approximation uses sin(z) ~ z and is valid if * = epron/(4|K'|) <
1.
As an example will soon show, contrasting the above with numerical simu-

lations of Eq. reveals that the bound O (N N ) is very conservative, mainly
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Ring 5, Transfer 1-2 o Ring 5, Transfer 1-3
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error 1 - p(ty/p,

"
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200 400 600 800 1000 0 200 400 600 800 1000
time time

Fig. 2 Simulations of transfer probabilities from 1 — 2 and 1 — 3 for a ring of size N = 5.

because the continuous-time dynamics on the torus was converted to a discrete-
time dynamics. The conservativeness is somewhat mitigated by the dimension
reduction achieved by the elimination of dark states and symmetries that reduce
the number of relevant eigenspaces. For example, for homogeneous rings N ~ %N
rather than N. Further improvement of the scaling behavior could be achieved by
utilizing tighter simultaneous Diophantine approximations Th. 2], , but at
the expense of significantly complicating the notation. The reward for the conser-
vativeness of this bound is that it is quite general for rings with uniform coupling
and their ITF attainable by the algorithm of Section [3:3] as it depends on neither
the eigenvalues nor the odd/even pattern. Furthermore, it becomes very general
for any network subject to the mild modification of replacing N by N and |K’| by
N.

Example 9 (Transfer Times — simulation results vs bounds.) For a ring with
N = 5 we have N = 3 independent eigenspaces with two rationally independent
transition frequencies and there are no dark subspaces. Hence, |K /| = 3 and we have
N =1 independent 6. In this case our conservative bound implies we can get within
€prob Of the maximum transition probability in time 127 /epyrop -

In practice simulations suggest that we can we can achieve very high fidelities in
much shorter times. Fig. |2 shows that we can achieve > 99.99% of the maximum
transfer fidelity for any two nodes with distance 1 in time t = 77.28, and transfer
between two nodes with distance 2 in time t = 125 (in units of 1/.J). Notice that the
maximum distance between any two nodes in a homogeneous ring of size N = 5 is 2,
hence any transfer can be achieved to within 0.01% of the maximum possible in time
t <125.

As observed before, for rings of size N = 6, the primary transition frequencies are
not rationally independent, implying that we do not have simultaneous attainability.
Indeed, Fig. E (left) shows that the bound pmax(l, 2) is not attainable. Lack of simul-
taneous attainability does not imply that all bounds are not attainable. Indeed. Fig. E
(right) suggests near perfect transfer between nodes of distance n = 2.

We can use simulations combined with the LLL-algorithm to estimate the
minimum times required to achieve various transfers with a certain maximum
error probability. The results for rings of size N =5 and N = 7, which satisfy the
rational independence conditions for simultaneous attainability, shown in Fig. [{]
suggest a power-law scaling.
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Ring 6, Transfer 1-2
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Fig. 3 Simulations of transfer probabilities from 1 — 2 and 1 — 3 for a ring of size N = 6.
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Ring N=5: Scaling transfer time vs error level
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Ring N=7: Scaling transfer time vs error level
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Fig. 4 Transfer times estimated from simulations vs the error probability for ring of size 5
(left) and 7 (right).
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Chain N=7: Scaling of transfer time vs error level
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Fig. 5 Comparison of scaling of transfer times with error probability for rings (left) and
scaling for chains of size N = 7 (right).

in Fig. left) suggests that we have similar scalings for both N =5 and N =7

Finally, comparing the scaling of the transfer times for rings of different size

although the constant is larger for N = 7. The scaling behavior for various transfers
for a chain of size N = 7 in Fig. right) is similar but more complicated and the

transfer times required to get close to the upper bounds appear to be significantly

longer.
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3.6 Transfer Time versus Decoherence Time

In general there is a trade-off between the error ey, and the transfer time ¢
required to achieve py, (i,j) = 1—epron. For actual physical realizations of quantum
networks, decoherence is generally a limiting factor. In this case the relationship
between the error probability and the expected transfer time can be useful in
estimating what error probabilities can be achieved based on the coherence time
of the network t.op.

For instance, in example [0} we showed that for a ring of size N = 5 we would
achieve 99% of the maximum transfer probability between any two nodes in time
T < 125 in units of the inverse coupling rate J~!, and we could therefore expect
to closely approximate these transfer fidelities provided the coherence time of the
system is > 100J 1.

More generally, Figures suggest that we have the power law t; = ce;ro‘ob (in
1/J units) , at least for cerfain types of networks such as rings. In this case for
the algorithm to work it is necessary that

ce;r%b < teoh- (22)

This means that realistically, the error probabilities ey, attainable are limited
and we can expect

€prob > (C/tcoh)l/av (23)

and the algorithm of Sec. could be used to construct a simultaneous Diophan-
tine approximation compatible with this requirement.

Combining Th. |3[and Eq. also yields an upper bound on the transfer times
for which the effect of decoherence should definitively be negligible

N
2 N
ty < ’ o
F= omm sin—1 (%) (24)

although we would like to stress here that this bound is excessively conservative due
to the approximations made. Given a concrete physical realization of a quantum
network with an specific decoherence model, this information could be used to
derive tighter time-dependent bounds on the transfer fidelities and realistic transfer
times.

4 Information Transfer (In-)fidelity Metric and Geometry

In this section, we come back to an issue raised in Section [3}-namely, that the
upper bound derived in Eq. can be justified by the fact that it induces a metric
on the set of vertices. Unlike the results in the previous sections, most of the results
in this section apply specifically to rings, although numerical simulations suggest
that similar results may hold for other homogeneous spin networks such as chains.
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4.1 Definition and Motivation of ITF Prametric

To develop a geometric picture, we can view a spin network as a pre-metric or
more precisely a prametric spaceE| endowed with the prametric that quantifies the
Information Transfer Infidelity (ITI). To fix terminology, recall that given a graph
G = (V,&), or any set of points V for that matter, a prametric [34} p. 666], [33 p.23]
is a function d : V x V — R>q such that (i) d(i,j) > 0 and (ii) d(i, i) = 0.

To derive a suitable prametric on the vertex set V = {|i) : ¢ =1,..., N} from
the probability pmax data, we inspire ourselves from a similar situation in sensor
networks [35], where V is the set of sensors and a Packet Reception Rate PRR(i, j) is
defined as the probability of successful transmission of the packets from sensor i to
sensor j. After symmetrization of the packet reception rate, a prametric (in fact, a
semi-metric [36H38]) can be defined as d(i,j) = —log PRR(, 7). Should there be a
violation of the triangle inequality, say, d(i,j) > d(i, k) + d(k, j), then the distance
between i and j is redefined as d(i, k) + d(k, 7). The importance of the metric is
that it provides a notion of network curvature, which has a dramatic impact on the
traffic flow [39}/40] in a paradigm that extends to quantum chains [14]. Following
sensor network intuition [35], we define

d(lmj) = - IngmaX(imj) (25)
Obviously, d(4,j) > 0 and, as will be shown in Theorem [4] d(i,i) = 0.
We could define the time-stamped prametric by di(i,7) = —logp: (|3),]5))

except that in general d¢(i,7) # 0. To remedy this situation, we could define
d(i,j) = infy> di (4, 5) = —logsups~q pt (i, j). Since, by Cauchy-Schwarz, py(i,i) < 1
and pi—o(i,i) = 1, we have sup,~q pt(,7) = 1 and hence d(i,i) = 0. This alternate
prametric definition is equivalent to the earlier one when pmax is attainable, but it
reveals that this prametric makes the network of finite diameter (sup; ; d(i, ) < oo)
as N — oo as Theorem [ will show. This has the unfortunate consequence of pre-
venting a genuine large-scale analysis. As Section [5] will show a bias rectifies this
problem (see also [14]).

Generally, this information transfer infidelity prametric is not a proper dis-
tance satisfying the triangle inequality, but for certain networks such as rings with
uniform coupling this prametric will be shown to define a proper distance.

This quantum mechanical (pra)metric is quite different from the usual Eu-
clidean distance dg of the spins in the spintronic device. In particular, two spins
that are physically close in the medium may be far quantum mechanically, and con-
versely. If two spins are quantum mechanically far, control is necessary to enable
transmissions that are too weak or forbidden by the natural quantum mechanical
couplings. This control of information can be viewed as the problem of controlling
the quantum mechanical geometry of the network.

4.2 ITF Distance Geometry of Homogeneous Spin Rings

It could be argued that a prametric is sufficient if we are solely interested in as-
sessing the difficulty of communication or fidelity of information transfer between

2 We prefer to avoid the terminology of pre-metric space since it is not quite accepted; pra-
metric on the other hand is the terminology introduced by Arkhangel’skii and Pontryagin [33].
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nodes in a network. However, a proper metric allows us to investigate other geo-
metric properties such as the curvature of the network with regard to the ITF.

A prametric d: V xV — Rxq is a pseudo-metric if in addition to (i) d(i,j) > 0,
d(i,i) = 0, it satisfies (ii) d(4,5) = d(j, i) and (iii) the triangle inequality (d(i,j) <
d(i, k) + d(k,7)) holds. A metric or distance is a pseudo-metric that has (iv) the
separation property: d(i,7) = 0 if and only if i = j.

Theorem 4 For a quantum ring (Vn,EN) of N uniformly distributed spins with XX
or Heisenberg couplings, dy (i,7) := —1og pmax(i,7) has the following properties:

1. For N odd, (Vn,dN) is a metric space.

2. For N even, (Vn,dn) is a pseudo-metric space that becomes metric after antipodal
point identification.

3. If N =p or N = 2p, where p is a prime number, then the distances on the space of
equivalence classes of spins are uniform, i.e., dn(i,j) = cn for i # j. Otherwise,
the distances are non-uniform.

4. In all cases imy_, 00 dn(3,5) = 2log &, i # j mod (3N).

Proof To show that (Vy,dy) is a pseudo-metric space we need to verify that (i)
dn(i,i) = 0, (ii) dy(i,5) = dn(4,7), and (iii) the triangle inequality holds. For a
metric space we must further have (iv) dy(i,5) # 0 unless i = j.

(i) is clearly satisfied as the projectors onto the eigenspaces are a resolution of
the identity, >, 11, = I, and thus for any unit vector |i), we have Z}ICV:1 [(i|IT}|3)] =
Zivzl |1 |3)||*> = 1. (ii) follows from |(i|IT}|j)| = |(j|IIx|i)|. The proof of the re-
maining properties relies on the circulant matrix property of the Hamiltonian H
in the single excitation subspace H, as shown in Eq. and Table

Observe in Table [1| the double eigenvalues A\, = Ay_j, except for £ = 0 and
k= %N if N even. From Table |1 each of these double eigenvalues has two general
complex conjugate eigenvectors. These general eigenvectors need not be orthogo-
nal, but observing that (vj|vg) = dxe and (vg|vj;) = 0, where v}, denotes the complex
conjugate, it follows that

[50) = |vo) = A5 (1,1,..)7,

B) = lvk),  lov—k) = vk), k=1,...N = |83, (26)
Un/2) = lony2) = \/LN(L —1,..)%, if N is even,

defines an orthonormal basis of 7. Furthermore, in the basis in which H is circu-
lant, we have |i) = ¢;, where {e; : ¢ = 1, ..., N} is the natural basis of cV.

(il ITo|5)| = I{i|Do)(Tols)| = 7, (27)
[T |5) | = [ilor) (D7) + (1oN—k) (DN —k|7)]

= [N R+ R | A

= [N I = R leosED] @8)

(G219 = [(ilon/2) (On205)| = - (29)
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Summing over all eigenspaces k =0,...,[N/2]| gives
L4 25N eos (ZmEG=D) | N =2N' 41,

V PmaX(i7 j) =

, 5 (30)
2 4 25V eos (2ZEGZD) | N =2N + 2.

For N = 2N’ +1, it is easy to see that pmax(i,j) = 1 if and only if i = j, hence (iv).
For N = 2N’ + 2, on the other hand, we also have cos(%) = | cos(mk)| = 1,

and thus d(i,j) = 0 for i—j = 1 N, i.e., the distance vanishes for antipodal points,
and thus d(i,7) is at most a pseudo-metric. However, noting that can identify
antipodal points |j) and |j + N’ + 1), let d be defined on the set of equivalence
classes [|5)] for j = 1,..., N’ + 1 instead. (The antipodal identification preserves
the ring structure). At this stage, d is a semi-metric [36L[37L/41], that is, it satisfies
all axioms of a metric except the triangle inequality.

To prove the triangle inequality, we show that v/pmax(i,m)\/Pmax(m,j) <
\/Pmax (%, 7). The definition of pmax rewritten in terms of the eigenvectors of H
using (27)-(29) gives

1 N-1
. _ k(m—1)
\/pmaX(Z:m) =N Z QRPN )
k=0
1 N-1
/ N K’ (j—m)
pmax(mv.]) - N klzoﬁk/p]\[ 5

where ay = si(i,m) = Sgn (p];\,(mfi) + p;\,k(mfn) € {£1,0} is rewritten explicitly

in terms of the eigenvectors rather than as in Section and By = sg(m, 7). Setting

N-1
K —k) (j—
W=y o B oy U™
k=0

we obtain

V/ Pmax (i,1) \/pmax (m, 5)

1 N-1
k(m—i) k'(j—

:ﬁ Z Oékﬂk'pN(m z)pN(_/ m)

k,k'=0

N-1
_ b S Bk E G

N2 o
k,k'=0

1 N-1 G 1 N-1 Gty
_ k(j—1i) _ k(j—i
N2 kZ:O VPN = ‘Nz ];J VPN

The final equality follows because the LHS and thus the RHS are known to be
real and positive. Furthermore, as py is a root of unity, |[pn| = 1, and recalling
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lag| = |8r| = 1,0,

N-1
k(m—j K (j—
Py > o B o™

k’=0

N-1
k(m—j k' (-
< ‘PN(m ])" > ‘akﬁk/PN(J m)’ <N,
k/

[kl =

where the last inequality allows for the presence of dark states. Again we have
pgf,v_k)(m_]) = p;,k(m_’), and as the LHS above is known to be real, we know that
we must have v, = yy_x. Hence, we can again collect exponential terms pairwise
to obtain cosines, which gives for N = 2N’ + 1:

N/
e z = |3+ 2 2weos (20
k=1
ol |, 2 &
o
< Rty 2l feos (31|
k=1
N’
1 2 27rk(j 1))‘
< -4 =2
SNt Z‘COS(

=1

= V/Pmax (Z

For N = 2N’ + 2, we simply replace o by 70 + vn/11 above to obtain

N’

23 o ()

=1

= V Pmax (% J)-

k
N2 Z Yeph ™

This proves (iii) and hence parts (1) and (2) of the theorem.
To establish (3), we note that if N = 2N’ + 1 is prime then

N’ o N’
Z ’cos (W)‘ = !cos 2]7{,k)|.
k=1 k=

If N is not p or 2p then N and (i — j) will have factors (which can be canceled)
in common for some (7 — j) but not for others and hence we will obtain different
distances.

To establish (4), letting N — oo, it is easily seen that the dependency on i, j
is eliminated provided i # j mod (%N) Hence, taking the norm of the above and
then —log(-) it follows that, at the infinite ring limit, the distance is uniform for
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i # j 4+ mod (3 N). Finally,

N/2

. — .2 .
A V/Pmax(i, ) = lim ;ICOS(@ —j)2nk/N))|
= M/2 ' cos(|i — jlz)dx
™ 0
_ 26 =gl e 2
- TI"Z _]| [SID(‘Z ]|Z’)]0 - T

shows that limpy_,oc dn(4,7) = 2log 5 ~ 2 x 0.4516 for ¢ # j mod (N/2).

Case 3 of Theorem [4] allows for a very specific geometrization of the quantum
ring in terms of constant curvature spaces. Define the n-sphere of curvature « as
St i={z e R"!: ||z||? = 1/x}. We have the following corollary:

Corollary 1 The metric space (Vp,dp) of p spins (p > 3 prime) arranged in a homo-
geneous ring with uniform ITI distance dy(i,j) = cp, i # j, is isometrically embeddable
in SE™L iff

o » ] 2
Kk < | —cos ( ) . (31)

= Cp p—1

Furthermore, it is irreducibly isometrically embeddable in Sp—? for

- 1 _2
k= |—cos ! (—ﬁ) . (32)

Cp

Notes: In the above, “irreducibly embeddable” means that the embedding cannot
happen into a lower-dimensional constant curvature space. By convention, cos™!
takes values in [r/2, ).

Proof This result is a corollary of [41, Th. 63.1]. For the details, see [42, Appendix].

Note that this corollary deals with embeddability of the vertices only; however,
edges can be mapped isometrically as arcs of great circles on either the sphere of
curvature or that of curvature . Also note that the symmetry of the simple
p = 3 case of the circle S! circumscribed to a equilateral triangle is misleading, as
in very high dimension (p — o0), Eq. yields 1/v/k =: R — ﬂc—;’2, that is, all
vertices are mapped to the half-sphere of radius R.

Regarding N = 2p in Case 3, we could first do the anti-podal identification
on the combinatorial ring (Vap,E2p), leading to a (Vp,&p) ring, and then embed
(Vp, &p) as in the preceding corollary.

Regarding Case 4 when N is odd, define e := max;-; |[dn(¢,7) — 2log(m/2)].
Then the metric space (Vy,dy) can be mapped isometrically on the sphere S ~2
of radius doo/cos™! (f(N — 1)71) up to an additive distortion not exceeding e,
that is, the embedding is quasi-isometric [43, 7.2.G]. The case of an even N is
dealt with as before using anti-podal identification. The geometry of a genuinely
infinite ring (N = oo rather than N — oo) is completely different and is left to
future work.

The N even case can be dealt with in a different way. Rather than doing, first,
a combinatorial anti-podal identification (i = j if i —j =0 mod (3N)) and, then,
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mapping the quotient space Vy/ ~ to the sphere, we could map the combinatorial
antipodal points to geometrical anti-podal points on the sphere SN=2 with the
understanding that geometrical antipodal points on the sphere are identified to
yield the real projective space RPY 2. A slight generalization of of Corollary
together with 4 of Theorem [4]yields an irreducible embedding of (V,dy) into the
sphere of curvature k = ((cosf1 (—ﬁ)) / (2 log g))Q On the other hand, RPN 2
is usually endowed with the standard curvature 1 metric of diameter /2. To sum

up:

Corollary 2 For N even, there is an embedding VN — RIP’N_Q, which is quasi-
isometric for the scaled distance dpy cos™! (fﬁ) / (4 log g) on VN and the curva-

ture 1 distance on PRN 72, Furthermore, for N — oo the distortion becomes vanishingly
small.

5 Control of Information Transfer Fidelity

To overcome intrinsic limitations on quantum state transfer or speed up transfer,
one can either try to engineer spin chains or networks with non-uniform cou-
plings [61|7], or introduce dynamic control to change the network topology [9-11].

Our analysis above shows that engineering the couplings is not strictly nec-
essary. For an XX or Heisenberg-type chain with uniform nearest-neighbor cou-
plings, for example, it can easily be verified that the information transfer fidelity
between the end spins is unity, and attainability of the bounds means that we
can achieve arbitrarily high state transfer fidelities between the end spins if we
wait long enough. Engineering the couplings, however, can speed up certain state
transfer tasks such as state transfer between the end spins at the expense of others.

A more flexible alternative to fixed engineered couplings is to apply control to
change the network geometry and hence speed up state transfer as well as enable
some transfers that either were forbidden or had poor ITF. One way this can be
achieved is to apply static electromagnetic bias fields to change the energy-level
splittings between the spin-up and spin-down states for different nodes in the
graph, as suggested, e.g., in [12]. To see how the application of such bias fields
can alter the transfer fidelities and network geometry, consider a simple, concrete
example of a single bias field ¢ applied to node ¢ in a spin ring with uniform
coupling. First, due to translation invariance, we can always relabel the nodes so
that the biased node is node N. Then, assuming XX coupling, the Hamiltonian
on the single excitation subspace becomes

01...000...01
10...000...00
00...010...00
A =100...101...00], (33)
00...010...00
00...000...01
10...000...1¢
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where it is observed that we have the decomposition
H](\?) =Cn +(ENN,

where Cy is the N x N circulant matrix defined above and Ey y is a N x N matrix
which is zero except for a 1 at position (N, N).

Physically, applying a large bias field to the Nth node in the ring results in a
large detuning that effectively eliminates this node from the ring and breaks the
ring open, leaving a chain of length N — 1. Hence, in the limit ( — oo, we expect
the transition fidelities for the first N — 1 nodes to approach those for a chain of
length N — 1 while the transition fidelities between the first N — 1 nodes and the
final (biased) node approach 0. We now reformulate this intuitively obvious result
in precise mathematical language.

Lemma 2 The eigenvalues and eigenvectors of the (N — 1) x (N — 1) Toeplitz matriz
Tn_1 made up of ones on the super diagonal and subdiagonal and zeros everywhere

else are given by A\, = 2cos (%k) and |vg); = %sin (”TI“), k=1,...,N -1,
i=1,...,N — 1. Furthermore, for k even, |vg)1 + |vg)n—1 = 0.

N-1

chain

Theorem 5 Let p be the maximum transfer fidelities for a spin chain of length

N — 1 with uniform coupling between nearest neighbors. Let pﬁ\ifr’fg be the mazximum

transfer fidelities for a ring of size N with bias ¢ on the Nth node. Then

pNZLGLG), ifig <N
lim p3is (i.4) = {0, i=N,j#Nori#N,j=N; (34)
(—o0
17 Z,] = N.

Proof Write the characteristic polynomial of EIJCV as det((Mny —Cn) —(En,n) and
recall that the determinant of the sum of two matrices equals the sums of the
determinants of all matrices made up with some columns of one matrix and the
complementary columns of the other matrix. Applying the latter to the character-
istic polynomial of H](\?) yields

det(My — H©) = det(AMy — Cn) — ¢det (M y_1 — Tn_1),

where T _1 is the Toeplitz matrix defined in the lemma. From classical root-locus
techniques, it follows that, as ¢ — oo, ezactly one eigenvalue Ay (¢) goes to oo, while
the remaining ones A1(¢), ..., \ny—1(¢) converge to the roots of det (\[y_1 — Tn_1) =
0.

Next, we look at the eigenvectors and rewrite the eigenvector equation as

1 [vg (O)1 lvg ()1
Tn-1 |ON-—3 : :
' = (0) '
1 lug (€)) N—1 * lur () N1
Loy 1 ¢ ok () RGEE

Consider first the first k£ # N equations. Since lim¢_, o, A;({) exists and is finite,
it follows from the bottom eigenequation that ¢|vi(¢))y remains bounded as ¢ —
o0. Therefore, lim¢_, o Jvg)y = 0. Since A(co) is a unique eigenvalue of Ty _1,
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it follows that lim¢_, o [v5(¢))1:n—1 is the corresponding eigenvector of Th—_q. It
remains to show that with this |vg);.ny_1 the bottom eigenequation can be made
to hold. This is easily achieved by defining

Can;O§|vk(C)>N = (Jor ()1 + v (¢))N-1)

— lim
(—o0
By the lemma, for k even, we have lim¢_, o, ¢|v(¢)) v = 0, and therefore the k < N
eigenequation holds with |vy (¢)) 5 going to zero faster than 1/¢. For k odd, |vg(¢)) N
goes to zero as ¢/(, where ¢ # 0 is some constant.
By the root locus result, for ¢ large enough, all eigenvalues are distinct, and
we have

p& ) = 3 Hior(O) (1R + Hilon () (o (O15)]

k<N

= /P (6, 4) + Wilon (€)Y on (1) (35)

where the second equality is understood as the ¢ — oo limit. To complete the
proof, it therefore remains to look at |vx(¢)).

The last k = N eigenequation easily implies that (v (¢))1.y—1 remains bounded
as ¢ — co. Therefore lim;_, [vn(¢))1:.n—1 = 0. To normalize the eigenvector, we
take lim¢_, o [un (¢)) v = 1. The latter together with proves the theorem.

Thus we have a systematic way to compute the asymptotic transfer probability
of a ring with high bias from the transfer probability of a chain without bias.

Example 10 (Dynamic Routing.) As an illustration of how these results can be
used, consider a ring of size N = 9. The maximum transfer fidelities between nodes
i # j for this ring without bias are quite low, 0.4094 and 0.4444. However, applying
a large bias to node 9 changes the maximum transfer fidelities. In particular, the
maximum transfer fidelity between nodes 1 and 8, 2 and 7, 3 and 6, and 4 and 5, now
approaches 1. Fig. |6| shows a visual representation of the transfer fidelities for the ring
without bias (left) and with bias (right). This result is consistent with Theorem [5] as
using Lemmal[3 it is easily verified that

The example also shows that a finite bias is sufficient to enable almost perfect state
transfer in practice, despite the fact that the ring only becomes a chain in the limit
when an infinite bias is applied to node 9. We also used the LLL-inspired algorithm
to estimate the transfer time as a function of the infidelity of the transfer. We note
here that it was crucial to use the weighted LLL algorithm to generate a range of
simultaneous Diophantine approximations, which generally did not satisfy the parity
constraints on the numerators, and to use the idea of combining approximations to
satisfy the constraints. With this approach we were able to find solutions satisfying
all of the parity constraints on the numerators over a wide range of infidelities to
estimate the transfer times required as a function of the tolerated infidelity. The results,
shown in Fig. m (left) suggest that high fidelities are indeed attainable for modest
biases, and the apparent linearity of the data in the bilogarithmic plot still suggests a
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polynomial scaling. However, the actual transfer times are significantly higher in this
case than in previous examples. We point out here that our algorithm is not guaranteed
to find the shortest possible time although Fig. E (right) suggests that there is a good
correlation between the Diophantine approximation error and the observed infidelity
of the transfer. Furthermore, the algorithm enables us to estimate necessary transfer
times far beyond the regime accessible by brute-force numerical simulations.

This example shows how a dynamic routing scheme can be implemented to
transfer information from any node in a ring to any other node with fidelity ap-
proaching unity by simply applying bias fields to different nodes. For transfer
between nodes 1 and 8, 2 and 7, 3 and 6, or 4 and 5, it suffices to apply a large
bias to node 9. If we wish to transfer information from node 1 to 4 then translation
invariance of the ring allows us to shift the labels by 2, so that node 1 becomes 3
and 4 becomes 6, and applying a bias to the new node 9 will enable the transfer.

Further reflection shows that we can achieve maximum transfer fidelities ap-
proaching unity for transfer between any pair of nodes in a ring of size N provided
N is odd by simply biasing the node in the middle between the pair of spins. This
is because in this case N — 2 is odd, so there must be an odd number of spins
along one path around the ring and an even number between the spins around
the other. By applying the bias in the middle of the path with an odd number of
spins we asymptotically reach a chain with N — 1 (even) spins. In this chain the
transfer probability between spins mirrored at the center is 1, which is specifically
true for the source and target spin with an even number of spins between them in
the chain.

If N is even instead, then the situation is more complicated. If there is an
odd number of spins between source and target along the ring, then applying a
bias at the middle creates an odd chain where source and target are connected
with probability 1 as they are at mirror-symmetric positions in the ring. If there
is an even number of spins between source and target, then applying a single bias
cannot achieve perfect information transfer as the spins can never be at mirrored
positions in the odd chain (which are the only ones in the chain perfectly con-
nected). There are, however, multiple solutions to apply a bias at two spins that
can asymptotically generate a suitable chain.

In practice it may be possible and even preferable to simultaneously apply
biases to several nodes instead of a single node to shape the overall potential land-
scape. This case is more difficult to treat analytically but preliminary results [45]
suggest that numerical optimization can be used in this case to optimize the applied
biases to achieve significant reductions in the transfer times and the magnitude of
the required bias fields, as well as to deal with practical issues such as leakage of
the bias fields, i.e., the tendency of a bias applied to one node to also affect nearby
nodes.

6 Conclusion

The concept of maximum transfer fidelity for information transfer between nodes
in a network of interacting spins was introduced and criteria for attainability of
the bounds in terms of the transition frequencies of the network were given. At-
tainability was shown to be related, theoretically, to minimality of a linear flow
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Fig. 6 Visual representation of maximum transfer fidelities for a ring of size 9 without bias
(left) and the same ring with a finite bias applied to node 9 (right).

Ring N=9 with Bias=10 at n=9 Ring N=9 with Bias=10 at n=9
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Fig. 7 Scaling of transfer times for transfers between nodes (1,8), (2,7), (3,6) and (4,5) for
a ring of size N = 9 with a bias of strength 10 (in units of 1/J) applied to node n = 9 (left)
and correlation of fidelity error (or infidelity) and Diophantine approximation error (right).

and, computationally, to a translation on a torus. This last connection enabled us
to derive upper bounds on the time required to realize transfer fidelities within
€prob Of the maximum transfer fidelity, for arbitrary ep.on, > 0, via the simultane-
ous Diophantine approximation. Algorithms were discussed to find the required
approximations.

The ultimate aim of this analysis is to understand the intrinsic limitations of
information transfer in spin networks and utilize this understanding to engineer
networks with favorable bounds on the information transfer fidelities and dynamic
attainability properties, so that high spin transfer fidelities can be attained in short
times, enabling fast transfer and minimizing the effects of noise and decoherence.
An advantage of our approach of combining general ITF bounds and asymptotic
attainability conditions with an algorithm to estimate the time required to achieve
transfer within a set margin of error, compared to engineering the spectrum of
the network Hamiltonian to admit perfect state transfer, for example, is that the
latter condition is generally too strong a requirement, as in practice there are
always margins of error. Therefore it makes more sense to ask how much time
is required to achieve a certain transfer fidelity for a given acceptable margin of
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error ¢, and try to optimize the network topology, couplings or biases to achieve
the best possible transfer times for the acceptable margins of error.

The general results were applied specifically to regular spin structures such
as rings with uniform coupling. In this case, the information transfer infidelity
prametric induced by maximum transfer fidelity takes on full significance as it can
be shown to be a proper metric defining an information transfer infidelity geometry
for the network, which is significantly different from the physical network geometry.
The analysis shows that the intrinsic transfer fidelities for simple networks such
as rings are often attainable asymptotically but the times required to achieve high
fidelities can be very long. The intrinsic bounds on the ITFs and transfer times
can be favorably changed, however, by simple Hamiltonian engineering such as
applying spatially distributed static bias fields. In particular, it was shown how
such simple controls can be used to alter the information transfer fidelities and
geometry of a network. It was demonstrated how this idea can be applied to enable
or disable information transfer between a pair of nodes in the network. Simple bias
controls are sufficient to direct information flow between nodes. By changing the
biases different transfers can be targeted, and thus a spin ring with fixed couplings
can be turned into a simple quantum router for information encoded in excitations
of a spin network.

Directions for future work include optimizing information transfer in spin net-
works via optimal control to achieve faster and more efficient dynamic routing
in more complex spin networks. While this work focused on transfer of a single
excitation, the concepts and analysis can also be applied to the case of encoding
and simultaneous transfer of multiple excitations. This is interesting as it could
increase the information transmission capacity of the network. Finally, although
simulation results for similar spin systems suggest that some degree of intrinsic
robustness of state transfer and the ability to mitigate the effects of noise, deco-
herence or fluctuations in the couplings via control |10}[11}/44], the sensitivity of
transfer fidelities with regard to noise and deleterious effect of the environment
need to be investigated for specific physical realizations of spin networks.
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