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Abstract— We consider the Lindblad-Kossakowski quantum
master equation describing the dynamics of an open quantum
systems in the form originally proposed by Davies and Spohn.
This equation contains dissipative corrections, accounting for
the interaction with the environment, whose expression strongly
depends on the adopted Markov approximation. In the case
where a control is present, the rigorous derivation of the
Markov approximation in the standard case, the weak coupling
limit, shows that the control appears not only in the coherent
part of the equation but also in the dissipative correction.
This complicates the analysis of the dynamics but also offers
the opportunity of indirectly affecting the interaction with the
environment through the control. In this paper we study this
scenario for a finite dimensional quantum system interacting
with a (Bosonic) bath of harmonic oscillators. We prove several
control theoretic properties of this system and discuss how the
control can be used to effectively shape the influence of the
environment and obtain desired features of the dynamics.

I. INTRODUCTION

When dealing with the analysis of the dynamics of open
quantum systems, the Markovian Quantum Master Equation
(OME) for the system density p is one of the main tools:

NZ-1
1

p=[—iH, p| + MZZI dio (VieVi! = 5 {Vivin} ). )
Here N is the dimension of the system, d; , are the entries
of a positive semidefinite (N2 — 1) x (N? — 1) matrix,
and the operators V; are the so-called Lindblad-Kossakowski
operators [3, p. 122]. H is the closed system Hamiltonian.
When the control u is involved, it is usually meant to
modify the nominal Hamiltonian H in (1). However, simply
replacing H with H(u) in (1) and leaving the dissipative
operator V; unchanged is not consistent with the rigorous
derivation of the QME. In fact, the dissipative operators V
depend on the nominal Hamiltonian and therefore on the
control. As pointed out in [5], without further assumptions,
this dependence can be very significant. This fact, which
is well known in the physics literature, seems to have been
somehow overlooked in the quantum control literature, where
often the dissipative correction term is simply added as an
additional constant term to the Schrédinger part of the QME,
p = [—iH(u), p]. This fact indicates that new approaches
should be followed in developing a control theory for open
quantum systems.
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There are several versions of the QME (1) in the literature
(see, e.g., [11] for a review and [1] and the references
therein for more recent work). Of particular interest to us
is the work of Davies and Davies and Spohn [7], [8], [9],
which allows, under appropriate restrictions, for slowly time-
varying nominal Hamiltonians.

If the control enters only the coherent Hamiltonian part of
the dynamics, then its ‘indirect’ effect on the dissipative part
has to be explicitly taken into account by examining more
closely the various terms in the QME. This is the approach
we follow in this paper where we present a control theoretic
analysis for a system immersed in a Bosonic bath, i.e., a bath
modeled with an infinite number of harmonic oscillators. Our
analysis extends and proves new control theoretic properties
as compared to what was presented in [5] where the model
for a quantum bit in a Bosonic bath, the Jaynes-Cummings
model, was discussed.

II. MASTER EQUATION IN DAVIES FORM

A. Preliminaries

We consider a system S and a bath B in a total state
described by a density operator pr on the Hilbert space Hg®
Hp. The QME is a differential equation for the state of the
system S, which is pg := Trp(pr). We assume that the
states of the system S and bath B are initially uncorrelated
so that pr(0) = pg(0) ® pp for an equilibrium state of the
bath pp, i.e., [Hp, pp] = 0. The dynamics of the total system
S + B is determined by an Hamiltonian operator Hror(t),
given by the sum of a term Hg(t) ® 1, which describes
the dynamics of the system alone, the term 1 ® Hp, which
describes the dynamics of the bath alone, and finally the term
eH sB, which describes the interaction between system and
bath. We have therefore

Hror(t):=Hs(t)®1+1® Hg + ¢Hgp. 2)

We remark that both Hgp and Hp are assumed to be time
independent, while Hg(t) = Hg(u(t)) is time dependent
because it contains the control action. Here, following [9],
we shall assume the Lamb shift to be zero. Without loss of
generality, we write the interaction Hamiltonian as Hgp =
> ; Vsj @ Vpj, for operators Vg, Vg, .

The dynamics of pr follows the Liouville-Schrodinger

equation
pr = [~iHror(t), pr] = [—iHs(u) ® 1, pr] 3)
+ [—i11 ® Hp, pr] + €[—iHgsp, pr].

We use the short notations adg(u), adp, and adgp for
ad,ng(t)@)l, ad_i1gHg, and ad_;p ., respectively, so that



(3) can be compactly written as

pr = (ads(u(t)) + adp)(pr) + cadsp(pr). (4
B. The Quantum Master Equation in Davies’ form

In order to obtain a differential equation for pg we could
simply take the partial trace with respect to the bath B
on the left hand side and right hand side of (4). However,
although the left hand side will give pg, the right hand
side will give an expression which does not depend only
on pg. In order for that to happen, one has to apply
appropriate (Markovian) approximations. Davies considered
the evolution on a long time range so that non-Markovian
effects are negligible. Accordingly, the time dependence of
the nominal Hamiltonian Hg and therefore of the control is
assumed to be slow (adiabatic limit).

Assuming that the integral converges, consider the opera-
tor L defined as

EOlps] = Tra ([ eesnvior
0

®e™ BT qdg et (U & BT g d s plpg @ PB]dT)

®)

for every ps. The operation inside the integral is the double
commutator of ps @ pp with —iHgp and —iHgp(t,r)
defined as

—iHgp(t,r) :=

eng(u(t))'r ® 6iHBr(72-HSB)€7iHS(u(t))T ® efiHBr

(6)

ie.,

efads(u(t))r ® efadBradSBeads(u(t))r ® eadBradSB [PS ® PB]

= [_iﬁsB(taT)7 [_iHSB7pS & PB]]
(7

By replacing Hgp with > ; Vs, ®Vp, we find the following
expression of L, which is useful in practical calculations:

~ +OO
L(t)[ps] = — %: /0 (8)

{Tr (pBVBj (T)VBk) (Vsj(tﬂ”)v_gkps — VupsVs; (¢, r)) +
Tr (pBVBkVBj(r)) (pSVSkVSj (t,7) — Vs;(t, r)pSVSkﬂ dr.

Here we have also used the notation Vg;(t,r) =
eds (O [Vg;], and Vi, (r) := e*57 V).

Remark 1: Davies and Spohn’s analysis [9] assumes that
there exists a A > 0 such that, for any j and &,

/ Tr(ppVe;(r)Vex)|1 + [ dr < oo, 9)
0

which implies that each term in the sum (8) is finite, in
addition to the sum being finite.

Consider the vector space iu(ng) of ng X ng Hermitian
matrices. Every operator adg on iu(ng) has the zero eigen-
value and corresponding eigenspace. The other eigenvalues
come in imaginary conjugate pairs to which there correspond
two-dimensional invariant eigenspaces in iu(ns) (cf. [10]).
For any eigenvalue —i);, we denote by II; the orthogonal

projection onto its eigenspace in gl(ns, € ). For any k,
—iA; = 1A, is the corresponding imaginary conjugate
eigenvalue and II; is the associated orthogonal projection
on gl(ng, @ ). We also consider the projections onto the
eigenspaces in iu(ng) corresponding to zero eigenvalue. We
write the decomposition of adg as an operator on gl(n, € )
which leaves iu(ng) invariant

2
g

ads (u(t)) = 3 —iX; (OIL (1),

Jj=1

(10)

where some terms in the sum could be omitted since the
corresponding eigenvalue could be zero. If we assume that
the control u = u(t) (and therefore Hg(t)) is an analytic
function of ¢, it can be shown that both IT; and A; are analytic
functions of ¢t. We assume this to be the case in the following
(cf. [13] p. 120). We also define

K=K()=—- iﬂﬂt)ﬂ}(t% (11)
and )
LA(t) ==Y T () L(O)TL;(t). (12)

Theorem 1 ([9]): Assume that the interaction operator
Hgp and the initial equilibrium state of the bath pp are
such that the Lamb shift Trz(Hgpl ® pp) is zero. Assume
the convergence properties of Remark 1 and consider the
solution p¢ of the linear differential equation

Then, for a fixed to, limc o supg<,<¢, |ps(t) — p°(t)|| = 0.

The previous theorem holds in the special case where Hg,
and therefore the control, is constant without the assumption
of zero Lamb shift [8].

The dissipative corrections K and L%in (11) and (12) sig-
nificantly depend on the nominal Hamiltonian and therefore
the control. Moreover this dependence is quite intricate. It
enters in the eigen-structure of adg as well as in the exponent
of certain operators as in (5), a situation quite different from
typical mathematical models considered in control theory.
The question of whether this control can be used in some way
to positively influence the dynamics of open quantum system
is therefore quite challenging. We shall see however in the
next section that some desirable properties can be obtained
for the master equation with an appropriate choice of the
control. The invariance property discussed in the following
subsection is useful to restrict the dimension of the state
space where the control problem is set.

13)

C. An invariance property of the OQME (13)

The dynamics of a closed system subject to a control that
is specified by the nominal Hamiltonian Hg := Hg(u) is
characterized by the dynamical Lie algebra L, which is the
Lie algebra generated by the set of skew-Hermitian operators,
F = {—iHg(u)|u € U}, where U is the space of all



possible values of the control. Consider now ipg(0), where
ps(0) is the initial condition of the system S. The orbit,
defined as the set of states (in fact a manifold) that can be
reached by the system, is a subset of the space
V= @adﬁspan{ips(())}.

k=0

(14)

For closed systems, the existence of such an invariant
subspace can be effectively used to reduce the space state
where the analysis is performed. Given the dependence of
the dissipative correction in (13) on the nominal Hamiltonian
Hg, the same holds true for the Lindblad-Kossakowski
equation (13), as shown in the following proposition, the
proof of which is relegated to the full paper:

Proposition 1: The vector space V in (14) is invariant
under the dynamics (13). B

The goal of the next sections and the main goal of the
paper is to show, on a system of physical interest, that the
dependence of the control of the dissipative correction can
be used to obtain desirable properties of the dynamics.

ITII. OPEN QUANTUM SYSTEM IN BOSONIC BATH

A Bosonic bath is a model of the environment consisting
of an infinite number of harmonic oscillators at various char-
acteristic frequencies. We assume that the finite dimensional
quantum system S is coupled to the Bosonic bath through
the Jaynes-Cummings Hamiltonian (see, e.g., [3])

Hop =3 g(w;) (S- @b (w;) + 8 @b(wy)),  (15)

where wy, is the angular frequency of the k-th Bosonic mode
(harmonic oscillator) and eg(wy) its coupling to the system.
As usual, b'(wy) and b(wy) are creation and annihilation
operators for the k-th mode satisfying

)7 bT(wl)] = 5kl;

[b(wr), b(wn)] = [b7 (wr), b7 (wi)] = 0; [b(wr
(16)

and S, S_ the rising and lowering-type operators for the
system .S. The Hamiltonian for the free bath evolution, H g,
is given by

1
Hp = zk:wk (¥ (bleon) + 5 ), (17)
while we leave free the Hamiltonian of the system Hg =
Hg(u(t)) which contains the control. Writing the interaction
Hamiltonian (15) as
(18)

Hgp = S_ ® B_ +S+ ®B+,
), the

where B_ 1=} g(w;)bf (w;) and By : > 9(w;)b(w;
Lamb shift Trg(Hspl ® pp) is given by

TTB(HSB]-@pB) = S_TT(B_pB)+S+TT(B+pB). (19)

We assume that the equilibrium state of the bath is given
by the vacuum state pg = |0)(0|, that is, no oscillator is
initially excited. With this choice, we have Tr(ppb(w;)) =
Tr(ppb'(w;)) = 0 for all j, and therefore Tr(B_pp) =
Tr(Bypp) = 0, so that the Lamb-shift is zero. Define

blwj,t) = e Btp(w;) = eHrth(w;)e B (cf. (5)).
From (16) and (17), it follows that
[Hp,b(w;)] = [Hp, b (w))] = w;b (w;).
(20)

—w;b(w;),
This gives
b(w;, t) = e “ith(w;), bT(wj,t) = ei“’jth(wj). 21
With a view to the application in (8), we notice the equations
(pblwn)blews,t)) = Tr(ppblewr, b(w;)) =0,
(pB (@b (w5,1)) = Tr((pb! (n, O (7)) =0,
Tr(pBbe wi)b(wj, t ) Tr (pBbT wk,t)b(wﬂ) =0,
( (@) =

uut(sk
)

Tr(psb

Tr

Tr pBb Wi, T
Tr(pBb(wk)b (wj,t)) = ity

In our case, in the expression (8), there are only two operators
Vpj, that is, B_ and By and we use the notation B_(t) :=
eflstp =it B (1) := Bt B ¢~HB! 5o that, using
1),

zHBth 71HBt

Zg Zg w; )b (wy)e™",

(22)

g Wi —iw,t
E J .

—1HBt

+(t) = Zg "JJ lHBtb

The autocorrelation functions, Tr(ppVp;(r)Vsi) and
Tr(psVeirVs;(r)), appearing in (8) in our case are

hix(r) = (0|B£Bx(r)[0), i 4(r) == (0|Bx(r)B+|0),

(23)
with all the possible combinations of + and — where the first
(second) sign in hi?i refers to the first (second) sign on the

right hand side. Using formulas (22) and (23) we obtain

h1++:h1 :h1+:0 (24)
Zg szT
ha :h’i,_ =h®> , =0,

=nll_.

=D P (wye ™7
j

Now recall that we are required to satisfy the condition (9)
of Remar 1, which, with our notation, is equivalent to

o0
/ A2 ()1 + 7PN < oo, (25)
0 :
This can be obtained by an appropriate choice of the ‘density’
g(w;). Following common practice, we consider the limit to
a continuum of harmonic oscillators,

—+oo
.= / co(w)dw,

(26)



where o(w) is the density of modes with angular frequency

w. The sums appearing in (24) become integrals so that

—+oo

MJﬂ:/ g (w)o(w)e™ dw =h3_.  @7)
—0o0

Condition (25) says that the following integral must converge
+oo
/ hi_y_(r)|1+r|>‘dr:
0

“+o0 “+o0 )
/ / gQ(w),Q(w)e’wde + r|)‘dr.
0 —00

We remark that it follows from (27) that hY _(r) is,
modulo a constant coefficient depending on the definition,
the inverse Fourier transform of the function g?(w)o(w). The
condition of finiteness for the integral in (28) may be, for
example, satisfied if g%(w)o(w) is equal to ,;ziipwz in which
case h} _(r) (and h% _(r)) is proportional to e *". With

these notations, the operator L in (8) reads as

(28)

~ +(X>
EOlps) == [ (b () (psS:5- (t.7) = S-(t.1)ps5.)

+hL (1) (S (t.7)S-ps — S_psSi(t,1))) dr,
(29)

where

Si(t,r) = e HsMrg, gits®r (30)

This is the form of the operator L which appears in (12).
The remaining features of equation (13) depend solely on the
form of the nominal Hamiltonian and therefore the control.

IV. OPEN SYSTEM IN BOSONIC BATH CONTROL

Consider the model (13), which we have specialized to
an open system in a Bosonic bath with Jaynes-Commings
type interaction in the previous section. The control appears,
directly or indirectly, in several forms. The expression (11)
also implies that the derivative of the control plays a role
in the dynamics. In order to put the equation in a simpler
form, we consider some special cases of the interaction Hgp
and the nominal Hamiltonian Hg, i.e., the control used, and
analyze how the equation (13) changes. In particular we
make the following simplifying assumption:

Assumption 1 The operators S_ and S, are eigenvectors
of adg(u(t)), for every u = u(t), corresponding to opposite
eigenvalues, that is,

adg(S-) = —i\(u)S_, adg(Sy) = iA(u)Sy. (31)

Example 1 To illustrate a physical case where this assump-
tion is verified, consider /N qubits in a Bosonic bath. In this
case, the interaction operators Sy and S_ can be taken as
weighted sums

N N
S+:Zwkllj, S,:Zw}gfl; (32)
k=1 k=1

where [ ,j '~ is the tensor product of N, 2x 2, identities except
in the k position which is occupied by the lowering operator

0 0). ..
o-=11 in the case — and the raising operator o =

gg (1) in the case +. If the nominal Hamiltonian is taken
a

N
Hs :=u(t) > I, (33)
k=1

where I, is the tensor product of NN identities except in
1 0

the position k& which is occupied by o, := 0 —1

) , then

Assumption 1 is verified.
Alternatively, we can consider the nominal Hamiltonian in
(33) and the interaction with the environment given by

Sty =woy®o4 - ®oy, S_=wo_Qo_---®o_. (34)

In the general situation where Assumption 1 is satisfied,
the operators in (30) become

Sy (t,r) =erWrg, S_(t,r) =e PWrs_ (35)

and, with these expressions, the operator Lin (29) takes the
form

Llps] = _/0 Wy (r)e” T (pgS, S — 5 psSy)

+hL _(r)e*T(S,.S_ps — S_ps Sy )dr.
(36)
By defining
au) == / hi}_(r)e_ik(")rdr, (37)
0
we can write L[pg] as
Lips] = — SiS_ —S_psS
[ps] (a(ps S+ psS+) (38)

+a*(S4S_ps — S—psSi)).
A. N =1, one qubit

Let us consider the situation of the example above de-
scribed in the special case of N = 1. This is the common
Jaynes-Cummings model for a quantum bit. We take the
nominal Hamiltonian Hg := wuo, so that the conditions of
Assumption 1 above are satisfied. Moreover, under these as-
sumptions, K in (11) is equal to zero because the projections
are independent of time and the effect of changing the control
is only to change the eigenvalues of adg. With the help of
(38) and (12), we calculate Lf(pg) in this case by using
ps = %1+zaz+aa+ +a*o_. Denoting by Ilg, I, II; and
II_ the projections onto span{1}, span{o.}, span{o},
span{o_}, respectively, we have

Mo LTlo[ps] = 0, TLLIL[ps] = —(a + a*)z0,
I, LI, [ps] = —aa*oy, M_LII_[ps] = —a*ao_.
(39)
From these, it follows that
Lf[ps] = —z(a+ a")o, —aa*o, —a*ao_. (40)
Moreover, with Hg = uo,, we have
éads[ps] = é[—iuaz,ps] = 226%0_5_ — 213;* o_. (41)



Therefore, Equation (13) becomes

i[ ]=—(a+a")zo, + %—a* ao
qr sl = z 2 +

(—2iu ) .
+ s —ajao_.
€

In general, o depends on both the interaction with the
Bosonic bath, h}rﬁ(r), and the eigenvalue of adg, which
contains the control u. In particular, it is the Laplace trans-
form of hY _(r) calculated at iA = iX(u). In our case,
A(u) = 2u. If we assume the profile example described after
formula (27), i.e., h} _(r) = e7P", we have for example

(42)

oo .
I p— 2iu
o = A e Ple Z2urd7" = m (43)
In this case, Equation (42) becomes

%

%[ﬂs] = p? + 4u? 20z
p . 1 1

e T e T ) )0 @

p . 1 1 N
+ _p72+4u2 —12u i p72+4u2 ao_.

This differential equation can be used to drive the state pg in
the desired way, although, as we had said before, the control
appears in a highly nonlinear way.

Consider for instance the purity of the state pg defined as

P := P(t) := Tr(p%(t)) = % +22° + 2[al?, (45)

which takes values between % for a maximally mixed state
and 1 for a pure state. Then taking the derivative of (45) and
using (44) we obtain

=—————P
P> +4uP(t)
which describes how the purity is influenced by the control.

As expected, the purity decreases with time but this decrease
can be mitigated with high amplitude control.

P (40)

B. N =2, two qubits

Consider now the situation described in Example 1 with
the number of qubits N equal to 2 and consider the interac-
tion Hamiltonian given by S; and S_ in (34) with w =1
and we slightly extend the form of the nominal Hamiltonian
(33) by allowing potentially independent controls u; and wus
on the two qubits, i.e.,

Hs =u0.,®1+ul®o,. (47)

The eigenspaces of —iHg are span{l ® 1,0, ® 0,,1 ®
0,0, ® 1}, with eigenvalue zero, span{oc; ® 1,0, ® 0.}
with eigenvalue —2iu;, span{1®o,0,®oc }, with eigen-
value equal to —2iug, span{o®oc} with eigenvalue equal
to —2i(u1 + ug), span{o_ ® o_} with eigenvalue equal to
2i(uy +uz), span{o_®1,0_ ®o,} with eigenvalue 2iuy,
span{l®o_,0, ® o_} with eigenvalue 2ius, span{o; ®
o_} with eigenvalue —2i(u; — u3), and span{o_ ® o}
with eigenvalue 2i(u; — uz).

The eigenspaces do not depend on the value of the control
and therefore they do not depend on time. Therefore, in this
case also, the projections II; appearing in (12) are constant
and K in (11) is zero. We denote by II;; the projection
onto 0; ® oy, for j,k = 0,z,+,—, with 09 = 1, so that
Lt = Zﬁk Hj,kflﬂjyk. in (12). From (38), denoting by M
the superoperator M (pg) := psS+S- — S_psSy, we can
write

Lips] = —a(u)M(ps) — o (w)M'(pg),  (48)
so that
Li[ps] = —a(u) 3" T MTL, 4 (ps)
ok (49)
—a"(u) Y 11 M Tk (ps)-
7,k
Define pg as
ps = ij,kaj X ok (50)

Jik

We obtain the following for IT; ; MTI; 1 (ps) to be used in
(49):

Iy, o M1y 0(ps) = 0,11, , MII, . (ps) = 0,
1
HO,ZMHO,z(pS) = 55170,2(1 X 02)7

1
Hz,OMHz,O(pS) = 7:52,0(0'2 & 1)7

2
1
I oMILo(ps) = 52-0(0- @ 1),
1
o, Mo, (ps) = 570 ~(1®o-),
II_ _MII_ _(ps) =2__(0_Q0o_),
I MIL . (ps) = 5= (0- @ 02),
L -MIL _(ps) = = (0. ® o),

and

Il M1l , = 0,1f j or kK is equal to +. (51)

Using these in (49), we obtain

Lilps] = — 5 (a+ a")z0-(18 02) — 3 (a+a )zs 000 © 1)
- %(ax_pcr_ Q1l+a"zyoor ®1)
- %(aazo,_l Qo_+a'ro+1R04)
—(az—_0-Qo_+a'ry 104 Qoy)

1 *
— i(ax,,zU, Qo+ a Ty .04 R02)

— %(axz,,az ®Qo_+a"T, 10, R04).
(52)

To calculate 6%adg(pg), we use the formula (47) for



the nominal Hamiltonian Hg and the description of the
eigenstructure of adg that follows that formula. We obtain

1 Tk —21uy
gads[ps] = Z =2 ads(O’j & O’k) = T$+,00’+ ®1

Jik
Ziul 27/&2
T4 04 @0 — —5 2 1 ® oy
€ €
2iug 2i(U1 + UQ)
T LeA0: @0y — T a T4 404 B0y
21(u1 + us 21uq
+ %x,),a, Qo_+—52_00-® 1
€ €
21uq U2
—+ ET.’Efyza'f [029] (o + 672.%0_’71 X o_
Q’iUQ 22('&1 — UQ)
ETIZ7_0-Z ® o_ — 6721'4_7_0'4_ ® o_
21 Uy — Uz
+ %J?_’J,_U_ ® O'+.
€

Replacing this and (52) in (13), we obtain the desired
controlled differential equation for pg.

Following Prop. 1, let us assume that the initial state is an
invariant subspace for adg, which Prop. 1 tells us will remain
invariant during the evolution. Assume for instance that the
initial state is the maximally entangled Bell state [14],

1

o = 0
°~ 210
>\ (53)

1 1
:§(J+®J++U,®U,)+Z(1®1+UZ®UZ).

Since span{l®1,0,R®0,,0+®0c,,0_®o_} is invariant,
equation (13) simplifies to

fo0=0, Z,,=0 (54)
2
i = {a(u) +Z(“12+“2)} oo,
€
. 2(ug + ug)
Tyt = {—CYT(U) T A

where the last equation is redundant since . = xT,’,, and
all other derivatives and components are zero. By adapting
what done in (43) we get

P 2i(uy + uz)
p% + 4(ug + ug)?’
By writing x_ _ as x_ _ := z + 1y, and writing v :=
—2(uq + u2), the last equation of (54) is written as

. D + 1 n 1
i=—-———r+tv|5—s5+ =
p? +v? Ptz e)?

. P 1
=YV 55—+ 5|

Y=Y P2t e
If we use the as the measure of entanglement the concurrence
(see, e.g., [14]), then we have that the amount of entangle-
ment of the state pg is given by C(pg) := 2+v/x? + y2,
which decays exponentially according to the real part of the
eigenvalues of the system in (56)-(57) if v is constant, that
is, according to —

(55)

(56)

(57)

p
p2 +’U2 .

V. CONCLUDING REMARKS

When using the Quantum Master Equation (QME) as
a model for the control of open quantum systems, the
control appears not only in the nominal Hamiltonian but
also, indirectly, in the dissipative correction. On one hand,
it complicates the analysis, but on the other hand it offers
opportunities for control design. As for closed systems,
Davies’ QME preserves the invariance of certain subspaces.

As an illustration of the control theoretic features of the
QME in Davies form, we have analyzed the ‘controlled’
QME for a Jaynes-Cummings model of one and two qubits in
interaction with a Bosonic bath. When the control goals are
purity and entanglement, it appears that the only prescription
to improve these features is to use high amplitude control.
Moreover, in general, there are features of the dynamics
that lead to a decay of the state towards the perfectly
mixed state and are essentially independent of the control
used and cannot be eliminated. Nevertheless, as one of the
major results of modeling the effect of the control on the
dissipative part of the Lindblad equation, the rate of decay
can be mitigated by control. This is quite an improvement
over the simple coherent control that has no effect on
decoherence [12]. Furthermore, the models can be used for a
direct controllability analysis when one tries to identify the
available states and/or a way to drive between two states.
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