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Abstract The Supervisory Control and Data Acquisition (SCADA) State Estimator
(SE) and the Phasor Measurement Units (PMU’s) network constitute the communi-
cation infrastructures meant to provide the “smart grid” dispatcher with wide-area
bus phase angles and other data, from which the operational status of the grid can be
assessed— if the measurements are not compromised somewhere along their way
to the SCADA dispatch and/or the PMU concentrator. Unfortunately, this is pre-
cisely what happens under the so-called “false data injection.” In this Chapter, we
develop a fast test for measurement data integrity, based on the Gaussian Markov
Random Field (GMRF) assumption on the PMU data. This assumption, fundamen-
tal to this Chapter, is supported by (i) the great many fluctuating generations and
variable loads justifying the Gaussian distribution assumption and, as more specif-
ically addressed in this Chapter, (ii) the DC power flow equations from which an
approximate 1-neighbor property of the bus phase angles is derived. The latter topo-
logical property refers to the conditional mutual information between two random
variables being non-vanishing if and only if the nodes at which they are observed
are linked in the edge set of the corresponding graph. Under the Gaussian distribu-
tion assumption, the conditional mutual information is easily computable from the
conditional covariance. Then it is shown that Conditional Covariance Test (CCT)
together with the walk-summability and the local separation property of grid graph
allows the reconstruction of the grid graph from uncompromised measurement data.
On the other hand, with corrupted data, CCT reconstructs only a proper subset of
the edge set of the grid graph, hence triggering the alarm.

Department of Electrical Engineering,University of Southern California, Los Angeles, CA 90089,
e-mail: {hsedghi,jonckhee}@usc.edu

1



2 Hanie Sedghi and Edmond Jonckheere

1 Introduction

1.1 The smart grid and its possibly malicious events

We are concerned with fast and reliable detection of threats in the power grid. This
extra capability of the grid to detect a malicious event, even when it is triggered by
a sophisticated antagonistic player, is among the attributes that makes it smart.
Traditionally, the term grid is used to refer to an electricity system that supports
the following four operations: electricity generation, electricity transmission, elec-
tricity distribution, and voltage stability control. In the early days, generation was
co-located with distribution in what we would now call a micro-grid and the con-
nections among the micro-grids were meant to transmit energy in case of such con-
tingencies as shift in the supply/demand balance. After deregulation, however, a
large-scale generation-transmission-distribution network became the substitute for
the traditional generation-distribution co-location. The new network allows con-
sumers to purchase electricity at the cheapest price across the country, as opposed
to the former concept in which consumers were forced to purchase electricity from
local utility companies. Other considerations calling for an overhaul of the elec-
tricity system include the reduction of carbon emission, an objective that cannot be
achieved without a significant contribution from the electricity sector. This calls for
a bigger share of the renewable energy resources in the generation mix and a sup-
ply/demand that must be managed more effectively. Management and control of the
grid made increasingly complex by its response to electricity market conditions are,
next to its ability to detect contingencies, the most fundamental attributes that make
it smart.
Automated large scale management requires considerable exchange of information,
so that the smart grid has become a two-commodity flow—electricity and infor-
mation. By utilizing modern information technologies, the smart grid is capable of
delivering power in a more efficient way and responding to wider ranging condi-
tions.
Massive amount of measurements and their transmission across the grid by modern
information technology, however, make the grid prone to attacks. Next to malicious
events, the potential for fault events with cascading impact on the overall stabil-
ity of the power grid remains. Today’s power systems are not adequately equipped
with fault diagnosis mechanisms against various attacks and non-malicious events
such as lines sagging in trees, as it had happened right before the 2003 blackout.
Thus, there is an urgent need for quick assessment of fault events so that corrective
feedback control actions can be taken promptly to avoid cascading events. Fast and
accurate detection of possibly malicious events is of paramount importance not only
for preventing faults that may lead to blackouts, but also for routine monitoring and
control tasks of the smart grid, including state estimation and optimal power flow.
Fault localization in the nation’s power grid networks is known to be challenging,
due to the massive scale and inherent complexity.
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1.2 State Estimator (SE) versus Phasor Measurement Units
(PMU’s)

Traditionally, the State Estimator (SE) processes the measurement data from the
power meters to reconstruct the state (bus voltages and phase angles). More re-
cently, however, synchronous Phasor Measurement Units (PMU’s) with GPS time
stamps have been deployed across the grid and are considered the most reliable
sensing information to monitor the state of operation of the grid and, if necessary, to
respond to contingencies. Even though PMU’s are more reliable than SE’s, for eco-
nomical reasons, some parts of the grid will still use state estimators in a foreseeable
future. Therefore, any attack—either tampering with the power measurement to the
SE or compromising the PMU data, as shown in Figure 6—can harm the power grid.

1.3 Outline of method

In a nutshell, the conceptual foundation of our method is reconstruction of the graph-
ical model of the phase data.
We use Conditional Covariance test for this goal. CCT algorithm can be summarized
as follows: Given i, j ∈ V , given a separator S, that is, a subset of V \{i, j}, find the
correlation between Xi and X j given the separator. If for all reasonably chosen sep-
arators this conditional covariance remains above a certain threshold, then (i, j) is
declared an edge. Under some conditions, the resulting (V ,E ) is the Markov graph
of X.
Next, it is shown that, under normal grid operation, and because of the grid graph
structure, the Markov graph of phasors should match the power grid graph; other-
wise, a discrepancy triggers the alarm.
It turns out that our method can detect the most recently contrived attack on the
smart grid, which specifically fools the State Estimator, and against which no
counter-measures have been suggested thus far [24]. The attack is deemed “sophis-
ticated” in the sense that it assumes knowledge of bus-branch model of the grid.

1.4 Related work and exclusivity of approach

The line fault detection method of Reference [8] is also based on a GMRF model of
the PMU data. Besides the fault versus attack detection discrepancy in motivation,
the difference between [8] and the present work is two-fold. First, probably the most
important contribution of this Chapter is to show that the one-neighbor property
is just an approximation, and issue that was not addressed in [8]. Secondly, the
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fault detection method of [8] utilizes PMU’s, whereas here we utilize both PMU’s
and State Estimator, as shown in Fig. 6. For economical reasons, future grids will
still contain state estimators in some parts, therefore, [8] and any other monitoring
system that does not have a method to check for data integrity can be deluded by
such an attack as false data injection.

2 Gaussian Markov Random Field (GMRF): General concept

2.1 Graphical Models

Probabilistic graphical models provide diagrammatic representation of probability
distributions. This way they set up a simple way to visualize the structure of a proba-
bilistic model and provide insight into properties of the model including conditional
independence properties [4].
A graph consists of nodes V connected by links E . In a probabilistic graphical
model, each nodes represents a random variable or a group of random variables and
the links express the probabilistic dependence relationship between random vari-
ables. The graph represents how joint probability distribution can be decomposed in
factors that depend only on a subset of variables [4].
There are two major classes of graphical models: namely, Bayesian Networks, also
known as directed graphical models were links are directed, and Markov Random
Fields, also known as undirected graphical models where links are not directed [4].

2.2 Gaussian Markov Random Field (GMRF)

A probability distribution is said to have global Markov property with respect to a
graph if, for any disjoint subsets of nodes I, J, S such that S separates I and J on the
graph, the distribution satisfies XI ⊥ XJ |XS, i.e., XI is independent of XJ conditioned
on XS. This is represented in Figure 1.
A distribution is pairwise Markov with respect to a given graph if, for any two

nodes i and j in the graph such that there is no direct link in the graph between i and
j, then Xi is independent of X j given the states of all of the remaining nodes, i.e.,
Xi ⊥ X j|XV \{i, j}.
A set of random variables is said to have local Markov property corresponding to a
graph [13] if any variable Xi is conditionally independent of all other variables X−i
given its neighbors XN(i), where −i := { j ∈ V : j 6= i} and N(i) := { j ∈ V : (i, j) ∈
E }. Local Markov property can be seen in Figure 2.
Given an undirected graph G = (V ,E ), a set of random variables X = (Xv)v∈V form
a Markov Random Field with respect to G if they have the global Markov property.
It should be noted that local Markov property and pairwise Markov property are
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Fig. 1 Global Markov property:
XI ⊥ XJ |XS

Fig. 2 Local Markov property:
E[Xi|XN(i)] = E[Xi|X−i]

equivalent and they are a special case of global Markov property. For a strictly pos-
itive probability distribution, the properties are equivalent and it can be shown that
the probability distribution can be factorized with respect to the graph [13].
One instance of this positivity condition happens in case of jointly Gaussian distri-
butions.
A Gaussian Markov Random Field (GMRF) is a family of jointly Gaussian distribu-
tions that factor in accordance with a given graph. Given a graph G = (V ,E ), with
V = {1, ..., p}, consider a vector of Gaussian random variables X= [X1,X2, ...,Xp]

T ,
where each node i ∈ V is associated with a scalar Gaussian random variable Xi. A
Gaussian Markov Random Field (GMRF) on G has a probability density function
(pdf) that may be parametrized as

fX (x) ∝ exp[−1
2

xT Jx+hT x], (1)
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where J is a positive-definite symmetric matrix whose sparsity pattern corresponds
to that of the graph G . More precisely,

J(i, j) = 0⇐⇒ (i, j) /∈ E . (2)

The matrix J = Σ−1 is known as the potential or information matrix, the non-zero
entries J(i, j) as the edge potentials, and the vector h as the vertex potential vec-
tor [2].
In general, the graph G = (V ,E ) is called the Markov graph (graphical model)
underlying the joint probability distribution fX (x), where the node set V repre-
sents each random variable Xi, if the edge set E is defined in order to satisfy local
Markov property. For a Markov Random Field, local Markov property states that
Xi|X−i = Xi|XN(i), where X−i denotes all variables except for Xi and XN(i) denotes
all random variables associated with the neighbors of i.
Defining

ri j ,
Σ(i, j|V \{i, j})√

Σ(i, i|V \{i, j})Σ( j, j|V \{i, j})
, (3)

as the partial correlation coefficient between variables Xi and X j for i 6= j measuring
their conditional covariance given all other variables. The joint distribution of the
GMRF X follows N(µ,(I−R)−1), with Σ = (I−R)−1 is the covariance matrix and
R , [ri j] is the matrix consisting of partial correlation coefficients off the diagonal
and zeros on the diagonal entries [22] , i.e.,

ri j =−
J(i, j)√

J(i, i)J( j, j)
. (4)

Therefore,
Xi|X−i ∼ N(µi +∑

j 6=i
ri j(X j−µ j),1), (5)

where the distribution is normalized to highlight the partial correlations ri j.
Setting X ∼N(µ,J−1), the pairwise Markov property of GMRF implies that (i, j) /∈
E ⇔ ri j = 0.

3 Bus phase angles as Gaussian Markov Random Field (GMRF)

This section is the “hub” of this whole Chapter. Specifically in this section, we ex-
amine the extent to which the bus phase angles of the power grid satisfy the condi-
tions for them to qualify as a GMRF. We discuss the approximation in neighboring
property between bus phase angles.
Further, in Section 4.4, we explain Conditional Covariance Test [2] as the method
we have chosen for finding out the Markov graph of bus phase angles. Next, we
explain why CCT method best describes this approximation and why this approxi-
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mation is in fact true for a grid graph.
Finally, in Section 5, we argue a discrepancy between the output of CCT with grid
graph structure means that the system is under stealthy deception attack.

3.1 AC Power Flow: review

The AC power flow states that real power and the reactive power flowing from bus
i to bus j are, respectively,

Pi j = Gi jV 2
i −Gi jViVj cos(θi−θ j)+bi jViVj sin(θi−θ j), (6)

Qi j = bi jV 2
i −bi jViVj cos(θi−θ j)−Gi jViVj sin(θi−θ j), (7)

where Vi and θi are the voltage magnitude and phase angle, resp., at bus #i and Gi j
and bi j are the conductance and susceptance, resp., of line i j. From [3], we obtain
the following approximation of the AC fluctuating power flow:

P̃i j = (bi jV iV j cosθ i j)(θ̃i− θ̃i), (8)

Q̃i j = (2bi jV i−bi jV j cosθ i j)Ṽi− (bi jV i cosθ i j)Ṽj, (9)

where bar means steady-state value, tilde means fluctuation around the steady state
value, and θ i j = θ i− θ j. These fluctuating values due to renewables and variable
loads justify the utilization of probabilistic methods in power grid problems.
Now assuming that for the steady-state values of voltages we have V m =V k ' 1p.u.
(per unit), and the fluctuations in angles are about the same such that cosθkm = 1,
we have

P̃i j = bi j(θ̃i− θ̃ j), (10)

and
Q̃i j = bi j(Ṽi−Ṽj). (11)

3.2 Gaussian distribution assumption: Transmission versus
distribution network

The power flow equations can be written, conceptually, as z = h(x), where z =
(PT ,QT )T is the vector of (active and reactive) powers injected at the various buses
and x = (θ T ,V T )T is the state, that is, the vector of voltage phase angles and voltage
magnitudes at the buses.
Whether the Gaussian distribution assumption on θ is justified depends on two con-
siderations:

1. The nature of the injected power, which could be deterministic or stochastic.
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2. The linearized approximation of z = h(x), the DC power flow equations.

Regarding the first item, in the high-voltage transmission grid, the aggregate
property of the demand justifies the Gaussian distribution assumption. On the other
hand, the loads in the low-voltage power distribution network do not correspond
to aggregate loads but single consumers. Hence the Gaussian distribution assump-
tion cannot be justified on the ground of the demand. The Gaussian distribution as-
sumption can, however, be justified by the aggregation of such renewables as wind
turbines and solar panels, the power output of which is inherently random. It is sug-
gested in [18] that as few as 5 wind turbines would suffice to satisfy the Central
Limit Theorem, meaning that the power generation would behave like a Gaussian
random variable.

We note that the capability of detecting false data is also interesting in the dis-
tribution grid, where the high number of inexpensive sensors deployed in the grid
could be hardly managed via secure communication channels1. For our method—
which relies on the Gaussian distribution assumption—to be applicable to the distri-
bution network, it is hence imperative to invoke the aggregation of the renewables.
In the general setting where renewables need not be present, our work more realis-
tically applies to the transmission grid, where aggregate demand is present.

Regarding the second item, if aggregate power at buses follows Gaussian distri-
bution, by linearity of DC power flow we can reach the same conclusion for bus
phase angles.

3.3 DC Power Flow: Active power versus phase angle

We now apply the preceding to bus phase angles. We would like to show that bus
phase angles form a GMRF and then discuss the Markov graph associated with it.
The DC power flow model [1] is often used for analysis of power systems in normal
steady-state operations. When the system is stable, the phase angle differences are
small. In addition, DC power flow assumes that lines are highly inductive. Therefore
sin(θi−θ j)∼ θi−θ j. Thus, the power flow on the transmission line connecting bus
i to bus j is given by

Pi j = bi j(Xi−X j), (12)

where Xi and X j denote the phasor angles at bus i and j, respectively, and bi j denotes
the inverse of the line inductive reactance. The power injected at bus i equals the
algebraic sum of the powers flowing away from bus i:

Pi = ∑
j 6=i

Pi j = ∑
j 6=i

bi j(Xi−X j). (13)

In the above formulation, the summation holds since bi j = 0 is implied whenever
bus i and j are not connected. Thus, it follows that the phasor angle at bus i could

1 This was brought to our attention by an anonymous referee.
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be represented as

Xi = ∑
j 6=i

ci jX j +
1

∑ j 6=i bi j
Pi, (14)

where ci j =
bi j

∑i 6= j bi j
.

Because of load uncertainty in the transmission network, the injected power can be
modeled as a random variable [15] and since injected power models the superposi-
tion of many independent factors (e.g. loads), it can be modeled as a Gaussian ran-
dom variable, as already argued in Section 3.2. Thus, the linear relationship in (12)
implies that the difference of phasor angles across a bus could be approximated by
a Gaussian random variable truncated within [0,2π). Considering the fixed phasor
at the slack bus, it is assumed that under steady-state, phasor angle measurements
can be considered as Gaussian variables [8].
The next step is to find the correct neighboring relationship between the Xi’s.

3.4 Local Markov property: Neighboring relationship

Here we investigate the extent to which the θ ’s are in a 1-neighbor relationship,
by which we mean the local Markov property, E (Xi|X−i) = E

(
Xi|XN(i)

)
. We look

at two idealized cases: an infinite chain-structured bus system and a 2-dimensional
lattice-structured bus system.

In Section 3.4.1 dealing with the idealized chain bus, we consider (13) along with
independently injected powers Pi’s and demonstrate a two-neighbor relationship be-
tween the Xi’s, i.e., the Xi’s are related to their first and second degree neighbors in
the grid graph; precisely, E(Xi|X−i)=E(Xi|XN(i)∪XN(N(i))\{i}). This implies that the
J(i, j) matrix entry in Eq. (1) is nonvanishing if and only if i and j are 1-neighbors
or 2-neighbors in the grid graph; in other words, J(i, j) = 0, ∀dhopt(i, j)≥ 3, where
dhop(·, ·) denotes the hop metric defined as the distance on the graph when the link
weights are normalized to 1. Furthermore, using the Toeplitz structure of the co-
efficient matrix of the system of equations (13) and Fourier transform techniques,
Section 3.4.1 shows that J(i, j′)< J(i, j), for 2 = dhop(i, j′)> dhop(i, j) = 1, that is,
the J matrix entry in Eq. (1) for second-neighbor is smaller than the J matrix entry
for the first-neighbor. It is shown in Section 3.4.1 that this approximation falls under
the generic fact of the tapering off of Fourier coefficients.
In Section 3.4.2, a similar result is demonstrated to hold for the idealized 2-
dimensional lattice-structured grid.
Thus, we can approximate the neighboring relationship to be that of immediate
neighbors in grid graph,

E[Xi|X−i]' E[Xi|XN(i)]. (15)

Therefore, we have an approximate local Markov property. It is conjectured that
such an approximation holds whenever the grid has enough symmetry to allow for
Toeplitz and related Fourier transform techniques.



10 Hanie Sedghi and Edmond Jonckheere

Fig. 3 Infinite Line Network

chch 0 1 2-1-2 ......

P1P0P-1
... ...

3.4.1 Independent Power Injection to an Infinite Chain

Consider a doubly infinite homogeneous chain-structured power network with
bi,i+1 = 1 as shown in Figure 3.

The DC power flow equations, P = BX , in this specific case take the format



...
P−1
P0
P1
...

=



. . . . . .

. . . 2 −1
−1 2 −1

−1 2
. . .

. . . . . .





...
X−1
X0
X1
...

 . (16)

Because of the symmetry of the problem, B is a doubly-infinite Toeplitz matrix, also
referred to as Laurent operator. By “Toeplitz matrix,” we mean a matrix whose (i, j)
entry depends only on the difference of indexes, i− j, equivalently, a matrix with
constant entries on the diagonal, constant entries on the super-diagonals, and con-
stant entries on the sub-diagonals is a Toeplitz matrix; as can be seen from Eq. (16).

Besides the usefulness of chains as testbeds for networks with shift invariant
properties, here, the most compelling justification is that the doubly infinite chain
structure secures ∑

+∞

k=−∞
Pk = 0, as easily seen from the cancellation of the sum of

the column elements of B, but subject to some convergence issues, which are now
straightened out.

To remain within the Hilbert space setup, we restrict X ∈ `2(−∞,+∞). Next, it
can be seen that the B-operator is bounded. Indeed, taking the Fourier transform of
P and X ,

P̂(e jα) =
+∞

∑
k=−∞

Pke jkα , X̂(e jα) =
+∞

∑
k=−∞

Xke jkα , (17)

we get
P̂(e jα) = (2− e jα − e− jα)X̂(e jα). (18)

From the above, we notice that B is a multiplication operator in the Fourier domain:
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P̂(e jα) = B̂(e jα)X̂(e jα), B̂(e jα) := 2(1− cosα), (19)

where B̂ is referred to as the symbol of the operator. Clearly, the multiplication
operator B̂ : L2[0,2π)→ L2[0,2π) is bounded and since the Fourier transform is an
Hilbert space isometry the operator B : `2(−∞,+∞)→ `2(−∞,+∞) is bounded as
well. This secures P ∈ `2(−∞,+∞) and hence gives sense to ∑

+∞

k=−∞
Pk = 0.

In order to determine the neighboring structure of a chain-generated random
phase angle vector X, we assign a normal distribution to P. This results in X having
a Gaussian distribution:

fX (P)∼ e−
1
2 PT Σ

−1
d P = e−

1
2 XT BT Σ

−1
d BX , (20)

where the covariance Σd is a trace class operator, a condition necessary to secure∫
`2(−∞,+∞) e−

1
2 PT Σ

−1
d P

Π
+∞

k=−∞
d pk < ∞ along with the Gaussian property of the pro-

jection of the infinite dimensional distribution on a finite dimensional space [19,
Prop. 1.8], [17]. We take Σd = diag{σ2

d,k : k = ...,−1,0,+1, ...} with σd,k = 1 for
|k| ≤ d, and lim|k|→∞ σd,k = 0 with σd,k > 0 for |k|> d, and such that ∑

+∞

k=−∞
σ2

d,k <
∞. With this covariance,

lim
d→∞

e−
1
2 XT BT Σ

−1
d BX = e−

1
2 XT B2X (21)

where B2 is doubly-infinite Toeplitz as well with symbol

B̂2(eiα) = [2(1− cosα)]2 = 6−8cosα +2cos2α. (22)

From the above, it follows that

fX (x) ∝ exp

−1
2

XT


. . . . . . . . . . . . . . .

1 −4 6 −4 1
. . . . . . . . . . . . . . .

X

 . (23)

According to (23), we can see a two-neighbor correlation between the Xi’s. It can
also be seen that the coefficients for the second-neighbors are smaller than those of
the first neighbors. It should be noted that a power grid is not infinite, hence the
infinite Toeplitz structure is an idealization.

3.4.2 Euclidean lattice

The preceding can be generalized to an infinite 2-dimensional Euclidean lattice. 2-
dimensional Euclidean lattice is depicted in figure 4. Given a 2-dimensional lattice
with vertices with integer coordinates {(k, l)}k,l∈Z, the neighboring relationship is
N((k, l)) = {(k±1, l),(k, l±1)}. In other words, the susceptance b(k,l),(m,n) between
nodes (k, l) and (m,n) is nonvanishing only if either m = k± 1 and l = n or m = k
and n = l±1. As in (17), we define the 2-dimensional Fourier transforms as
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Fig. 4 Euclidean Lattice

P̂(e jα ,e jβ ) = ∑
k,l∈Z

Pk,le jkα e jlβ , X̂(e jα ,e jβ ) = ∑
k,l∈Z

Xk,le jkα e jlβ .

As in (19), the DC power flow equations can be written as

P̂(e jα ,e jβ )= B̂(e jα ,e jβ )X̂(e jα ,e jβ ), B̂(e jα ,e jβ )=
(

4− e jα − e− jα − e jβ − e− jβ
)
,

where B̂ : L2([0,2π)2)→ L2([0,2π)2) is the susceptance operator. In order to write
the equivalent of (20) for a 2-dimensional lattice, we use Parseval’s theorem as a
representation of ∑k,l∈Z P2

k,l as a quadratic function of Xk,l :

fX (P) ∝ e−
1
2 ∑k,l∈Z P2

kl = e−
1
2

1
2π

∮ ∮
|B̂|2|X̂ |2dαdβ

Quadratic functions of 2-indexed variables do not lend themselves to obvious matrix
representation. The guiding idea here is to collect those Xk,l’s that are contributing
to ∑k,l∈Z P2

k,l . Those Xk,l’s are the coefficients of the zeroth powers of e jα and e jβ in
the integrand. Given

|B̂|2 =20−8e jα −8e− jα −8e jβ −8e− jβ

+2e j(α+β )+2e− j(α+β )+2e j(α−β )+2e− j(α−β )

+ e2 jα + e−2 jα + e2 jβ + e−2 jβ

and
|X̂ |2 = ∑

k,l,m,n∈Z
Xk,lXm,ne j(k−m)α e j(l−n)β

it is not hard to see that
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∑
k,l∈Z

P2
k,l = ∑

k∈Z
(20X2

k,k−8Xk,kXk+1,k−8Xk,kXk−1,k−8Xk,kXk,k+1−8Xk,kXk,k−1

+2Xk,kXk+1,k+1 +2Xk,kXk−1,k−1 +2Xk+1,k−1 +2Xk,kXk−1,k+1

+Xk,kXk+2,k +Xk−2,kXk,k +Xk,kXk,k+2 +Xk,kXk,k−2)

Clearly, ∑k,l∈Z P2
k,l is quadratic in the Xk,l variables, but those variables that are

multiplied have their indexes within at most a 2-neighbor relationship in the lat-
tice structure. To be somewhat more specific, what we learn over the 1-dimensional
case is that the correlations decay with the `2 distance on the lattice. Indeed, for
d`2((k,k),(k+1,k))= 1, the canonical correlation r(k,k),(k+1,k) ∝ 8; for d`2((k,k),(k+
1,k+1)) =

√
2, the canonical correlation r(k,k),(k+1,k+1) ∝ 2; and for d`2((k,k),(k+

2,k)) = 2, the canonical correlation r(k,k),(k,k+2) ∝ 1.
As a word of technical warning, the fX (P) expression should have been writ-

ten e−
1
2 ∑k,l∈Z Σ

−1
d,(k,l)Pk,l , where ∑k,l Σd,(k,l) < ∞ and Σd,(k,l) = 1 for ||(k, l)||`2 ≤ d and

Σd,(k,l) ↓ 0 as ||(k, l)||`2 → ∞. This brings some tempered coefficients in the correla-
tions, which have no effect unless for ||(k, l)||`2 → ∞. Working out this technicality
explicitly would have, however, resulted in substantial clutter in the notation.

3.5 Reactive power versus voltage amplitude

It is clear from (10)-(11) that we can follow the same discussions we had about real
power and voltage angles, with reactive power and voltage magnitudes.
It can be argued that, as a result of uncertainty, the aggregate reactive power at
each bus can be approximated as a Gaussian random variable and, because of Equa-
tion (11), voltage fluctuations around the steady-state value can be approximated
as Gaussian random variables. Therefore, the same path of approach as for phase
angles can be followed to show the GMRF property for voltage amplitudes. Com-
paring (11) with (12) makes it clear that the same matrix, i.e., the B matrix developed
in Section 3.4, is playing the role of correlating the voltage amplitudes; therefore,
assuming that the statistics of the active and reactive power fluctuations are similar,
the underlying graph is the same. This can be readily seen by comparing (10) and
(11).
Therefore, voltage magnitudes provide another perspective for developing a graph-
ical model underlying the grid structure.
The dual of our approach (linear relationship between reactive power and voltage
magnitude) could be generalized to include line loss by linearizing Equation (2)
of [5] to produce a linear relationship between voltage, active and reactive power.
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4 Model Selection

In the context of graphical models, model selection means finding the real underly-
ing Markov graph among a group of random variables based on samples of those
random variables. There are two main class of methods for learning the structure
of the underlying graphical model, convex and non-convex methods. `1-regularized
maximum likelihood estimators are the main class of convex methods [7, 9, 21].
In these methods, the inverse covariance matrix is penalized with a convex `1-
regularizer in order to encourage sparsity in the estimated Markov graph structure.
Other types of methods are the non-convex or greedy methods [2]. As we are faced
with GMRF in our problem, it would be useful to exploit one of these structure
learning methods.
We have decided to use the new Gaussian Graphical Model Selection method called
Conditional Covariance Test (CCT) [2].
It is proven in [2] that two nodes are connected in the Markov graph iff the condi-
tional mutual information between those measurements is greater than a threshold.
For Gaussian variables, testing conditional mutual information is equivalent to Con-
ditional Covariance Test.
In order to have structural consistency, the model should satisfy two important prop-
erties:

1. α-walk-summability,
2. (γ,η)-local separation property.

4.1 α-walk summability

A Gaussian model is said to be α-walk-summable if ||R̄|| ≤ α < 1 where R̄ = [|ri j|]
and ||.|| denotes the spectral or 2-norm of matrix, which for symmetric matrices is
given by the maximum absolute eigenvalue [2]. ri j is defined in (3) and (4). Consid-
ered power grids satisfy this criteria.

4.2 Local separation property

An ensemble of graphs has the (η ,γ)-local separation property if for any (i, j) /∈
E (G ), the maximum number of paths between i, j of length at most γ does not
exceed η [2]. Local separator concept is depicted in figure 5.
The power grid structure is an example of bounded local path graphs that satisfy the
local separation property.



On the Conditional Mutual Information in the Gaussian-Markov Structured Grids 15

Fig. 5 Local Seperation Prop-
erty: γ = 3. N(i) = {a,b,c} is the
neighborhood of i and the γ−local
separator set S(i, j;G,γ) = {a,c}.

4.3 Conditional Mutual Information

Mutual information between two random variables is a quantity that measures the
mutual dependence between the two random variables. In the case of continuous
random variables, mutual information between random variables X and Y can be
defined as

I(X ;Y ) =
∫

X

∫
Y

f (x,y)log
(

f (x,y)
f (x) f (y)

)
dxdy, (24)

where f (x,y) is the joint probability density function of X and Y , and f (x) and f (y)
are the marginal probability density functions of X and Y respectively.
Mutual information can be defined in terms of entropies as follows:

I(X ;Y ) = H(X)−H(X |Y )
= H(Y )−H(Y |X)

= H(X)+H(Y )−H(X ,Y )

= H(X ,Y )−H(X |Y )−H(Y |X), (25)

where H(X) and H(Y ) are the marginal entropies, H(X |Y ) and H(Y |X) are the
conditional entropies, and H(X ,Y ) is the joint entropy of X and Y .
In the special case of Gaussian distributed random variables, for a N-dimensional
Gaussian random vector Z, we have

H(Z) =
1
2

log((2πe)N |Σ |), (26)
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where Σ is the covariance matrix of Z [6]. This implies that the mutual information
between two N-dimensional Gaussian variables is

I(X;Y) =
1
2

log
(
|ΣXX||ΣYY|
|ΣXY|

)
, (27)

where

Σ =

[
ΣXX ΣXY
ΣYX ΣYY

]
. (28)

The conditional mutual information is, in its most basic form, the expected value of
the mutual information of two random variables given the value of a third, that is,

I(X ;Y |Z) = Ez(I(X ;Y )|Z). (29)

This can be rewritten as [16]

I(X ;Y |Z) = H(X ,Z)+H(Y,Z)−H(X ,Y,Z)−H(Z). (30)

Conditional mutual information can also be written in terms of conditional en-
tropies:

I(X ;Y |Z) = H(X |Z)−H(X |Y,Z). (31)

Therefore, considering two Gaussian random variables Xi, X j, conditional mutual
information between these two random variables conditioned on a set of random
variables XS is given by (see [2])

I(Xi;X j|XS) =−
1
2

log
[
1−ρ

2(i, j|S)
]
, (32)

where ρ(i, j|S) is the conditional correlation coefficient, given by

ρ(i, j|S) :=
Σ(i, j|S)√

Σ(i, i|S)Σ( j, j|S)
. (33)

As a result, for Gaussian random variables, for testing conditional independence,
testing conditional mutual information is equivalent to testing conditional covari-
ances [2].
If the distributions deviate from Gaussian, the conditional mutual information can
still be derived from (32)-(33), provided Σ(i, j|S) is interpreted as the conditional
correlation of gi(Xi) and g j(X j), where the gi’s are nonlinear processing functions
aimed at maximizing the correlation.
To be more precise, let ρgi,g j ,g(i, j|S) be the correlation coefficient between gi(Xi)
and g j(X j) conditioned upon g(XS), where gi, g j, and g are measurable functions.
Then by nonlinear processing of Xi and X j with the distortion functions gi and g j,
the canonical correlation ρgi,g j ,g(i, j|S) can be made to increase towards the mutual
information :
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sup
gi,g j ,g

(
−1

2
log
(

1−ρ
2
gi,g j ,g(i, j|S)

))
≤ I(Xi;X j|XS).

(See [10, Cor. 1].) Furthermore, the supremum can be achieved if gi(Xi) and g j(X j)
can be made jointly Gaussian conditioned upon g(XS) (see [10, Th. 3]). A compu-
tational procedure that precisely implements this idea is available in [10, Sec. 6]. A
related computational implementation is the sequential selection [11,12]. A simpli-
fied numerical procedure based on the canonical correlation between the powers of
Xi and the powers of X j is available in [23].

4.4 Conditional Covariance Test (CCT)

Conditional Covariance Test is introduced in [2]. Using CCT method, the condi-
tional covariance is computed for each node pair (i, j) ∈ V 2 and the conditioning
set that achieves the minimum, over all subsets of other nodes of cardinality at most
η , is found. If the minimum value exceeds the threshold ξn,p, then the node pair is
declared as an edge.

It is shown in [2] that under walk-summability the effect of faraway nodes on
covariance decays with the distance and the error in approximating the covariance
by local neighboring relationship decays exponentially with the distance. Thus by
correct tuning of threshold and enough number of samples, we expect the output of
CCT method to follow the grid structure.

It has been shown that this method is superior to the `1 method [7, 21] as CCT
distributes edges fairly uniformly across the nodes while the `1 method tends to
cluster all the edges together between the “dominant” variables leading to a densely
connected component and several isolated points [2]. Therefore, CCT is more suit-
able for constructing the structure of the power grid from measurements.

5 Stealthy Deception Attack

The most recent false data injection attack on the power grid has recently been intro-
duced in [24]. For a P-bus electric power network, the l = 2P−1 dimensional state
vector x is (θ T ,V T )T , where V= (V1, ...,VP) is the vector of voltage bus magnitudes
and θ = (θ2, ...,θP) the vector of phase angles disregarding the slack bus for which
θ1 = 0. It is assumed that the nonlinear measurement model for the state estimation
is defined by

z = h(x)+ ε, (34)

where h(.) is the nonlinear measurement-valued function and z is the m-dimensional
measurement vector consisting of active and reactive power measurements. H(xk) :=
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Fig. 6 Power grid under a cyber
attack

{
∂hi(x)

∂x j

∣∣∣
x=xk

}
1≤i≤m;1≤ j≤l

denotes the Jacobian matrix of the measurement model

h(x) at xk.
According to [24], the goal of a stealthy deception attacker is to compromise the
measurements available to the State Estimator (SE) as

za = z+a, (35)

where za is the corrupted measurement and a is the attack vector. Vector a is de-
signed such that the SE algorithm converges and the attack a is undetected by the
Bad Data Detection (BDD) scheme. That is, the difference between za and the h(xk)
is less than the BDD threshold. In addition, for the targeted set of measurements,
the estimated values at convergence are closest to the ones compromised by the at-
tack. The goal of attacker is to inject some data into the state estimator such that
the system does not recognize that the data is manipulated and acts upon that. Then
it is shown that, subject to some limitations, such an attack can be performed with
a∈ Im(H). The attack vector a is designed in such a way that the difference between
za and z is the desired value. Figure 6 represents the attack.

It is also stated that the introduced attack is only valid if performed locally. The
attack is performed under the DC flow assumption. Because of this assumption,
only the HPθ block of the H matrix is considered in the attack calculation and the
state vector introduced in [24] reduces to the vector of voltage angles, X. Since
a ∈ Im(H),

za = z+a = H(X +d). (36)
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Thus, we have
Hd = za−HX = a, (37)

where H = HPθ , za is the attacker’s goal and X is the phasor angle vector. Consid-
ering (13), we have Hi j = −bi j for i 6= j and Hii = ∑i6= j bi j, where bi j denotes the
inverse of the line inductive reactance. Clearly, H is structured as a weighted graph
Laplacian. By “weighted graph Laplacian structure,” we mean a symmetric matrix
with its (i, j) entry that can be interpreted as the negative of the “conductance” of
the (i, j) link and its (i, i) diagonal element equal to minus the sum of the other el-
ements in row #i or column #i. This is clearly a generalization of the combinatorial
graph Laplacian, where the “conductances” are normalized to 1.
Analysis of (36) and (37) shows that the Markov graph of an attacked system
changes from the grid graph. We use this to trigger the alarm.
It should be emphasized that the attack considered here assumes the knowledge of
the system’s bus-branch model. Hence under this scheme the attacker is equipped
with a wealth of information. Yet, we can detect such a strong attack with our
method.

6 Simulation

We considered a 9-node grid suggested by Zimmerman et al. [20]. The structure is
shown in Figure 7. First, we fed the system with Gaussian demand and simulated the
power grid. We used MATPOWER [20] for solving the DC power flow equations
for various demand and used the resulting angle measurements as the input to CCT
algorithm. We used YALMIP [14] and SDPT3 [25] to perform CCT.
With the right choice of parameters and threshold, and enough un-compromised
measurements, the Markov graph follows the grid structure. Table 1 shows the edit
distance between the Markov graph and the grid graph that is used to lead us to the
correct threshold.

Table 1: Normalized edit distance under CCT for Figure 7, measurement size=400

Threshold No. of Links of Markov graph Edit Distance
0.0037 10 1
0.0038 9 0
0.0039 7 2

Next we introduced the stealthy deception attack to the system. We considered
the cases where 2, 3 or 4 nodes are under attack. For each case, we simulated all
possible attack combinations. In all attack scenarios, the Markov graph of tampered
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Fig. 7 Evaluated 9-node network

Node 1

Node 2

Node 3

Node 4

Node 5

Node 6

Node 7

Node 8

Node 9

measurements lacked at least one link that was present in grid graph, a discrepancy
that triggered the alarm. Thus we successfully detected the attack. Table 2 summa-
rizes different attack scenarios and the corresponding detection ratio.
It should be noted that table 1 shows the required samples for tuning the method
to a specific network structure. So, it shows the initialization step for any network
which is enough to do once at the beginning as far as the network topology remains
the same. Simulation results show that in this network even if only 1 of the samples
is a corrupted sample it is enough to have 100% detection rate.
It should be noted that Since we have made connections between phase angle mea-
surements Markov graph and power grid graph, the method can be performed in a
decentralized manner. In addition, as stated in [2], the complexity of CCT method
is polynomial.

Table 2: Stealthy deception attack on the grid shown in Fig. 7

No. of attacked nodes Detection Ratio
2 100
3 100
4 100
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7 Conclusion

We have shown that such statistical learning techniques as the Conditional Co-
variance Test—which is equivalent to test on conditional mutual information in
the Gaussian case—allows us to reconstruct the topology of the power grid as the
Markov graph of the phase angle measurements (or the voltage magnitudes) at the
buses. One of the main points of this Chapter is that phase angle data only approxi-
mately satisfies the Markov property relative to the grid, a fact that was overlooked
in [8]. As shown in Section 3.4, correlations indeed extend beyond the one-neighbor
relationship. Nevertheless, since the farther away neighboring relationship is weaker
and less significant than the one-neighbor relationship, as shown here on the 9-bus
system, this difficulty can be overcome by correctly choosing the threshold.
Finally, if the phase angle data is compromised, the reconstructed Markov graph
will be different from the grid interconnection, even when the attack is “stealthy”
and launched with the knowledge of the bus-branch model.
In further work, we would like to demonstrate the same concepts and results on
more realistic bus systems.
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