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Abstract—Change-Point Detection, in its Cumulative Sum
(CUSUM) approach, accumulates real time data from a possibly
corrupted process, continuously updates the log-likelihood that
the data departs from its normal or expected distribution,
and triggers the alarm when the CUSUM reaches a threshold,
adjusted so as to compromise between detection delay and false
alarm rate. Here, an extra “time-to-event” layer is added that
constantly provides the operator or autonomous agent with the
expected amount of time it would take for the CUSUM to hit
the threshold given the data accumulated up to present. Con-
ceptually, the time-to-event is the dwell time of an Itô process in
an interval bounded by the threshold. As main contribution, the
Fokker-Planck equation is given a specific approximate solution
that is aimed at formulating the time-to-event as the solution
to an integrable ordinary differential equation subject to mixed
initial-terminal conditions. Moreover, using modern dynamical
system theory, we further derive the probability density of the
hitting time, in addition to its mere expectation.

I. INTRODUCTION

Consider an i.i.d. sequence {Xk}Nk=1 with “normal” regime
probability density function (PDF) p0 from k = 1 up to and
including k = λ−1, and with “abnormal” PDF p1 as of k = λ
up to and including N . Change-Point Detection (CPD) en-
deavors to detect the change-point λ from data {Xk}nk=1 with
minimum delay n − λ subject to an acceptable False Alarm
Rate (FAR). There is a vast literature on the subject (see [1]
and references cited therein), which can be partitioned into, on
the one hand, the Shiryaev (Bayesian) procedure [15] and, on
the other hand, Page’s minmax CUmulative SUM (CUSUM)
procedure [11]. In the Shiryaev procedure, λ is assumed to
have an a priori distribution and the goal is to minimize the
expected detection delay subject to a false alarm rate. In the
CUSUM procedure, λ is deterministic, but unknown, and the
goal is to minimize the worst case detection delay subject to
an acceptable false alarm rate. Here we follow the CUSUM,
consistently with the early work on applications of CPD to
anomaly detection approach to security problems [3], [9], [14].
In a companion paper, it is demonstrated that the CUSUM
Change-Point Detection applied to Phasor Measurement Units
(PMUs) data is able to detect the frequency anomaly, the
“event,” that ultimately led to the 2012 Indian power grid
blackout [17].
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II. FROM CUSUM FUNDAMENTALS TO MAIN POINT OF
THE PAPER

A. Hypothesis testing

Given a change-point λ, let Pλ denote the probability
measure defined as p0 on {Xk}λ−1

k=1 and p1 on {Xk}Nk=λ. Let
Eλ be the corresponding mathematical expectation. Let Ep0,1
be the mathematical expectation relative to the probability
density p0,1 on {Xk}Nk=1. Note that E∞ = Ep0 .

The Null Hypothesis H0 is defined as the absence of
changes from λ up to and including n. Quantitatively, it is
based on the cumulative sum of the log-likelihood ratios,

Znλ =

n∑
k=λ

log
p1(xk)

p0(xk)
. (1)

In this security context, the statistic is computed for the worst
position of the change-point. For the same robustness reason,
it is reset to 0 in case it takes negative values1:

Un =

{
max

0≤λ≤n
Znλ

}
+

, (2)

where {z}+ = max{0, z}. The density of the Un statistic
is given by the solution to the Kolmogorov-Fokker-Planck
equation. Rejection of H0 is not based on a p-value argument,
but rather on a False Alarm Rate (FAR) specification. The
alarm is triggered, that is, H0 is rejected, when Un ≥ h, where
the threshold h achieves a compromise between detection
delay n− λ and False Alarm Rate.

B. Recursive formulation of statistic

Putting Un in recursive form:

Un+1 =

{
max

0≤λ≤n+1

(
Znλ + log

p1(xn+1)

p0(xn+1)

)}
+

=

{
max

{
Un + log

p1(xn+1)

p0(xn+1)
, log

p1(xn+1)

p0(xn+1)

}}
+

.

The first argument of the max{·, ·} in the second inequality
is the case where the maxλ is reached for 0 ≤ λ ≤ n while
the second argument is the case where the maxλ is reached
for n+ 1. Since Un is forced to be nonnegative, the first term

1Here, the exposition is simplified relative to the traditional one to avoid
the formal argument justifying the reset of the recursive algorithm (3) to 0
in case Un+1 takes negative values [1, §2.2]. Another reason for this is to
prepare the ground for simultaneous detection and identification of p1.



in the argument of max{·, ·} is greater than or equal to the
second. Hence, the recursion:

Un+1 = max

{
0, Un + log

p1(Xn+1)

p0(Xn+1)

}
. (3)

C. Detection delay and False Alarm Rate

The decision that there has been a change is taken at the
first time τ that the CUSUM statistic Un crosses the threshold
h:

τ(h) = min{n : Un ≥ h}. (4)

With this threshold, assuming that the algorithm is restarted
as U = 0 at a false alarm and the distribution remains p0, one
would expect the next false alarm at time TFA = Ep0(τ(h)), so
that the False Alarm Rate, confronted with its upper admissible
bound, is

FAR =
1

Ep0(τ(h))
≤ FAR. (5)

As proved in the main body of the paper, as a corollary of
Eq. (17), τ(h) is monotone decreasing with h. Therefore, the
threshold is selected as h̄ = min{h : Eq. (5) holds}. With this
threshold, the Average Detection Delay is

ADDλ = Eλ(τ(h̄)− λ : τ(h̄) ≥ λ).

Theorem 1. This CPD minimizes ADDλ subject to FAR ≤
FAR.

D. Main point of the paper: time-to-event

The present paper specifically explores the conceptual root
of the CUSUM algorithm viewed as an Itô process U t≥0

running in a domain D with boundary partitioned into a re-
flecting barrier and an absorbing barrier. While such a problem
is usually treated in the context of a 2-dimensional domain
D bounded by a Jordan curve [7], [10], here, temporarily
disregarding a technicality, the domain is taken as D = (0, h).
To conform with the CUSUM algorithm, the initial condition
is taken as U0 = 0, and a classical problem is the estimation
of the dwell time of U t in D, from which the FAR(h)
relationship (5) is derived.

The novelty here is to provide the (possibly autonomous)
system operator observing the CUSUM, currently in the state
U t = x < h, with an unbiased estimate of the time-to-go
T (x) before the threshold is reached, precisely, U t+T (x) = h.
Viewing the latter as an “event” makes the problem of a time-
to-event class [2], [5], [6].

The solution T (x) proceeds via the transition probability
p(U0, U t, t), solution to the Kolmogorov forward equation
subject to Dirichlet-Neumann boundary conditions. The theo-
retical novelty here is the explicit solution T (x) when x 6= 0,
while usually only the case x = 0 is considered [1] using a
different procedure that sidesteps the Kolmogorov equation.
Moreover, T (x) is obtained from a method that differs from
the method of images [7] as the latter fails under nonvanishing
drift in the Itô process.

In the present 1-dimensional discrete-time case, the re-
flection barrier resets the statistic Un+1 to 0 when Un +
log(p1(xn+1)/p0(xn+1)) < 0, while the absorption barrier
stops the algorithm when Un+log(p1(xn+1)/p0(xn+1)) > h.
While fundamentally the problem at hand is a discrete-time
one, it is for the sake of addressing some technicalities in the
proper conceptual context that we provide a 1-dimensional Itô
model along with the Kolmogorov equation subject to mixed
Dirichlet-Neumann conditions. Given the Itô solution, we then
proceed to discretize it using the Euler-Maruyama and the
Milstein methods. This procedure appears considerably more
straightforward than the direct solution to the discrete time
problem.

III. ITÔ STOCHASTIC CALCULUS

The idea behind the stochastic calculus approach is to model
Un as the discretization of an Itô diffusion process over a
domain D ⊂ R:

dU t = b(U t)dt+ σ(U t)dBt, U0 = x ∈ D, (6)

where Bt is a Brownian motion normalized as E(dBt)
2 =

dt, b(U) < 0 is a drift term, σ(U) is the intensity of the
innovation process σ(U t)dBt, and x is a generalization of the
initial condition x = U0 = 0. Such generalization allows the
anticipation of the threshold crossing time when the CUSUM
process is in the state U t = x. The time-to-escape is given
as the solution to an Ordinary Differential Equation (ODE) in
the initial condition x with mixed initial/terminal conditions.

A. Justification of Itô model
Such Itô model can be justified from the CUSUM algo-

rithm (3) which, in case p0,1 are Gauss densities with means
µ0,1 and the common variance σ2, takes the form

Un+1 =

{
Un − (µ0 − µ1)2

2σ2
+
µ1 − µ0

σ

(
Xn+1 − µ0

σ

)}
+

.

(7)
Consistently with the Itô integral [10], the process (6) away
from the reflecting and absorbing barriers is approximated as

Un+1 = Un + b(Un) (n+ 1)− n)︸ ︷︷ ︸
∆t

+σ(Un) (Bn+1 −Bn)︸ ︷︷ ︸
∆Bn

,

(8)
where n is in ∆t units. To identify it with (7), we define

b∆t = − (µ0 − µ1)2

2σ2
, (9)

σ =
µ1 − µ0

σ
, Bn+1 =

n+1∑
k=0

(
Xk − µ0

σ

)
. (10)

At the limit ∆t ↓ 0, we recover the Itô process as

dU t = Un+1 − Un, dBt =

(
Xn+1 − µ0

σ

)√
dt.

B. Technicalities
In this simple setting, existence, uniqueness, and t-

continuity of the solution of the Itô Stochastic Differential



Equation (SDE) are guaranteed since b(U) and σ(U) being
independent of U obviously satisfy the sector Lipschitz con-
ditions [10, Th. 5.5],

|b(U)|+ |σ(U)| ≤ c(1 + U), (11)
|b(U)− b(V )|+ |σ(U)− σ(V )| ≤ d|U − V |, (12)

resp., for constants c, d > 0.
In the specific escape problem of Change-Point Detection,

the absorbing barrier is at h > 0 and the reflection barrier is at
0, from which it follows that the domain could be chosen as
D = (0, h). But choosing the domain this way would depart
from the general SDE escape formulation where the initial
condition should be in the (open) domain, while here U0 = 0
is on the boundary of D. To circumvent this difficulty, we
temporarily enlarge the domain to D = (−ε, h), where the
reflecting barrier is at −ε < 0, and then show continuity of
the escape time as ε ↓ 0.

C. Kolmogorov forward equation and outline of approach

The starting point of it all is the transition probability
p(x, y, t) from the initial condition distribution p(U0) = δx(y)
to the CUSUM distribution at some later time p(y = U t). As is
well known, p is solution to the Kolmogorov forward equation
(KFE) or Fokker-Planck equation [7, §X.5],[10, §8, p. 153]:(

1

2
σ2 ∂

2

∂y2
− β ∂

∂y

)
p(x, y, t) =

∂p

∂t
,

p(x, h, t) = 0, (Dirichlet),

∂p(x, y, t)

∂y

∣∣∣∣
y=−ε

= 0, (Neumann),

p(x, y, 0) = δ(y − x),

where δ(y−x) is a unit mass defined on y concentrated at x.
From this transition, we define in Eq. 14 the probability

π(x, t) that the process has not yet reached h by time t starting
at x. From there, the probability that the CUSUM process
crosses the threshold between times t and t+ dt is shown to
be π(x, t) − π(x, t + dt) = −dπ. From there on, in theory,
T (x) = E−dπ(t), as shown by Eq. 15, but this requires explicit
solution to the KFE. To characterized T (x) as the solution to
an ODE, rather than a PDE, we introduce the Green function
G(x, y) of the KFE, defined by Eq. 13, and relate it to T (x) via
Eq. 16, but such argument holds under the condition that the
Green function depends more on the difference than the sum
of arguments. The whole Appendix A is dedicated to justifying
this approximation by constructing an explicit solution to the
KFE. Simulation studies on CPD of frequency anomalies in
the power grid have shown that the proposed approximation is
perfectly acceptable [17]. Appendix B proposes an alternative
method based on the method of images, but shown not to be
easily applicable in this context.

IV. TIME TO EVENT

The following is the major result of the paper:

Theorem 2. Consider the process (6) running over the domain
(−ε, h), with the reflecting barrier at −ε and the absorbing
barrier at h > 0. Assume both σ and b are independent of
U t with drift term b(U t) = β < 0. Let U0 = x ∈ (−ε, h).
Define τ−ε,x(h) to be the first barrier crossing time, that is,

τ−ε,x(h) = min{τ > 0 : Uτ = h; U t ≥ −ε, ∀t ≤ τ}.

Then, defining T (x) := E(τ−ε,x(h)), T (x) is given by the
following differential equation subject to mixed Dirichlet-
Neumann boundary conditions [13, §1.2], [18, §8.2]:(

1

2
σ2 ∂

2

∂x2
+ β

∂

∂x

)
T (x) = −1,

T (h) = 0, (Dirichlet),

∂T (x)

∂x

∣∣∣∣
x=−ε

= 0, (Neumann).

Proof. Let p(x, y, t) be the transition probability from the
initial condition p(U0) = δ(U0 − x) to p(y = U t). As is
well known, p is solution to the Kolmogorov forward equation
(KFE) [7, §X.5],[10, §8, p. 153]:(

1

2
σ2 ∂

2

∂y2
− β ∂

∂y

)
p(x, y, t) =

∂p

∂t
,

p(x, h, t) = 0, (Dirichlet),

∂p(x, y, t)

∂y

∣∣∣∣
y=−ε

= 0, (Neumann),

p(x, y, 0) = δ(y − x),

where δ(y−x) is a unit mass defined on y concentrated at x.
Next, we show that p(x, y, t) decays exponentially fast

as t → ∞. Consider an elementary solution of the form
p(x, y, t) = f(y)g(t). Substitute f(y)g(t) for p(x, y, t) in the
KFE equation and we get

1

2
σ2f ′′(y)− βf ′(y) = λf(y),

g′(t) = λg(t),

where λ is a constant, an eigenvalue of the Kolmogorov
Forward partial differential operator. Multiply both sides of
the equation for f by f(y)dy, integrate by parts, and use the
boundary conditions to get

−1

2
σ2‖f ′‖2D +

β

2
f(0)2 = λ‖f‖2D,

where ‖ · ‖D denotes the L2-norm over D. It follows that
λ < 0. The equation for g hence yields the result of asymptotic
decay.

Using the (nonuniform!) convergence of p to 0 as t→∞,
let

G(x, y) = −
∫ ∞

0

p(x, y, t) dt.

By integrating the Kolmogorov forward equation, we get(
1

2
σ2 ∂

2

∂y2
− β ∂

∂y

)
G(x, y) = δ(x− y),



subject to the boundary conditions,

G(x, h) = 0,
∂

∂y
G(x, y)

∣∣∣∣
y=−ε

= 0.

It is shown in Appendices A-B and A-C that G(x, y) depend-
ing on the difference of arguments, G(x, y) = g(|x − y|),
is a reasonable approximation. Adopting this approximation,
G(x, y) becomes a formal Green function as per [13, Def.
5.59]: (

1

2
σ2 ∂

2

∂x2
+ β

∂

∂x

)
G(x, y) = δ(x− y). (13)

Following [7, Sec. X.5, p. 341], the probability that the
motion has not reached the threshold h as of epoch t is

π(x, t) =

∫ h

−ε
p(x, y, t) dy. (14)

It then follows that, starting at x, the probability density of
the threshold crossing time pT (x, t) is given by pT (x, t)dt =
π(x, t)−π(x, t+dt). Hence the expected lifetime of the motion
before it reaches h is

T (x) := E(τ−ε,x(h))

=

∫ ∞
0

t(π(x, t)− π(x, t+ dt)) (15)

= −
∫ h

−ε
G(x, y)dy. (16)

Finally, integrating both sides of Eq. (13) from y = −ε to h
and using the preceding yields the result.

Corollary 1. The solution to the differential equation for T (x)
is given by

T (x) = −2x+ e−
2βx

σ2 σ2c1 − 2βc2
2β

, (17)

where the integration constants c1, c2 are evaluated from the
boundary conditions:

c1 =
1

β
e−

2βε

σ2 , c2 =
2hβ + e−

2β(h+ε)

σ2 σ2

2β2
.

Proof. This explicit form of the solution T (x) was computed
symbolically by Mathematica.

The following corollary should be obvious.

Corollary 2. E(τ−ε,x(h)) is continuous as ε ↓ 0, ∀x ≥ 0.

Finally, setting x = 0 and ε = 0 yields

T (0) =
h

2β

(
2 +

σ2

βh

(
e−

2βh

σ2 − 1
))

. (18)

Remark 1. If we denote by L(y) the partial differential
operator of the left-hand side of the Kolmogorov forward
equation, it is observed that the partial differential operator
for T (x) is the formal adjoint L∗(x) of L(y); in other words, it

is relevant to the Kolmogorov backward equation. This is not
surprising. p(x, y, t) as the transition from a present Dirac
delta to the future distribution is a matter of the forward
equation. But T (x) anticipates a future event, the crossing
of the threshold, and endeavors to determine what warning in
the past was appropriate. Hence it is a matter of the backward
equation.

Remark 2. The proof of Th. 2 is a generalization of [4, Th. 1]
to the case where the drift β is nonvanishing. Moreover, here,
the proof is based on the explicit construction of the transition
probability p(x, y, t), with the limt→∞ p(x, y, t) convergence
different from the one of [4].

Remark 3. Eq. (18) is available in [1, Eq. 3.1.105],
but proved via moment generating methods. However, here,
Eq. (18) is derived from the general Eq. (17). The latter is of
interest for change-point detection as T (U t) tells the operator
in how much time the alarm is expected to ring.

V. FIRST HITTING TIME DISTRIBUTION

In dynamical system theory, the first hitting time refers
to the first time a dynamical process hits the boundary of
some subset of the sample space starting from a precise initial
condition x in such sample space.

Here we consider the first hitting time τ−ε,x(h) of the
boundary h starting at x ∈ [0, h]. The expected value of this
hitting time was already computed as E(τ−ε,x(h)) in Eq. (15),
from which it follows that the density of τ−ε,x(h) is ∂π/∂t.
Using (14), this yields

pT (x, t) =

∫ h

−ε

∂p(x, y, t)

∂t
dy, (19)

where p(x, y, t) is the solution to the KFE subject to mixed
Dirichlet-Neumann conditions.

VI. CONCLUSION

Classical CPD defines the “event” to be the CUSUM cross-
ing the threshold h set up consistently with an admissible false
alarm rate. This event could be sign of imminent danger [16].
The CUSUM could be monitored in real time by a system
operator (or an autonomous agent), but an observed up-trend
does not address the problem of the expected time to the event.
This is precisely the problem addressed here, formally the
dwell time of an Itô process in a compact set. The difficulty
in solving the diffusion equation of an Itô process subject to
mixed Dirichlet-Neumann boundary conditions and a Dirac
measure initial condition is the nonvanishing drift term β. Here
we have proposed an approximate solution to this problem,
based on an assumption on the Green function. An example
of its relevance in power grid frequency stability is available
in a companion paper [17].

Next to the elusiveness of the exact solution to the Kol-
mogorov equation2, several other questions questions remain

2The consensus of the Mathematica stack exchange is that such equation
cannot be solved neither symbolically nor numerically.



to be investigated. First, the direct solution of the discrete-
time case (rather than the indirect discretization of the solution
to the continuous-time case) remains open but preliminary
studies have shown that it relies on compounded convolution
of densities making its implementation nontrivial. Next, the
issues of correlated observations, and lastly the combined
identification of the abnormal density p1, need to be addressed.
Regarding this last challenge, a heuristic approach based on
sufficient statistics is proposed in [17].

APPENDIX A
EXPLICIT SOLUTION TO THE KOLMOGOROV FORWARD
EQUATION WITH DRIFT UNDER DIRICHLET-NEUMANN

BOUNDARY CONDITIONS

A. Boundary conditions

We seek a solution p(x, y, t) to the Kolmogorov Forward
Equation as a superposition of elementary solutions of the
form fk(y)gk(t). Note that the variable x is temporarily
discarded in the solution, as we temporarily disregard the
initial condition and focus on the PDE and the Dirichlet-
Neumann conditions. Injecting such elementary solution in the
PDE yields

1

2
σ2f ′′k (y)− βf ′k(y) = λkfk(y), (20a)

g′k(t) = λkgk(t), (20b)

where, as demonstrated in the proof of Th. 2, λk < 0 is a real
constant. The characteristic polynomial of the first equation is
obviously (1/2)σ2s2 − βs− λk = 0 with characteristic roots

sk,± =
β ±

√
β2 + 2λkσ2

σ2
.

Consider the case where β2 + 2λkσ
2 < 0. Set

α :=
β

σ2
< 0, ωk :=

√
−β2 − 2λkσ2

σ2
> 0.

The solutions to the first and second differential equations (20)
are of the form

fk(y) = eαy(ak cos(ωky) + bk sin(ωky)), (21a)

gk(t) = eλkt. (21b)

The Dirichlet and Neumann boundary conditions read, resp.,

fk(y = h) = 0⇔ ak cos(ωkh) + bk sin(ωkh) = 0, (22)
f ′k(y = 0) = 0⇔ bkωk + αak = 0. (23)

The Neumann condition yields

ωk = −α
(
ak
bk

)
. (24)

This together with the Dirichlet condition indicates that the
set {ωk}∞k=1 of eigenfrequencies is given as solutions to the
fixed point problem

tan(ωkh) =
ωk
α
. (25)

The solution fk(y) can therefore be rewritten as

fk(y) = eαy(ak cos(ωky) + bk sin(ωky)),

where in addition to the Neumann condition (24) we have
the option to normalize this solution. Regarding the function
gk(t), it is easily found that

λk = −σ
2ω2

k

2
.

Hence, at this stage, the solution to the KFE along with the
Dirichlet-Neumann boundary conditions is

p(·, y, t) =
∑
k

eαy(ak cos(ωky) + bk sin(ωky))eλkt. (26)

B. Initial conditions: The case of vanishing drift

We take a short interlude to examine the case α = 0,
which will clearly indicate the difficulties the drift term β
brings about. First observe that in case of vanishing drift,
the differential operator (σ2/2)∂2/∂2y is self-adjoint. The
boundary condition solution (26) reduces to

p(·, y, t) =
∑
k

ak cos(ωky)eλkt

where ωkh = (2k+1)π/2 and ak is a normalization condition
such that ‖ak cos(ωky)‖L2[0,h] = 1, that is, ak =

√
h/2. The

crucial feature that enormously simplifies the incorporation
of a x-dependent term in p(·, y, t) to satisfy the initial con-
dition is that the set {ak cos(ωky)} is orthonormal—but not
complete—in L2[0, h]. The relevance of this observation is as
follows:

Lemma 1. If a set {φk}∞k=1 is complete and orthonormal in
L2[0, h] then

∑
k φk(y)φk(x) = δ(x− y).

Lemma 2. The set
{
ak cos

(
(2k+1)π

2h x
)}∞

k=0
is orthonormal,

but not complete, in L2[0, h].

We use
∑
k a

2
k cos(ωky) cos(ωkx) as δ(x−y) and construct

the solution at initial t = 0 condition

p(x, y, 0) =
∑
k

a2
k cos(ωkx) cos(ωky)eλk0, (27)

subject to some restrictions emanating from the lack of com-
pleteness of the orthonormal set. The Dirac δ, as a functional
spanL2[0,h]{cos(ωky)} → R, would be restricted to testing
functions in the L2-closure, spanL2 , of the orthonormal set.
This entails the same restrictions on the Green function,

G(x, y) = −
∫ ∞

0

p(x, y, t)dt, (28)

which is used to compute forcing solutions to the partial
differential operator 1

2σ
2 ∂2

∂y2 via

1

2
σ2 ∂

2

∂y2
G(x, y) = δ(x− y).

More relevant, however, is the need to restrict the closure to



the Sobolev space W 2,2[0, h] of functions admitting (distribu-
tional) derivatives up to and including order two and square-
integrable along with their derivatives up to and including
order two3.

In order to extend the initial condition solution (27) to t > 0
and to allow the Dirac δ to diffuse, we add phases to the
arguments ωkx of the cosines:

p(x, y, t) =
∑
k

a2
k cos(ωkx+ ϕk(t)) cos(ωky + ϕ(t))eλkt,

with as primary conditions to maintain the initial conditions
ϕk(0) = 0, ∀k, and ϕk(t > 0) 6= 0 for at least one k. To keep
the boundary conditions holding approximately, we require
ϕk(t) � ωky. But injecting this perturbed solution in the
diffusion PDE creates additional ϕ̇k terms that should ideally
vanish. A phase factor satisfying ϕk(0) = 0, ϕk(t > 0) > 0,
along with ϕ̇k = 0 almost everywhere is typically constructed
as the Lebesgue singular distribution. We will keep those
singular phase factors as ideal solutions, regardless of how
they are implemented.

Coming back to the Green function, mandated by the proof
of Th. 2 to depend mostly on the difference of arguments,
observe the following:

p(x, y, t) =

1

2

∑
k

a2
k(cos(ωk(y − x)) + cos(ωk(y + x) + 2ϕ(t))eλkt.

The key point is to observe that the time integration (28) damps
the second component carrying the (y+x) dependency of the
Green function, while the (y − x) term remains unaffected.
This gives giving G(x, y) a stronger dependency on x − y
than on y + x.

C. Initial conditions: the case of nonvanishing drift

We now generalize the preceding subsection to the case of a
drift. We proceed from Eq. (26), where now by Eq. (23) the bk
terms are nonvanishing, and we enforce the initial condition
that will bring the x-argument in p(·, y, t). Besides bk non-
vanishing, another difficulty is that ωkh is no longer an odd
multiple of π/2, but solution to the fixed point problem (25).
Nevertheless, from the geometry of the fixed point problem,
it is easily seen that limk→∞ ωk = (2k + 1)π/2. Another
factor contributing to the departure from orthogonality of the
set {eαy(ak cos(ωky)+bk sin(ωky))}∞k=0 is the damping term
exp(αy), but this effect is mitigated if |α|h� 1.

1) Approximate Dirac delta: Instead of enforcing the
exact initial condition δ(x− y), we replace it with

δ(x− y) ≈
∞∑
k=0

(ak cos(ωkx) + bk sin(ωkx))

eα(x+y)(ak cos(ωky) + bk sin(ωky)), (29)

3W `,p(Ω) denotes the space of p-integrable functions over Ω admitting
(distributional) derivatives up to and including order `. We use the old
fashioned W `,2 rather than H2 since the latter modern notation is too easy
to be confused with Hardy spaces [13, Sec. 6.4.1].

which, as we show in Subsection A-C2, is a viable approxi-
mation under specific conditions. From there on, introduction
of Lebesgue-singular phase factors {φk} as in the preceding
subsection provides an approximate solution of p(x, y, t) to
the Kolmogorov equation:

p(x, y, t) ≈

eα(x+y)
∞∑
k=0

(ak cos(ωkx+ φk(t)) + bk sin(ωkx+ φk(t)))

(ak cos(ωky + φk(t)) + bk sin(ωky + φk(t)))

eλkt. (30)

This will be taken as final solution.
It remains to examine the extent to which the Green function

G(x, y) depends mostly on the difference of arguments. First,
observe the exp(α(x+ y)) contribution to the sum, but under
small drift, |α|2h � 1, its contribution remains minor. After
trigonometric manipulations, the coefficient of the exp(α(x+
y) exp(λkt)a

2
k is found to be

1

2
(cos(ωk(x+ y) + 2φk(t)) + cos(ωk(x− y))). (31)

Likewise, the coefficient of the exp(α(x + y) exp(λkt)b
2
k is

found to be
1

2
(− cos(ωk(x+ y) + 2φk(t)) + cos(ωk(x− y))). (32)

Finally, the coefficient of the exp(α(x+ y)) exp(λkt)akbk is
found to be

(sin(ωk(x+ y) + 2φk(t)) + sin(ωk(x− y))). (33)

The time-integration of all such terms damps the dependency
on the sum x + y, while the dependency on the difference
x−y remains unaffected, giving the Green function a stronger
dependency on the difference of argument, x− y. Because of
the sin(ωk(x − y)) term in (33), G(x, y) doesn’t yet solely
depend on |x− y|. To further show that it depends mostly on
the absolute value, |x−y|, we need to invoke the argument that
under small drift, ak is dominant relative to bk and hence (31)
is dominant relative to (32) and (33).

2) Validity of the δ(x − y) approximation: To show
that (29) has tractable approximation error, remember that the
left-hand side δx(y) is a density on y parameterized by x;
moreover, the right-hand side, denote it RHSx(y), is also a y-
density parameterized by x, where the ak, bk’s are normalized
so that

∫ h
0

RHSx(y)dy = 1. (This is possible since the bound-
ary conditions only specify the ak/bk ratio in view of (24).)
Since the initial distribution δx(y) is “transported” to RHSx(y)
by the Itô process, it is natural to validate the approximation
by the 1-Wasserstein distance W1(δx(y),RHSx(y)), which
precisely endeavors to find the minimum Kantorovich cost [19]
of transporting δx(y) to RHSx(y). Through the Kantorovich-
Rubinstein duality, the 1-Wasserstein distance can be com-
puted as follows:

Theorem 3 ([12]). Let Qδx and QRHSx be the quantiles of



δx and RHSx, resp. Then

W1(δx,RHSx) =

∫ 1

0

|Qδx(y)−QRHSx(y)|dy.

Obviously, Qδx(y) = x. From there on, the following can
be shown:

Corollary 3 ([8]).

W1(δx,RHSx) = x− Ey∼RFHx(y)y.

Computationally,

W1(δx,RHSx) = x−
∑
k

Γk(ak cos(ωkx) + bk sin(ωk),

(34a)
where

Γk =

∫ h

0

yeαy(ak cos(ωky) + bk sin(ωky))dy.

(34b)

Using this criterion, it is verified that for the examples
of [17], the approximation is valid.

3) Exact Dirac delta: The set

{eαy(ak cos(ωky) + bk sin(ωky))}∞k=0

is not orthonormal, but it can be made L2-orthonormal by
the Gram-Schmidt procedure. From there on, the procedure
to construct a Green function depending more strongly on the
difference rather than the sum of arguments is essentially the
same as that of the β = 0 case.

More specifically, to simplify notation, let

f(y,Φ) = Col{eαy(ak cos(ωky+φk)+bk sin(ωky+φk))}∞k=0

where, to avoid clutter, we have omitted the dependency of
Φ and φk on t. Because of the drift related α term, the basis
f need not be orthonormal, but this can be corrected via a
lower triangular operator A = {ai,j : 1 ≤ j < i ≤ ∞} that
makes f = Af orthonormal. As such, f(y,Φ(0))T f(x,Φ(0) =
δ(x − y). Lastly, define Λ(t) = diag{exp(λkt)}∞k=1 and the
solution is

p(x, y, t) = fT (y,Φ(t))ATΛ(t)Af(x,Φ(t)), (35)

= fT (y,Φ(t))Λ(t)f(x,Φ(t)). (36)

APPENDIX B
SOLUTION OF NO-DRIFT KOLMOGOROV FORWARD

EQUATION BY METHOD OF IMAGES

In case of no drift (β = 0), which from (7) is a reasonable
approximation iff |µ0−µ1|/σ << 1, we show that the solution
to the Kolmogorov forward equation is given by an infinite
linear combination of the fundamental diffusion

f(y) := (1/
√

2πt) exp(−(y − (x+ βt))2/2t)

of δ(y − x) shifted infinitely many times to enforce the
boundary conditions in a successive approximation scheme [7,

Sec. X.5]. Start by observing that

F1(y) := f(y) + f(−y)

satisfies the diffusion equation for β = 0 and the Neumann
condition. Observe that it fails to satisfy the diffusion equation
whenever β 6= 0. This is the reason why the method of
images [7] is restricted to β = 0. With this restriction, we
proceed by noting that F1(y) fails to satisfy the Dirichlet
condition, but this can be corrected as

F2(y) := (f(y) + f(−y))− (f(2h− y) + f(−2h+ y)),

which satisfies the Dirichlet but not the Neumann condition,
resulting in a sequential correction taking the form

F2k = F2k−1 + (−1)k(f(y − 2kh) + f(−y + 2kh)),

F2k+1 = F2k + (−1)k(f(−y − 2kh) + f(y + 2kh)),
(37)

starting with F1 and F2 as already explicitly defined. To
demonstrate that F2k satisfies the Dirichlet condition, observe
that F2 does and the recursive step consists in observing
that F2(k+1)(y) − F2k(y) vanishes for y = h. Regarding the
Neumann condition, take F1 to be the initial step and the
recursive part of the proof is based on the observation that
F2k+1(y)−F2(k−1)(y) is invariant under the substitution y 7→
−y, which implies that d

dy

(
F2k+1(y)− F2(k−1)(y)

)∣∣∣
y=0

, that

is, the Neumann condition. Then we define the transition
density as

p(x, y, t) := lim
m→∞

Fm(y).

To prove uniform convergence in the compact set [−ε, h], ob-
serve that at every step, the correction term Fm(y)−Fm−1(y)
decays exponentially as m→∞ uniformly over the compact
set [0, h]. Therefore, {Fm}∞m=1 is a Cauchy sequence and
hence converges, but not uniformly.

Note that f(y) depends only on the difference x−y and that
f(−y) depends on x+ y. Hence, Fm(y) and its limit depend
on both x− y and x+ y.
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