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Abstract— Phasor Measurement Units (PMUs) provide sig-
nificant value towards ensuring autonomous cognition in the
power grid by enabling the abnormal events to be fault-
detected and so as to trigger proactive measures to avoid
large catastrophic system states. For instance, a change in the
baseline distribution of PMU signals can indicate imminent
voltage collapse, false data injection, and other security threats.
Fractal geometry inspired analysis of PMU signals (via the
Hurst exponent) reveals that an imminent voltage collapse is
preceded by a significant increase in the Hurst exponent. We
propose a novel change point detection strategy that optimally
anticipates the fractal geometry change point from the PMU
signals subject to a pre-specified false alarm rate.

I. INTRODUCTION AND NOVEL CONTRIBUTIONS

Fundamental for endowing the smart grid with au-
tonomous cognitive intelligence is the capability to monitor
and analyze in real-time the mathematical characteristics of
the PMU signals and identify the change points through
rigorous statistical techniques. Towards this end, a pioneering
effort [13] demonstrated that PMU time series exhibits
long-range dependence (memory) and fractal characteristics.
From a mathematical perspective, this long-range memory
and fractal behavior is investigated through Hurst exponent
quantification. A Hurst exponent of 0.5 indicates a short-
range memory behavior (implying independence between
consecutive events). In contrast, the Hurst exponents ob-
served in the PMU analysis were significantly greater than
0.5 and demonstrated a long-range memory behavior [13].

Moreover, an extension of this work has shown that the
increasing trend in the Hurst exponent of the frequency time
series is a good indicator of the proximity of the power
system to blackout and thus can be used as an early warning
signal [14]. These prior research efforts [13][14] not only
offer novel ways for power systems operators to detect a
blackout given the PMU frequency time series data, but
also enable new mathematical and algorithmic strategies to
monitor and predict the chance of an abnormal event with
catastrophic implications in real time.

We make the following contributions: First, we propose
a novel and robust change point detection strategy capable
of detecting the chance of an imminent blackout ahead of
time such that proactive measures can be taken. Second,
we provide a rigorous mathematical framework to quantify
the confidence on the change point detection algorithm
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by analyzing the false alarm rate. Third, we evaluate the
proposed mathematical framework and algorithmic strategy
on real PMU datasets which demonstrate that we can predict
a power grid blackout at least 12 minutes in advance. Of note,
the computational complexity of our algorithmic strategy is
O(NlogN), where is N is the dataset length, and thus can be
computed in real time.

II. CHANGE POINT DETECTION

A. Fundamentals

Consider an i.i.d. sequence {Xk}nk=1 with “normal”
regime probability density p0 from k = 1 up to and including
k = λ − 1, and with “abnormal” probability density p1 as
of k = λ up to and including n. Change Point Detection
(CPD) endeavors to find the change point λ in the fastest
possible way subject to some acceptable false alarm rate.
There is a vast literature on the subject (see [3] and references
cited therein), which can be partitioned into, on the one
hand, the Shiryaev (Bayesian) procedure [15] and, on the
other hand, Page’s CUmulative SUM (CUSUM) (minimax)
procedure [9]. In the Shiryaev procedure, λ is assumed to
have an a priori distribution and the goal is to minimize the
expected detection delay subject to a false alarm rate. In the
CUSUM procedure, λ is deterministic, but unknown, and the
goal is to minimize the worst case detection delay subject to
an acceptable false alarm rate. Here we follow the CUSUM,
consistently with the early work on application of CPD to
security problems [4][5][12].

Given a change point λ, let Pλ denote the probability
measure defined as p0 on {Xk}λ−1

k=1 and p1 on {Xk}nk=λ. Let
Eλ be the corresponding mathematical expectation. Let Ep0,1
be the mathematical expectation relative to the probability
density p0,1 on {Xk}nk=1. Note that E∞ = Ep0 .

Rejecting the Null Hypothesis H0 that there has been no
changes from λ up to and including n could be based on
positive value of the log-likelihood ratio statistic. However,
in this security context, the statistic is computed for the worst
position of the change point and for the same conservative-
ness reason it is reset to 0 in case it takes negative values1:

Un =

{
max

0≤λ≤n
Znλ

}
+

, Znλ =

n∑
k=λ

log
p1(xk)

p0(xk)
, (1)

1Here, the exposition departs from the traditional one to avoid the
heuristic argument justifying the reset of the recursive algorithm (2) to 0 in
case the Un+1 statistic takes negative values [3, Chap. 2, Sec. 2.2]. Another
reason for this departure is to prepare the ground for simultaneous detection
and identification of p1.
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where {z}+ = max{0, z}. To put Un in recursive form,
observe the following:

Un+1 =

{
max

0≤λ≤n+1

(
Znλ + log

p1(xn+1)

p0(xn+1)

)}
+

=

{
max

{
Un + log

p1(xn+1)

p0(xn+1)
, log

p1(xn+1)

p0(xn+1)

}}
+

.

Since Un is forced to be nonnegative, the first term in the
argument of max{·, ·} is greater than or equal to the second.
Hence, the recursion takes the form

Un+1 = max

{
0, Un + log

p1(xn+1)

p0(xn+1)

}
. (2)

The decision that there has been a change is taken at the first
time τ the CUSUM statistic Un goes above a threshold h:

τ(h) = min{n : Un ≥ h}. (3)

With this threshold, assuming that the algorithm is
restarted at a false alarm and that the distribution remains
p0, one would expect the next false alarm at time TFA =
Ep0(τ(h)), so that the False Alarm Rate, confronted with its
upper admissible bound, is

FAR = 1/Ep0(τ(h)) ≤ FAR. (4)

The threshold h̄ is selected by solving the above inequality.

B. Unknown “abnormal” density p1

While it is fair to assume that the “normal” regime density
p0 is known, the same cannot be said for the “abnormal”
regime density p1. One approach is to choose a family {fθ}
of distributions parameterized by θ and adjust θ consistently
with some empirical knowledge on p1. But this already raises
the first question on how to objectively choose the family
and, given a family, how to estimate θ.

1) Weibull distribution: The Weibull distribution with
known shape parameter β,

fθ(x) = β
η

(
x
η

)β−1

e−( xη )
β

, (5)

is a Koopman-Darmois distribution with sufficient statistic
T (x) = xβ and natural parameter θ = −1/ηβ , where η is
the scale parameter. It is known to be the probability density
that takes the least amount of data to be correctly identified
[7]. So its utilization is wholly justified in this problem where
it is imperative to correctly identify p1 in the shortest amount
of time.

2) Simultaneous detection and estimation: Here,
instead of (1), we proceed from the double maximization [3,
Chap. 2, Sec. 4.3.1],

Un =

{
max

0≤λ≤n
max
θ
Znλ

}
+

, (6)

where, in the definition of Znλ , p1 is replaced by fθ. Again,
in this security context, especially in case of stealthy at-
tack [11][16], another justification for maxθ is to assume
that the density fθ is the worst possible given the data.

Whatever the motivation, the detection rule remains Un ≥ h,
but with Un now defined by Eq. (6) instead of Eq. (1).
The problem is that this approach does not easily lend itself
to a recursive formulation. A remedy is to smooth over
arg maxθ log fθ(xk+1)

p0(xk+1) by combining the last one at time
k = n with the previous estimate of θ:

Ũn+1 = max

{
0, Ũn + log

fθ̃n+1(xn+1)

p0(xn+1)

}
, Ũ0 = 0,

θ̃n+1 = (1− κ)θ̃n + κ arg max
θ

log
fθ(xk+1)

p0(xk+1)
,

(7)

with 0 < κ < 1 is some gain.

III. DISTRIBUTION OF THE FREQUENCY SCALING
EXPONENT UNDER NORMAL CONDITIONS

In this section, we study the statistical characteristics of
the frequency (f ) time series collected in EPFL campus grid
in 2016 [1]. The data was measured at normal conditions
using PMUs installed to monitor the EPFL campus grid. The
sampling rate of the PMUs is 50 samples/second.

Detrended Fluctuation Analysis (DFA) is one of the most
reliable and robust methods to calculate the scaling exponent.
We calculate the scaling exponent using the function ‘dfa’
from package ‘nonlinearTseries’ in R software. We applied
the DFA method on 467 frequency time series (100,000
samples each) chosen from several months in 2016. The
histogram of the frequency scaling exponents (Fig. 1(a)) is
centered approximately around 1.48 with scaling exponents
between 1.36 and 1.65.

Our main goal is identifying the best distribution to fit the
histogram of the frequency scaling exponents.

A. Weibull Distribution

Using the maximum likelihood estimation, we fit the
histogram of the scaling exponents to Weibull distribution.
The maximum likelihood estimation is implemented in the
function ‘fitdistr’ from package ‘MASS’. The Weibull dis-
tribution with the best fit has shape (β) of 26.44 and scale
(η) of 1.52. The probability density function (PDF) and the
cumulative distribution function (CDF) are shown in green
color in Fig. 1(a) and Fig. 1(b), respectively. It is clear from
Fig. 1(a) that the Weibull distribution is not a good fit for the
histogram of scaling exponents. To test the goodness of fit,
we use the Kolmogorov-Smirnov test (KS test) with the null
hypothesis (H0) that the data follows a Weibull distribution.
The KS test is implemented in the function ‘ks.test’ from
package ‘stats’. Applying the KS test on the histogram of
scaling exponent shows that we can reject the null hypothesis
with p-value of 3.54× 10−3 < 0.05.

B. Normal Distribution

Similarly, the function ‘fitdistr’ uses the maximum likeli-
hood to calculate the parameters of the Normal distribution.
The parameters of the best Normal distribution fitting for the
EPFL PMU data are

µ0 = 1.488, σ0 = 0.055 (EPFL).
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Fig. 1: (a) Probability density function (PDF) of the frequency scaling exponent (Empirical (black), Normal (red), Stable
(blue), and Weibull (green)) (b) Cumulative distribution function (CDF) of the frequency scaling exponent (Empirical (black),
Normal (red), Stable(blue), and Weibull (green)) (c) Log-log plot of the complementary cumulative distribution function
(CCDF) of the frequency scaling exponent ((Empirical (black), Normal (red), Stable(blue), and Weibull (green))

The PDF and CDF of the Normal distribution are shown in
red color in Fig. 1(a) and Fig. 1(b), respectively. We use the
KS test to identify the goodness of the Normal distribution
fitting. The KS test compares the empirical CDF of the
data with CDF generated from the best distribution fit to
check if the data samples come from the Normal distribution.
Applying the KS test on the frequency scaling exponent, the
result shows that we cannot reject the null hypothesis with
p-value equal to 0.1469 > 0.05. So, we accept that the data
follows a Normal distribution with µ = 1.488 and σ = 0.055.

C. Stable Distribution

The family of stable distributions are defined by four pa-
rameters: stability (α), skewness (β), scale (γ), and location
(δ) parameters. The stability parameter (α) determines the
existence of mean and variance of the stable distribution. The
mean is undefined for α ≤ 1 and the variance is undefined
for α < 2. There is no closed formula for the PDF of stable
distribution except for Gaussian distribution (α = 2), Cauchy
distribution (α = 1 and β = 0), and Lévy distribution
(α = 0.5 and β = 1). The stable distributions are typically
defined by their characteristic function as shown in Eq. (8),

φ(t) = exp (iδt− |γt|α[1 + iβ sgn(t)ω(t, α)]) . (8)

The function ω(t, α) is equal to tan(πα2 ) for α 6= 1
and equal to 2

π log |t| for α = 1. We fit the histogram of
scaling exponents to a stable distribution using Koutrouvelis
regression method [6]. This method is implemented using the
function ‘Estim’ from package ‘StableEstim’ in R software.
The parameters of the best stable distribution are α = 2, β =
1, γ = 0.039, and δ = 1.488. Given these parameters,
ω(t, α) becomes equals to zero and Eq. (8) reduces to φ(t) =
ei1.488t−1.52×10−3t2 which is the same as the characteristic
function of Normal distribution with mean µ = 1.488 and
standard deviation σ = (2× 1.52× 10−3)0.5 = 0.055. That
means the best fit for the histogram of frequency scaling
exponents is also a Normal distribution.

IV. CHANGE POINT DETECTION OF FREQUENCY PMU
FOR BLACKOUT DETECTION

In this section, we will utilize the derivations from Sec. II
and empirical results from Sec. III to implement the change
point detection on the PMU frequency data obtained before
the Indian blackout which occurred on the 30th and 31st July
2012 [2]. The frequency time series data collected before
the 2012 Indian blackout has a length of 167,600 samples
(sampled at 50 samples/second) and spans approximately 56
minutes as shown in Fig. 2(a).

The Hurst exponent of the frequency data has been cal-
culated using the DFA procedure with a moving window
of length 110,000 samples (37 minutes) and shift of 900
samples (18 seconds). Fig. 2(b) shows the Hurst exponent
time series from the PMU frequency data.

A. Empirical estimate for pre- and post-distributions

Although a separate distribution parameter fitting could
be done particularly for the normal operating regime of the
Indian blackout data, this dataset contains only around 50
mins of information prior to the blackout. In comparison,
the EPFL campus has put in place a medium-voltage grid
installed with PMUs running for extended periods of time
under normal operations with reliable and accurate data
collection protocols [10]. The parameters obtained in Sec. III
were considered to be the “normal” regime (p0) parameters
µ0 = 1.488 and σ0 = 0.055, and the “abnormal” regime
(p1) was empirically defined as a normal distribution but
with a shift in mean keeping same variance: µ1 = 1.7 and
σ1 = 0.055.

Fig. 2(c) and (d) show the change point algorithm Eq. (2)
simulation results with the log-likelihood ratio values and the
change point CUSUM statistic U(k), respectively, at each
time step based on the estimated distributions p0 and p1.

B. Threshold for False Alarm Rate

We first consider the simplified case where b = 0 in
Model (12) of Appendix. Relative to this model, the average
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Fig. 2: Change point detection on the 2012 Indian blackout

time T (x) for the 1-D random walk starting at x and
reflecting at −ε to cross the absorption barrier at h is
easily given by the solution of the differential equation of
Theorem 1:

T (x) =
1

σ2
(h2 − x2) +

2ε

σ2
(h− x). (9)

Continuity relative to ε is trivial. Therefore, we can set ε = 0
(initial condition and reflection barrier coincide at x = 0).

In the genuine model (2) of the process, let p0 =
N (µ0, σ0) and p1 = N (µ1, σ1), consistently with the scaling
exponent identification. It then follows that, up to a good
approximation, Eq. (2) becomes

Un+1 − Un ≈ µ1 − µ0

σ2
α

(
Xn+1 −

µ0 + µ1

2

)
, (10)

where the approximation stems from equating σ0 and σ1

to σα. Practically, we could take σ2
α = (σ2

0 + σ2
1)/2. The

above equation has to be confronted with the continuous-
time model (12) where E(Bt+∆t−Bt)2 = ∆t, where 1/∆t
here is the PMU sampling rate. Identifying the discrete-time
and continuous-time processes hence yields

σ2 =
2(µ1 − µ0)2

σ2
α∆t

.

Finally, setting ε = 0 in Eq. (9), recalling that FAR =
1/T (x = 0) = σ2/h2, one gets the estimate

h =

√
2(µ1 − µ0)

σα
√

∆t

1√
FAR

. (11)

Given the empirical results for the parameters µ0, µ1 and
σα = σ0 = σ1, the sampling rate ∆t = 0.033, and a 10%
false alarm rate, FAR = 0.1, we obtained the threshold value
from Eq. (11) as h = 101.9. The horizontal dotted line in Fig.
2(d) shows the threshold value h and it crosses the change
point statistic U(k) at t = 44.17 min (11.83 mins before the
blackout).

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Hurst (x)

0
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2
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4
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p 0, p
1, f

Pre- and Post-event Distributions

p0,EPFL ~ N(1.4880, 0.0550)
p1,emp  ~ N(1.700, 0.0550)

( /X) e-1  envelope

Fig. 3: Normal distributions p0(x) and p1,emp(x), family of
Weibull distributions fη(x) with β = 15, and envelope of
Weibull distributions

C. Unknown post-distribution

For this case, the post distribution p1 is assumed to be un-
known and is assigned the Weibull distribution with natural
parameter θ = −1/ηβ as suggested in Eq. (5). For a fixed
shape parameter β, the distribution is only parameterized by
the scaling parameter η as fη(x), where the scaling parameter
is related to the mean as E(x) = ηΓ(1 + 1/β).

With this data, we use the recursive form of the change
point algorithm for the simultaneous detection and estimation
as defined in (7). For the Weibull distribution, the arg maxη
term in (7) results in

arg max
η

log
fη(X)

p0(X)
= arg max

η
fη(X).

Taking the derivative with respect to η and equating to
zero results in a simple expression ηmax = x, where x is
the numerical value recorded. As such the η is re-adjusted
every single step, which creates some oscillation in the
statistic, which can be somewhat smoothed over by the
second equation of (7).

Fig. 3 shows the plot of the probability distributions for
the empirical estimates for p0 and p1,emp, which is used in
Sec. IV-A, and the unknown distribution taking the form
fη . Note that by setting ηmax = X , the variable rather
than the numerical value, and plugging this in fη(X) yields
(β/X) e−1, the envelope of the Weibull distributions shown
in Fig. 3.

One can choose the shape parameter β so that the distri-
butions have higher peak values. However, setting β too high
can lead to higher false alarm rates. Additionally, the range
of values for the scaling parameter η, related to the mean, is
limited to a minimum value of 1.65. By setting the minimum
value for η, this ensures that fη would not completely overlap
with the known pre-event distribution p0.

Fig. 4 shows the simulation results for simultaneous de-
tection and estimation algorithm with β = 15 for the shaping
parameter. For the same threshold value h = 101.9, the
algorithm resulted in 3 false alarms before it correctly raised
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Fig. 4: Change point detection for simultaneous detection
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0.055, and β = 15

the alarm at t = 43.56 min (12.44 mins before the blackout).
Similarly, simulations were run for higher values of β and
these resulted for an even higher numbers of false alarms.

Finally, simulations were run with an estimated p0 by us-
ing the first 40 minutes of the Indian blackout data which are
considered operating under normal conditions, and we have
obtained the following normal distribution p′0 parameters

µ′0 = 1.5722, σ′0 = 0.0198 (Indian pre-blackout).

For this case, the threshold value at these p′0 parameters is
h = 178.76, the algorithm resulted in no false alarms and
it raised the alarm at t = 44.53 min (11.47 mins before the
blackout) as shown in Fig. 5.

It is worth noting that for this implementation of the
CPD, the algorithm relies in a more accurate model for the
“normal” regime distribution p0.

V. CONCLUSION

In this paper, a CUSUM change point detection approach
to the prediction of imminent voltage collapse and possibly
stealthy security attacks to the power grid was explored.
Given empirical data, distribution fitting of the frequency
scaling (Hurst) exponent under normal (pre-event) operating
conditions was shown to follow a normal distribution. Two
recursive formulations were derived are based on an empiri-
cal p1, the other as simultaneous detection and identification
of p1. Simulation results for the 2012 Indian blackout data
has shown that the change point detection algorithm is
capable of detecting imminent voltage collapse as early as
12 minutes before the blackout event.

For future work, the threshold value h based on the
complete convective-diffusion PDE model will be solved
analytically to obtain an optimal threshold value.
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APPENDIX

Here, we solve an essentially stochastic problem via a par-
tial differential equation (PDE) solution, instead of solving
the partial differential equation via Monte Carlo procedure,
as is commonly done with the Dirichlet problem.

The idea is to model Un as an Itô diffusion process over
some domain D ⊂ R:

dU t = b(U t)dt+ σ(U t)dBt, U0 = x ∈ D, (12)

where Bt is a Brownian motion and b(U) < 0 and σ(U) are
assumed to satisfy Conditions 5.14 and 5.15 of [8, Th. 5.5].
In this specific escape problem, the absorbing barrier is at
h > 0, and both the initial condition U0 and the reflecting
barrier are at 0.

In the general escape problem, the reflecting barrier is on
the boundary of the domain (hence not in the domain) and
the initial condition is in the domain. To circumvent this
difficulty, we temporarily consider the domain D = (−ε, h),
where the reflecting barrier is at −ε < 0, and then show
continuity of the escape time as ε ↓ 0.

Even though in this specific problem U0 = 0, we need to
take U0 = x ∈ D, not for the sake of generality but because
the solution involves a PDE in the initial condition x.

Theorem 1: Consider the process (12) running over the
domain (−ε, h), with h > 0 the absorbing barrier and −ε the
reflecting barrier. Define τ−ε,x(h) such that Uτ−ε,x(h) = h.
Then E(τ−ε,x(h)) = T (x), where T (x) is given by the mixed



Neumann-Dirichlet boundary value problem(
1

2
σ2 ∂

2

∂x2
− ∂

∂x
b(x)

)
T (x) = −1,

T (h) = 0,
∂T (x)

∂x

∣∣∣∣
x=−ε

= 0.

Proof: Let p(x, y, t) be the probability density of y =
U t given the initial condition U0 = x. As is well known, p
is solution to the Kolmogorov Fokker-Planck (KFP) forward
equation:(

1

2
σ2 ∂

2

∂y2
− ∂

∂y
b(y)

)
p(x, y, t) =

∂p

∂t
,

∂p(x, y, t)

∂y

∣∣∣∣
y=−ε

= 0, p(x, h, t) = 0,∀t ≥ 0,

p(x, y, 0) = δ(x− y).

Next, we show that p(x, y, t) decays exponentially fast
as t → ∞. Use the method of separation of variables:
p(x, y, t) = f(y)g(t). Plug the latter in the KFP equation
and we get

1

2
σ2f ′′(y)− b(y)f ′(y) = cf(y), g′(t) = cg(t),

where c is a constant, an eigenvalue of the KFP PDE.
Multiply both sides of the equation for f by f(y)dy, integrate
by parts, set b(y) = βy with β < 0 to simplify, and use the
boundary conditions to get

−1

2
σ2‖f ′‖2D +

β

2
‖f‖2D = c‖f‖2D,

where ‖ · ‖D denotes the L2-norm over D. It follows that
c < 0. The equation for g hence yields the exponential decay.

Using the exponential convergence of p to 0 as t → ∞,
we define

G(x, y) =
1

2

∫ ∞
0

p(x, y, t)dt.

With this definition, is not hard to show that G is the Green
function of the KFP equation, that is,(

1

2
σ2 ∂

2

∂y2
− b(y)

∂

∂y

)
G(x, y) = δ(x− y),

subject to the boundary conditions.
Finally, the probability that the motion hasn’t reached the

threshold h as of time t is

π(x, t) =

∫ h

−ε
p(x, y, t)dy.

Hence the expected lifetime of the motion before it reaches
h is

E(τ−ε,x(h)) =

∫ ∞
0

t(π(x, t)− π(x, t+ dt))dt

=

∫ h

−ε
G(x, y)dy = T (x).

Corollary 1: E(τ−ε,x(h)) is continuous as ε ↓ 0, ∀x ≥ 0.
Proof: The solution to the differential equation for T (x)

is given by

T (x) = − 1

B
+
e−z

2

2B

(
2Bc2 +

√
πBσErfi(z)

)
,

T ′(x) = c1 −
e−z

2

σ2
2Bxc2 − 2

√
Bxc1D(z),

where B = −β > 0, z =
√
Bx/σ, and D(·) denotes the

Dawson integral. Setting the boubndary conditions T (h) =
0, T ′(−ε) = 0 yields a system of linear equations for c1, c2
with a solution continuous for ε.

REFERENCES

[1] Pmu data from epfl campus. http://nanotera-stg2.epfl.
ch/. [Online; accessed 3-March-2018].

[2] Report on the Grid Disturbance on 30th July 2012 and Grid Distur-
bance on 31st July 2012. Technical report, Central Agency Regulatory
Commision, 2012.
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