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Abstract— Linear Dynamically Varying (LDV) systems are
a subset of Linear Parameter Varying (LPV) systems char-
acterized by parameters that are dynamically modeled. An
LDV system is, in most cases of practical interest, a family
of linearized approximations of a nonlinear dynamical system
indexed by the point around which the system is linearized.
LDV systems emerge quite naturally in a generic trajectory
tracking problem in which the tracking error is modeled as
an LDV system and the tracking controller is tuned so as to
minimize an LQ performance. This paper focuses on tracking
a natural trajectory of a nonlinear dynamical system running
over a Riemannian manifold. The associated LDV tracking
error system runs over the tangent bundle and LQ minimization
secures asymptotic tracking of the nonlinear trajectory. The
LDV tracking controller is provided by the solution to a partial
differential Riccati equation (PDRE), itself related to a linear
partial differential Hamiltonian operator. The index of the latter
operator reveals some ergodic properties of the reference flow.

I. INTRODUCTION
A. Problem Definition

Given a differentiable n-D manifold Θ, a dynamical
system over Θ [2] is defined, formally, by a vector field
f : Θ → TΘ. Here, we take f ∈ Γ∞(Θ, TΘ), the space of
smooth cross sections. The trajectories θθ0(t), θ0 ∈ Θ, t ≥ 0
are the integral curves of the vector field f , that is,

d

dt
θθ0(t) = f(θθ0(t)); θθ0(0) = θ0 (1)

Next to the above nominal dynamics, we consider a con-
trolled dynamical system

d

dt
ϕ(t) = f̃(ϕ(t), u(t)); u(t) ∈ U ⊆ Rp; ϕ(0) = ϕ0

(2)
which is meant to be a perturbation of the nominal dynamics,

f̃(θ, 0) = f(θ); f(θ,U) ⊆ TθΘ (3)

In the above, U is a neighborhood of 0 in Rp, and

f̃ ∈ Γ∞π1
(Θ× U , TΘ) (4)

That is, f̃ is formally defined as a vector field along the
projection on the first factor [13, Chap. III, Def. 1.4].

In dynamical systems, the control enters the dynamics in
an affine fashion, so it will be assumed that f̃ takes the usual
affine form

f̃(ϕ, u) = f(ϕ) +B(ϕ)u = f(ϕ) +

p∑
m=1

bm(ϕ)um (5)
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where bm ∈ Γ∞(Θ, TΘ). By the same token, this secures
invariance of Θ under the perturbation (see [20],[21]). The
control objective is to find u(t) ∈ U such that, for θ0 and
ϕ0 sufficiently close,

lim
t→∞

d(ϕ(t), θ(t)) = 0

where d(·, ·) is an appropriately defined distance.
Because of space limitation, all proofs are deleted and will

appear in the full paper.

B. Motivation

The original motivation for the above-defined control
problem was tracking periodic and aperiodic trajectories
embedded in a chaotic attractor [8], [9], [10], [7], with the
major difficulty of proving θ0-continuity of the controller
even though the reference trajectory might not be time-
uniformly continuous relative to θ0. Probably the best il-
lustrative example is tracking periodic and quasi-periodic
orbits of a Trojan asteroid in libration around the Jupiter
L4 point [3]. Recast in the abstract set-up of this paper, the
control problem consists in picking up one of the Trojans by
specifying its initial condition θ0 and force the spacecraft (2)
with initial condition ϕ0 to go to a rendez-vous with it.
Other applications include hovercraft control [4]. Yet another
application along a slightly different line is cardiac dynamics,
where the problem is to avoid periodic trajectories [16].

A more recent application, however, is the control of
quantum systems described by the Liouville-von Neumann
equation ρ̇ = −[H0 +

∑p
m=1Hmu

m, ρ], where ρ is the
density operator, the Hamiltonians Hi, i = 0, 1, ..., p, are
Hermitian matrices, in a system of units where ~ = 1.
In the Pauli basis {ek} over R of the set of Hermitian
matrices, the evolution takes the form of the Bloch equation,
ϕ̇ = Aϕ+

∑p
m=1 (Bmϕ)um, where ϕ is given in covariant

coordinates as ϕk = Trace(ρek) with, from the Lie view-
point, A = ad(−H0) and Bm = ad(−Hm), m = 1, ..., p,
while, from the differential geometry viewpoint, A,Bm :
TΘ → TΘ. In such quantum systems, tracking periodic
and aperiodic trajectories has recently been considered, but
more importantly, the latter has revealed the obstruction to
the implementation of Lyapunov control schemes created by
the nontriviality of Θ. Indeed, in the control of a pure qubit,
ϕ evolves over the Bloch sphere Θ, a compact manifold. In
closed systems, the evolution is isopectral, and Θ is a flag
manifold [1], [23], again compact. If the evolution is subject
to decoherence, then the problem is to control the system
so that it evolves on a Decoherence Free Manifold (DFM),
which is a real analytic manifold of Hermitian matrices

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 7099



preserving some blocks of eigenvalues [15]. All such DFM’s
are compact.

C. Approach

Our approach to this task is an adaptation of the Linear
Dynamically Varying (LDV) trajectory tracking techniques
developed in [8], [9], [10]. In addition to providing a
continuous-time version of [8] along with new proofs, the
present paper addresses the specific issues arising from
the fact that the dynamical system evolves over a smooth
but nontrivial manifold Θ. The differential geometry setup
reveals the issue of whether linearization should be done
around the nominal or the controlled trajectory [11].

II. LDV SYSTEMS OVER RIEMANNIAN
MANIFOLDS

A. Riemannian Metric and Connection

Define {ei = ∂
∂ϑi : i = 1, ..., n} to be the coordinate

reference frame associated with the local coordinate system
{ϑi : i = 1, ..., n}. For a ∈ TθΘ, we write a = aiei, where
we make use of Einstein’s convention.

First, we introduce a Riemannian metric 〈a, b〉 = gija
ibj .

Next, we introduce a covariant differentiation:

∇ : Γ∞(Θ, TΘ)× Γ∞(Θ, TΘ)→ Γ∞(Θ, TΘ),

defined by the extension of ∇eiej = Γkijek by linearity
and the Leibniz rules to the covariant differentiation of any
vector field along any other vector field. The notation ∇eiej
denotes the covariant derivative of the vector field ej along
the vector field ei. The Γkij’s are the Christoffel symbols of
the connection.

The covariant derivative ∇fv of a vector field v along the
integral curve of some vector field, say f , will sometimes be
rewritten as D

dtv, as a formalization of the intuitive notion of
“the time derivative of a vector field v along the trajectories
of f” (see [12, Proposition 2.2]).

Given a differentiable curve c : [0, `]→ Θ such that c(s =
`) = ϕ and c(0) = θ, the tangent vector h(c(t)) ∈ Tc(t)Θ
is said to be parallel to itself along c if ∇ dc

ds
h = 0. h0 ∈

Tc(0)Θ is said to be coming from the parallel transport of
h1 ∈ Tc(1)Θ along c if h0 = h(c(0)), where h(c(t)) is the
solution to ∇ċh = 0 subject to h(c(1)) = h1.

Let {ej = ϑj : j = 1, ..., n} be the base dual to {ei}, that
is, ej(ei) = δji . The covariant derivative of a cotangent vector
along a tangent vector is obtained by extending ∇eiej =
−Γjkie

k to any tangent vector and any cotangent vector by
linearity and the Leibnitz rule (see [5, p. 230] or [17, p.
106]).

B. Tracking Error

Consider the nominal motion (1) and the perturbed mo-
tion (2). To define the tracking error between ϕ(t) and θ(t),
assume that ϕ(t) and θ(t) are so close that there exists a
unique minimizing geodesic γϕ(t) : [0, `ϕ(t)] → Θ joining
them, viz., γϕ(t)(0) = θ(t), γϕ(t)(`ϕ(t)) = ϕ(t), where

the parameterization is by the arclength. The tracking error,
locally around ϕ(t), is defined as

xϕ(t) = `ϕ(t)

dγϕ(t)

ds

∣∣∣∣
s=`ϕ(t)

∈ Tϕ(t)Θ

Now assume that the nominal trajectory is fixed, but
that the controlled system could potentially start anywhere.
Assume that the control u is a smooth scalar field so that f̃
is a smooth vector field over Θ. The latter in turn defines a
flow φ̃t, which encompasses the nominal flow. The same can
be said for the case of an open-loop control u(t) provided
the controlled trajectories do not cross. This setup allows us
to extend xϕ(t), initially defined over a specific controlled
trajectory, to a vector field xϕ̄. Indeed, define ϕ̄ = φ̃tϕ̄0.
Let γϕ̄ : [0, `ϕ̄] → Θ be the geodesic joining θ(t) to ϕ̄,
parameterized by arc length. Then

xϕ̄ = `ϕ̄
dγϕ̄
ds

∣∣∣∣
s=`ϕ̄

∈ Tϕ̄Θ

The need for this extension will become clearer soon.

C. Tracking Error Dynamics

The rate of change of the tracking error is defined as the
covariant derivative of the tracking error x along the field f̃ .
However, f̃ incorporates the control u, which has both an
open-loop and a closed-loop interpretation. In the open-loop
interpretation, u(t) is a time-varying parameter independent
of θ and x. In the closed-loop interpretation, u has the form
of a linear feedback in x. It is therefore important to validate
the error dynamics for both interpretations.

Before doing so, we need two lemmas:
Lemma 1: If v and w are two vector fields defined over a

differentiable manifold endowed with a symmetric connec-
tion,

∇vw = ∇wv + [v, w]

where [v, w] is the Lie bracket of v and w defined as vw−wv,
for the partial differential operator interpretation of the vector
fields. �

Denote by o(||x||) a function such that o(||x||)/||x|| → 0
as ||x|| → 0 (see [6, Sec. 1.8]).

Lemma 2: With the vector fields x, f , and f̃ defined
as above, ||[f̃ , x](ϕ0)|| = o(||x(ϕ0)||) = o(d(θ0, ϕ0)).
Consequently, ||[f, x](ϕ0)|| = o(||x(ϕ0)||) = o(d(θ0, ϕ0)).
�
Remark 1. It is because the field x is derived from the
field f that the bracket behaves as ||[f, x]|| = o(||x||), which
appears to contradict the fact that [f, x] is linear in x. Also
observe that, if f is a geodesic field, then [f, x] = 0.

1) Open-Loop Form of Control: In its open-loop formu-
lation, u(t) is a function of the time generated by its own
dynamics, say u̇ = h(u), where h ∈ C1 and h(0) = 0,
the latter to enforce the fact that u is small. Using the
invariance relation (3), the augmented dynamics over the
product manifold Θ×U is defined via the augmented vector
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field:

Θ× U → TΘ× (U × Rp)
(θ, u) 7→ (f̃(θ, u), h(u)) (6)

Then, for the augmented dynamics, we have
D

dt

(
x
u

)
= ∇(f̃ ,h)

(
x
u

)
= ∇(f+Bu,h)

(
x
u

)
, (see (5) for definition of B)

= ∇f
(
x
u

)
+∇(Bu,h)

(
x
u

)
= ∇f

(
x
u

)
+∇(x,u)

(
Bu
h

)
+

[(
Bu
h

)
,

(
x
u

)]
≈ ∇f

(
x
u

)
+∇(x,u)

(
Bu
h

)
(≈ denotes “up to first order.”) Taking the top equation yields

D

dt
x = ∇fx+

p∑
m=1

(
∂bim
∂ϑj

+ Γijkb
k
m

)
xjeiu

m +Bu

≈ ∇fx+Bu = ∇xf + [f, x] +Bu

≈ ∇xf +Bu

2) Feedback Form of Control: In this LDV setup, we are
aiming at an invariant description of the feedback control in
the form

um = 〈km, x〉, m = 1, ..., p (7)

where km is the control gain. Hence f̃ is a vector field and
we have

D

dt
x = ∇f̃x = ∇f+Bux = ∇fx+∇Bux

= ∇xf + [f, x] +∇xBu+ [x,Bu]

≈ ∇xf +∇xBu

= ∇xf +

p∑
m=1

((∇xbm)um + (xum)bm)

≈ ∇xf +

p∑
m=1

(xum)bm

In the above, xum denotes the directional derivative [12, Sec.
0.5] of um along x. Since the directional derivative x〈km, x〉
does not depend on the parameterization [12, p. 25], choose
a coordinate frame such that x = ξe1, in which case

x〈km, x〉 = x
(
k1
mξe1

)
= ξ

∂

∂ξ
k1
m(ξ)ξe1(ξ)

∣∣∣∣
ξ=0

= k1
m(0)ξe1(0) = um

Therefore,
D

dt
x = ∇xf +Bu (8)

Remark 2. At this stage, the need for the rather clumsy
extension of the tracking error to a neighborhood of the con-
trolled trajectory can be understood. Clearly the preceding
analysis relies crucially on the Lie bracket [f, x] and for this
bracket to exist x needs to be a vector field. The covariant
derivative ∇fx on the other hand does not require x to be a
vector field (see, e.g., [5, Problem 5.8.2], [18, p. 124], [12,
Remark 2.3]).

D. LDV Dynamics along Controlled Trajectory

For both the open-loop formulation (6) and the closed-loop
formulation (7) of the control, the error dynamics is given
by (8). It remains to evaluate ∇xf , which is easily done:

∇xf = ei

(
∂f i

∂ϑj
+ Γijkf

k

)
xj (9)

Therefore, the linearized dynamics for x is

D

dt
x(t) = Aϕ(t)x(t) +Bϕ(t)u(t) (10)

where

A = Aijei ⊗ ej , Aij =
∂f i

∂ϑj
+ Γijkf

k (11)

and B is given by (5). (10), together with (2)-(5) is called
a Linear Dynamically Varying (LDV) system, along the
controlled trajectory.

E. LDV Dynamics along Nominal Trajectory

Although Tϕ(t)Θ is the nominal tangent space in which
the controller operates, unfortunately, minimizing such a cost
criterion as

∫∞
0

(
||Cϕ(t)x(t)||2Tϕ(t)Θ

+ 〈u(t), Ru(t)〉TU
)
dt

subject to (10) and (2) yields quite a complicated nonlinear
controller (see Remark 8). To design a linear controller, we
have to move ∇f̃x = Aϕx + Bϕu from Tϕ(t)Θ to Tθ(t)Θ
by parallel translation along γ and relinearize around the
nominal trajectory θ. To prove the validity of this operation
in this first order analysis, we have to show that it entails an
error of the order of o(||x||).

Clearly, under parallel translation along γϕ(t), x remains
tangent to the geodesic and, more importantly, the crucial
tracking error magnitude ||x|| remains unchanged. Let v
be a generic notation for any of the vector fields x, ∇f̃x,
Bu. Choose exp−1

TϕΘ as coordinate chart and let ϑk be the
coordinate functions. Write v = vkek, where ek = ∂

∂ϑk
.

Then, in those coordinates, the parallel translation of v along
the curve γ is a solution to the differential equation (see [12,
pp. 52-53])

dvk

ds
= −Γkijv

j dϑ
i(γ)

ds

Since the translation is along a geodesic, dϑ
i(γ)
ds = 0, so that

vk remains constant in the local coordinate system during
the translation. Therefore, during the parallel translation, the
components of x, ∇f̃x, and Bu in the local coordinate
system remain unchanged. By a slight generalization of the
above argument, namely by working out ∇γ̇

(
Aijei ⊗ ej

)
=

0 (see [18, Prop. 2.11]), the components of the tensor field
A during the parallel transport are easily seen to satisfy

dAij
ds

= −Amj Γikm
dϑk(γ)

ds
+AimΓmjk

dϑk(γ)

ds

so that the components of A remain unchanged during the
parallel translation. With a slight abuse of notation, let the
result of this parallel translation be written

(
∇f̃x

)
ϕ

=
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Aϕx+Bϕu, linearized around ϕ, but transported to TθΘ. In
TθΘ, rewrite the preceding as

∇fx+(∇f̃x−∇fx) = Aθx+(Aϕ−Aθ)x+Bθu+(Bϕ−Bθ)u
(12)

and let us show that the terms between parentheses are
o(||x||). Clearly, in the above local coordinates, (Aϕ−Aθ)ij ,
(Bϕ − Bθ)ij are of the order of ||x||. It remains to look at
(∇f̃x)ϕ− (∇fx)θ. In the same coordinate system as above,
we have(
∇f̃x

)
ϕ
− (∇fx)θ

= f̃ i(ϕ)

(
∂xj

∂ϑi
+ Γjikx

k

)
ϕ

ej − f i(θ)
(
∂xj

∂ϑi
+ Γjikx

k

)
θ

ej

=

(
f̃ i(ϕ)

∂xj

∂ϑi

∣∣∣∣
ϕ

− f i(θ) ∂x
j

∂ϑi

∣∣∣∣
θ

)
ej

+
(
f̃ i(ϕ)Γjik(ϕ)− f i(θ)Γjik(θ)

)
xkej

where, in the second equality, we have used the fact that,
during the parallel transport from ϕ(t) to θ(t), x remains
unchanged. Clearly, the second term of the second equation
is o(||x||). Regarding the first term, observe that f̃ i ∂x

j

∂ϑi is the
directional derivative of xj relative to f̃ ; as such, if θ(t) and
ϕ(t) are local integral curves of f , f̃ , respectively, it follows
that(

f̃ i
∂xj

∂ϑi

)
ϕ

−
(
f i
∂xj

∂ϑi

)
θ

=
dxj(ϕ(t))

dt
− dxj(θ(t))

dt

But, by definition, x is unchanged from ϕ(t) to θ(t), and
the above vanishes. Therefore, (∇f̃x)ϕ− (∇fx)θ is o(||x||).
Therefore, from (12), it follows that, up to a o(||x||) term,
the linearized dynamics becomes

∇fx = Aθ(t)x+Bθ(t)u (13)

where A,B are still given by (11,5), except that the par-
tial derivatives are evaluated at θ(t). The above is called
the Linear Dynamically Varying system, along the nominal
trajectory.
Remark 3. Observe that x is not a vector field along the
nominal trajectory, but is rather the parallel translation of a
vector field along the controlled trajectory to the nominal
trajectory. Note that for the covariant derivative to exist,
there is no need for a vector field; a tangent vector along
the nominal trajectory is enough.
Remark 4. There is a possibility to derive (13) in a more
direct fashion. This is done by defining the tracking error
around the nominal trajectory as the tangent to the geodesic
γϕ(t) at θ(t) (rather than at ϕ(t)). The problem is that the
o(||x||) analysis requires x to be a vector field so that x, as
initially defined, needs to be extended, a bit arbitrarily, to a
neighborhood of the nominal trajectory. This can be justified
in situations where there is only one controlled trajectory
but many nominal trajectories to choose. For example, a
spacecraft entering the Trojan asteroid pack around L4 would
have to choose which asteroid to track. After this extension,
D
dtx = Aθ(t)x would be rather easily derived, but the control
would still have to be “imported” from Tϕ(t)Θ.

The solution to the free dynamics defines the state transi-
tion operator:

Φθ0(t, 0) : Tθ0Θ → Tθ(t)Θ

x0 7→ x(t)

equivalently defined as the solution to

D

dt
Φθ0(t, 0) = Aθ(t)Φθ0(t, 0)

Φθ0(0, 0) = ITθ0Θ

Observe that Φθ0(t, 0) is not in general dθ0φt, unless the
connection is “flat.”
Remark 5. Observe that ∇xf does not need the extension of
x originally defined everywhere on the nominal trajectory;
however, [f, x] does need the extension of x to a vector
field defined in the tubular neighborhood of the nominal
trajectory.

The computationally attractive matrix representations
for Aθ, Bθ are guaranteed to exist, locally. To obtain
global matrix representations for Aθ, Bθ, it is necessary
to have a coordinate frame {e1θ, ..., enθ} in the tangent
space TθΘ, smoothly depending on θ. This is the issue
of the parallelizability of the manifold Θ. If Θ is not
parallelizable, it may have a parallelizable covering space;
in this case, after lifting the problem to the covering space,
we have global matrix representations.

III. FINITE HORIZON PROBLEM

The tracking objective will be achieved by mini-
mizing, along the nominal trajectory, the integral of
||Cθ(t)x(t)||2Tθ(t)Θ + 〈u(t), Ru(t)〉TU , where C : TΘ→ TΘ

is a bundle map or equivalently a (1, 1) tensor field. The
positive semidefinite quadratic form ||Cx||2 can easily be
rewritten as xk(CikgijC

j
l x

l). Define (Qx)k = CikgijC
j
l x

l,
where Q = Qkle

k ⊗ el ∈ T ∗Θ⊗T ∗Θ, Qkl = CikgijC
j
l , is a

bilinear form, that is, a (0, 2) tensor field or equivalently a
bundle map TΘ→ T ∗Θ (see [5, Sec. 2.20, 2.21]). Q will be
rewritten more compactly as C∗GC, where G : TΘ→ T ∗Θ
is the fundamental tensor and C∗ : T ∗Θ→ T ∗Θ the dual of
C. With this convention, ||Cx||2 = 〈x,Qx〉, where the latter
is defined as

∑
i x

i(Qx)i, that is, the bilinear pairing [17, p.
105] between the tangent vector x and the cotangent vector
Qx. In the sequel, the distinction between Riemannian metric
and bilinear pairing will only be made by the nature of the
second argument, tangent versus cotangent vector, resp., with
the latter written by a Greek letter, if possible (see [5, p.
131] for the same convention). The same convention applies
to 〈x0, Xθ0x0〉, where x0, the initial condition, is a tangent
vector and Xθ0 , the “Riccati solution,” is a (0, 2) tensor field.
Assumptions A

1) Θ is a differentiable manifold with a symmetric con-
nection ∇.

2) A and B are continuous.
3) Q is a positive semidefinite quadratic form.
4) R is a positive definite quadratic form.
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Theorem 1: Let Assumptions A hold. Then there exists a
bundle map

X(θ0, 0, T ) : Tθ0Θ→ T ∗θ0Θ

differentiable relative to θ0 along the flow, continuous across
the flow, and such that

〈x0, X(θ0, 0, T )x0〉 = inf
u

∫ T

0
(〈x(τ), Qx(τ)〉+ 〈u(τ), Ru(τ)〉) dτ

Furthermore, X satisfies the Riccati differential equation, in
coordinate independent format,

D

dt
X(θ0, t, T ) +A∗θ(t)X(θ0, t, T ) +X(θ0, t, T )Aθ(t) (14)

+Qθ(t) −X(θ0, t, T )Bθ(t)Sθ(t)B
∗
θ(t)X(θ0, t, T ) = 0

X(θ0, T, T ) = 0

or equivalently, in terms of coordinates or matrix represen-
tation relative to the basis {ei ⊗ ej : i, j = 1, ..., n},

d

dt
Xij(θ0, t, T ) + F ki Xkj(θ0, t, T ) +Xik(θ0, t, T )F kj (15)

+Qij −Xik(θ0, t, T )Bkl S
lmBqmXqj(θ0, t, T ) = 0

X(θ0, T, T ) = 0

where S : T ∗U → TU is the inverse mapping of R and
F ij := ∂fi

∂ϑj . �
It should be warned that the apparent simplification af-

forded by the cancellation of the Γ’s in (14) leading to (15)
has made the latter not invariantly defined. Indeed, it is easily
verified that the format of (15) is changed under a coordinate
neighborhood transformation ϑ = u2 ◦ u−1

1 (ϑ′). In other
words, f i ∂Xkl∂ϑi are not the components of a tensor. This
problem disappears if Θ is an affine manifold, that is, the
coordinate maps uα can be chosen so that the uα ◦u−1

β ’s are
affine transformations.

IV. INFINITE HORIZON PROBLEM
A. Stability, Stabilizability, Detectability

Definition 1: The LDV system D
dtx(t) = Aθ(t)x(t) is said

to be exponentially stable (along the flow of f ) if there
exist functions α(θ0) ∈ (0,∞) and β(θ0) ≥ 0 such that,
for every x0 ∈ Tθ0Θ, ||x(t)|| ≤ β(θ0)e−α(θ0)t||x(0)|| The
system is said to be uniformly exponentially stable iff there
are numbers α ∈ (0,∞), β ≥ 0 such that ||x(t)|| ≤
βe−αt||x(0)|| Finally, the system is said to be asymptotically
stable iff limt→∞ ||x(t)|| = 0

Theorem 2: If Θ is compact and the LDV system
D
dtx(t) = Aθ(t)x(t) continuous, then asymptotic stability,
exponential stability, and uniformly exponential stability are
equivalent. �

Definition 2: The LDV system D
dtx = Aθx + Bθu is

said to be stabilizable iff there exists a bundle function
K : TΘ → Rp such that D

dtx = (Aθ + BθKθ)x is stable
and the resulting state transition operator Φθ0 : Tθ0Θ 3
x0 7→ x(·) ∈ TΘ is uniformly bounded in the sense
that

∫∞
0
〈Φθ0x0(t),Φθ0x0(t)〉dt < M(x0), for some M(x0)

independent of θ0.
Remark 6. The bundle function K need not be continuous;
to be specific, Kθ : TθΘ→ Rp need not continuously depend
on θ.

Clearly, for the minimization of the cost to yield a stabi-
lizing controller, some detectability conditions are needed.

Definition 3: The LDV system D
dtx(t) = Aθ(t)x(t),

z(t) = Cθ(t)x(t) is said to be detectable if there exists a
bundle function L : TΘ→ TΘ such that D

dtx = (A+LC)x
is stable.
Remark 7. Again, the bundle function L : TΘ→ TΘ need
not be continuous in θ

dual system D
dtξ = A∗ξ + C∗µ.

Lemma 3: If the LDV system D
dtx = Ax, z = Cx is

detectable, then z → 0 implies that x→ 0. �
Observe that the conditions of stability, stabilizability, and

detectability are the properties of the various trajectories,
while the uniform versions are the properties of the flow.

Theorem 3: If there exists a positive definite quadratic
form, that is, a (0, 2)-tensor field Pθ such that

∇fP +A∗P + PA = −C∗GC

where (A,C) is detectable, then A is stable. �

B. Main Result

Assumptions B
1) (A,B) is stabilizable.
2) (A,C) is detectable.
Theorem 4: Let Assumptions A and B hold. Then there

exists a bundle map

X : TΘ→ T ∗Θ

differentiable relative to θ0 along the flow, continuous across
the flow, and such that

〈x0, Xθ0x0〉 = inf
u

∫ ∞
0

(
〈x(τ), Qθ(τ)x(τ)〉+ 〈u(τ), Ru(τ)〉

)
dτ

Furthermore, X satisfies the partial differential Riccati equa-
tion (PDRE), in coordinate independent format,

∇fXθ +A∗θXθ +XθAθ +Qθ−XθBθR
−1B∗θXθ = 0 (16)

or equivalently, in terms of coordinates or matrix represen-
tation relative to the dual basis {ei},∑
k

∂Xij
∂ϑk

fk(θ)+F ki Xkj+XikF
k
j +Qij−XikBkl SlmBqmXqj = 0

(17)
and such that Aθ −BθR−1B∗θXθ : TΘ→ TΘ is asymptot-
ically stable along the flow. �

It is important to observe that the PDRE for X involves
a very particular partial differential operator, the covariant
derivative of X along the flow of f . However, no claims
have yet been made about differentiability of X across
trajectories, that is, differentiability along directions not
aligned with the flow of f . This issue is made complicated
by the fact that systems running over compact sets exhibit
sensitive dependence on initial conditions; that is, no matter
how small d(θ0, θ

′
0) is, the trajectories flowing out of θ0, θ′0

could be quite different, and as such it is counterintuitive that
Xθ is continuous across the flow. To secure differentiability
of Xθ, we need to strengthen the conditions of the previous
theorem:
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Theorem 5: If the conditions of Theorem 4 on A and B
are strengthened to continuity and continuous differentiabil-
ity of A, B, then X ∈ W 1,2(Θ), where W 1,2(Θ) denotes
the Sobolev space of functions square integrable along with
their first order derivatives over Θ. �

Theorem 6: The PDRE has a unique asymptotically sta-
bilizing, differentiable solution. This solution, X , is the
maximum of all solutions, in the sense that for any other
solution Y , we have Xθ − Yθ ≥ 0,∀θ. �
Remark 8. In the infimization of∫∞

0

(
〈x,Qx〉Tϕ(t)Θ + ||u||2U

)
dt subject to (10), the

constraint is no longer linear, because the control u
enters implicitly in ϕ. Therefore, the controller will no
longer be linear.

C. Stability of Nonlinear System under LDV Controller

Now that we know that the LDV controller stabilizes the
linearized error dynamics, it remains to determine whether
the same LDV controller also stabilizes the full nonlinear
dynamics.

Theorem 7: Under Assumptions A and B, and under the
strengthened condition that Q > 0, there exists a neighbor-
hood of θ0 in Tθ0Θ, Oθ0 , such that ∀ϕ0 ∈ expθ0(Oθ0) and
with the LDV controller in place, we have d(θ(t), ϕ(t))→ 0
as t→∞. �

V. HAMILTONIAN OPERATOR
Not surprisingly, the PDRE involves the partial differential

operator P (details are available in [14]):(
A−∇f −BR−1B∗

−Q −A∗ −∇f

)
: Γ∞(Θ, TT ∗Θ)→ Γ∞(Θ, TT ∗Θ)

Theorem 8: Let Θ be a compact, smooth, oriented Rie-
mannian manifold with a natural volume form νθ =√
|g|dϑ1 ∧ dϑ2 ∧ · · · ∧ dϑn and a connection compatible

with the metric. Assume there exists a weighted volume
form ωθ = aνθ such that ω is preserved along the flow
f , that is, Lfω = 0 (see [19, Chapter 1, Section 3] or [17]
for details). Then, for the measure µω(dθ) induced by the
weighted volume form ω, the operator P is Hamiltonian, that
is, skew self-adjoint for the symplectic form. �
It turns out that, in the case where f is an Axiom A flow [22,
II.5.1], the operator P restricted to the nonwandering set Ω
is Fredholm with bounds on its analytical index in terms of
the spectral decomposition of the flow [22, II.5.2].

VI. CONCLUSION AND FURTHER PROSPECTS
LDV provides a general, local method to design tracking

controllers, at the expense of requiring nontrivial stabilizabil-
ity conditions on (A,B). Since, by Eq. (11), the pair (A,B)
depends on the connection, which is arbitrarily imposed up
to compatibility with a metric from the moduli space of
Riemannian metrics over Θ, the challenge would be to figure
out with what connection the design would work best.
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