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Abstract— In this paper, we explore a new approach to
optimization of cost or utility functions defined over a surface,
a manifold, or its simplicial decomposition. In the era of Big
Data, heterogeneous signal samples sometimes embed with less
distortion in a lower dimensional space if the embedding space
is a manifold rather than the traditional Euclidean space. If a
utility function is defined over the data and if there is a need
to identify significant events defined by extreme values of the
utility function, we are faced with the problem of identifying
the extreme minima/maxima points of the cost/utility function
defined over the manifold or its triangulation. The fundamental
idea developed here is to observe that at the extreme points the
graph of the utility function has extreme curvature. Accord-
ingly, the celebrated Ricci/Yamabe flow for uniformization of
the curvature of the graph will show significant “curvature
transport” in the vicinity of the extreme values, hence allowing
their rapid identification, obviating the classical sorting. The
novel theoretical contribution is to accelerate the process by
compounding the Laplace operator.

I. INTRODUCTION

In convex optimization, much effort has been devoted
to the problem of accelerating the process of reaching the
minimum (maximum) of some cost (utility) function f . If
f is defined over En, the best example is provided by
Nesterov’s accelerated gradient descent, allowing the conver-
gence rate to increase from O(1/t) to O(1/t2). Already over
En, the landscape—the graph of f—can be very challenging,
with sharp peaks and narrow valleys [21, Fig. 3]. If f is
defined over a (greedy hyperbolic embedding) manifold, a
data analytics simplicial complex, or a data stream graph,
the problem becomes even more challenging.

In this paper, we precisely exploit the challenging nature of
the landscape, by observing that f has its minima (maxima)
encoded in the curvature of the graph as Hessf (x∗) � 0
(Hessf (x∗) � 0) and that an algorithm sensitive to the
curvature should efficiently single out the minima (maxima).
This algorithm is the Yamabe curvature uniformization run-
ning on the graph of f . This algorithm treats curvature as
mass, to be moved in the Monge-Kantorovic sense, to level
off the curvature landscape, a process that singles out the
maxima (minima) as areas of maximum mass transport.

In the case of a simplicial complex, or surface triangula-
tion, with vertex set {vi}Ni=1 (or a graph with N vertices)
this process must be confronted with the “brutal” maxi f(vi),
which classically requires Ω(N) queries and O(

√
N) quan-

tum queries [1]. (The qsort requires Ω(N log2(N)) steps
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TABLE I
FUNDAMENTAL COMBINATORIAL TOPOLOGY STRUCTURES

combinatorial notation
V = {vi}Ni=1 vertex set

E = {vivj} ⊆ V × V edge set
G = ((V, E), w) graph with w : E → R>0

L Laplacian of graph G
Σ = {σjik = vjvivk} ⊂ V × V × V 2-simplex set subject to

rules of simplicial topology
T (V, E,Σ) triangulation of surface

K(vi) curvature of T at vi
K̃(vi) curvature of graph of f at vi

for both classical and quantum sorting [14].) Here, the
sorting is obviated by having each vertex of the combinatorial
manifold monitor its curvature rate of change and returning
the vertex that first reached a preset rate threshold (Algo-
rithm 1). To reach the return even faster, it is essential
to accelerate the curvature uniformization—to make the
curvature flow faster—by compounding the Laplace operator
of a heat equation formulation of the Yamabe flow. This has
the effect that a very short amount of integration time of the
Yamabe flow is enough for one of the vertices of the manifold
to reach the threshold, singling out a minimum (maximum).

A comparison can be drawn with the way Adiabatic
Quantum Computations (AQC) avoid sorting by identifying
a (minimum energy) curve that terminates at the minimum.
Here, the situation is somehow time-reversed. As soon as the
flow algorithm starts, we identify a curve by its maximal rate
of change, a curve that itself identifies the max (min).

A. Rough paper outline

The paper is divided into two parts: The first part
(Secs. III, IV) deals with optimization over continuous geom-
etry domains, mostly dealing with the Riemannian geometry
definition of curvature; the second part (Secs. V, VI) deals
with optimization over discrete geometry domains, more
specifically triangulations of compact surfaces, where the
notion of curvature is considered in terms of Alexandrov
angles.

The commonality between the two parts is secured by the
Yamabe flow, where the crucial transition from continuous to
combinatorial geometry was developed in a series of papers
by Feng Luo [17], [18], [7].

The fundamental combinatorial structures are outlined in
Table I-A.

B. Some motivation

Contrary to traditional wisdom, several interesting opti-
mization problems involve non-convex functions. One of



our motivations is quantum tomography and quantum con-
trol [16], [21], where optimization of non-convex functions is
at the heart of several problems. One example is to determine
the optimal strategy to estimate an unknown phase shift in
a Hamiltonian. Here optimization over adaptive strategies
where successive measurements depend on the outcomes of
the previous ones, can lead to a non-convex optimization
problem [12].

II. THE “EARTH MOVING” AND HEAT DIFFUSION
METAPHORS

The Earth Moving concept traces back to Monge and was
later revived by Kantorovich. Assume f (x, y) is the height
of the sand on a landscape and let us visualize the process
of moving sand from the hill tops to the valleys. Assume
we are able to register the rate of sand removal from the hill
tops to the valleys. The guiding idea is that the point that has
received (given up) sand at the highest rate to level off the
landscape is the minimum (maximum). However, here, we
are going one step further than this classical idea and argue
that the process can be accelerated by moving curvature
instead of earth of the landscape.

Probably at this juncture the heat diffusion provides a
better metaphor. Clearly, the point of maximum temperature
could be identified at the one shedding “calories” at the
highest rate, having the largest heat flux, something that can
be identified very early on in the course of the heat diffusion
process. As we show in Secs. III-C, III-D, taking the spatial
derivative of the temperature yields the curvature of the
temperature profile. This explains at least partially why the
(Ollivier-Ricci) curvature appears to be the correct network
measure to anticipate how efficiently the Heat Diffusion
protocol would run on such network [3], [22], [23].

III. SIMPLEST EXAMPLES OF 1-DIMENSIONAL
OPTIMIZATION BY CURVATURE TRANSPORT

A. Function on unit circle, graph plotted on cylinder

Consider a twice-differentiable function f : S1 → R,
θ 7→ f (θ), defined on the unit circle together with the
Haar measure µ (dθ) = dθ/2π. The graph of f could be
thought of as plotted on the cylinder S1 × R. Nevertheless,
it could also be plotted on the “flat cylinder” [0, 2π] × R,
with the convention that f (0,1,2)(0) = f (0,1,2)(2π). On the
flat cylinder, the arc length is ds =

√
1 + f ′(θ)2dθ and

the curvature of the graph, defined as the inverse radius
of the osculating circle at (θ, f(θ)), is κ(θ) = f ′′(θ)/(1 +
f ′(θ)2)3/2. Our objective is to locate the minima/maxima by
curvature uniformization. A first question is to what constant
value should the curvature be uniformized? This constant
value is precisely a topological invariant and is revealed by
the total curvature:∮

κ(θ)ds =

∫ 2π

0

df ′(θ)

1 + f ′(θ)2
= [arc tanf ′(θ)]2π0 = 0.

Consider now a function with its curvature κ(θ) varying
along the unit circle, together with the problem of finding
its minimum. One can easily visualize a deformation of the

graph of f on the cylinder S1×R to a minimal length curve
on the cylinder [8], but this deformation has to be smooth.
This is formalized in the concept of isotopy from f to the
constant function 0 on the unit circle. To be precise, this
isotopy is a smooth map F : S1×[0, 1]→ R×[0, 1], (θ, t)→
(Ft(θ), t) such that Ft is an embedding and F0 = f and
F1 = 0. Under such process, the minima of f are shedding
their curvatures and the maxima are receiving them, in a
process called curvature transport. Focusing on the transport,
rather than the deformation, the former could take the form
of several popular processes. Here in Sec. III-C we propose
a heat diffusion transport process, although other transport
processes, e.g., the gradient flow of the Wasserstein distance
between the current curvature measure and the vanishing one,
could be considered.

B. Function on unit circle, graph plotted on flat cylinder

Instead of plotting the graph of f : S1 → R in the cylinder
we could plot it radially outside the circle. If κ is now
the curvature of the graph of the function f , the invariant
becomes

∮
κ(s)ds = 2π. By the Whitney-Graustein theorem,

it is an isotopy invariant.

C. Heat equation formulation of curvature transport

To begin in a simple context, consider the function f :
R → R. Clearly, f ′′(x) > 0 indicates a local minimum
while f ′′(x) < 0 indicates a local maximum. At this stage,
we could envision the Heat Equation algorithm

∂F (x, t)

∂t
=
∂2F (x, t)

∂x2
, F (x, 0) = f(x),

with asymptotic solution F (x,∞) = constant. This equa-
tion indirectly smooths over the curvature by leveling off
the values of f . Clearly, at t = 0, the narrow valleys have
large F ′′ := ∂2F

∂x2 � 0 and hence the rate of change will be
very high and easily registrable. The preceding can easily be
generalized to the classical Laplacian of E3 in the RHS, even
the Laplace Beltrami operator on a Riemannian manifold.

D. Accelerating the heat equation

As a prelude to the Hamilton-Ricci flow on a surface
(Eq. (2)) or the Yamabe flow (Eq. (4)) on a surface triangu-
lation [17], we go one step further: instead of uniformizing
the level of the function f we uniformize its curvature, and
we run the heat equation on the curvature:

∂

∂t

∂2F (x, t)

∂x2
=

∂2

∂x2
∂2F (x, t)

∂x2
, (1)

under the assumption that F ′′ is an approximation of the
curvature F ′′/(1+F ′2)3/2 if F ′ is small. Observe that in the
RHS of Eq. (1) we have compounded the Laplace operator.
Of course, one might question why this latter equation
involving the biharmonic operator ∂4

∂x4 should do any better
than the simplified equation involving the harmonic operator
∂2

∂x2 . The issue is that, if a function has a minimum in
a sharp valley, as we already know its second derivative
F ′′ := ∂2F

∂x2 is large, but its 4th, 6th, 8th etc. derivatives



could be even larger, hence could yield a faster and faster
rise of the function at its original minimum point.

As an illustration, consider the usual Gauss distribution

g (x) =
1√

2πσ2
e−

x2

2σ2 .

Clearly, g′′(0) = −1/(
√

2πσ3); however, we could make
the maximum even sharper by taking the even order nth
derivatives at the maximum point x = 0:

dng(0)

dxn
= (−1)n/2

1√
2π

(n− 1)!!

σn+1
.

The drawback is that if we look at the function dng(x)
dxn it

shows some additional oscillations in the neighborhood of
x = 0; however, the ratio of the heights of those oscillations
over the height of the maximum oscillation at x = 0 goes to
zero as σ ↓ 0.

Clearly, the algorithm reveals its full power in those
problems where the landscape has very narrow “valleys”/very
sharp “peaks.” These are precisely the local minima/maxima
that are difficult to capture, for the step of a gradient
algorithm might have to be taken unreasonably small, re-
sulting in an unreasonably large amount of time to reach
the minimum/maximum. The proposed variant of the Earth
Moving algorithm is based on the obvious fact that, if the
valley is really narrow, it would rise very quickly if sand is
moved in.

E. Jet local structure

It remains to define those functions that benefit from taking
higher even-order derivatives in the RHS of the heat related
equations. Obviously, this is an issue of the local structure
of the function f around the singularity. Recall that the k-jet
of a Ck function f at a point x∗, jkf(x∗), is the collections
of all derivatives of f up to order k at x∗. The infinite
jet j∞f(x∗) of a C∞ function is the set of all derivatives
of all orders [9]. The nontrivial fact is that, even if the
sequence in j∞f(x∗) grows without bound, there still exists
a smooth map germ whose derivatives match the coefficients
in j∞f(x∗) (see [15, Th. D.9].)

Definition 1: A function f ∈ C∞ has a ∞-sharp mini-
mum at x∗ if the sequence of coefficients in its jet j∞f(x∗)
starts at 0 = f ′(x∗) and then grows without bound on
the even components. f ∈ Ck has a k-sharp minimum if
the restricted sequence in jkf(x∗) starts at 0 and is then
monotone increasing on the even components.

F. Optimization under time-varying landscape

Under some conditions, this algorithm can be made adap-
tive under deformation of the cost/utility function f , provided
the algorithm is accelerated consistently with the speed
of the varying landscape. The problem is that, since the
algorithm relies on the singularity of the cost/utility function,
this adaptation would work only if the singularity structure
of the function survives the deformation. This is the concept
of stability of maps [10]:

Definition 2: Consider a smooth function f : M → R
defined over a (compact) smooth manifold M . The function
f ∈ C∞(M,R) is said to be stable if for any sufficiently
small deformation in the Whitney (weak or compact-open)
topology f̃ ∈ C∞(M,R) of f , there are maps dx, dy , smooth
together with their inverses such that f̃ = dy ◦ f ◦ dx.

Lemma 1 ([6]): The set of smooth functions defined
over a compact smooth manifold M has a stratification
C∞(M,R) = F 0 t F 1 t · · · such that F i has codimension
i and F 0 is the subset of Morse functions with distinct
critical values. The latter are stable; hence stable functions
are everywhere dense. �
As a corollary, generically, the singularity structure is pre-
served.

The problem is that we accelerate the algorithm by sub-
jecting f to the Laplace operator and it turns out that under
this process the Morse property of f might be lost:

Counter-Example 1: Consider the Morse function f(x) =
x2 +

∑∞
k=1 x

4k defined for x ∈ (−1,+1) and observe that(
∂/∂2

)2
f(x) = 24 + (8!/4!)x4 + higher order terms 1. The

latter is not Morse as the x = 0 singularity has codimension
2. Hence, using the notation of Lemma 1, f ∈ F 2.
However, this negative result is by far compensated by the
remarkable property that the heat equation “discovers all by
itself minimal [F 0] Morse functions 2:”

Lemma 2 ([19], [20]): Let M be a torus or a sphere.
Then for some generic initial condition f(·, 0), there exists
a T such that, for t > T , the solution of the heat equation
f(·, t) ∈ F 0.

IV. HAMILTON’S RICCI FLOW ON GRAPH OF FUNCTION
DEFINED ON SURFACE

Here we redo on a surface what we did in Sec. III-A on
the circle.

A. Graph of a function on surface

Algorithm (1) is nothing other than the Ricci flow to
uniformize the curvature of a manifold (or graph, or sim-
plicial complex) subject to the global Euler characteristic
invariant. Consider for the time-being a (compact, oriented)
surface S with uniform curvature K together with a distance
d (·, ·) and a real-valued function f : S → R. Let (x, y)
be local coordinates of S in a coordinate patch and let ds2

be the intrinsic geometric Gauss metric. Consider the vector
bundle (E, p, S) over S ⊂ E3 where the bundle projection
p : E → S is the orthogonal projection onto S. Consider the
tubular neighborhood [13, p. 109] of S defined by (E, p, S).
In this tubular neighborhood, define the surface S̃ with local
coordinates (x, y, εf(x, y)) in the same patch as that of S.
Note the scaling factor ε to avoid the emergence of swallow
tail singularities [2, Fig. 9] in the surface S̃.

Lemma 3: Let R1(x, y) ≤ R2(x, y) be the principal
curvature radii of the surface S at (x, y). Then S̃ has no
swallow tail singularities in the local patch of (x, y) if and
only if εf(x, y) < R1(x, y). �

1Many thanks to Prof. F. Bonahon for constructing this counterexample.
2Quoted verbatim from [19].



From here on, it is assumed the condition of Lemma 3
holds. The surface S̃ receives from S a Riemannian (or
Gauss) metric

ds̃2 = ds2+ε2
(

(f ′x)
2
dx2 +

(
f ′y
)2
dy2
)

= g̃xxdx
2+g̃yydy

2.

The integration of ds̃ along a geodesic yields the distance
d̃. The nonuniformity of the curvature of the surface S̃
indicates the presence of minima and maxima. The action of
uniformizing the curvature would reveal the dips, the valleys,
the tops of the graph S̃ of the function f defined on the
surface S.

B. Hamilton’s Ricci flow

We consider Hamilton’s formulation [11] of the Ricci flow
since it provides the generalization the closest in spirit to
Eq. (1). Let K̃ be the scalar curvature of S̃. Close to the
original Ricci flow, the Riemannian metric g̃ is updated as
follows:

∂g̃

∂t
= −(K̃ − K̃av)g̃,

where K̃av =
∫
S̃
K̃dA∫
S̃
dA

. For aesthetic reason, the flow is
reformulated in terms of the evolution of the curvature

∂K̃

∂t
= ∆K̃ + K̃(K̃ − K̃av), (2)

where ∆ is the Laplace-Beltrami operator. This continuous
geometry equation does not quite compare with the heat
equation (1) on the curvature, unless K̃ ≈ K̃av. However, as
we shall soon see, the connection becomes much clearer on
a triangulated surface.

C. Jet space

We follow up on Sec. III-E with the idea that the function
f might be imprecisely known. The jet space [5] is defined as
Jk(S,R) = {jkf(x) : f ∈ Ck(S,R), x ∈ S}. The infinite
jet space J∞(S,R) is defined as the inverse limit of the
Jk(S,R)’s. The jet space is a manifold. The acceleration of
the process applies to the subset of Jk or J∞ of jets with
their coefficients growing.

V. YAMABE FLOW ON GRAPH OF FUNCTION DEFINED ON
TRIANGULATION OF SURFACE

A. Curvature of surface triangulation

Let Tw (V, E ,Σ) be a triangulation of the compact, ori-
ented surface S, endowed with a weight w : E → R>0,
which itself yields a metric d : V × V → R≥0. The local
curvature at a vertex vi of the triangulation is defined via
angles at vi in all triangles sharing vi as apex. The angle
θ
(
jîk
)

at vertex vi in the triangle vjvivk is defined via the
cosine law as

θ
(
jîk
)

= arccos

(
d(vi, vj)

2 + d(vi, vk)2 − d(vj , vk)2

2d(vi, vj)d(vi, vk)

)
.

The curvature at vertex vi is defined as

K(vi) = 2π −
∑

triangles vjvivk

θ(jîk),

where the sum is extended to all triangles having vi as apex.
The combinatorial Gauss-Bonnet theorem for the PL met-

ric [17] asserts that
∑N
i=1K(vi) = 2πχ(S), where χ(S) =

V −E+F , where V,E, F are the number of vertices, edges,
and faces, resp., regardless of the triangulation, which can
be taken arbitrarily.

Clearly the preceding definitions apply to the triangulation
T̃ of the surface S̃. The following lemma connects the
triangulation T of S with the triangulation T̃ of S̃.

Lemma 4: Let S be a compact, oriented surface. Under
the condition of Lemma 3, χ(S) = χ(S̃).

Proof: Since χ is an invariant independent of the
triangulation, take an arbitrary triangulation T of S. Under
the condition of Lemma 3, the orthogonal projection p⊥ :
S → S̃ is one to one. Hence project T orthogonally to S̃ to
obtain the triangulation T̃ of S̃. Combinatorially, T̃ and T are
the same triangulation; hence, χ(S) = χ(T ) = V −E+F =
Ṽ − Ẽ + F̃ = χ(T̃ ) = χ(S̃).

B. Curvature transport

The uniformization of the curvature of S̃ is done by the
Yamabe flow [17, Eq. 1.3] on the triangulation T̃ of the
surface S̃:

du(vi, t)

dt
= −

(
K̃u(t) (vi)− K̃av

)
u (vi, t) , u(vi, 0) = 1,

(3)
where K̃u(t) (vi) is the curvature of the triangulation T̃ of S̃
at vertex vi, after changing the metric in a conformal manner
via

d̃u(t)(vi, vj) = u (vi, t) d̃ (vi, vj)u (vj , t)

and K̃av =
∑N
i=1 K̃(vi)/N = 2πχ(T )/N is the average of

the curvature of the triangulation of T̃ with its invariance
derived from the combinatorial Gauss-Bonnet theorem. The
evolution of the curvature K̃u(t) under the conformal trans-
formation u follows the heat equation:

dK̃u(t)

dt
= L

(
K̃u(t)

)
, K̃u(0)(vi) = K̃(vi), (4)

where L denotes the “graph Laplacian,” defined as

Lmn =
∑
j,k 6=m

∂θu (jm̂k)

∂un
un, m, n ∈ {i, j, k},

where θu (jm̂k) denote the angle θ at vertex vm in the
triangle vjvmvk subject to the conformally changed metric.
The terminology of graph Laplacian is justified by the
following result:

Lemma 5: The matrix L is symmetric negatively semi-
definite; moreover, Lm 6=n ≥ 0 and Lnn = −

∑
m 6=n Lmn ≤

0. Moreover, the upper triangular part of the 3×3 submatrix
of L coresponding to the triangle vivjvk reads

L =


? cot θu

(
ik̂j
)

cot θu

(
iĵk
)

? ? cot θu

(
kîj
)

? ? ?





Proof: The first part is available in [17, Th. 2.1]. The
second part is direct from the same theorem after some
trigonometric manipulations in the triangle vivjvk.
Putting the lemma in other words, L is the graph Lapla-
cian of (V, E), but subject to the new metric D(vi, vj) =

tan θu

(
ik̂j
)

, D(vi, vk) = tan θu

(
iĵk
)

, D(vj , vk) =

tan θu

(
jîk
)

.
Since L is a genuine graph Laplacian, Eq. (4) is the heat

equation on a graph [3]. Hence, K̃u(t) (vi) can be thought
of as the temperature at the vertices vi at time t and the
corresponding heat flux is the “Earth Moving.”

Equation (3) for the conformal factors apparently requires
constant update on the curvature K̃u(t) (vi), which would be
prohibitively time-consuming. However, computation can be
cut down by running the heat equation (4) parallel to (3) to
get the curvature. Another possibility is to observe that (3)
is decentralized and hence the equations for the various vi’s
can be run in parallel.

C. Accelerated curvature transport

The Yamabe flow (4) is to be compared with the heat
equation (1) on the curvature F ′′ introduced in Sec. III-C
in the continuous geometry setup. But in order to follow
the line of thoughts of this section—especially, the idea of
using a biharmonic operator instead of a harmonic operator to
speed up the rate of change of the curvature at the extremal
points—one should attempt to define a “biharmonic graph
Laplacian,” if such concept exists at all. Attempting to define
the “biharmonic Laplacian” as L2 fails, as it is easily seen
that L2 does not qualify as a graph Laplacian in the sense
of Lemma 5 (

(
L2
)
m 6=n need not be nonnegative). Here we

follow Bauer et al [4]: We define the p-neighborhood graph
T̃ [p] of the triangulation T̃ , as having the same vertices as T̃
but with edge set defined as those pairs of vertices exactly
within p hops of each other. The p-neighborhood graph
Laplacian L[p] is defined on T̃ [p] for edge weights defined in
terms of the p-hop transition probabilities. Therefore, instead
of the traditional heat equation for the curvature transport,
we propose the “accelerated” heat equation:

dK̃u

dt
= L[p]

(
K̃u

)
.

The speed up afforded by the L[t] operator is related to its
spectrum. As shown by Bauer, Jost and Liu [4], the spectrum
of the normalized operator can be related to the Ollivier-Ricci
curvature.

The problem is that with an “efficient” triangulation (least
amount of vertices & edges), the p-neighborhood graph
might become trivial. One approach is to keep the same
triangulation but attempt to approximate the p-neighborhood
graph as follows: Let D = diag{|Lmm|} ≥ 0 be the
diagonal matrix of the absolute values of the diagonal entries
of the Laplacian. Define the normalized graph Laplacian
Lnorm = D−1/2LD−1/2. The pseudo-p-neighborhood graph
Laplacian is defined as

L(p) = Dp/2 (−I + (I + Lnorm)
p
)Dp/2 ≤ 0

Lemma 6: L(p) ≤ 0, the largest eigenvalue of L(p) van-
ishes, and

(
L(p)

)
m 6=n ≥ 0 (but the same Laplacian falls short

of achieving
∑
m 6=n

(
L(p)

)
mn

=
(
L(p))

)
nn

.)
Proof: Since, as shown in [4], −2 ≤ λi (Lnorm) ≤ 0,

it is easily seen by arguing on the eigenvalues that −I +
(I + Lnorm)

p ≤ 0, and the rest follows from the Silvester
law of inertia.

Despite the above shortcoming, the pseudo-accelerated
heat equation

dK̃u

dt
= L(p)

(
K̃u

)
(5)

allows for a substantial speed up of the procedure. More
precisely, at the very beginning of the algorithm, the rate of
change of the curvature at the extrema is much stronger, as
we show in Sec. VI-B.

VI. CODE AND NUMERICAL EXAMPLES

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 Compute arg maxi f(vi)

procedure CURVTRANS(f ,T (V, E ,Σ),w)
. w-weighted triangulation T (V, E ,Σ) of surface S

. triangulation T̃ of graph S̃ of f
. threshold hK < 0 for curvature

while 6 ∃i 3 dKi/dt < hk do
Run Eqs. (3)-(4)
if dKi∗/dt < hk then

return i∗ = arg maxi f(vi)
end if

end while
end procedure

A. Example: icosahedron

To illustrate the utilization of the Yamabe flow in the hunt
for maxima/minima of functions defined over triangulations
of surfaces, we consider a regular icosahedron (one of the
Platonic solids) together with a function f defined over its
vertices. The icosahedron has 12 vertices, 30 edges and 20
faces, that is, an Euler characteristics χ = F − E + V = 2,
which endows it, via the discrete Gauss-Bonnet theorem,
with an average curvature K̃av = π/3 (in radians). The
triangulation is shown in Figure 1. To fix the geometry,
the edge length is set to 1, which gives a radius of the
circumscribed sphere r = sin(2π/5) ≈ 0.9511.

To illustrate the idea of the optimization algorithm, we
define a somewhat trivial function

f = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10) .

We plot the function f along axes orthonormal to, and
pointing outside of, the circumscribed sphere at the selected
vertices. (There is no need for a scaling, since the swallow
tail singularities appear inside the convex disconnected com-
ponent of the space R2 broken by the surface.) We run the
Yamabe flow (3) and the resulting evolution of the conformal
factor is shown in Figure 2.



Fig. 1. Triangulation of the icosahedron along with its adjacency matrix.
Note that 1-3-10 is a face of the triangulation.

Fig. 2. Evolution of the conformal factors u (vi ) , i=1, . . . ,12, during
Yamabe flow. Observe that most significant activity at the 12th vertex in
terms of “curvature transport.” The evolution is the fastest at that vertex; it
is negative, meaning that there is a significant amount of curvature transport
away from that vertex, indicating a maximum at that point.

Consider another function defined on the same icosahe-
dron:

f = (−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−0.5) .

The results are shown in Figure 3.
Finally, we consider a less trivial function

f = (2, 5, 2, 5, 3, 5, 2, 5, 1, 4, 2, 10).

The results are shown in Figs. 4, 5, and 6.
For the same icosahedron and the same function f , the

results of the pseudo-accelerated case (Eq. 5) are shown in
Fig. 7. Clearly, early in the run of the algorithm, the rate
of change of the gain at the extremal vertex is significantly
larger than in the non-accelerated case.

B. Example: icosahedron: effect of acceleration
We evaluated the function f(x) = −(x2−8)2−(x−7)2+

500 in 12 points evenly spaced between −5 and 5 with local
maximum at x = 4, f(4) = 405.9 and global at x = 10,
f(10) = 480.9 on the same icosahedron. The significance
of the pseudo-accelerated heat equation on accelerating the
curvature flow and reducing the simulation running time in
the same function f(x) are shown in Figs. 8, 9 and 10.

Fig. 3. Evolution of conformal factors showing significant curvature
transport to the local minima.

Fig. 4. Evolution of conformal factors and curvatures showing significant
curvature transport away from the minimum at 12.

Fig. 5. Evolution of curvatures showing significant curvature transport
away from the maximum at 12.



Fig. 6. Rate of change of the curvatures showing maximum absolute rate
of change at vertex 12.

Fig. 7. Rate of change of the curvatures showing maximum absolute rate
of change at vertex 12 using the pseudo-accelerated heat equation (5)
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Fig. 8. Run time of the accelerated heat equation on the icosahedron of
f(x) = −(x2−8)2−(x−7)2+500. The convergence time of the equation
is significantly decreased for p ≥ 4.
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Fig. 9. Curvature evolution at vertex 10 where f(x) = −(x2 − 8)2 −
(x− 7)2 + 500 is maximum for p = 1 . . . 5.
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Fig. 10. Rate of change of curvature at vertex 10 where f(x) = −(x2 −
8)2 − (x − 7)2 + 500 is maximum for p = 1 . . . 5. The rate of change
of curvature converges faster to 0 for increasing values of p and the fastest
convergence is observed for p = 5.

C. Example: flat torus

We now consider a surface of zero curvature: the “flat
torus.” Its triangulation is shown in Figure 11.

The triangulation has 7 vertices, 14 faces, and 22 edges,
leading to χ = F − E + V = 0, hence vanishing curvature
and K̃av = 0.

The following function is defined over the flat torus:

f = (1.2 0.9 1.9 1.3 2.0 2.2 − 5.0) .

The behavior of the conformal factors for uniformizing the
curvature of the graph of the function f defined over the
two-torus is shown in Figure 12.



Fig. 11. “Economical” triangulation of a 2-torus, along with its “face
matrix,” where faces are displayed row-wise.

Fig. 12. Evolution of conformal weights to uniformize curvature of function
f defined on 2-torus, showing maximum curvature transport at minimum
point 7.

D. Connection with random walks

Let us define a random walker over the vertices of the
icosahedron. At every time instant, the walker has some
probability to leave its current vertex and proceed along some
edge. Many probability laws can be defined and displayed
in a Markov matrix. The unique feature that is suggested
here is to define the transition probabilities proportional to
the difference of curvature at the end vertices of the edge.

VII. CONCLUSION

We have introduced an optimization procedure that capi-
talizes on the sharp peaks & deep valleys of a challenging
landscape. The fundamental observation is that the minima &
maxima have a curvature signature, which the Ricci-Yamabe
flow is able to detect by curvature transport—nominally on a
triangulated surface—with the differential-geometric novelty
of acceleration of the curvature flow by compounding the
Laplace operator. Th next challenge is to dispense of the
surface structure and run the flow on the graph G. A faster
scalar curvature K(vi) could be defined as the average of

the Ollivier-Ricci or Forman-Ricci curvature along the edges
abutting vi, but whether a Yamabe flow can be defined on
such restricted structure is open.
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