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Abstract

LDV systems are linear systems with parameters that varying accord-
ing to a nonlinear dynamical system. This paper examines the robust
stability of such systems in the face of perturbations of the nonlinear sys-
tem. Three classes of perturbation are examined; differentiable functions,
Lipschitz continuous functions and continuous functions. It is found that
in the first two cases the system remain stable. Whereas, if the per-
turbation are among continuous functions, the closed-loop may not be
asymptotically stable, but, instead, is asymptotically bounded with the
diameter of the residual set bounded by a function that is continuous in
the size of the perturbation. It is also shown that in the case of differential
perturbations, the resulting optimal LDV controller is continuous in the
size of the perturbation. An example is presented that illustrates the con-
tinuity of the variation of the controller in the case of a non-structurally
stable dynamical system.

1 Introduction

Linear parametrically varying (LPV) systems have been the focus of extensive

research [8], [1], [14]. Essentially, a LPV system is a linear system with pa-
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rameters that may vary over some set. This paper examines the specific case

where the variation of the parameters is described by a given dynamical system.

Such systems are known as linear dynamically varying (LDV) systems and have

applications in nonlinear tracking. A LDV system can be decomposed into two

subsystems; a linear system and a nonlinear system, where the nonlinear sys-

tem drives the parameters of the linear system. While both linear quadratic [2]

and H∞ [3] controllers have been developed for LDV systems, some questions

regarding the robustness of the closed loop system remain unanswered. In the

case of time-invariant linear systems, robust stability refers to the stability in

the face of some uncertain parameter. While such concerns are valid for LDV

systems, they can be handled in much the same way as they are in the case of

time-invariant linear systems. However, stability in the face of uncertainty in

the nonlinear subsystem is a unique concern to LDV systems and is the subject

of this paper. Specifically, the variation of the parameters of the linear system

is given by nonlinear system θ (k + 1) = f (θ (k)). It will be shown that a sta-

ble LDV system remains stable in the face of small perturbation of f . Three

cases are examined; where the perturbations are over C1functions, Lipschitz

continuous functions and C0 functions. In the first two cases it is shown that

stability is maintained. In the case of continuous perturbations, it is not pos-

sible to guarantee asymptotic stability. Instead, it is shown that the system is

asymptotically bounded, i.e. the state of the linear system converges to a small

neighborhood of the origin.

A related issue is the variation of the optimal LDV controller due to vari-

ation of the dynamical system f . This issue is the structural stability of the

LDV controller. It will shown that the linear quadratic controller is structurally

stable. This type of stability has applications in the development of computa-

tional methods for LDV controllers. As discussed in [2], an efficient method to



compute the controller relies on making a small perturbation in the dynamical

system f and finding the controller for this perturbed system. The controller

for this nearby system is easily found. The question as to whether the controller

of nearby system is an approximation of the controller for the original system

is answered affirmatively in this paper.

The paper proceeds as follows: Section 2 formalizes LDV systems, briefly

reviews previous results necessary for this paper and state some required defini-

tions. Section 3 discusses conjugacy. Section 4 presents the main results of the

paper. Finally, Section 5 presents an example of a structurally unstable system

with a structurally stable LDV controller.

2 Background

An LDV system is defined as

x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k) (1)

z(k) =

 Cθ(k)x(k)

Dθ(k)u(k)


θ(k + 1) = f(θ(k)) with x(0) = xo, θ(0) = θo

where f : Rn → Rn is a continuous map with f (S) = S, with S a compact

set, A : Rn → Rn×n, B : Rn → Rn×m, C : Rn → Rp×n, and D : Rn →

Rp×m. A continuous LDV is an LDV where the maps A, B, C and D are

continuous. This paper only considers continuous LDV systems. The pair (A, f)

is exponentially stable if system (1) is exponentially stable. That is, for u = 0

and θo ∈ S there exists an α (θo) < 1 and a β (θo) <∞ such that if θ (0) = θo,

then ‖x (k)‖ < β (θo)α (θo)
k ‖x (0)‖. Similarly, the pair (A, f) is uniformly

exponentially stable if the pair (A, f) is exponentially stable and α and β can be

chosen independent of θ (0). The triple (A,B, f) is stabilizable if there exists a



bounded feedback F : S → Rm×n such that (A+BF, f) is exponentially stable.

The triple (A,C, f) is uniformly detectable if there is a uniformly bounded map

H : S → Rn×p such that (A+HC, f) is uniformly exponentially stable, that

is, there exists αd < 1 and βd < ∞ such that ‖x(k)‖ < βαk ‖x(0)‖ where

x (k + 1) =
(
Afk(θo) +Hfk(θo)Cfk(θo)

)
x(k).

LDV systems naturally arise when controlling nonlinear dynamical systems.

Let f : Rn × Rm → Rn, f(S, 0) ⊂ S, f ∈ C1 and let S be compact. Consider

the nonlinear tracking problem

ϕ(k + 1) = f(ϕ(k), u(k)), ϕ(0) = ϕo, (2)

θ(k + 1) = f (θ(k), 0) , θ(0) = θo ∈ S.

The objective is to find a control u such that ‖ϕ(k)− θ(k)‖ → 0. In this context

θ(k) is the desired trajectory and ϕ is the state of the system under control.

Define the tracking error x(k) = ϕ(k)− θ(k). Then system (2) becomes

x(k + 1) = f (ϕ(k), u(k))− f (θ(k), 0)) = (3)

Aθ(k)x(k) +Bθ(k)u(k) + ηx (x (k) , u (k) , θ (k))x (k) + ηu (x (k) , u (k) , θ (k))u (k) ,

where (Aθ)i,j = ∂fi
∂θj

(θ, 0), (Bθ)i,j = ∂fi
∂uj

(θ, 0) and ηx (x, u, θ)x + ηu (x, u, θ)u

accounts for the high order terms. Since f ∈ C1, if x and u are small, then

ηx(x, u, θ) and ηu(x, u, θ) are small. Thus, when x and u are small, system

(3) is well approximated by system (1) with f (θ) := f (θ, 0). In this case

the LDV is said to be induced by f . It was shown in [2] and [3] that if the

LDV system (1) induced by f with control u is uniformly exponentially stable,

then the nonlinear system (2), with control u, is locally uniformly exponentially

stable. By definition locally uniformly exponentially stable means that there

exist α < 1, β < ∞ and γ > 0 such that if ‖x(0)‖ = ‖ϕ(0)− θ (0)‖ < γ then

‖x(k)‖ < βαk ‖x(0)‖ where α, β and γ can be taken independent of the initial

condition θo, i.e. uniformly in θo and locally in x. Thus, if the LDV system



induced by the nonlinear dynamically system f is LDV stabilizable, then the

LDV system
(
∂f
∂θ ,

∂f
∂u , f

)
is stabilizable.

The following theorems are needed in the sequel:

Theorem 1 Suppose (A,C, f) is uniformly detectable. Then (A, f) is uni-

formly exponentially stable if and only if there exists a bounded function X :

S → Rn×n with X ′θ = Xθ ≥ 0 such that A′θXf(θ)Aθ −Xθ ≤ −C ′θCθ. Moreover,

α and β in the definition of uniformly exponentially stable can be chosen to de-

pend only on the bound on X and αd and βd in the definition of detectability.

Proof.This is a simple extension of theorem 7.1 in [4]�

Theorem 2 Suppose (1) is a continuous LDV system. If (A,B, f) is stabi-

lizable, (A,C, f) is uniformly detectable and D′θDθ > 0 for θ ∈ S, then there

exists a bounded and continuous function X : S → Rn×n with X ′θ = Xθ ≥ 0 and

satisfying the functional discrete time algebraic Riccati equation

Xθ = A′θXf(θ)Aθ+C ′θCθ−A′θXf(θ)Bθ
(
D′θDθ +B′θXf(θ)Bθ

)−1
B′θXf(θ)Aθ (4)

The control

uLQ(k) = Fθ(k)x (k) := −
(
D′θ(k)Dθ(k) +B′θ(k)Xf(θ(k))Bθ(k)

)−1

B′θ(k)Xf(θ(k))Aθ(k)x (k)

(5)

is optimal in the sense that it minimizes the quadratic cost

V (θo, u, xo) =

∞∑
k=0

x(k)′C ′fk(θo)Cfk(θo)x(k) + u(k)′D′fk(θo)Dfk(θo)u(k).

Furthermore, this control uniformly exponentially stabilizes the system and x′oXθoxo =

minu V (θo, u, xo).

Proof.See [2].�

Given a stabilizable map f, we will study maps close to f in the following

topologies:



Definition 1 Let f, f̂ : Rn × Rm → Rn with f, f̂ ∈ C1. The C1 topology is

generated by the metric

dC1

(
f, f̂
)

= sup
x∈Rn,u∈Rm

∥∥∥f(x, u)− f̂(x, u)
∥∥∥+ sup

x∈Rn,u∈Rm

∥∥∥∥∥∂f∂x (x, u)− ∂f̂

∂x
(x, u)

∥∥∥∥∥
+ sup
x∈Rn,u∈Rm

∥∥∥∥∥∂f∂u (x, u)− ∂f̂

∂u
(x, u)

∥∥∥∥∥
where ∂f

∂x (x, u) is the Jacobian matrix of f with respect to x and ‖·‖ is the l2

induced matrix norm.

Definition 2 Let f, f̂ : Rn × Rm → Rn, with f, f̂ ∈ LC, where LC denotes

the set of Lipschitz continuous functions. The LC topology is generated by the

metric

dLC

(
f, f̂
)

= sup
x∈Rn,u∈Rm

∥∥∥f(x, u)− f̂ (x, u)
∥∥∥+ sup

x,y∈Rn
u,v∈Rm
i∈[1,n]


∣∣∣fi (x, u)− fi (y, v)−

(
f̂i (x, u)− f̂i (y, v)

)∣∣∣√
‖x− y‖2 + ‖u− v‖2

 .

Definition 3 Let f, f̂ : Rn × Rm → Rn, with f, f̂ ∈ C0. The C0 topology is

generated by the metric

dC0

(
f, f̂
)

= sup
x∈Rn,u∈Rm

∥∥∥f(x, u)− f̂ (x, u)
∥∥∥ .

Remark 1 The supremums in the last three definitions are over x ∈ Rn and

u ∈ Rm. This can be eased to the supremum over N where N ⊂ Rn × Rm

is a tubular neighborhood of S × {0}. This modification has no effect on the

development that follows if N is large enough, i.e. for all x ∈ S, supy∈Ex ‖y − x‖

is large enough, where Ex := {y ∈ N : x := arg minv∈S ‖y − v‖}.

In the definition of system (1), the set S is invariant, i.e. f (S) = S. As the

map f varies it is likely that S is no longer invariant. Indeed, it is possible that



arbitrarily small variations in the map f lead to drastic changes in invariant

sets. This is problematic since X, the solution to the Riccati equation (4), is

only defined on S where S is invariant. It is difficult to discuss the dependence

of X on f if as f varies the domain of X greatly varies. Thus we will restrict

our attention to variations in f such that S only varies slightly. That is, we will

require

d·

(
f, f̂
)

+H
(
S, Ŝ

)
< ε, with f (S) = S, and f̂

(
Ŝ
)

= Ŝ (6)

where H (·, ·) is the Hausdorff metric, i.e.

H
(
S, Ŝ

)
:= max

(
sup
θ∈Ŝ

inf
{∥∥∥θ − θ̂∥∥∥ : θ̂ ∈ Ŝ

}
, sup
θ̂∈Ŝ

inf
{∥∥∥θ − θ̂∥∥∥ : θ ∈ S

})
.

In the sequel it will be understood that S is an invariant set of f and Ŝ is an

invariant set of f̂ .

Next we extend the feedback F : S → Rn×m defined by equation (5) to all

of Rn by F̃θ̂ := Fθ(θ̂)where

θ
(
θ̂
)

= arg min
{∥∥∥θ − θ̂∥∥∥ : θ ∈ S

}
. (7)

The cost quadratic X can be extended to X̃ in the same fashion. Note that

θ
(
θ̂
)

is not necessarily well defined and X̃ might not be continuous. How-

ever, by perhaps invoking the axiom of choice, one can properly define θ
(
θ̂
)

.

Furthermore, X̃ is continuous on S and if
∥∥∥θ̂ − ϕ̂∥∥∥ is small and θ̂, ϕ̂ ∈ Ŝ ∪S

with H
(
S, Ŝ

)
small, then

∥∥∥X̃θ̂ − X̃ϕ̂

∥∥∥ is small. Finally, let X : S → Rn and

X̂ : Ŝ → Rn; define

dS,Ŝ

(
X, X̂

)
:= max

(
sup
θ∈S

∥∥∥Xθ − X̂θ̂(θ)

∥∥∥ , sup
θ̂∈Ŝ

∥∥∥Xθ(θ̂) − X̂θ̂

∥∥∥) .

Now, if f is a hyperbolic on S (see section 3), then H
(
S, Ŝ

)
is small

whenever dC1

(
f, f̂
)

is small [7]. Furthermore, if f : S → S is hyperbolic on



S and S is a manifold (i.e. f is an Anosov diffeomorphism) and if dC1

(
f, f̂
)

is small enough, f̂ is hyperbolic on S and S is invariant. Therefore, if f is an

Anosov diffeomorphism, H
(
S, Ŝ

)
= 0 and dS,Ŝ

(
X, X̂

)
= dC0

(
X, X̂

)
. On the

other hand, suppose that S is an attractor for f , that is for all ϕ ∈ N (S), we

have limk→∞ fk (ϕ) ⊂ S, where N (S) is any small enough neighborhood of S.

Then it is a generic property for such diffeomorphisms that H
(
S, Ŝ

)
is small

whenever dC0

(
f, f̂
)

is small [9], where Ŝ is an attractor for f̂ . Hence, in these

three cases dC1

(
f, f̂
)

small implies H
(
S, Ŝ

)
is small, and therefore condition

(6) is repetitious. Nonetheless, to maintain generality, condition (6) will be

assumed. On the other hand, for dynamical systems that are not structurally

stable, it is possible that H
(
S, Ŝ

)
9 0 as dC

(
f, f̂
)
→ 0. Clearly, the LDV

controller is not structurally stable in these situations, therefore it is assumed

that f is such that dC

(
f, f̂
)
→ 0 implies that H

(
S, Ŝ

)
→ 0.

3 Conjugacy

Conjugacy provides an equivalence relationship between dynamical systems.

In this section C1and C0 conjugacy are examined. It will be shown that C1

conjugacy preserves LDV stabilizability and the conjugacy maps can be used to

transform the controller. However, in the case of C0 conjugacy, LDV stabiliz-

ability is not preserved. Since structural stability of dynamical systems implies

C0 conjugacy with nearby systems [7], structural stability of the dynamical sys-

tem alone does not imply the structural stability of LDV stabilizaility or of the

LDV controller.

Let f be LDV stabilizable and let f and f̂ be C1 conjugate. That is, there

exists diffeomorphisms

g : Rn → Rn, g (S) = Ŝ, and h : Rm → Rm



such that f(θ, u) = g−1
(
f̂ (g (θ) , h (u))

)
. Define G (θ) = ∂g

∂θ (θ), H (θ) = ∂h
∂θ .

Since g and h are diffeomorphisms, G and H are invertible. Therefore the

following diagram commutes:

(G,H)

TS × Rm (A,B)→ TS

↓ ↓

S × Rm f→ S

(g, h) l g l

Ŝ × Rm f̂→ Ŝ

↑ ↑

T Ŝ × Rm
(Â,B̂)
→ T Ŝ

G

�

�

-

-

�

�

�

�

Thus, if (A,B, f) is the LDV system induced by f and
(
Â, B̂, f̂

)
is the LDV

system induced by f̂ , then Âg(θ) = Gg(θ)AθG
−1
g(θ), B̂g(θ) = Gg(θ)BθH

−1
g(θ). If F :

S → Rm×n uniformly exponentially stabilizes (A,B, f) then F̂g(θ) := HθFθG
−1
g(θ)

uniformly exponentially stabilizes
(
Â, B̂, f̂

)
. Thus, LDV stabilizability is pre-

served under C1 conjugacy. Similarly, LDV uniformly detectability is preserved

under C1 conjugacy.

Now, suppose (A,B, f) is stabilizable, (A,C, f) is uniformly detectable,

D′θDθ > 0 for θ ∈ S, Ĉg(θ) = CθG
−1
g(θ) and D̂g(θ) = DθH

−1
θ . Since f ∈ C1,

the LDV system induced by f is continuous and Theorem 2 implies that there

exists a continuous function X : S → Rn×n that solves equation (4). It is clear

that X̂g(θ) :=
(
G−1
g(θ)

)′
XθGg(θ) solves the Riccati equation associated with the

LDV system
(
Â, B̂, Ĉ, D̂, f̂

)
. Therefore, LDV systems and quadratic controllers

are well defined in a coordinate free approach. The topological and geometric

issues associated with LDV systems on a non-orientable or non-parallelizable

manifolds S are addressed in [6].

Now, if f is hyperbolic and f̂ is C1 close to f , then f̂ is hyperbolic and

f̂ is topologically conjugate to f (for exact result see [7]). However, f and



f̂ are not necessarily C1 conjugate. If hyperbolicity implied f̂ and f are C1

conjugate, then LDV would clearly be structurally stable in the hyperbolic

case. Note that in the case of topological conjugacy, the nonlinear control

û(k) = h−1
(
Fθ(k)

(
g−1 (ϕ(k))− g−1 (θ (k))

))
might not exponentially stabilize

f̂ . Consider, for example, a system with no input:

f (ϕ) =
1

2
ϕ, S =

[
0,

1

2

]
and the induced LDV system

x (k + 1) =
1

2
x (k) . (8)

Under homeomorphisms g (ϕ) = − (log (ϕ))
−1

and g−1 (ϕ̂) = e−
1
ϕ̂ , the conju-

gate system becomes

f̂
(
θ̂
)

=
1

1− θ̂ log
(

1
2

) θ̂, Ŝ =

[
0,
−1

log
(

1
2

)]
and the induced LDV system is

x̂ (k + 1) =

 1(
1 + θ̂ (k) ln 2

)2

 x̂ (k) , θ̂ (k + 1) = f̂
(
θ̂ (k)

)
. (9)

The above system is not uniformly exponentially stable because for every β <∞

and α < 1, ‖x̂ (k)‖ > βαk ‖x̂ (0)‖ for some k. Of course f̂k (θ) → 0, just not

exponentially fast. Thus, f and f̂ are topologically conjugate, yet (9) is LDV

stabilizable and (8) is not. Therefore, since hyperbolicity only leads to topo-

logical conjugacy, hyperbolicity will not help to prove the structural stability of

LDV stabilizability. We must rely on the fact that f and f̂ are C1 close to infer

LDV stabilizability of f̂ .

Remark 2 The example above illustrated the weakness of the LDV approach

compared to nonlinear methods. The LDV approach implies that f̂ is not stable,

when, in fact, it is stable.



4 Structural Stability

In this section it will be shown that if f̂ is near an LDV stabilizable f in the

C1 topology and H
(
S, Ŝ

)
is small, then f̂ is LDV stabilizable (proposition 1).

In fact, the LDV optimal quadratic cost varies continuously with dC1

(
f, f̂
)

+

H
(
S, Ŝ

)
- that is the map (f, S) 7→ X is continuous where X is the positive

semi-definite function which solves equation (4) (proposition 2). Furthermore,

if f̂ is near f in the Lipschitz topology and H
(
S, Ŝ

)
is small, then f̂ is also

LDV stabilizable (proposition 3). Finally, if f̂ is near f in the C0 topology and

H
(
S, Ŝ

)
is small, then an LDV controller may only stabilize f̂ in the sense that

lim supk ‖x(k)‖ < ε, where the control objective is x(k)→ 0 (proposition 4).

Lemma 1 Let system (1) be a continuous LDV. If the pair (A, f) is uni-

formly exponentially stable, then there exists an ε > 0 such that if dC0(f, f̂) +

dC0

(
A, Â

)
+H

(
S, Ŝ

)
< ε , then the pair

(
Â, f̂

)
is uniformly exponentially sta-

ble. Furthermore, the α and β in the definition of uniform exponential stability

of
(
Â, f̂

)
can be taken to only depend on A, f and ε.

Note, this lemma is only examining LDV systems and therefore does not

require that A = ∂f
∂x .

Proof.Fix K ⊃ N (S) , where K is compact and N (S) a tubular neigh-

borhood of S. Define ε1 such that H
(
S, Ŝ

)
< ε1 implies that Ŝ ⊂ K. Since

(A, f) is uniformly exponentially stable, Theorem 2 implies that there exists a

continuous positive semi-definite function X such that for θ̂ ∈ K,

A′
θ(θ̂)Xf(θ(θ̂))Aθ(θ̂) = Xθ(θ̂) − I, (10)

where θ
(
θ̂
)

is defined by (7). Since X is continuous, there exists a δ > 0 such

that ‖ϕ− θ‖ < δ implies ‖Xϕ −Xθ‖ < 1
8

1
Ā2+1

, where Ā = sup {Aθ : θ ∈ K}.

Furthermore, since f is uniformly continuous over K, there exists a γ > 0 such



that for θ, θ̂ ∈ K, and
∥∥∥θ − θ̂∥∥∥ < γ, we have

∥∥∥f (θ)− f
(
θ̂
)∥∥∥ < δ

3 . Therefore, if

dC0

(
f, f̂
)

+H
(
S, Ŝ

)
< min

(
δ
3 , γ, ε1

)
:= ε2, then for θ̂ ∈ Ŝ, we have

∥∥∥θ (f̂ (θ̂))− f (θ (θ̂))∥∥∥ ≤∥∥∥θ (f̂ (θ̂))− f̂ (θ̂)∥∥∥+
∥∥∥f̂ (θ̂)− f (θ̂)∥∥∥+

∥∥∥f (θ̂)− f (θ (θ̂))∥∥∥ < δ

and thus
∥∥∥Xθ(f̂(θ̂)) −Xf(θ(θ̂))

∥∥∥ < 1
8

1
Ā2+1

. Hence, if θ̂ ∈ Ŝ and dC0

(
A, Â

)
<

min
(

1
8

1
X̄

1
Ā
,
√

1
8

1
X̄
, 1
)

=: δ1 and d
(
f, f̂
)

+ H
(
S, Ŝ

)
< ε2, then with a bit of

elementary manipulation it can be shown that

Â′
θ̂
Xθ(f̂(θ̂))Âθ̂ = A′θXf(θ)Aθ +

(
Aθ − Âθ

)′
Xf(θ)

(
Aθ − Âθ

)
−A′θXf(θ)

(
Aθ − Âθ

)
−
(
Aθ − Âθ

)′
Xf(θ)Aθ + Â′θ

(
Xf̂(θ) −Xf(θ)

)
Âθ

≤ Xθ(θ̂) −
1

2
I.

Set α = 1 − 1
2 minθ∈S(λ(Xθ)) and β =

maxθ∈S(λ̄(Xθ))
minθ∈S(λ(Xθ)) . Since X is bounded and

continuous, S compact and X > 0, α and β are finite. Since Xθ(·) solves

equation (10), it is not hard to show (for example see [12]) that α < 1 and if

x(k + 1) = Âf̂k(θ̂o)x(k), then ‖x(k)‖ < βαk ‖x(0)‖. �

Proposition 1 Assume f ∈ C1 induces a stabilizable LDV system, that is,

there exists a continuous map F : S → Rm×n such that (A+BF, f) is uni-

formly exponentially stable. Then there exists a δ > 0 such that if dC1(f, f̂) +

H
(
S, Ŝ

)
< δ, then f̂ is LDV stabilizable and is stabilized by the feedback F .

Furthermore, with this feedback, the α, β and γ in the definition of locally uni-

formly exponentially stability can be chosen to depend only on f , F and δ. Thus

LDV stabilizability is a structurally stable.

Proof.Define Ãθ̂ = ∂f̂

∂θ̂

(
θ̂, 0
)

+ ∂f̂
∂u

(
θ̂, 0
)
Fθ(θ̂). Then dC0

(
Ã, A

)
<

CdC1

(
f̂ , f

)
where C is a constant that depends on F . Lemma 1 implies that

there exists an ε > 0 such that if dC0(f, f̂) + dC0

(
A, Ã

)
+H

(
S, Ŝ

)
< ε, then



(
Ã, f̂

)
is stable. Hence, there exists a δ > 0 such that if dC1(f, f̂)+H

(
S, Ŝ

)
<

δ, then
(
∂f̂

∂θ̂

(
θ̂, 0
)
, ∂f̂∂u

(
θ̂, 0
)
, f̂
)

is stabilizable. Lemma 1 further states that

the parameters of stability, α and β, only depend on A + BF , f and ε. Since

ε and A + BF depend on F , and A and B are the partial derivative of f , we

conclude that α and β can be taken to only depend on f , F and ε.�

Thus, if the feedback F stabilizes f , then F also stabilizes any function

f̂ near f in the C1 topology. A natural question is, how good of a controller

is F? For instance, if F is the LDV quadratic controller for the LDV system

induced by f , how far is it from the LDV quadratic controller for f̂ . That is,

are LDV quadratic controllers structurally stable? First, note that detectability

is a structurally stable property. That is:

Lemma 2 Assume that A,C and f are continuous and (A,C, f) is uni-

formly detectable. In this case there exists a δ > 0, such that if dC0

(
f, f̂
)

+

dC0

(
A, Â

)
+ dC0

(
C, Ĉ

)
+ H

(
S, Ŝ

)
< δ, then

(
Â, Ĉ, f̂

)
is uniformly de-

tectable. That is, there exists a α̂d < 1 and β̂d < ∞ such that if dC0

(
f, f̂
)

+

dC0

(
A, Â

)
+ dC0

(
C, Ĉ

)
+ H

(
S, Ŝ

)
< δ, then there exists a feedback L̂ such

that ‖ξ(k)‖ < β̂dα̂
k
d ‖ξ(0)‖ where ξ(k + 1) =

(
Â+ L̂Ĉ

)
ξ(k). Furthermore, α̂d

and β̂d only depend on A, C, f , and δ.

Proof.The proof is nearly identical to the proof of Lemma 1.�

Proposition 2 Let f ∈ C1. Assume that the LDV induced by f is stabilizable,

(A,C, f) is uniformly detectable and D′θDθ > 0 for all θ ∈ Rn. Then for all

ε > 0, there exists a δ > 0 such that if dC1

(
f, f̂
)

+ dC0

(
C, Ĉ

)
+ dC0

(
D, D̂

)
+

H
(
S, Ŝ

)
< δ, then dS,Ŝ

(
X, X̂

)
< ε, where X is the positive semi-definite

solution to the Riccati equation (4) induced by (C,D, f) and X̂ is the positive

semi-definite solution induced by
(
Ĉ, D̂, f̂

)
.

Proof.Let ε > 0. By Proposition 1, there exists α, β and δ1 such



that if dC1

(
f, f̂
)

+ H
(
S, Ŝ

)
< δ1 and θ̂o ∈ Ŝ, then ‖x̂ (k)‖ ≤ βαk ‖x̂ (0)‖

where x̂ (k + 1) =
(
Âf̂k(θ̂o) + B̂f̂k(θ̂o)Fθ(f̂k(θ̂o))

)
x̂ (k) and F is the optimal

LQ feedback gain for (A,B,C,D, f). Therefore, it is possible to show that if

dC1

(
f, f̂
)

+ dC0

(
C, Ĉ

)
+ dC0

(
D, D̂

)
+H

(
S, Ŝ

)
< δ1 and

x′oX̂θoxo := min
u∈l2

∞∑
k=0

x̂(k)′Ĉ ′
f̂k(θo)

Ĉf̂k(θo)x̂(k) + u(k)′D̂′
f̂k(θo)

D̂f̂k(θo)u(k)

subject to x̂(k + 1) = Âf̂k(θo)x̂(k) + B̂f̂k(θo)u(k) ,

then
∥∥∥X̂θ̂

∥∥∥ < X̄, where X̄ := β2 1
1−α2

((
C̄ + δ1

)2
+ F̄ 2

(
D̄ + δ1

)2)
, C̄ := maxθ∈K ‖Cθ‖,

D̄ := maxθ∈K ‖Dθ‖ , F̄ := maxθ∈S ‖Fθ‖.

Lemma 2 shows that if dC1

(
f, f̂
)

+ dC0

(
C, Ĉ

)
+ H

(
S, Ŝ

)
< δ2 then(

Â, Ĉ, f̂
)

is detectable with paramters α̂ and β̂ that do not depend only on δ2,

C, and f .

Theorem 1 can then be applied to show that the closed-loop system(
Â+ B̂F̂ , f

)
is uniformly exponentially stable with stability parameters that

only depend on δ1, δ2, C, D and f . Therefore there eixsts a N <∞ such that

‖x̂(N + 1)‖ <
√

1

16

ε

X̄
‖x̂(0)‖ , (11)

where x̂ is given by x̂ (k + 1) =
(
Âf̂k(θ̂o) + B̂f̂k(θ̂o)F̂f̂k(θ̂o)

)
x̂(k).

Let û∗θo,x0
denote the optimal control due to initial conditions θo, x (0) for

the system with parameters
(
Â, B̂, Ĉ, D̂, f̂

)
. Define u∗θo,x(0) similarly, but for

the system with parameters (A,B,C,D, f). Define

UN :=

{
u ∈ l2[0, N ] : ‖u‖2[0,N ] ≤

X̄
1
2 infθ∈K σ (D′θDθ)

}
,

where σ (D′θDθ) is the minimum singular value of D′θDθ. Therefore, there is a

δ3 > 0 such that if dC1

(
f, f̂
)

+dC0

(
C, Ĉ

)
+dC0

(
D, D̂

)
+H

(
S, Ŝ

)
< δ3, then{

û∗θo,x(0) (k) : k ≤ N
}
∈ UN . Note that UN is compact since N <∞, where N

is such that equation (11) holds.



Let xu,θ0 (k + 1) = Afk(θo)xû∗θ0,xo
(k + 1) + Bfk(θo)u(k), and define x̂u,θ̂o

similarly. Since N < ∞, if we fix (A,B, f), u ∈ UN , θo ∈ S and x (0) with

‖x (0)‖ ≤ 1, then xu,θo (N + 1)− x̂u,θ̂o (N + 1) is continuous in Â, B̂, f̂ and θ̂o

and since UN , K and {x (0) : ‖x (0)‖ ≤ 1} are compact, there exists a δ4 > 0,

which can be taken independently of u, θo and x (0) such that if dC0

(
f, f̂
)

+

dC0

(
A, Â

)
+ dC0

(
B, B̂

)
+H

(
S, Ŝ

)
< δ4, then

∥∥∥xu,θ(θ̂o) (N + 1)− xu,θ̂o (N + 1)
∥∥∥ <√ 1

16

ε

X̄
. (12)

Therefore, if dC1

(
f, f̂
)

+dC0

(
C, Ĉ

)
+dC0

(
D, D̂

)
+H

(
S, Ŝ

)
< min (δ0, δ1, δ2, δ3, δ4),

and ‖x (0)‖ ≤ 1, then equations (11) and (12) yield,

X̄

∥∥∥∥xû∗
θ̂,x0

,θ(θ̂o) (N + 1)

∥∥∥∥2

= X̄

∥∥∥∥xû∗
θ̂,x0

,θ(θ̂o) (N + 1)− x̂û∗
θ̂,x0

,θ̂o
(N + 1) + x̂û∗

θ̂,x0
,θ̂o

(N + 1)

∥∥∥∥2

=

X̄

∥∥∥∥xû∗
θ̂,x0

,θ(θ̂o) (N + 1)− x̂û∗
θ̂,x0

,θ̂o
(N + 1)

∥∥∥∥2

+ X̄

∥∥∥∥x̂û∗
θ̂,x0

,θ̂o
(N + 1)

∥∥∥∥2

(13)

+ 2X̄

(
xû∗

θ̂,x0
,θ(θ̂o) (N + 1)− x̂û∗

θ̂,x0
,θ̂o

(N + 1)

)′
x̂û∗

θ̂,x0
,θ̂o

(N + 1) ≤ ε

4

Likewise,

X̄

∥∥∥∥x̂u∗
θ̂,x0

,θ(θ̂o) (N + 1)

∥∥∥∥2

≤ ε

4
(14)

Note that xû∗
θ̂,x0

,θ(θ̂o) (N + 1) is the state after the non-optimal control û∗
θ(θ̂o),x(0)

is applied; the optimal control is u∗
θ̂o,x(0)

.

Define

x(0)′Wf (u,N, θo)x(0) :=

N∑
k=0

x(k)C ′fk(θo)Cfk(θo)x(k) + u(k)D′fk(θo)Dfk(θo)u(k)

(15)

where x(k + 1) = Afk(θo)x(k) +Bfk(θo)u(k) and x (0) = x (0) .

Define x̂(0)′Ŵf̂ (û, N, θ̂o)x̂(0) similarly. Since N < ∞, x(0)′Wf (u,N, θ)x(0) −

x̂(0)′Ŵf̂

(
u,N, θ̂

)
x̂(0) is continuous in

(
Â, B̂, Ĉ, D̂, f̂

)
and θ̂. Furthermore,

since UN and K are compact, if ‖x (0)‖ ≤ 1, there exists a δ5 > 0 such that if



dC1

(
f, f̂
)

+ dC0

(
C, Ĉ

)
+ dC0

(
D, D̂

)
+H

(
S, Ŝ

)
< δ5, then∥∥∥x(0)′Wf

(
u,N, θ

(
θ̂o

))
x(0)− x(0)′Ŵf̂

(
u,N, θ̂o

)
x(0)

∥∥∥ < ε

2
for all u ∈ UN and θ̂o ∈ Ŝ.

(16)

Let dC1

(
f, f̂
)

+ dC0

(
C, Ĉ

)
+ dC0

(
D, D̂

)
+ H

(
S, Ŝ

)
< min (δ2, δ4, δ5).

Then, for ‖x (0)‖ ≤ 1, inequalities (13) and (16) yield,

x (0)Xθ(θ̂o)x (0)− x (0) X̂θ̂o
x (0)

≤ x (0)Wf

(
û∗
θ̂o,x(0)

, N, θ
(
θ̂o

))
x (0) + xû∗

θ̂o,x(0)
,θ(θ̂o) (N + 1)

′
(
XfN+1(θ(θ̂o))

)
xû∗

θ̂o,x(0)
,θ(θ̂o) (N + 1)

− x (0) Ŵf̂

(
û∗
θ̂o,x(0)

, N, θ̂o

)
x (0)− xû∗

θ̂o,x(0)
,θ̂o

(N + 1)
′
(
X̂f̂N+1(θ̂o)

)
xû∗

θ̂o,x(0)
,θ̂o

(N + 1)

< ε.

Similarly, (14) and (16) yield

x (0) X̂θ̂o
x (0)− x (0)Xθ(θ̂o)x (0) < ε.

Therefore, if ‖x (0)‖ ≤ 1, then supθ̂∈Ŝ

∣∣∣x(0)X
(
θ
(
θ̂o

))
x(0)− x(0)X̂

(
θ̂o

)
x(0)

∣∣∣ <
ε. Similarly, it can be shown that supθ∈S

∣∣∣x(0)X (θ)x(0)− x(0)X̂
(
θ̂ (θ)

)
x(0)

∣∣∣ <
ε , and thus dS,Ŝ

(
X, X̂

)
< ε.�

Next we weaken the assumptions in Proposition 1. First, we examine the

case where f̂ ∈ LC with dLC

(
f, f̂
)
< ε, and find that the above results still

hold. Then the case where f̂ ∈ C0 with dC0

(
f, f̂
)
< ε is examined. It is

shown that such system can be made stable, but not necessarily asymptotically

stable.

Proposition 3 Let f ∈ C1 induce a stabilizable LDV. Then there exists an

ε > 0 such that if f̂ ∈ LC and dLC

(
f, f̂

)
+ H

(
S, Ŝ

)
< δ, then the LDV

controller induced by f locally uniformly exponentially stabilizes f̂ .



Proof.Since f ∈ C1, defining the tracking error x̂ (k) = ϕ̂ (k + 1) −

θ̂ (k + 1), we see that error dynamics are given by

ϕ̂(k + 1)− θ̂ (k + 1) = f̂(ϕ̂(k), û(k))− f̂
(
θ̂(k), 0

)
(17)

= Af̂k(θ̂o)x̂(k) +Bf̂k(θ̂o)û(k) + η(x̂(k), û(k), θ̂(k))

+
(
f̂(ϕ̂(k), û(k))− f̂

(
θ̂(k), 0

)
−
(
f(ϕ̂(k), û(k))− f

(
θ̂(k)

)))
,

where η(x̂(k), û(k), θ̂(k)) accounts for the nonlinear parts neglected in linear

approximation. By Lemma 1 it is clear that if dLC

(
f, f̂
)

+ H
(
S, Ŝ

)
is small

enough, the LDV system
(
Â+ B̂F̃ , f

)
is uniformly exponetially stable. It can

be shown (see [2]) that η(x, u, θ̂) can be decomposed as

η(x, u, θ̂) = ηx(x, u, θ̂)x+ ηu(x, u, θ̂)u

and that
∥∥∥ηx(x, u, θ̂) + ηu(x, u, θ̂)Fθ(θ̂)

∥∥∥→ 0 as x̄, ū→ 0. Define ρ (x, Fθx, θ) ∈

Rn×n+m by

ρ (x, Fθx, θ)i,j :=

(
f̂i(x+ θ, Fθx)− f̂i (θ, 0)− (fi (x+ θ, Fθx)− fi (θ, 0))

)
‖x‖2 + ‖Fθx‖2

·

 xj for j ≤ n

(Fθx)j−n for n < j < n+m
.

Thus,

ρ
(
x, Fθ(θ̂)x, θ̂

) x

Fθ(θ̂)x

 = f̂
(
x+ θ̂, Fθ(θ̂)x

)
−f̂
(
θ̂, 0
)
−
(
f
(
x+ θ̂, Fθ(θ̂)u

)
− f

(
θ̂
))

(18)

and sup‖x‖<x̄,

∥∥∥ρ(x, Fθ(θ̂)x, θ̂)∥∥∥ ≤ √ndLC (f, f̂). Therefore, we see that (17)

can be written as a uniformly exponetially stable linear system, with a pertu-

bation that can be bounded by a O
(
x2
)

function. It is well know that such

systems are asymptoically stable. [13]).�

If we only restrict dC0

(
f, f̂
)
< ε then asymptotic stability cannot be

guaranteed. For example, consider the dynamical system f (ϕ, u) = 1
2ϕ. Then f

is globally uniformly exponentially stable with |ϕ(k)− θ(k)| ≤ 1
2

k |ϕ(0)− θ(0)|.



Define f̂(ϕ, u) = 1
2ϕ + ε sin

(
ϕ
ε
π
6

)
. Then dC0

(
f, f̂

)
≤ ε and f̂ has three fixed

points corresponding to the solutions of sin
(
ϕ
ε
π
6

)
= ϕ

2ε . Hence, ±ε are stable

fixed points and zero is an unstable fixed point. Thus, if ϕ > 0 and θ < 0,

then |ϕ(k)− θ(k)| 9 0. However, lim sup |ϕ(k)− θ(k)| < 2ε. Therefore, f̂

is stable, but not asymptotically stable, instead asymptotically ϕ (k) − θ (k)

approaches a small set around zero. This form of stability is often referred to as

asymptotically bounded and the attractive set that ϕ (k)− θ (k) enters is called

a residual set.

Proposition 4 Let f ∈ C1 be LDV stabilizable via the feedback F . Then there

exists an ε > 0 such that if dC0

(
f, f̂
)

+H
(
S, Ŝ

)
< ε, then the feedback F makes

f̂ asymptotically bounded, with the diameter of the residual set continuous in

ε.

Proof.Since (A+BF, f) is uniformly exponentially stable, Lemma 1 im-

plies that there exists an ε > 0 such that
(
A+BF̃ , f̂

)
is uniformly exponen-

tially stable if dC0

(
f, f̂
)

+ H
(
S, Ŝ

)
< ε, where F̃θ̂ := Fθ(θ̂). Consider the

system

x(k + 1) (19)

= f
(
x(k) + f̂k (θo) , Fθ(f̂k(θo))x (k)

)
− f

(
f̂k (θo) , 0

)
=
(
Af̂(θo) +Bf̂(θo)Fθ(f̂(θo))

)
x (k)

+ ηx

(
x (k) , Fθ(f̂k(θ))x̂ (k) , f̂k (θo)

)
x (k) + ηu

(
x (k) , Fθ(f̂k(θ))x (k) , f̂k (θo)

)
Fθ(f̂k(θo))x(k).

where ηx and ηu account for the error due to linearization. Since (A+BF, f)

is uniformly exponentially stable, Lemma 1, ‖ηx‖ and ‖ηu‖ → 0 and x and u go

to zero, and the fact that uniformly exponentially stable linear system remain

stable under small gain perturbation, we conclude that the nonlinear system



(19 ) is locally uniformly stable. Now, consider the system

ϕ̂(k + 1)− θ̂(k + 1) = f̂
(
ϕ̂(k), Fθ(θ̂(k))

(
ϕ̂(k)− θ̂(k)

))
− f̂

(
θ̂(k), 0

)
(20)

= f
(
ϕ̂(k), Fθ(θ̂(k))

(
ϕ̂(k)− θ̂(k)

))
− f

(
θ̂(k), 0

)
+
(
f̂
(
ϕ̂(k), Fθ(θ̂(k))

(
ϕ̂(k)− θ̂(k)

))
− f̂

(
θ̂(k), 0

)
−f
(
ϕ̂(k), Fθ(θ̂(k))

(
ϕ̂(k)− θ̂(k)

))
− f

(
θ̂(k), 0

))
.

We see that (20) is a locally uniformly stable nonlinear system with a extraanous

noise input. It is not difficult to show that such systems are asymptotically

bounded �

Remark 3 Typically one assumes that control methods of nonlinear maps

based on linear approximation are only applicable to differentiable maps. How-

ever, the last two propositions show that this assumption is not necessary.

5 Structural Stability of the Optimal LDV Con-

troller of the Hénon Map

The Hénon map is defined as

ϕ (k + 1) =

 1− (a+ u (k)) (ϕ1 (k))
2

+ ϕ2 (k)

bϕ1 (k)

 .
The LDV approximation of this system is:

x (k + 1) =

 −2aθ1 (k) 1

b 0

x (k)+

 (ϕ1 (k))
2

0

u (k) , θ (k + 1) = f (θ (k) , 0) .

The Hénon map has been studied for a wide variety of parameters. It was first

introduced with a = 1.4 and b = 0.3 [5]. With these parameters it is not yet

known if this system is chaotic. However, computer simulations show that the

system has an attractor. An LDV controller for the Hénon map was found

in [2]. Since the Hénon map has an attractor [11], one can expect that the



Figure 1: Optimal quadratic cost versus system perturbation

attractor does not change for small perturbation of the parameters [9]. In this

case, Proposition 2 implies that the optimal controller should not change too

drastically for small changes in the parameters if the attractor does not change

to much. However, the Hénon map is not structurally stable. For example, if

a = 1.392 and b = 0.3, then the attractor S is non-trivial with aperiodic orbits

and the map appears to be chaotic. However, there are parameters â arbitrarily

close to 1.392 such that the attractor is simply an infinite set of periodic orbits

[10]. Thus, for arbitrarily small changes in the parameters, the dynamics of

the system drastically change. However, according the results presented here,

for small changes in the parameters, the closed loop system will remain stable

and the optimal controller should only slightly vary. Figure 1 confirms this fact

and shows log
(
dC1

(
f, f̂
)

+H
(
S, Ŝ

))
versus log

(
dS,Ŝ

(
X, X̂

))
where X is

the solution to the functional algebraic Riccati equation (4) with a = 1.4 and

b = 0.3 and X̂ is the solution for other values of a and b.



6 Conclusion

It has been shown that LDV systems are well behaved under small pertur-

bations of the nonlinear subsystem. In particular, for C1 or Lipschitz pertur-

bations, a stabilized system remains stable. For continuous perturbations, the

system merely remains ultimately bounded. However, the size of the residual set

is continuous in the perturbation. Therefore, it is not required to have perfect

knowledge of the nonlinear system when designing the controller. Indeed, the

actual system may not even be differentiable and yet methods based on linear

approximation will be successful. An important result is that in the case of

C1 perturbations the optimal LDV controller is continuous in the perturbation.

This feature of LDV controllers is utilized in efficient schemes to compute the

solution to the functional algebraic Riccati equation [2].
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