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Heat-Diffusion: Pareto Optimal Dynamic Routing
for Time-Varying Wireless Networks

Reza Banirazi, Edmond Jonckheere, Bhaskar Krishnamachari

Abstract—A dynamic routing policy, referred to as Heat-
Diffusion (HD), is developed for multihop uniclass wireless
networks subject to random traffic, time-varying topology and
inter-channel interference. The policy uses only current condition
of queue occupancies and channel states, with requiring no
knowledge of traffic and topology. Besides throughput optimality,
HD minimizes an average quadratic routing cost defined by
endowing each channel with a time-varying cost factor. Further,
HD minimizes average network delay in the class of routing
policies that base decisions only on current condition of traffic
congestion and channel states. Further, in this class of routing
policies, HD provides a Pareto optimal tradeoff between average
routing cost and average network delay, meaning that no policy
can improve either one without detriment to the other. Finally,
HD fluid limit follows graph combinatorial heat equation, which
can open a new way to study wireless networks using heat
calculus, a very active area of pure mathematics.

Index Terms—Stochastic network optimization, throughput,
delay, routing cost, max-weight, back-pressure, heat diffusion.

I. INTRODUCTION

Throughput optimality, which means utilizing the full capac-
ity of a wireless network, is critical to respond to increasing
demand for wireless applications. The seminal work in [2]
showed that the link queue-differential, channel rate-based
Back-Pressure (BP) algorithm is throughput optimal under
very general conditions on arrival rates and channel state prob-
abilities. Follow-up works showed that the class of throughput
optimal routing policies is indeed large [3]–[6]. The challenge
is then to develop one that, in addition, is optimal relative to
some other important routing objectives.

We propose Heat-Diffusion (HD), a throughput optimal
routing policy that operates under the same general conditions
and with the same algorithmic structure, complexity and
overhead as BP, while also holding the following important
qualities: (i) HD minimizes the average quadratic routing cost
R in the sense of Dirichlet. Endowing each wireless link with
a time-varying cost factor, we define average Dirichlet routing
cost as the product of the link cost factors and the square of
the average link flow rates. Such a generic routing cost may
reflect different topology-based penalties, e.g., channel quality,
routing distance and power usage, even a cost associated
with greedy hyperbolic embedding [7]. (ii) HD minimizes
average total queue congestion Q, which is proportional to
average network delay by Little’s Theorem, within the class of
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routing algorithms that use only current queue occupancies and
current channel states, possibly together with the knowledge
of arrival/channel probabilities. (iii) In the same class, HD
operates on the Pareto boundary of performance region built
on the average network delay Q and the average quadratic
routing cost R and can be made to move along this boundary
by changing a control parameter β that compromises between
the two objectives Q and R (see Fig. 1).

Related works—The study of BP schemes has been a very
active research area with wide-ranging applications and many
recent theoretical results. In packet switches, congestion-based
scheduling [4], [8], [9] was extended to admit more general
functions of queue lengths with particular interest on α-
weighted schedulers using α-exponent of queue lengths [3].
As another extension in packet switches, [5] introduced Pro-
jective Cone Schedulers (PCS) to allow scheduling with non
diagonal weight assignments. The work in [6] generalized PCS
using a tailored “patch-work” of localized piecewise quadratic
Lyapunov functions.

In wireless networks, shadow queues enabled BP to handle
multicast sessions with reduced number of actual queues that
need to be maintained [10]. Replacing queue-length by packet-
age, [11] introduced a delay-based BP policy. To improve BP
delay performance, [12] proposed place-holders with Last-In-
First-Out (LIFO) forwarding. Adaptive redundancy was used
in [13] to reduce light traffic delay in intermittently connected
mobile networks. Using graph embedding, [7] combined BP
with a greedy routing algorithm in hyperbolic coordinates to
obtain a throughput-delay tradeoff.

There have been several reductions of BP to practice in
the form of distributed wireless protocols of pragmatically
implemented and experimentally evaluated [14]–[16]. Some
attempts have also been made to adopt the BP framework for
handling finite queue buffers [17].

Similar to BP, also HD rests on a centralized scheduling
with a computational complexity that can be prohibitive in
practice. Fortunately, much progress has recently been made
to ease this difficulty by deriving decentralized schedulers with
the performance of arbitrarily close to the centralized version
as a function of complexity [18]–[20].

Contributions—We derive HD from combinatorial analogue
of classical heat equation on smooth manifolds, which leads
to the following key contributions:

(Fluid) Translating “queue occupancy measured in packets”
to “heat quantity measured in calories,” the fluid limit of inter-
ference HD flow mimics a suitably-weighted non-interference
heat flow, in agreement with the second Principle of thermody-
namics. In doing so, we introduce a new paradigm that might
be called “wireless network thermodynamics,” which builds
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a rigorous connection between wireless networking and well-
studied domains of physics and mathematics.

(Cost) HD reduces the Dirichlet routing cost to its minimum
feasible value among all stabilizing routing algorithms. To
the best of our knowledge, this is the first time a feasible
routing algorithm asserts the strict minimization of a cost
function subject to network stability, i.e., bounded queue
occupancies and network delay. This is while the drift-plus-
penalty approach of [21], as the best-known alternative, can get
only close to the minimum of this routing cost at the expense
of infinitely large network delay.

(Delay) HD minimizes average queue lengths, and so av-
erage network delay, within the class of routing algorithms
that act based only on current condition of queue occupancies
and channel states, including those with the perfect knowledge
of arrival/channel probabilities. This important class contains
stationary randomized algorithms [21], original BP policy [2],
and most BP derivations [3]–[8], [10]–[17], [19], [20], [22].

(Pareto) In the class of algorithms defined in (Delay), let the
performance region built on average delay and the Dirichlet
routing cost be convex. Then HD operates on the Pareto
boundary of this region while the optimal tradeoff can solely
be controlled by a routing parameter independently of network
topology and traffic. This means that no other policy in this
class can make a better compromise between these two routing
objectives and that any deviation from HD operation leads to
the degradation of at least one of them.

(Complexity) Last but not least, HD enjoys the same algo-
rithmic structure, complexity and overhead as BP, giving it the
same wide-reaching impact. This also provides an easy way to
leverage all advanced improvements of BP to further enhance
HD quality. At the same time, it simplifies the way to practice
via a smooth software transition from BP to HD.

Continuation—A crude idea of HD algorithm first appeared
in [23], very different indeed from what is called HD in this
paper. The results on minimum network delay are extended
to multiclass wireless networks in [24]. By developing the
idea of mapping a wireless network onto a nonlinear resistive
network, the results on minimum routing cost are extended
to multiclass wireless networks in [25]. By extending the
principles of classical thermodynamics to routing and resource
allocation on wireless networks, the concept of “wireless
network thermodynamics” is fully established in [26].

Organization—After preliminaries in the next section, HD
policy is introduced in Sec. III followed by some illustrative
examples. Section IV presents HD key property – a founda-
tion to all HD features. Using Lyapunov theory, throughput
optimality is proven in Sec. V. We show in Sec. VI that HD
minimizes average network delay in a class of routing policies.
Physics-oriented model of heat process on directed graphs is
proposed in Sec. VII. Using fluid limit theory, Sec. VIII shows
that in limit, HD packet flow resembles combinatorial heat
flow on its underlying directed graph. Using heat calculus,
Sec. IX shows that HD strictly minimizes the Dirichlet routing
cost. HD Pareto optimal performance is discussed in Sec. X.
The paper is concluded in Sec. XI.

Notation—We denote vectors by bold lowercase and ma-
trices by bold capital letters. By 0 we denote the vector of

all zeros, by 1 the vector of all ones, and by I the identity
matrix. On arrays: min and max are taken entrywise; 4 and
< express entrywise comparisons; and � denotes the Schur
product. For v as a vector, v> denotes its transpose, diag(v)
its diagonal matrix expansion, ‖v‖ its Euclidean norm, and
v+ := max{0, v}. For S as a set, |S| denotes its cardinality.
We use I as the scalar indicator function, and IIv�0 as the
vector indicator function that its entry i takes the value 1 if
vi>0, and 0 otherwise. By ẋ(t) we denote the time derivative
of x(t). For a variable x related to a directed edge ` from
node i to node j, we use notations x` and xij interchangeably.
We use in(i) and out(i) to denote the sets of nodes neighbor
to node i with respectively incoming links to and outgoing
links from node i.

Note: To keep continuity and enhance readability of the
manuscript, proofs are all placed in Appendix.

II. PRELIMINARIES

Consider a uniclass wireless network that operates in slotted
time with normalized slots n∈ {0, 1, 2, · · · }. The network is
described by a simple, directed connectivity graph with set
of nodes V and directed edges E . New packets, all with the
same destination at node d ∈ V , randomly arrive into different
nodes, requiring a multihop routing to reach the destination.
Wireless channels may change due to node mobility or sur-
rounding conditions. Assuming the sets V and E change much
slower than channel states, we fix them during the time of
our interest; then a temporarily unavailable link (due to, e.g.,
obstacle effect and channel fading) is characterized by zero
link capacity. Extended mobility that can lead to permanent
change in network topology is not considered here. We assume
that channel states remain fixed during a timeslot, while they
may change across slots.

In wireless networks, transmission over a channel can hap-
pen only if certain constraints are imposed on transmissions
over the other channels. An interference model specifies these
restrictions on simultaneous transmissions. We consider a
family of interference models under which a node cannot
transmit to more than one neighbor at the same time. Thus, in
a most general case, a node may receive packets from several
neighbors while sending packets over one of its outgoing links.
Interference constraints used by all well-known network and
link layer protocols, including the general K-hop interference
models, fall in this family.

Definition 1: Given an interference model, a maximal
schedule is such a set of wireless channels that no two channels
interfere with each other and no more channel can be added
to the set without violating the model constraints.

We describe a maximal schedule with a scheduling vector
π ∈ {0, 1}|E where πij = 1 if channel ij is included, and
πij = 0 otherwise.

Definition 2: Given a connectivity graph (V, E), scheduling
set Π is the collection of all maximal scheduling vectors.

Definition 3: With E denoting expectation, the expected
time average of a discrete-time stochastic process x(n) is
defined as

x := lim sup
τ→∞

1/τ
∑τ−1

n=0
E{x(n)}. (1)
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Definition 4: A queuing network is stable if queue at each
node i and at each slot n, denoted as qi(n), has a bounded
time average expectation, viz., qi <∞.

Definition 5: Given a wireless network, an arrival vector
a(n) is stabilizable if there exists a routing policy that can
make the network stable under a(n).

For a link ij, its capacity µij(n), which is frequently called
transmission rate in literature, counts the maximum number
of packets the link can transmit at slot n. The link actual-
transmission fij(n), on the other hand, counts the number of
packets genuinely sent over the link at slot n. Each link is
also endowed with a cost factor ρij(n) > 1 that represents
the cost of transmitting one packet over the link at slot n; for
example, ρij = ETXij , with ETX as defined in [27], or a
cost associated with greedy embedding [7].

A. Problem Statement

For a constrained uniclass network described above, we
propose HD routing policy that solves the three stochastic
optimization problems as follows. It is important to note
that these optimization problems must be solved at network
layer alone, which makes it totally different from cross-layer
optimization [28]–[31] that aims to control congestion by
controlling arrival rates into network layer. With no control
on arrivals, the basic assumption here is that arrival rates lie
within network capacity region, making the routing system
stabilizable. Obviously, nothing prevents one to either install a
flow controller on top of HD or develop an HD-based Network
Utility Maximization (NUM) protocol.

(Delay) Average network delay minimization:

Minimize Q :=
∑

i∈V
qi . (2)

Solving this problem for a general case requires the Markov
structure of network topology process, plus arrival and channel
state probabilities. Then in theory, the solution is obtained
through dynamic programming for each possible topology
along with solving a Markov decision problem. By even
having all this required information, the number of queue
backlogs and channel states increase exponentially with the
size of network, which makes dynamic programming and
Markov decision theory prohibitive in practice. In fact, even
for the case of a single channel, it is hard to implement the
resulting stochastic algorithms [32]. While having a practical
solution for a general case seems dubious, we show in Th. 3
that HD policy solves this problem within an important class
of routing algorithms, without requiring any of the above-
mentioned information or dealing with any dynamic program-
ing or Markov decision process.

(Cost) Average quadratic routing cost minimization:

Minimize R :=
∑

ij∈E
ρij
(
fij
)

2 . (3)

The loss function R, by concept, spreads out traffic with a
weighted bias towards lower penalty links that reminds the
optimal diffusion processes in physics, such as heat flow
and electrical current [33]. It is shown in [21], [34] that a
stationary randomized algorithm can solve this problem. While

such an algorithm exists in theory, it is intractable in practice
as it requires a full knowledge of traffic and channel state
probabilities. Further, assuming all of the probabilities could
be accurately estimated, the network controller still needs to
solve a dynamic programming for each topology state, where
the number of states grows exponentially with the number
of channels. Nonetheless, we show in Th. 8 that HD policy
solves this problem without requiring any knowledge of traffic
and channel state probabilities or dealing with any dynamic
programming.

(Pareto) Pareto optimal performance:

Minimize (1− β) Q+ β R (4)

where β ∈ [0, 1] is a control parameter to determine relative
importance between average delay and average routing cost,
which naturally plays the role of Lagrange multiplier too. To
our knowledge, this is the first time in literature that such a
multi-objective optimization problem is addressed in the level
of solely network layer. While even the related single-objective
optimization problems are not easy to manage, we show in
Th. 9 that within the same class of routing policies mentioned
in (Cost), HD policy solves problem (4) subject to convex
Pareto boundary on the feasible (Q,R) region, with requiring
no knowledge of traffic and topology.

B. Back-Pressure (BP) Policy

At each slot n, the original BP [2] observes queue backlogs
qi(n) at network layer and estimates channel capacities µij(n)
to make a routing decision as follows.
1) BP weighting: For every link ij find link queue-differential

qij(n) := qi(n)− qj(n) and weight the link with

wij(n) := µij(n) qij(n)+.

2) BP scheduling: Find a scheduling vector such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n)

where ties are broken arbitrarily.
3) BP forwarding: Over each activated link with wij(n) >

0 transmit packets at full capacity µij(n). If there is no
enough packets at node i, transmit null packets.

C. V-Parameter BP Policy

Thus far, the drift-plus-penalty approach [21], [34], which
we refer to as V-parameter BP hereafter, has been the only
feasible approach to decreasing (not minimizing) a generic
routing penalty at network layer. We take the V-parameter BP
as a yardstick as to how HD performs. To incorporate average
routing cost R into the original BP, the V-parameter BP adds
a usage cost to each link queue-differential via replacing the
link weight of BP by

wij(n) := µij(n)
(
qij(n)− V ρij(n)µij(n)

)
+ (5)

where V ∈ [0,∞) trades queue occupancy for routing penalty,
while V = 0 recovers the original BP.

The V-parameter BP yields a Dirichlet routing cost within
O(1/V ) of its minimum feasible value to the detriment of
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TABLE I
ALGORITHMIC STRUCTURE OF HD VERSUS V-PARAMETER BP IN A

UNICLASS NETWORK.
W

ei
gh

tin
g f̂ij(n)

BP min
{
µij(n), qi(n)

}
HD min

{
φij(n) qij(n)

+, µij(n)
}

wij(n)
BP µij(n)

(
qij(n)− V ρij(n)µij(n)

)
+

HD 2φij(n) qij(n)f̂ij(n)− f̂ij(n)2

Scheduling π(n) = argmaxπ∈Π

∑
ij∈E

πijwij(n)

Forwarding fij(n) =

{
f̂ij(n) if πij(n) = 1

0 otherwise

growing average delay of O(V ) relative to that of original
BP [21]. Thus, the policy is not able to achieve minimum
routing cost subject to finite network delay, i.e., delay grows
to infinity as routing cost is pushed towards its minimum.
Another issue is that the resulting tradeoff depends on both
V and the network, with two negative consequences: (i) The
same value of V leads to different levels of tradeoff in different
networks, and (ii) The level of tradeoff in the same network
varies by topology and arrival rates, making it difficult to find
a proper V in practice.

III. HEAT-DIFFUSION (HD) POLICY

To provide a convenient way of unifying our proposed
scheme with the large body of previous works on BP, we
design HD with the same algorithmic structure, complexity
and overhead, in both computation and implementation, as BP.

A. HD Algorithm

At each slot n, HD policy observes link queue-differentials
qij(n) := qi(n)−qj(n) at network layer and estimates channel
capacities µij(n) and channel cost factors ρij(n) to make a
routing decision as follows.

1) HD weighting: For every link ij first calculate the number
of packets it would transmit if it were activated as

f̂ij(n) := min
{
φij(n)qij(n)+, µij(n)

}
φij(n) := (1−β)/ϑij + β/ρij(n)

(6)

where ϑij = 1 if node j is the final destination, i.e., j = d,
and ϑij = 2 otherwise. The Lagrange control parameter
β is as defined in (4) to make a tradeoff between queue
occupancy and routing penalty, and the hat notation denotes
a predicted value which would not necessarily be realized.
Then determine the link weight as

wij(n) := 2φij(n)qij(n)f̂ij(n)− f̂ij(n)2. (7)

2) HD scheduling: Find a scheduling vector, in the same way
as BP, using the max-weight scheduling, such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (8)

where ties are broken arbitrarily.

3) HD forwarding: Over each activated link transmit f̂ij(n)
number of packets, viz.,

fij(n) =

{
f̂ij(n) if πij(n) = 1

0 otherwise
(9)

where fij(n) represents the number of packets genuinely
sent over link ij at slot n.

It is critical to discriminate among actual link transmissions
fij(n), link transmission predictions f̂ij(n) and link capacities
µij(n). Also notice that f̂ij(n) in (6) could be non-integer.
In practice, the final number of packets to be transmitted
over links can be rounded to the nearest integer to f̂ij(n)
with no important influence on the performance. To be more
precise, however, every node may algebraically add the packet
residuals sent on each of its ongoing links so as to make a
compensation as soon as the sum hits either 1 or −1.

Table 1 compares HD and V-parameter BP algorithms,
which emphasizes the same algorithmic structure, computa-
tional complexity and overhead signaling.

Remark 1: (i) Since ρij(n) > 1 by assumption, we get 0 <
φij(n) 6 1 for all β∈ [0, 1]. (ii) If qij(n) 6 0, we get f̂ij(n) =
0 due to (6) and wij(n) = 0 from (7); in this case, even
if the link were scheduled by (8), still no packet would be
transmitted over it. (iii) If qij(n) > 0, we get qij(n)+ = qij(n)
and since f̂ij(n) 6 φij(n)qij(n) due to (6), the link weight (7)
still remains positive. (iv) In light of qij(n)+ 6 qi(n) and
φij(n) 6 1, the value of f̂ij(n) never exceeds the number of
packets in the transmitting node i.

Remark 2: In a special case that all links are of the same
capacity, i.e., µij(n) = µ(n), and all link queue-differentials
remain less than it, i.e., qij(n) < µ(n), HD policy with β = 0
and α-weighted policy of [3] with α = 2 turn to be equivalent.
Packet switches are well suited to this special case. It was
suggested in [3] that a smaller α may lead to a lower network
delay, with a non-proven conjecture that heavy traffic delay is
minimized when α→ 0. A discussion of this was given in [22]
along with some counterexamples. Even if the conjecture were
true, note that for a multihop routing problem, the requirement
of qij(n) < µij(n) would imply the network not to be in a
heavy traffic condition.

B. Highlights of HD Design
H1: While BP is derived by link capacity µij(n), HD
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Fig. 1. Graphical description of HD Pareto optimality with respect to
average queue congestion and the Dirichlet routing cost, compared with the
performance of V-parameter BP.
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emphasizes on actual number of transmittable packets f̂ij(n),
though it also implicitly takes the link capacity into account
through (6). Thus, HD allocates resources based only on
genuinely transmittable packets, without counting on null
packets as being practiced in BP schemes.

H2: The link weight (7), which itself directly controls the
scheduling optimization problem, is taken quadratic in the link
queue-differential qij(n), where for φij(n)qij(n) 6 µij(n) is
simplified to wij(n) = φij(n)2qij(n)2. This contrasts with
BP weighting wij(n) = µij(n)qij(n) which is linear in qij(n).
The quadratic weight is central to HD key property (Th. 1)
which is fundamental to other HD qualities.

H3: Varying the penalty factor β makes a universal tradeoff
in performance that depends neither on network nor on arrivals
with the following significant results:
• HD is throughput optimal for all β ∈ [0, 1] (Th. 2).
• At β = 0, the average total queue Q, and so average

network delay, decrease to their minimum feasible values
within the class of routing policies that rely only on present
queue backlogs and current channel states (Th. 3).

• Raising β adds to average delay in return for a lower
routing cost, where the exclusive merit of HD is to provide
the best tradeoff between these two criteria (Th. 9).

• At β = 1, the average routing cost R reaches its minimum
(Th. 8) through an optimal tradeoff with average network
delay. Note that in V-parameter BP, network delay grows
to infinity as routing cost is pushed towards its minimum.

H4: Unlike BP that forwards the highest possible number of
packets over activated links, HD controls packet forwarding by
limiting it to φij(n)qij(n) with φij changing between 0 and 1
as a function of β, ϑij and ρij . This reduces queue oscillations
by decreasing unnecessary packet forwarding across links,
which itself reduces total power consumption and routing
penalty. Thus, it is not surprising to see that φij is decreasing,
and so as to have a higher impact, by increasing β that means
more emphasis on routing penalty. Forwarding a portion of
link queue-differentials rather than filling up link capacities
also complies with resembling heat flow on the underlying
directed graph (Th. 5) that in effect minimizes time average
routing cost in light of Dirichlet’s principle (Th. 8).

Figure 1 provides a graphical comparison between operation
of HD for β ∈ [0, 1] and V-parameter BP for V ∈ [0,∞). The
performance region is restricted to the set of all Q achievable
by the class of all routing policies that act based only on
present queue backlogs and current channel states, and is
assumed to have a convex Pareto boundary.

C. Illustrative Examples

In order to focus merely on the policy itself, we take every-
thing deterministic in our examples here, resting assure that the
results purely show the policy performance not contaminated
by stochastic effects. We however know that all HD properties
are analytically proven for stochastic arrivals and random
topologies under very general conditions.

Two-queue downlink: Consider a base station that transmits
data to two downlink users, where at most one link can be
activated at each timeslot. Let link 1 be of constant capacity
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Fig. 2. Two-queue downlink: Performance of HD with β = 0 versus original
BP. While for all admissible link capacities total queue is minimized under
HD, it grows linearly in µ2 under BP.

µ1 = 3 (packets/slot) and link 2 of time-varying capacity µ2 >
2. Assume one packet to arrive for each user at every timeslot.
It is then easy to verify that for µ2 < 1.5, the given arrival
goes beyond the network capacity region.

For q1(0) = q2(0) = 0, Fig. 2 compares the performance
of HD with β = 0 and original BP. The left side panel depicts
timeslot evolution of q1(n) + q2(n) for µ2 = 18. The right
side panel shows the steady-state average of total queue length
as a function of µ2. For 2 6 µ2 6 5, both HD and BP
perform the same. For µ2 > 5, however, average total queue
length increases linearly in µ2 under BP, while HD holds the
optimal performance for all admissible link capacities. This
exemplifies H1 in the previous subsection, i.e., the efficiency
of link scheduling based on actual transmittable packets rather
than link capacities.

Lossy link network: Consider the 4-node network of Fig. 3
with lossy links and subject to 1-hop interference model, i.e.,
two links with a common node cannot be activated at the
same time. The links are labeled with both ETX and capacity,
where ETX is a quality metric defined as the expected number
of data transmissions required to send a packet without error
over a link [27]. Assume that at every timeslot a single packet
arrives at node 1 destined for node d. Following [14], let us
take ρij = ETXij .

For zero initial conditions, Fig. 3 compares the performance
of HD with V-parameter BP. While HD easily stabilizes total
queued packets at 1 for any β > 0, trying with different
values of V indicates the weakness of V-parameter BP in aptly
supporting the arrival. This simplistically shows one of the
impacts of entering link cost factor ρij as a multiplicand in
the HD weighting formula (7) rather than an addend in the
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V-parameter BP weighting formula (5).
Power minimization: Consider the sensor network of Fig. 4

subject to 1-hop interference model. Suppose that each link ij
has a noise intensity Nij ∈ [1, 5] which is randomly assigned
at first and keeps fixed during the simulation. For each link,
we adopt Shannon capacity µij = Ωij log2(1 +Pij/Nij) with
Pij as power transmission and Ωij as bandwidth. At every
timeslot, two packets arrive at nodes 1, 2, 3 and 4, destined
for node d. The aim is to minimize total ρij(fij)2 with ρij :=
Pij/µij , which implicitly minimizes total power consumption
in the network. For simplicity, let us fix Pij = 15 and Ωij = 5
for all links so that the capacity on each link is decided only
by its noise intensity.

Figure 4 displays timeslot evolution of total queue length
for HD with β = 0 and for the original BP (V = 0). Average
queue congestion is minimized at about 50 packets under HD,
compared with over 100 packets under original BP. Further,
little steady-state oscillations in total queue congestion under
HD contrary to its large variations under BP verifies H4 in the
previous subsection.
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Fig. 5. Power minimization: Timeslot evolution of total power consumption,
which is highly correlated with the Dirichlet routing cost, in HD with β = 1
versus V-parameter BP with V = 10.

In minimizing average routing cost, Fig. 5 displays timeslot
evolution of total power consumption for HD with β = 1
and for V-parameter BP with V = 10. Note that while the
total power consumption and the average routing cost are not
identical, they are highly correlated with each other. Smaller
steady-state oscillations in total power under HD endorses
both H1 and H4 in the previous subsection, showing the
defect of link capacity-driven scheduling and maximum packet
forwarding by BP.

Figure 6 displays the tradeoff between queue congestion
and power usage in HD as a function of β and in V-parameter
BP as a function of V . The results verify H3 in the previous

subsection and concur with the graphical illustration of HD
Pareto optimal performance depicted by Fig. 1. They also
match the timeslot evolution results displayed in Fig. 4 for total
queue length at β = 0 and V = 0, and in Fig. 5 for total power
consumption at β = 1 and V = 10. Note the rapid growth of
queue lengths in V-parameter BP when average power usage
is pushed downwards, indicating the fact that the V-parameter
BP cannot reach the minimum routing cost subject to network
stability, i.e., bounded queue lengths.
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Fig. 6. Power minimization: Trading queue congestion for power consump-
tion by HD as a function of β and by V-parameter BP as a function of V ,
with the dashed lines representing interpolation.

IV. KEY PROPERTY OF HD POLICY

Consider a general uniclass queuing network with a single
destination node d. As before, let qi(n) be the number of
existing packets at node i at slot n. State variables of the
system can then be represented by the following vector:

q◦(n) :=
[
q1(n), . . . , qd−1(n), qd+1(n), . . . , q|V|(n)

]
.

Note that qd(n) ≡ 0 is discarded from state variables.
Notation 1: We use subscript ◦ to denote reduced vectors

or matrices obtained by discarding the entries corresponding
to the destination node d.

Let a stochastic process ai(n) represent the number of
exogenous packets arriving into node i at slot n. Discard
ad(n) ≡ 0 and compose the vector of node arrivals as

a◦(n) :=
[
a1(n), . . . , ad−1(n), ad+1(n), . . . , a|V|(n)

]
.

Also compose the vector of link actual transmissions as

f(n) :=
[
f1(n), . . . , f|E|(n)

]
where, as before, fij(n) represents the number of packets
actually sent over link ij at slot n.

Given a directed graph (V, E), let B denote the node-edge
incidence matrix, in which Bi` is 1 if node i is the tail of
directed edge `, −1 if i is the head, and 0 otherwise.1 ThenB◦
denotes a reduction of B that discards the row related to the
destination node d, which is referred to as reduced incidence
matrix. One can verify that B◦f(n) is a node vector, in which
the entry corresponding to node i reads the net outflow as

(B◦f)i(n) =
∑

b∈out(i)
fib(n)−

∑
a∈in(i)

fai(n)

1In combinatorial geometry, one can view graph as a 1-complex, where B
is its 1-incidence matrix that describes the correlation between all oriented
1-cells (edges) and 0-cells (nodes) in the complex.
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Using the above notation, the f -controlled, stochastic state
dynamics of a uniclass queuing network is captured by

q◦(n+ 1) = q◦(n) + a◦(n)−B◦f(n) . (10)

Note that the link capacities µij(n) vary by channel states,
while the link actual transmissions f ij(n) are assigned by a
routing policy subject to 0 6 fij(n) 6 min{qi(n), µij(n)}.
This difference explains why despite traditional notation in
literature, there is no need for (·)+ operation in the queue
equation (10).

In the wake of (10), the next theorem formalizes the HD
main characteristic, which is central to the proof of Th. 2 on
HD throughput optimality, Th. 3 on HD average network delay
minimization, Th. 5 on connection between HD fluid limit
and combinatorial heat equation, and Th. 8 on HD average
quadratic routing cost minimization. Before proceeding to the
theorem, let us define the link weight matrix as

Φ(n) := diag(φ(n)) (11)

where φ(n) represents the vector composed of φij(n) as
defined in (6).

Theorem 1 (HD Key Property): Consider a uniclass wire-
less network constraint by capacity, directionality and inter-
ference. At every timeslot n and for all β ∈ [0, 1], HD policy
maximizes the f -controlled functional

D(f , q◦, n) := 2f(n)>Φ(n)B◦
>q◦(n)− f(n)>f(n). (12)

Consider the long-term average of functional D(f , q◦, n)
defined as

D(f , q◦) := 2 f
>

ΦB◦
> q◦ − f

>
f . (13)

Next assumption is being used in the analytical proofs of HD
properties, stating that the greedy maximization of D(f , q◦, n)
at each timeslot leads to its maximum long-term average. The
assumption implies that one can apply the Bellman’s principle
of optimality, and so dynamic programming, to maximize
D. It also implicitly means no overlapping among slot-based
substructures of D maximization problem.

Assumption 1: Consider a uniclass wireless network con-
straint by capacity, directionality and interference. Given a
combination of network topology and traffic rates, timeslot
maximization of D(f , q◦, n) is an optimal substructure for
global maximization of D(f , q◦).

In practice, almost every wireless mesh network meets this
assumption. As an example that fails the requirement though,
consider the case where exogenous packets arrive only to
one node, say a, which is connected directly to the final
destination. Assume that all links are bidirectional with unit
cost factors and infinite capacities, and so link interference is
the only network constraint. Obviously, depleting the whole
queue into the destination maximizes D to qa(n)2 at each
timeslot. To maximize D, however, a portion of traffic must
be forwarded through other paths that connect node a to the
destination.

V. HD THROUGHPUT OPTIMALITY

Let the stochastic process S(n) =
(
S1(n), · · · , S|E|(n)

)
represent channel states at slot n, describing all uncontrollable
factors that affect wireless link capacities and cost factors. We
assume that S(n) evolves according to an ergodic stationary
process and takes values in a finite set S. Thus, by Birkhoff’s
ergodic theorem, each state S ∈ S has a probability of

s := P
{
S(n)=S

}
= lim sup

τ→∞
1/τ

∑τ−1

n=0
IS(n)=S (14)

where
∑
S∈S s = 1. Then the expected link capacities and

cost factors are obtained as

E
{
µ(n)} =

∑
S∈S

s E
{
µ(n)

∣∣S(n) = S
}

(15)

E
{
ρ(n)} =

∑
S∈S

s E
{
ρ(n)

∣∣S(n) = S
}

(16)

where µ(n) and ρ(n) represent the vectors composed of link
capacities µij(n) and link cost factors ρij(n), respectively.

Note that the existence of probability distribution (14) or
expected values (15) and (16) by no means imply that they are
known to a routing policy. Specifically, HD performs without
knowing any of these information. Nonetheless, the ergodicity
of S(n) along with the law of large numbers imply

E
{
µ(n)} = lim

τ→∞
1/τ

∑τ−1

n=0
µ(n)

E
{
ρ(n)} = lim

τ→∞
1/τ

∑τ−1

n=0
ρ(n)

meaning that the expectations converge to the long-term av-
erages. Thus, a routing policy could estimate E{µ(n)} and
E{ρ(n)} by observing timeslot variables µ(n) and ρ(n) for
a long enough period of time, at least in theory. This justifies
the existence of stationary randomized policies that base their
routing decisions only on arrival statistics and channel state
probabilities, but fully independent of queue occupancies.

A. Characteristic of Network Capacity Region

Consider a uniclass wireless network that is described by a
connectivity graph (V, E), a destination node d, and an ergodic
stationary channel state process S(n).

Definition 6: Given a routing policy, its stability region is
the set of all arrival vectors that it can stably support, i.e.,
make the network stable under those arrivals.

Definition 7: Given a network layer, its capacity region is
the union of stability regions achieved by all routing policies,
including those which are possibly unfeasible.

It can be shown that for any network, its capacity region is
convex and compact and so is closed and bounded [34].

Definition 8: A routing policy is throughput optimal if it
can stabilize the entire network capacity region, i.e., secure
queue stability under all stabilizable arrival vectors.

An arrival vector a◦(n) is in the network capacity region,
i.e., stabilizable, if and only if there exists a set of link actual
transmissions f(n) that satisfy

ai =
∑

b∈out(i)
fib −

∑
a∈in(i)

fai , ∀ i ∈ V \{d} (17)
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constrained by link capacities and interference. Under an
ergodic channel state process, this basically reads the long-
term average flow conservation at the nodes. In a matrix form,
(17) can equivalently be shown by a◦ = B◦f .

Remark 3: Link actual transmissions f(n) are not fixed,
but depend on routing policy. Further, there could potentially
exist infinite number of routing policies that meet (17) for
any stabilizable a◦(n). Among them are the ones that use the
simple probability concept of distributing packets randomly
so that the desired time averages (17) can be achieved. These
stationary randomized policies are prohibitive in practice as
they typically require perfect knowledge of arrival statistics
and channel state probabilities along with an expensive com-
putation. Nonetheless, the fact that these queue-independent
policies exist plays a crucial role in the analytical proof of
HD properties in this and next section.

B. HD Throughput Optimality for all β

To prove network stability under HD policy, as well as
some other HD properties in next sections, we are compelled
to choose unorthodox Lyapunov candidates based on the
following nonsymmetric system matrix:

M◦(n) :=
(
B◦B◦

>)−1B◦Φ(n)B◦
>. (18)

Handling Lyapunov arguments turns to be a lot more challeng-
ing, since the easy way of working with symmetric positive
definite matrices ceases to exist here. Nonetheless, the specific
structure of M◦(n) makes the following lemmas possible.

Lemma 1: Given a connected uniclass wireless network,
M◦(n) is pseudo positive definite in the sense that all of its
eigenvalues are positive and x>M◦(n)x > 0 for any vector
x ∈ R|V|−1, with equality if and only if x = 0.

Lemma 2: Given a connected uniclass wireless network, for
any vector x ∈ R|V|−1, the following identity holds:

B◦
>M◦(n)x = Φ(n)B◦

>x . (19)

Lemma 3: Given a connected uniclass wireless network,
there exists such a scalar 1 6 η 6 3 that for any vectors
x,y ∈ R|V|−1, the following inequality holds:

x>
(
M◦(n)>+M◦(n)

)
y 6 η x>M◦(n)y . (20)

To analyze the HD throughput optimality, consider the
Lyapunov candidate

W (n) := q◦(n)>M◦(n)q◦(n).

Though W (n) is indeed an energy function in light of Lem. 1,
due to the nonsymmetric weighting matrix M◦(n), it has
no trivial interpretation of a specific energy in the sys-
tem. Nonetheless, it clearly penalizes high queue differentials
across links, compelling a more even distribution of packets
over the network. It also incites transmission over the links of
lower cost factors, leading to a less expensive routing decision.
Note that either at β=0 or for the case that all links are of the
same cost factor, Φ(n) is simplified to a scaled identity matrix
that leads to M◦(n) = Φ(n), which in turn reduces W (n) to
the sum of squares of queue lengths – a familiar Lyapunov
function in most of previous results in literature.

Let ∆W (n) := W (n + 1) −W (n) be the Lyapunov drift.
Substituting for q◦(n+ 1) from (10) leads to

∆W (n) =
(
a◦(n)−B◦f(n)

)>(
M◦(n) +M◦(n)>

)
q◦(n)

+
(
a◦(n)−B◦f(n)

)>
M◦(n)

(
a◦(n)−B◦f(n)

)
.

Let us drop timeslot variable (n) for ease of notation. Applying
Lem. 3 to the first line of the above drift equation yields

∆W 6 η (a◦−B◦f)>M◦q◦ + (a◦−B◦f)>M◦(a◦−B◦f)

with 1 6 η 6 3. Let us replace f>B◦>M◦q◦ by f>ΦB◦>q◦
in light of Lem. 2, add and subtract the term 1

2 η f
>f , and use

the D(f , q◦, n) expression in (12) to obtain

∆W 6 η a◦
>M◦q◦ −

η

2
D(f , q◦, n)− η

2
f>f

+ (a◦ −B◦f)>M◦(a◦ −B◦f).

Taking conditional expectation from the latter given the current
queue backlogs q◦(n) and knowing that the term η f>f has a
zero lower bound lead to

E
{

∆W |q◦
}
6 η E

{
a◦
>M◦

∣∣q◦} q◦ − η

2
E
{
D(f , q◦)

∣∣q◦}
+E

{
(a◦−B◦f)>M◦(a◦−B◦f)

∣∣q◦} (21)

where the conditional expectation is with respect to the ran-
domness of arrivals, channel states and routing decision – in
case of a randomized routing algorithm.

Observe that M◦(n) =
(
B◦B◦

>)−1B◦Φ(n)B◦
> is a func-

tion only of control parameter β and link cost factors ρij(n).
Since arrivals are independent of both β and ρij , we get

E
{
a◦
>M◦

∣∣q◦} = E
{
a◦
>∣∣q◦}E{M◦∣∣q◦}.

At the same time, both β and ρij are independent of q◦, so
is M◦, which means E{M◦|q◦} = E{M◦}. On the other
hand, since the network layer routing controller has no impact
on arrivals, a◦(n) turns to be an independent system variable
that is not influenced by anything, which implies E{a◦>|q◦} =
E{a◦>}. Putting these results together yields

E
{
a◦
>M◦

∣∣q◦} q◦ = E{a◦>}E{M◦} q◦. (22)

Given the current queue backlogs q◦(n), let f?(n) be the
link actual transmissions provided by HD policy. As compared
to any alternative transmission decision f(n), Th. 1 secures
D(f?, q◦, n) > D(f , q◦, n) for all β and at each slot n.
Considering this with the equality (19) of Lem. 2 implies

D(f?, q◦, n) > 2f>B◦
>M◦ q◦ − f

>f .

Taking conditional expectation given current queues yields

E
{
D(f?, q◦, n)

∣∣q◦} > 2E
{
f>B◦

>M◦
∣∣q◦} q◦−E{f>f ∣∣q◦}.

As one alternative transmission decision f(n) to be com-
pared with the f?(n) provided by HD policy, consider the case
where f(n) is produced by a routing algorithm which makes
independent, stationary and randomized transmission decisions
at each slot n based only on arrivals and link capacities and so
independent of both queue backlogs and link cost factors [34].
Let us fix f(n) for such an algorithm and refer to it as f ′(n).
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Using equality E{M◦|q◦} = E{M◦} and considering that
f ′(n) is independent from q◦(n) and M◦(n), we obtain

E
{
D(f?, q◦, n)

∣∣q◦} > 2E{f ′>B◦
>}E{M◦} q◦−E{f ′>f ′}.

Exploiting this and (22) in (21) leads to the following Lya-
punov drift inequality which is evaluated under HD policy
given current queue backlogs at slot n:

E
{

∆W |q◦
}
6 η E{(a◦−B◦f ′)>}E{M◦} q◦ + E

{
Γ |q◦

}
Γ := (a◦−B◦f?)>M◦(a◦−B◦f?) +

η

2
f ′>f ′.

Investigating Γ(n), note that (i) all arrivals are of finite mean
and variance, (ii) each link actual-transmission is at most equal
to the link capacity which is finite, and so both f?(n) and
f ′(n) have finite upper bounds, and (iii) M◦(n) is a pseudo
positive definite matrix in the sense of Lem. 1 with finite
entries (recall φij(n) 6 1). Thus, the expected value of Γ(n)
is finite at each slot n, and so there exists a finite positive
scalar Γmax such that E{Γ(n) |q◦(n)} 6 Γmax. Utilizing this
in the Lyapunov drift inequality yields

E
{

∆W |q◦
}
6 η E{(a◦−B◦f ′)>}E{M◦} q◦+Γmax . (23)

In the wake of (23), the next theorem is proven by showing
that E{∆W |q◦} is always negative for all β ∈ [0, 1]. (Refer
to the Appendix for the end of the proof.)

Theorem 2 (HD Throughput Optimality): Over any uni-
class wireless network, HD policy with any β ∈ [0, 1]
is throughput optimal, meaning that it guarantees network
stability under all stabilizable arrival vectors.

VI. HD MINIMUM DELAY AT β = 0

Pareto optimal performance of HD policy stands on two
pillars: minimization of the average queue congestion Q with
β = 0, and minimization of the average routing cost R with
β = 1. This section settles the first pillar based on a timeslot
analysis. The result of this section is analytically proven under
the general K-hop interference model, where two wireless
links can be activated at the same time if they are at least
K+1 hops away from one another. For example, in the 1-hop
interference model, links with the exclusive nodes may be
scheduled at the same time. Let us start with two lemmas
(proof in the appendix) that help us analyze the final delay
minimization in Th. 3.

Lemma 4: At β = 0 and under the K-hop interference
model, timeslot maximization of the functional D(f , q◦, n)
in (12) is equivalent to timeslot maximization of

G(f , q◦, n) := 2f(n)>B◦
>q◦(n)−f(n)>B◦

>B◦f(n). (24)

It is critical to understand that Lem. 4 does not claim about
the same maximum values for functionals D and G, which
is obviously not true, but about the same maximizing control
action f(n) at each slot n. Another point is that while at each
timeslot, HD maximizes D for all β ∈ [0, 1], it maximizes G
for only β = 0.

Lemma 5: Consider a uniclass wireless network under an
arrival rate a◦ that is stabilized by a routing policy, resulting

in average queue occupancies q◦ and average link actual
transmissions f . Then the following identity holds:

2Cov{B◦f , q◦} − Var{B◦f} =

2Cov{a◦, q◦−B◦f}+ Var{a◦}
(25)

where for two random variables X and Y , Cov{X,Y } :=
E{X>Y } − E{X}>E{Y } and Var{X} := Cov{X,X}.

To gain an insight into this lemma, consider a constant ar-
rival vector which makes the right-hand side of (25) vanished.
In light of Cov{B◦f , q◦} = Cov{f ,B◦>q◦}, equality (25)
then implies that a stabilizing routing decision with a higher
average total variance of link forwardings necessarily results
in a higher average total covariance between link forwardings
and link queue-differentials. For example, compared with BP
that saturates activated links to their capacity limits, HD with a
more conservative packet forwarding results in less variations
in link actual transmissions. The lemma then claims that HD
leads to a smaller correlation between link forwardings and
link queue-differentials, which is confirmed by comparing HD
and BP algorithms (see H4 in Sec. III-B).

Definition 9: We specify D-class routing policies as a col-
lection of all dynamic routing policies that make timeslot
routing decisions based only on current queue occupancies
and channel states and so independent of arrival statistics and
channel state probabilities.

By allowing as many routes as possible, D-class rout-
ing policies tend to distribute traffic all over the network.
This class includes all opportunistic max-weight schedulers
that do not incorporate the Markov structure of topology
process into their decisions, including BP [2] and most of
its derivations [3]–[8], [10]–[17], [19], [20], [22]. The class
also encompasses all offline stationary randomized algorithms
(possibly unfeasible) that make routing decisions as pure
functions only of observed channel states, and so independent
of queue occupancies, by typically using the knowledge of
arrival statistics and channel state probabilities.

Theorem 3 (HD Minimum Delay): Consider a uniclass
wireless network that meets Assum. 1 under a stabilizable
arrival rate. Within D-class routing policies and under the
K-hop interference model, HD with β = 0 minimizes the
average total queue congestion Q as defined in (2), which is
proportional to average network delay by Little’s Theorem.

VII. CLASSICAL VS COMBINATORIAL HEAT PROCESS

To formulate heat diffusion on graph, we use the theory of
combinatorial geometry, where the notion of chains-cochains
on a combinatorial domain provides a genuine counterpart
for differential forms in classical geometry. Details are found
in [35] and references therein.

A. Heat Equations on Manifolds

On a smooth manifold M charted in local coordinates z,
consider Q(z, t) as spatial distribution of temperature, F (z, t)
as heat flux, and A(z, t) as scalar field of heat sources (with
minus for sinks). The law of heat conservation entails

∂Q(z, t)

∂t
= −divF (z, t) +A(z, t) . (26)
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Fick’s law relates the diffusive flux to the concentration,
postulating that the heat flux goes from warm regions of high
concentration to cold regions of low concentration, with a
magnitude that is proportional to the concentration gradient:

F (z, t) = −σ(z)∇Q(z, t) (27)

where σ(z) is thermal diffusivity that quantifies how fast heat
moves through the material. Combining (26) and (27) together,
we obtain

∂Q(z, t)

∂t
= div

(
σ(z)∇Q(z, t)

)
+A(z, t) . (28)

To have a unique solution, besides time initial condition, one
must prescribe Q conditions on a boundary ∂M.

B. Heat Equations on Undirected Graphs

In the context of combinatorial geometry, let us view a graph
as a simplicial 1-complex and transfer elements of classical
heat equations to this cell complex. In doing so, the smooth
manifold M is replaced by a 0-chain vector representing
the discrete domain, the pointwise functions Q(z, t) and
A(z, t) are respectively replaced by 0-cochain vectors q(t)
and a(t) (node variables), the line integral F (z, t) is replaced
by 1-cochain vector f(t) (edge variable), and the thermal
diffusivity σ is replaced by a vector of edge weights σ.

As a 1-complex, the graph structure is fully described by
its node-edge incidence matrix B. 2 Then on an undirected
graph with a node d as the heat sink, combinatorial analogue
of the classical heat equations (26)–(28) are obtained as

q̇(t) = −Bf(t) + a(t) , qd(t) = 0 (29)

f(t) = diag(σ)B>q(t) (30)

q̇(t) = −B diag(σ)B>q(t) + a(t) , qd(t) = 0 . (31)

Note that the boundary ∂M on the manifold collapses to the
single node d on the graph at the fixed zero temperature, which
absorbs all the heat generated by the heat sources a(t).

Enforcing boundary condition qd(t) = 0, one can eliminate
the sink d from (29)–(31), which yields the reduced set of
continuous-time graph heat equations as

f(t) = diag(σ)B◦
>q◦(t) (32)

q̇◦(t) = −L◦ q◦(t) + a◦(t) , L◦ := B◦ diag(σ)B◦
>. (33)

where as before, subscript ◦ denotes a reduced vector or matrix
that discards the entries corresponding to the destination node
d. The linear operator L◦ is called the Dirichlet Laplacian
with respect to the node d, which is a symmetric and diago-
nally dominant matrix. Further, it can be shown that for any
connected graph, L◦ is positive definite.

2The incidence matrix defined in Sec. IV for a directed graph has the same
structure except that the edge directions are substituted for the arbitrarily
assigned algebraic topological edge orientations here.

C. Heat Equations on Directed Graphs

On a directed graph, the combinatorial heat conserva-
tion (29) remains unchanged, but the Fick’s law (30) must be
modified to allow flow in only one direction. Let arbitrarily
assigned edge orientations concur with edge directions. Like
the undirected case, one can drop the sink node d from
equations by fixing qd(t) = 0 as boundary condition. Then
we get the reduced set of continuous-time heat equations on
an uncapacitated directed graph as

f(t) = diag(σ) max
{
0, B◦

>q◦(t)
}

(34)

q̇◦(t) = −~L◦ q◦(t) + a◦(t)

~L◦ := B◦ diag(σ) diag
(
IIB◦>q◦(t)�0

)
B◦
>.

(35)

We refer to ~L◦ as nonlinear Dirichlet Laplacian that acts
on a directed graph and, unlike L◦, is an operand-dependent
operator that retains neither linearity nor symmetry.

Remark 4: For the first time, heat diffusion on directed
graphs is formulated via a nonlinear Laplacian. This is in
agreement with the recent work in [36] showing that heat
diffusion on Finsler manifolds, the natural counterparts of
directed graphs in continuous domain, leads to a nonlinear
Laplacian. In the graph literature, different linear Laplacians
have been proposed for directed graphs (see [37, Sec. 3] for
a review). While successful to address some purely graphical
issues, they are not able to convey the physics of the diffusion
process, nor the intrinsic nonlinearity due to the one-way flow
restrictions.

Given finite heat sources, heat equations on a connected
undirected graph always lead to finite temperatures at the
nodes. However, for (35) to have a finite solution, each nonzero
heat source needs to connect to the sink through at least one
directed path. If this basic condition does not hold, the network
flow problem has indeed no solution in the sense that there is
no way to transfer all commodities, which is heat in our case,
to the destination.

Definition 10: A nonzero heat source is feasible if it con-
nects to sink through at least one directed path, with the path
being directed from source to sink for a positive heat source
and from sink to source for a negative heat source. A vector
of heat sources is feasible if each of its nonzero components
is feasible.

VIII. WIRELESS NETWORK THERMODYNAMICS

Though defined on a directed graph, the heat equations
(34)–(35) still represent a deterministic, continuous-time pro-
cess with no link interference. The latter, particularly, makes
the wireless problem quite intractable. Nonetheless, this sec-
tion advocates a genuine diffusion on stochastic, slotted-time,
interference networks by showing that under HD routing
policy, the long-term average dynamics of an interference
wireless network comply with non-interference combinatorial
heat equations on a suitably-weighted directed graph.

A. HD Fluid Limit

Fluid limit of a stochastic process is the limiting dynamics
obtained by scaling in time and amplitude. Under very mild
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conditions, it is shown that these scaled trajectories converge
to a set of deterministic equations called fluid model. Using
such a deterministic model, one can analyze rate-level, rather
than packet-level, behavior of the original stochastic process.
Details are found in [38], [39] and references therein.

Fluid limit: Let X(ω, t) be a realization of a continuous-
time stochastic process X along a sample path ω. Define
the scaled process Xr(ω, t) := X(ω, rt)/r for any r > 0.
A deterministic function X̃(t) is a fluid limit if there exist a se-
quence r and a sample path ω such that limr→∞X

r(ω, t)→
X̃(t) uniformly on compact sets. For a stable flow network,
the existence of fluid limits is guaranteed if exogenous arrivals
are of finite variance. It is further shown that each fluid limit is
Lipschitz-continuous, and so differentiable, almost everywhere
with respect to Lebesgue measure on [0,∞).

Cumulative process: Note that the fluid theorem is defined
for continuous-time stochastic processes, while a wireless
network is a slotted-time process. To resolve this issue, we
derive a first-order continuous-time approximation of wireless
network dynamics using its cumulative model. Let atot

◦ (n)
and f tot(n) be respectively the vector of cumulative node
arrivals and link transmissions up to slot n. In light of
dynamic equation (10) and by assuming the initial conditions
atot
◦ (0)=0 and f tot(0)=0, we obtain

q◦(n) = q◦(0) + atot
◦ (n)−B◦f tot(n). (36)

Let f̂ij(n) be the predicted number of packets that link ij
would transmit if it were activated at slot n and compose the
vector f̂(n). Also let Tπ(n) be the cumulative number of
timeslots, until slot n, in which the scheduling vector π ∈Π
has been selected. Assuming the initial condition Tπ(0) = 0,
one can verify that

f tot(n) =
∑
π∈Π

n∑
k=1

(
Tπ(k)− Tπ(k−1)

)(
π � f̂(k)

)
. (37)

The first parenthesis equals 1 if the scheduling vector π has
been selected at slot k, and 0 otherwise. The term (π� f̂(k))
represents the number of packets that could be transmitted
over each link if the scheduling vector π were selected. Note
that a routing policy needs to determine each entry of f̂(k)
and select a scheduling vector π∈Π at each timeslot.

General fluid equations: Given a sample path ω, we ex-
tend a slotted-time process to be continuous-time via linear
interpolation in each timeslot interval (n, n+ 1). With no loss
of generality, let exogenous arrivals occur at the beginning of
each timeslot so that atot

◦ (t) represents cumulative arrivals by
time t. Assuming normalized timeslots with the period of time
unit, (36) directly provides the first set of stochastic general
fluid equations as

q◦(t) = q◦(0) + atot
◦ (t)−B◦f tot(t) (38)

atot
◦ (t) = a◦ t (39)

with a◦ being the time average expectation of the random
arrivals a◦(n). The second set of general fluid equations are

obtained from the time derivative of (37) as

ḟ tot(t) =
∑

π∈Π
Ṫπ(t)

(
π � f̂(t)

)
(40)

Ṫπ(t)
π∈Π

=

{
1 if π is chosen at time t
0 otherwise

(41)∑
π∈Π

Tπ(t)= t with Tπ(t) nondecreasing. (42)

Note that (40) entails the existence of a δ > 0 such that

f tot
ij (t′)− f tot

ij (t) =
∑

π∈Π
πij f̂ij(t)

(
Tπ(t′)− Tπ(t)

)
for any t′ ∈ [t, t + δ]. This states the fact that if a link has
a positive flow of packets at time t, the number of packets
transmitted by the link in an interval [t, t′] ⊂ [t, t+ δ] is equal
to the amount of time the link has been activated during [t, t′]
multiplied by its transmission rate prediction at time t.

Particular fluid equations: While (38)–(42) hold for any
stable network operating under an arbitrary non-idling control
policy, each policy determines f̂(t) and Tπ(t) in its own
particular way. Referring to (6), HD policy enforces

f̂(t)
HD
= min

{
Φ
(
B◦
>q◦(t)

)
+, µ

}
. (43)

where Φ represents the time average expectation of Φ(n) as
defined in (11). Note that the existence of µ and ρ is secured
by (15) and (16). Referring now to (7) and (8), HD policy
determines the scheduling vector π(t) by solving the following
max-weight optimization problem:

π(t) = arg maxπ∈Π π>w(t) (44)

w(t)
HD
= f̂(t)�

(
2 ΦB◦

>q◦(t)− f̂(t)
)

(45)

where w(t) is the vector of weights assigned by HD policy
to each link at time t.

For a comparison, observe that the original BP solves
the same max-weight optimization problem (44) to find a
scheduling vector π(t), but it enforces f̂(t) and w(t) to be

f̂ij(t)
BP
=

{
min{qi(t), µij} if qij(t) > 0

0 otherwise
(46)

w(t)
BP
= µ�

(
B◦
>q◦(t)

)
+. (47)

Theorem 4 (HD Fluid Model): On a uniclass wireless net-
work stabilized by Pareto optimal HD policy, every fluid
limit X̃(t) =

(
q̃◦(t), f̃

tot(t), T̃π(t)
)

satisfies HD fluid model,
which is defined as the collection of deterministic continuous-
time equations (38)–(45).

Remark 5: It is important to discriminate between fluid
limit and fluid model of a discrete-time stochastic process. The
former is the scaled process of the first-order continuous-time
approximation for an arbitrary realization of the stochastic
process, while the latter is a (set of) fully deterministic,
continuous-time equation(s). Consider now a wireless network
under HD routing policy, where the discrete-time stochastic
processes q◦(n), f tot(n) and Tπ(n) have respectively the
continuous-time fluid limits q̃◦(t), f̃ tot(t) and T̃π(t). Then
Th. 4 states that for large enough scaling factors, the fluid
limit of every realization converges to a set of deterministic,
continuous-time functions q◦(t), f tot(t) and Tπ(t) which
solve the HD fluid model equations (38)–(45).



12

B. Thermodynamic-Like Packet Routing

Consider a uniclass wireless network with packets being
routed under HD policy (microscopic flow). At each timeslot,
HD policy activates a particular set of links to transmit a
specific number of packets over them. Obviously, each link
transmits packets at some slots and is switched off at some
other slots. Let us now look at the limit flow on each link,
defined as the total number of packets transmitted over the link
during a large period of time divided by the time duration. We
claim that observing average packet flow in limit (macroscopic
flow), it takes the form of heat flow on the underlying directed
graph with suitably-weighted edges.

Consider a thermal graph with the same node-edge inci-
dence matrix B◦ and the edge thermal diffusivity σij = φij .
Associate with each arrival ai(n) on the wireless network a
static heat source of intensity ai on the graph and fix zero
temperature at the destination node. The flow of heat on this
directed graph is governed by (34)–(35), which provides the
wireless network with a static reference thermal model as

fopt = Φ max
{
0, B◦

>qopt
◦
}

(48)

a◦= ~Lopt
◦ qopt

◦ , ~Lopt
◦ := B◦Φ diag

(
IIB◦>qopt

◦ �0
)
B◦
>. (49)

Note that φij depends not only on the link cost factor ρij , but
also on the penalty factor β, where varying β leads to different
edge weights and so different graph topologies.

Recall that Tπ(t) represents the cumulative time until t
in which the scheduling vector π ∈ Π has been selected.
Obviously, each scheduling policy leads to its own specific
Tπ(t). For example, under HD policy, Tπ(t) is determined by
the HD scheduling (44)–(45), while the original BP determines
it according to (46)–(47).

Definition 11: Under a sequence of wireless link schedul-
ing, the effective capacity on each link is the time average
expectation of capacity made genuinely available on that link:

µeff := lim sup
τ→∞

1

τ

∑
π∈Π

τ∑
n=0

(
Tπ(n)−Tπ(n−1)

)(
π�E{µ(n)}

)
where µeff denotes the vector of effective link capacities.

Observe that the classical heat equations (26)–(28), and their
combinatorial counterparts (32)–(33), take no limit in either
flow direction or flow capacity. Then note that while (34)–(35)
extend heat equations to directed graphs, they still consider no
capacity limits on branches. In fact, the underneath assumption
is that the flow of heat on each directed edge follows the Fick’s
law of diffusion, not intervened by the edge capacity.

Assumption 2: Given an arrival rate a◦, there exists at least
one sequence of wireless link scheduling under which the
effective link capacities meet the requirement of reference heat
flow (48), which is stated by fopt4 µeff .

While µeff is a network characteristic and independent of
arrivals, satisfaction of Assum. 2 does depend on arrivals.
Further, for a given arrival rate, there could be a large number
of link scheduling sequences that meet the requirement.

Theorem 5 (Wireless Network Thermodynamics): Consider
a uniclass wireless network that meets Assum. 1 and 2 under
a stabilizable arrival rate. Then the HD fluid model (38)–(45)
asymptotically converges to the thermal model (48)–(49). In

particular, HD fluid model with β = 0 complies with heat
equations on an unweighted directed graph, and with β = 1
to those on a weighted directed graph with σij = 1/ρij .

Remark 6: Assum. 2 examines if it is possible in principle
to stabilize the wireless network such that its fluid limit follows
uncapacitated heat equations. We fully revoke this assumption
in [25] by developing diffusion equations on capacitated
directed graphs and showing that the fluid equations (38)–
(45) still respect them with no need of satisfying Assum. 2.
In fact, we solve a more complicated diffusion problem in
[25], where not only directed edges have limited capacity, but
flows with different destinations need to be carried over the
network, which raises the challenge of optimal designation of
edge capacities to each of them.

IX. HD MINIMUM ROUTING COST AT β = 1

To establish the second pillar of HD Pareto optimality, this
section shows, via Dirichlet’s principle, that average quadratic
routing cost is minimized under HD policy with β=1. In fact,
we show a more general result that HD with any β ∈ [0, 1]
solves the following β-dependent optimization problem:

Minimize
∑

ij∈E
(fij)2/φij (50)

where β = 1 leads to φij = 1/ρij , which recovers (3) on
minimizing the average quadratic routing cost R.

Remark 7: At β = 0, we get φij = 0.5 for all links,
implying that

∑
ij(fij)

2 is minimized by HD with β = 1.
The average total queue congestion Q is also minimized by
HD with β = 0 (see Th. 3). This entails that the two objective
functions are minimized by the same timeslot control action
f(n), which makes the ground for our results on HD weak
Pareto optimality for uniform link costs in Sec. X.

A. Classical Dirichlet Principle

Consider the classical heat diffusion equations (26)–(28)
subject to constant heat sources A(z). In a steady-state thermal
conduction, the amount of heat entering any region of manifold
M is equal to the amount of heat leaving out the region. Thus,
while partial derivatives of temperature with respect to space
may have either zero or nonzero values, all time derivatives of
temperature at any point on M will remain uniformly zero.
This leads to the classical Poisson equation

div
(
σ(z)∇Q(z)

)
+A(z) = 0

which formulates stationary heat transfer by substituting zero
for the time derivative of temperature in (28). Dirichlet’s
principle then states that the Poisson equation has a unique
solution that minimizes the Dirichlet energy

ED
(
Q(z)

)
:=

∫
M

( 1

2
σ(z)‖∇Q(z)‖2 −Q(z)A(z)

)
dz

among all twice differentiable functions Q(z) that respect the
boundary conditions on ∂M.
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B. Combinatorial Dirichlet Principle
To derive the combinatorial analogue of Poisson equation

on undirected graphs, one identifies the classical div with the
boundary operator B and the classical gradient ∇ with the
minus3 of coboundary operator B>. Fixing qd(t) = 0 yields

−L◦ q◦ + a◦ = 0 (51)

which correctly realizes (33) in steady-state. Note that the
equation has no time variable (t), since it represents the
steady-state condition. It is not difficult to see that, like
the classical case, this equation has a unique solution that
minimizes the combinatorial Dirichlet energy

ED(q◦) :=
1

2
q◦
>L◦ q◦ − q◦>a◦ .

The proof of Dirichlet’s principle is much simpler in the
combinatorial case. In fact, as L◦ is positive definite, ED(q◦)
is convex and so has a minimum at the critical point where
its first order variation vanishes, which readily leads to the
combinatorial Poisson equation (51).

C. Nonlinear Dirichlet Principle
Essentially, the Poisson equation on a directed graph should

capture the steady-state behavior of combinatorial nonlinear
diffusion process (35) subject to constant heat sources a◦.
This leads to the following nonlinear Poisson equation:

−~L◦ q◦ + a◦ = 0 . (52)

Difficulty arises from the fact that contrary to linear Laplacian
L◦ on undirected graphs that is a symmetric positive definite
matrix, ~L◦ is an operand-dependent operator that retains
neither linearity nor symmetricity. Thus, the easy way of
proving Dirichlet’s principle on undirected graphs ceases to
exist here, as one can not claim that ~L◦q◦ in (52) is the
directional derivative of 1

2 q◦
>~L◦q◦. Nonetheless, we extend

the concept of combinatorial Dirichlet principle to directed
graphs by the next theorem.

Theorem 6 (Nonlinear Dirichlet Principle): Given a feasi-
ble a◦ on a directed graph, the nonlinear Poisson equation (52)
has a unique solution that minimizes the nonlinear Dirichlet
energy

~ED(q◦) :=
1

2
q◦
>~L◦ q◦ − q◦>a◦ . (53)

Remark 8: Though Dirichlet’s principle on undirected
graphs has been known for long time, its extension to directed
graphs is completely new to literature. As a model of heat flow
on directed graphs, one can conceptualize a resistive network
with a diode added to each edge [25]. Electrical current –
the counterpart of combinatorial heat flux – moves along
negative gradient of voltage, but only under the condition of
respecting the diode direction. Another example is a piping
network of liquid/gas with a check valve on each line. Again,
the liquid/gas flows along negative gradient of pressure, while
each check valve allows the flow in only one direction.

3In vector calculus, the gradient of a scalar field is positive in the direction
of increase of the field. On a graph, on the other hand, we take the gradient
of a node variable positive in the direction of decrease of the variable. By
the same reason, the classical Laplace operator is a negative semi-definite
operator, while the graph Laplacian is a positive semi-definite matrix.

D. Quadratic Routing Cost Minimization

The framework of Th. 6 is not yet aligned with what we
need for the optimization problem (50). The next theorem
resolves this incongruity by showing that minimizing the
functional (53) is indeed the dual of minimizing network
energy dissipation, known as Thomson’s principle, on the
directed graph with zero duality gap.

Theorem 7 (Nonlinear Thomson Principle): Minimizing
the nonlinear Dirichlet energy (53) subject to the nonlinear
Poisson equation (52) is equivalent to minimizing total energy
dissipation on the graph subject to flow conservation at the
nodes, stated by

minf<0
~ER(f) := f>diag(σ)−1f

s.t. B◦f = a◦
(54)

where f < 0 is imposed by network directionality. Further,
temperatures at the nodes play the natural role of the Lagrange
multipliers in the dual of the optimization problem (54).

It is worth comparing the minimization problem (54) with
the celebrated law of least energy dissipation on resistive
networks. In essence, Th. 7 extends the law to directed
graphs, or to nonlinear resistive-diode networks for that matter
[25]. The upshot is then due to the connection between heat
diffusion on capacitated directed graphs and HD fluid limit,
which brings together circuit theory and wireless networking
under one umbrella.

Theorem 8 (HD Minimum Routing Cost): Consider a uni-
class wireless network that meets Assum. 1 and 2 under
a stabilizable arrival rate. Then HD policy solves the β-
dependent optimization problem (50). In particular, HD policy
with β=1 minimizes the quadratic routing cost R as defined
in (3).

In light of Th. 5, every expected time average value on a
stochastic wireless network governed by HD policy follows
the corresponding stationary value produced by nonlinear
heat equations on the suitably weighted underlying directed
graph. In particular, the β-dependent objective function in (50)
complies with the total energy dissipation ~ER(f) on the graph
weighted by σij = φij . By the same token, the average
quadratic routing cost R complies with ~ER(f) on the graph
weighted by σij = 1/ρij .

Remark 9: As Rem. 6 explained, Assum. 2 ensures that the
link capacity constraints of wireless network do not intervene
the Fick’s law on its underlying directed graph. Again, this
assumption is fully revoked in [25], [26] by developing Dirich-
let’s principle on capacitated directed graphs and showing that
HD fluid model still complies with it.

X. PARETO OPTIMALITY

Minimizing average network delay and minimizing average
routing cost are often conflicting objectives, meaning that as
one decreases the other has to increase. This naturally leads
to a multi-objective optimization framework. Then the favorite
operating points lie on the Pareto boundary that corresponds
to equilibria from which any deviation results in performance
degradation in at least one objective. In other words, a Pareto
optimal solution is a state of allocation of resources from
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Fig. 7. Graphical description of weak Pareto boundary with respect to average
queue congestion and the Dirichlet routing cost when cost factor for all links
connected to the final destination converge to one and for all other links
converge to two, contrasting the performance of HD with V-parameter BP.

which it is impossible to reallocate so as to make any one
objective better off without making at least another objective
worse off.

A. Strong Pareto Optimality for Nonuniform Link Costs

We have shown that HD with β = 0 minimizes the average
network delay Q among all D-class routing policies – solving
the optimization problem (2). We have also shown that HD
with β = 1 strictly minimizes the quadratic routing cost R
among all stabilizing routing algorithms – solving the opti-
mization problem (3). Consider now the region of operation
built on joint variables (Q,R) in which Q is achievable by D-
class routing policies (possibly unfeasible). The next theorem
shows that HD policy operates on the Pareto boundary of
this (Q,R) region by altering β ∈ [0, 1] – solving the multi-
objective optimization problem (4).

Theorem 9 (HD Pareto Optimality): Consider a uniclass
wireless network that meets Assum. 1 and 2 under a stabi-
lizable arrival rate and the K-hop interference model. Suppose
that the operating region built on all possible joint vari-
ables (Q ,R) with Q produced by a D-class routing policy
is convex. Then HD policy operates on the Pareto boundary
of (Q ,R) region by altering β ∈ [0, 1].

It is worth to note that in the case of non-convex Pareto
boundary, HD with β ∈ [0, 1] still covers the points on convex
parts of the boundary, though some Pareto optimal points lie
on non-convex parts [40]–[42]. The convexity is jeopardized in
the presence of a positive correlation between Q and R, e.g.,
if the routing cost is defined as it could grow by the increase
of queue occupancy.

Remark 10: To the best of our knowledge, this is the first
time a network layer routing policy provides Pareto optimal
performance with respect to average network delay and routing
cost, without requiring any knowledge of traffic and topology.

B. Weak Pareto Optimality for Uniform Link Costs

Recall from (6) that φij(n) = (1−β)/ϑij + β/ρij(n) with
ϑij = 1 if node j is the final destination, i.e., j = d, and
ϑij = 2 otherwise. When the cost factors in all links converge
to ϑij , we get φij = 1/ϑij for any β, and so the performance
of HD policy turns to be independent of the penalty factor β.

Considering this observation along with Th. 3 implies that the
average network delay Q must be minimized for all β ∈ [0, 1].
Considering it along with Th. 8, on the other hand, implies that
the routing cost R must also be minimized for all β ∈ [0, 1].
Holding these two requirements at the same time entails that Q
and R must be minimized together, which equivalently means
that the Pareto boundary of (Q ,R) region must shrink into
one single point. Such an operating point is called weakly
Pareto optimal in the sense that no tradeoff is allowed as it is
impossible to strictly improve at least one operating objective.
The upshot is formalized by the next corollary.

Corollary 1: Consider a uniclass wireless network under
the same condition of Th. 9. Suppose the cost factors for all
wireless links converge to ϑij , defined in (6). Then the Pareto
boundary of (Q ,R) region shrinks to a point at which HD
policy operates for all β ∈ [0, 1].

Under uniform cost factor condition for all links, Fig. 7
provides a graphical illustration of the feasible region built
on (Q ,R). It emphasizes HD operation at the weakly Pareto
optimal point for all β ∈ [0, 1] in comparison with the
performance of V-parameter BP for V ∈ [0,∞).

XI. CONCLUSION

We have introduced a network layer routing policy, called
Heat-Diffusion (HD), for uniclass wireless networks that (i) is
throughput optimal, (ii) minimizes average quadratic routing
cost, (iii) minimizes average network delay within an impor-
tant class of routing policies, (iv) provides a Pareto optimal
tradeoff between average network delay and quadratic routing
cost, and (v) enjoys the same algorithmic structure, complexity
and overhead as Back-Pressure (BP) routing policy. Further,
HD policy is strongly connected to the world of heat calculus
in mathematics, which we believe opens the door to a rich ar-
ray of theoretical techniques to analyze and optimize wireless
networking. For example, such a connection provides a new
way of analyzing the impact of wireless network topology on
stability and capacity region [43] or on delay/routing energy
performance [44]. A decentralized HD protocol has been
pragmatically implemented and experimentally evaluated in
[45] for data collection in wireless sensor networks, including
a comparative analysis of its performance with respect to the
Backpressure Collection Protocol [14]. In [46], a HD-based
delay-aware framework is designed for joint dynamic routing
and link-scheduling in multihop wireless networks.

Though motivated by wireless networks, the HD framework
can be extended in various ways to other application areas.
Among them is packet scheduling in high speed switches with
a lot of attention in recent years. Resource allocation problems
in manufacturing and transportation also fall within the scope
of the model we considered here.
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APPENDIX A
PROOF OF THEOREMS AND LEMMAS

Note that in the proofs we often drop timeslot variable (n)
for ease of notation and concision.

Proof of Theorem 1 (HD Key Property)

One can verify that

D(f , q◦, n) =
∑

ij∈E
2φij(n)qij(n)fij(n)− fij(n)2.

Let us temporarily relax all network constraints. Then each
link-related component of D(f , q◦, n) turns to be strictly
concave. For each link ij, by taking the first derivative with
respect to fij , we find the maximizing link transmission
fopt
ij = φijqij . Considering the link constraints that fij must

be non-negative and at most equal to the link capacity yields

fopt
ij = min{φij qij+, µij}

which follows f̂ij in (6). Considering the link interference
constraint, on the other hand, enforces to activate the links that
contribute most to the D maximization. Then assuming that an
interference model does not let a node transmit to more than
one neighbor at the same time, the latter directly leads to the
max-weight scheduling (8) alongside the HD weighting (7),
which concludes the proof. �

Proof of Lemma 1

Define ∆ := B◦B◦
> and ∆φ := B◦ΦB◦

>, which are both
positive definite matrices. Since ∆

1/2
φ ∆−1∆

1/2
φ is congruent

to ∆−1 which has only positive eigenvalues, by Sylvester’s
law of inertia, ∆

1/2
φ ∆−1∆

1/2
φ has only positive eigenvalues

too. The latter is similar to M◦, and so they have the same
eigenvalues, proving that M◦ has only positive eigenvalues.

We now show that x>M◦ x > 0. Letting v := ∆−1x and
substituting for M◦, it suffices to show that

(B◦
>v)>

(
ΦB◦

>B◦
)
(B◦
>v) > 0 . (55)

Doing another change of variable, let f := B◦
>v that rep-

resents an edge vector in which fij = vi − vj , ∀ ij ∈ E .
Recall that B◦ is a signed node-edge incidence matrix with
arbitrarily assigned algebraic topological edge orientations. Let
us assign edge orientations such that fij > 0, ∀ ij ∈ E . Then
to fulfill (55), it suffices to show that f>ΦB◦

>B◦ f > 0
subject to f < 0, which reads fij > 0, ∀ ij ∈ E . To this
end, we equivalently show that minimum cost in the following
optimization problem is non-negative:

min
f<0

f>ΦB◦
>B◦ f .

Let us construct the Lagrangian dual problem

max
λ<0

min
f

(
L(λ,f) := f>ΦB◦

>B◦ f − λ>f
)

(56)

with λ being the vector of Lagrange multipliers. Since the
primal variable f is continuously differentiable, so the La-
grangian L, and thus the minimum occurs where ∇f L = 0,
which leads to

λ =
(
B◦
>B◦Φ + ΦB◦

>B◦
)
fopt.

Substituting fopt in (56) and noting that both fopt and λ are
entrywise non-negative, we obtain

max
λ<0

L(λ) = max
λ<0

−1

2
λ>fopt = 0 . (57)

By the weak duality theorem, the minimum of the primal
problem is greater than or equal to the maximum of the dual
problem. Thus, (57) entails minf<0 f

>ΦB◦
>B◦f> 0, which

equally means x>M◦ x > 0.
It remains to show that x>M◦ x = 0 only if x = 0, which

is equivalent to show that matrixM◦
>+M◦ is positive definite.

Since x>(M◦
>+M◦)x> 0 already guarantees that M◦

>+M◦
is positive semi-definite, it suffices to show that M◦

>+ M◦
has no zero eigenvalue. Let us assume it does, which implies
the existence of an eigenvector ν 6= 0 such that

(M◦
>+M◦)ν = 0 . (58)

Because M◦ is the product of two positive definite matrices,
ν 6= 0 entails M◦ν 6= 0, which leads to (M◦ν)>M◦ν +
(M◦

>ν)>M◦
>ν > 0. Utilizing (58) in the latter results in

ν>
(
M◦
>−M◦

)2
ν < 0

which is not true as (M◦
>−M◦)2 is a symmetric positive

semi-definite matrix. Therefore, M◦
>+M◦ has no zero eigen-

value and so is symmetric positive definite. �

Proof of Lemma 2

By definition of M◦, we already have B◦B◦>M◦ x =
B◦ΦB◦

>x, which could easily be seen by substituting M◦
from (18). Thus, to prove the claim, it suffices to show that
for any vectors x and y, equality B◦y = B◦ΦB◦

>x entails
y = ΦB◦

>x. To this end, we utilize the properties of heat
equations on undirected graphs (see Sec. VII-B).

Consider a thermal graph with reduced node-edge incidence
matrix B◦ and edge thermal diffusivity matrix Φ and let the
destination node be fixed at zero temperature. As the first
scenario, let us envision y as the vector of heat fluxes through
the branches, implying that B◦y represents the vector of heat
sources injected at the nodes (see (32) and (33) under constant
heat sources.) As the second scenario, envision x as the vector
of temperatures at the nodes, implying that ΦB◦

>x represents
the vector of heat fluxes through the branches and B◦ΦB◦>x
represents the vector of heat sources injected at the nodes.

Assuming B◦y = B◦ΦB◦
>x means that the thermal graph

is charged by the same configuration of heat sources in both
scenarios above. It follows that the vector of temperatures
at the nodes are also the same as the Dirichlet Laplacian is
positive definite in (33). Hence, in both scenarios the vector
of heat fluxes through the branches must be equal, because
B◦ has full row rank in (32). This entails y = ΦB◦

>x, which
concludes the proof. �

Proof of Lemma 3

Let us replace M◦ +M◦
> by 2M◦ + (M◦

>−M◦). Doing
some matrix manipulation, we need to show that there exists
such 1 6 η 6 3 that for arbitrary vectors x and y,

x>(M◦
>−M◦)y 6 (η − 2)x>M◦ y . (59)
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To this end, it suffices to show
∣∣x>(M◦

>−M◦)y
∣∣ 6∣∣x>M◦ y∣∣, which then makes the inequality (59) true for

η = 1 in case of x>M◦ y 6 0, and for η = 3 in case of
x>M◦ y > 0. This is equivalent to show that the following
inequality holds:

x>(M◦
>−M◦)yy>(M◦−M◦

>)x 6 x>M◦ yy
>M◦

>x .

By little algebra, the latter can be rephrased as

x>(2M◦−M◦
>)yy>M◦ x > 0 .

To prove the above inequality, it suffices to show that the min-
imum objective value in the following optimization problem
is non-negative:

minx,y x>(2M◦−M◦
>)y y>M◦x

s.t. x>M◦x > 0 , y>M◦y > 0

where the constraints are enforced in light of Lem. 1. The
Lagrangian dual problem, with λx and λy as the Lagrange
multipliers, is found as

max
λx,λy>0

min
x,y

(
L := x>(2M◦−M◦

>)y y>M◦x

− λx x>M◦x− λy y>M◦y
)

Imposing the first order conditions ∇x L = 0 and ∇y L = 0
leads to

λx (M◦
>+M◦)x = 2M◦y y

>M◦x+ 2M◦
>y y>M◦

>x

− 2M◦
>y y>M◦x

λy (M◦
>+M◦)y = 2M◦xx

>M◦y + 2M◦
>xx>M◦

>y

− 2M◦xx
>M◦

>y .

Let us plug these two equations into the Lagrangian L and
utilize the identities x>M◦

>y = y>M◦x := a and x>M◦y =
y>M◦

>x := b with a and b being scalars. One can easily
confirm the following identities:

L = (2 a b− b2)− λx x>M◦x− λy y>M◦y
λx x

>(M◦
>+M◦)x = 2 (2 a b− b2)

λy y
>(M◦

>+M◦)y = 2 (2 a b− b2).

Then by little algebra, the Lagrangian can be transformed to

L =
1

4
λx x

>(M◦
>+M◦

)
x+

1

4
λy y

>(M◦
>+M◦

)
y

− λx x>M◦x− λy y>M◦y

=
1

4
λx x

>(M◦
>− 3M◦

)
x+

1

4
λy y

>(M◦
>− 3M◦

)
y .

Since M◦−M◦
> is skew-symmetric, both x>(M◦ −M◦

>)x
and y>(M◦ −M◦

>)y vanish. In light of x>M◦x > 0 and
y>M◦y > 0, the Lagrangian dual problem reads

max
λx,λy>0

L = max
λx,λy>0

−1

2

(
λx x

>M◦x+ λy y
>M◦y

)
= 0 .

This entails x>(2M◦−M◦
>)yy>M◦ x > 0 by the weak du-

ality theorem that the maximum of the dual problem provides
a lower bound for the minimum of the primal problem. �

Proof of Theorem 2 (HD Throughput Optimality)(Cont.)

To simplify the proof, we assume arrivals to be i.i.d.
over timeslots. For non-i.i.d. arrivals with stationary ergodic
processes of finite mean and variance, a similar analysis can
be done using N -slot Lyapunov drift [34], where the queue
evolution (10) is modified to

q◦(n+N) = q◦(n) +

n+N−1∑
k=n

a◦(k)−
n+N−1∑
k=n

B◦f(k) . (60)

One can view N as the time required for the system to reach
“near steady state,” noting that in the i.i.d. case, the steady
state is reached on each and every timeslot, and so N = 1.

Back to the proof for i.i.d. arrivals, suppose that a◦ is
interior to the network capacity region C. Thus, there exists an
ε > 0 such that a◦+ ε1 ∈ C. Since the stationary randomized
algorithm that generates f ′(n) is throughput optimal [34], it
can stabilize the arrival a◦ + ε1 at each timeslot. The i.i.d.
assumption on arrivals then leads to

E{a◦−B◦f ′} = a◦ − (a◦ + ε1) = −ε1

implying that both a◦ and f ′ reach their steady states on
each and every timeslot. Plugging this into the Lyapunov drift
inequality (23) yields

E
{

∆W |q◦
}
6 −η ε1>E{M◦} q◦ + Γmax . (61)

Let us assume that there exists a µ> 0, which is explored later,
such that 1>E{M◦} q◦ > µ1>q◦. Using this in the latter drift
inequality leads to

E
{

∆W |q◦
}
6 −η µ ε1>q◦ + Γmax .

Thus, E{∆W |q◦} < 0 for any
∑
i qi > Γmax

/
(η µ ε). Then

in light of Theorem 2 in [9], the queuing system is stable
and so a◦ is in the HD stability region. This implies that any
arrival rate a◦ being interior to the network capacity region
is stabilized by HD with any β ∈ [0, 1], meaning that HD is
throughput optimal for all β ∈ [0, 1].

We now show that there exists such a µ> 0 that satisfies
1>E{M◦} q◦ > µ1>q◦. Let us temporarily ignore the expec-
tation and solve the problem for M◦. The claim is trivial for
q◦ = 0, and so we assume q◦ 6= 0. Further, q◦ represents the
vector of queue occupancies on the wireless network that are
always non-negative. Let ‖q◦‖1 represent the `1 norm of q◦,
defined as the sum of all queue occupancies. With no loss of
generality, one may normalize ‖q◦‖1 to one. The problem can
then be rephrased as finding a µ > 0 such that

min
‖q◦‖1=1,q◦<0

1>(M◦ − µI) q◦ > 0 .

The latter is a standard linear programming problem. Using
simplex method, the minimum lies on a vertex of the simplex,
where the vertices of the simplex are the natural basis elements
ej : j = 1, ..., |V|. Thus, the µ is to be sought such that

1>
(

(M◦):,j − µ ej
)
> 0 .

This immediately leads to µ = minj 1>M◦ ej .
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It remains to show that 1>M◦ ej > 0 for every natural
basis ej . By Lem. 3, there exists such a 1 6 η 6 3 as

η 1>M◦ ej > 1>
(
M◦
> +M◦

)
ej

which implies (η − 1) 1>M◦ ej > 1>M◦
> ej . The right hand

side is always positive by the next electrical circuit argument,
which implies (η − 1) 1>M◦ ej > 0. The latter entails η > 1
and 1>M◦ ej > 0 as we desired.

To argue that 1>M◦
> ej = e>j M◦ 1 > 0, by substituting

M◦ from (18), we need to show

e>j (B◦B◦
>)−1(B◦ΦB◦

>) 1 > 0 .

Let us associate node-edge incidence matrix B◦ with a
resistive network and ej with the vector of independent
current sources attached to the nodes. Then the vector v :=
(B◦B◦

>)−1ej reads the voltages induced at the nodes. Since
ej implies that electrical current is injected into the network
by a single current source at the node j, the resulting voltage
at each node is non-negative (v < 0). Further, the voltages at
the node j and at least at one of the nodes neighbor to ground
(destination node) are always positive. On the other hand, the
elements of each row of the Dirichlet Laplacian B◦ΦB◦> sum
to zero, except for those rows representing the nodes neighbor
to ground, which always sum to a positive value. (Recall
that B◦ is obtained from B by discarding the row related
to ground.) This implies that in the vector u := (B◦ΦB◦

>) 1,
the components related to the nodes neighbor to ground are
positive, and others are zero. Considering the conditions of u
and v together, we get e>j M◦ 1 = v>u > 0.

Replacing M◦ by E{M◦}, the same argument leads to µ =
minj 1>E{M◦} ej > 0, which concludes the proof. �

Proof of Lemma 4

Considering the maximum of G(f) subject to f < 0, the
Lagrangian dual problem is obtained as

min
λ<0

max
f

(
L(λ,f) := 2f>B◦

>q◦ − f
>B◦
>B◦f + λ>f

)
with λ being the vector of Lagrange multipliers. Using the
first order condition ∇f L = 0, we get

2B◦
>B◦f

opt = 2B◦
>q◦ + λ . (62)

Plugging λ from (62) into the Lagrangian L leads to

min L = fopt>B◦
>B◦f

opt.

By the weak duality theorem, the maximum of the primal
problem is smaller than or equal to the minimum of the dual
problem. Further, the duality gap is zero as L(λ,f) is a convex
functional, which leads to

max G = fopt>B◦
>B◦f

opt.

Substituting the latter into the G functional entails

fopt>B◦
>q◦ − f

opt>B◦
>B◦f

opt = 0 . (63)

One can verify, on the other hand, that B◦>B◦f is an edge
vector, in which the entry corresponding to edge ij reads

(B◦
>B◦f)ij = (B◦f)i − (B◦f)j . (64)

Under the K-hop interference model, two wireless links that
share a common node cannot be scheduled in the same
timeslot. Thus, for each scheduled link ij ∈ E , we get the
net outflow for node i as (B◦f)i = fij . When node j is not
the final destination, we get (B◦f)j = −fij , and when it is,
we get (B◦f)j = 0. (Recall that B◦ is a reduction of B
by discarding the row related to the final destination.) Using
these identities in (64), we get (B◦

>B◦f)ij = ϑijfij with ϑij
defined in (6). Substituting the latter into (63), we obtain

fopt
ij

(
qij − ϑijfopt

ij

)
= 0 .

Considering the link constraints that fij must be non-negative
and at most equal to the link capacity yields

fopt
ij = min{ qij+/ϑij , µij}

which follows f̂ij in (6) with β = 0. Next is to activate
the links that contribute most to the G maximization that
directly leads to the max-weight scheduling (8) alongside the
HD weighting (7) with β = 0, concluding the proof. �

Proof of Lemma 5

Consider W (n) := q◦(n)>q◦(n) as the classical quadratic
Lyapunov candidate and take expectation from the Lyapunov
drift ∆W (n) = W (n+ 1)−W (n) to obtain

E{∆W} = E{a◦−B◦f}>E{a◦−B◦f+ 2 q◦}
− 2Cov{B◦f , q◦}+ Var{B◦f}
+ 2Cov{a◦, q◦−B◦f}+ Var{a◦}

(65)

where the equality holds at each timeslot and expectation is
with respect to the randomness of arrivals, channel states and
(possibly) routing decision. Let g := a◦ −B◦f + 2 q◦, sum
over timeslots 0 until τ − 1, divide by τ and take a lim sup
of τ → ∞ from both sides of (65) to obtain the following
expected time average equation:

lim sup
τ→∞

1

τ

τ−1∑
n=0

E{a◦(n)−B◦f(n)}>E{g(n)} =

+ 2Cov{B◦f , q◦} − Var{B◦f}
− 2Cov{a◦, q◦−B◦f} − Var{a◦}

(66)

where we utilized lim supτ→∞(W (τ)−W (0))/τ = 0, as the
routing policy stabilizes a◦ and so keeps W (n) finite with
probability 1 at each timeslot.

It remains to show that the left-hand side of (66) vanishes.
Observe that g(n) is entrywise non-negative and finite. Thus,
there exist constant vectors gmin and gmax such that

0 4 gmin 4 E{g(n)} 4 gmax.

Hence, the left-hand side of (66) is bounded from below to
(a◦ − B◦f )>gmin and from above to (a◦ − B◦f )>gmax.
Further, as a◦ is stabilized by the routing policy, the feasibility
condition in (17) entails a◦= B◦f , implying that the left-hand
side of (66) vanishes. �
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Proof of Theorem 3 (HD Minimum Delay)

To simplify the proof, we assume arrivals are i.i.d. over
timeslots, with the understanding that it can easily be modified
to yield similar result for non-i.i.d. arrivals, using the N -slot
analysis derived from (60).

Consider an arrival rate a◦ interior to the stability region of
a D-class routing policy, which we refer to it as “generic”. Let
the timeslot quantities f(n) and q◦(n) be produced by such
a generic routing policy. If this generic routing policy also
maximizes the G functional (24) at each slot n, by Assum. 1,
it will result in the same Q as that of HD policy at β = 0.
Thus, we assume the G obtained by the generic policy is not
maximal. Then for a sufficiently small ε > 0, there exists a
routing algorithm (possibly unfeasible) that can stabilize the
arrival a◦+ ε1 while making G(f , q◦, n) not less than that of
the generic routing policy at each slot n. Let us refer to this
algorithm as “fictitious,” as we do not intend to know how it
really works. To rest assure that such an algorithm exists, one
may endow it with the ability of perfectly predicting all future
events with no uncertainty.

Let f ′(n) represent the vector of link actual transmissions
produced by the fictitious algorithm at slot n given q◦(n).
Taking expectation from G(f ′, q◦, n) > G(f , q◦, n) and
considering E{B◦f ′} = E{B◦f}+ ε1 due to the feasibility
condition (17) and the i.i.d. arrivals, we obtain

2 ε1>E{q◦} > 2 ε1>E{B◦f ′} − ε21>1

+
(

2Cov{B◦f , q◦} − Var{B◦f}
)

−
(

2Cov{B◦f ′, q◦} − Var{B◦f ′}
)

which holds for each timeslot. Summing over timeslots 0 until
τ−1, dividing by τ and taking a lim sup of τ →∞ from both
sides lead to the following expected time average inequality:

2 ε1>q◦ > 2 ε1>(B◦f
′)− ε21>1

+
(

2Cov{B◦f , q◦} − Var{B◦f}
)

−
(

2Cov{B◦f ′, q◦} − Var{B◦f ′}
)
.

Let us exploit Lem. 5 in the second and third lines and apply
the identities Cov{a◦+ε1, q◦−B◦f ′} = Cov{a◦, q◦−B◦f ′}
and Var{a◦ + ε1} = Var{a◦} to obtain

2 ε1>q◦ > 2 ε1>(B◦f
′)− ε21>1

+ 2Cov{a◦,B◦f ′} − 2Cov{a◦,B◦f} .
Since f produced by the generic routing policy is independent
of arrival statistics, we get Cov{a◦,B◦f} = 0. Replacing
1>q◦ by the Q expression as defined in (2), we then obtain

2 εQ > 2 ε1>(B◦f
′) + 2Cov{a◦,B◦f ′} − ε21>1 . (67)

Consider this time HD policy at β = 0 with the timeslot
quantities of q?◦(n) and f?(n). Let again f ′(n) be produced
by the fictitious algorithm at each slot n to stabilize the arrival
a◦ + ε1, but this time, given q?◦(n). In light of Lem. 4,
G(f ′, q?◦, n) 6 G(f?, q?◦, n) at each slot n. Performing the
similar steps of taking expectation, exploiting E{B◦f ′} =
E{B◦f?} + ε, translating the results into the expected time
average form, using the fact that Cov{a◦,B◦f?} = 0 as f?

is independent of arrival statistics, and applying Lem. 5 by

knowing that HD policy is throughput optimal and so stabilizes
a◦, we obtain

2 εQ? 6 2 ε1>(B◦f
′) + 2Cov{a◦,B◦f ′} − ε21>1 . (68)

Comparing (67) and (68) along with ε > 0 lead to Q?6 Q.
This means the average network delay under HD policy with
β = 0 remains less than or equal to that under any other
D-class routing policy, which was called “generic” here. �

Proof of Theorem 4 (HD Fluid Model)

The proof follows the exact same line of argument proposed
in [38, Theorem 2.3.2] and [39, Proposition 4.12]. �

Proof of Theorem 5 (Wireless Network Thermodynamics)

Let q?◦(t) and f?(t) denote the HD fluid model variables.
Consider the continuous-time Lyapunov function

Y (t) :=
(
q?◦(t)− qopt

◦
)>
M◦

(
q?◦(t)− qopt

◦
)

where M◦ =
(
B◦B◦

>)−1B◦ΦB◦
> represents the time aver-

age expectation of matrix M◦(n) as defined in (18). Taking
time derivative from Y (t), we obtain

Ẏ (t) = q̇?◦(t)
>(M◦> + M◦

)(
q?◦(t)− qopt

◦
)
.

Exploiting Lem. 3 in the latter leads to

Ẏ (t) 6 η q̇?◦(t)
>M◦

(
q?◦(t)− qopt

◦
)

(69)

for an 1 6 η 6 3. As a positive coefficient, η has no impact
on the Lyapunov argument and can simply be omitted, but for
the sake of consistency we prefer to keep it in here.

To find an appropriate expression for q̇?◦(t), let us begin by
plugging (39) in (38) and taking time derivative to obtain

q̇?◦(t) = a◦ −B◦ḟ?tot(t) . (70)

Note in (43) that the entry of f̂(t) corresponding to link ij
specifies the number of packets the link will send per unit
time if it is activated at time t. Then f(t) identifies the vector
of rate of actual transmissions realized at time t. Assume now
that the entry of f(t) corresponding to link ij at time t is
equal to x> 0, i.e., at time t the link transmits x number of
packets per unit time. Then it should be obvious that the same
entry of ḟ tot(t) at time t must also be equal to x. In light of
limδ→0 f

tot(t + δ) = f tot(t) + δf(t), this can be explained
more formally by the classical definition of limit as

ḟ tot(t) = lim
δ→0

f tot(t+ δ)− f tot(t)

δ
= f(t) .

Further, (48)–(49) imply a◦= ~Lopt
◦ qopt

◦ = B◦f
opt. Exploiting

these latter identities in (70) yields

q̇?◦(t) = B◦f
opt−B◦f?(t) . (71)

Returning to the Lyapunov argument, let us substitute (71)
in (69) and utilize equality (19) in Lem. 2 to obtain

η−1 Ẏ (t) 6
(
fopt − f?(t)

)>
ΦB◦

>(q?◦(t)− qopt
◦
)
.
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Multiplying both sides by two, adding and subtracting the term
f?(t)>f?(t) + fopt>fopt on the left-hand side, and recasting
the terms lead to

2 η−1 Ẏ (t) 6−
(
2f?(t)>ΦB◦

>q?◦(t)− f
?(t)>f?(t)

)
(72a)

+
(
2fopt>ΦB◦

>q?◦(t)− f
opt>fopt

)
(72b)

−
(
2fopt>ΦB◦

>qopt
◦ − f

opt>fopt
)

(72c)

+
(
2f?(t)>ΦB◦

>qopt
◦ − f

?(t)>f?(t)
)
. (72d)

Characterizing (72a) and (72b) on the wireless network given
q?◦(t), they respectively read −D(f?, q?◦, t) and D(fopt, q?◦, t).
Under Assum. 1 and in light of the HD fluid equations (43) and
(45), the immediate result of Th. 4 is that at each time t, HD
fluid limit maximizes the D functional compared to any alter-
native forwarding that satisfies wireless network constraints.
The fopt obviously meets the directionality constraints due to
the structure of the reference thermal model. It also meets the
capacity constraints due to Assum. 2. Hence, (72a)+(72b) 6 0
which leads to

2 η−1 Ẏ (t) 6−
(
2fopt>ΦB◦

>qopt
◦ − f

opt>fopt
)

(73a)

+
(
2f?(t)>ΦB◦

>qopt
◦ − f

?(t)>f?(t)
)
. (73b)

We now characterize (73a) and (73b) on the reference thermal
model and let

H(f) := 2f>ΦB◦
>qopt
◦ − f

>f .

It can be shown that given qopt
◦ , the maximum of H occurs

at f = fopt produced by heat flow. To see this, rephrase H
as

H(f) =
∑

ij∈E
2φij q

opt
ij fij −

(
fij
)

2

where directionality constraints entail fij> 0. To maximize H ,
one then needs to assign fij = 0 if qopt

ij 6 0, and fij= φij q
opt
ij

otherwise. Putting this back in a matrix form, we arrive at the
same expression as fopt in (48). Further, the maximizing f
is unique by the reason that a given qopt

◦ leads to a unique
B◦
>qopt
◦ , and so to unique qopt

ij components, as the matrix B◦
has full row rank. From H(fopt) > H(f?(t)), we then obtain
(73a) + (73b) 6 0, which by 1 6 η 6 3 yields Ẏ (t) 6 0.

Let Ω be the largest invariant set in the set of all q?◦(t)
trajectories for which Ẏ (t) = 0. Since Y (t) is a non-
negative and radially unbounded function with Ẏ (t) 6 0,
LaSalle’s invariance principle states that every trajectory q?◦(t)
asymptotically converges to Ω. It remains to show that Ω
contains only the trivial trajectory of q?◦ = qopt

◦ . If Ẏ = 0,
then (73) entails H(f?(t)) = H(fopt). We previously showed
as well that fopt maximizes H and is unique, which implies

f? = fopt. (74)

The intentionally dropped time variable (t) in (74) emphasizes
that f?(t) turns to be stationary by converging to fopt, which
in turn entails q?(t) being converged to a stationary q? too.

Given q?, the equality (74) entails that fopt must maximize
D, which implies fopt

ij = 0 if q?ij 6 0, and fopt
ij = φij q

opt
ij

otherwise. In a matrix form, this is equivalent to fopt =
Φ max

{
0, B◦

>q?◦
}

. Putting the latter against (48) leads to

max
{
0, B◦

>q?◦
}

= max
{
0, B◦

>qopt
◦
}
. (75)

Consider a directed edge ad with its head at the destination
node, which has zero queue on the wireless network and zero
temperature on the reference thermal model. By (75), q?a and
qopt
a must be equal. Repeating this argument eventually yields

(q?◦)
+ = (qopt

◦ )+, as any node with positive queue (resp.
positive temperature) on the wireless network (resp. on the
reference thermal model) must be connected to the destination
node d through a directed path. Further, observe that q?◦< 0, as
queues cannot be negative in a wireless network, and qopt

◦ < 0,
as temperatures cannot fall below zero in a thermal system
with no negative heat source. Thus, q?◦ = qopt

◦ , which together
with (74) conclude the proof. �

Proof of Theorem 6 (Nonlinear Dirichlet Principle)
One can verify, by the ~L◦ structure in (35), that

~ED(q◦) =
1

2

(
q◦
>B◦

)
+ diag(σ)

(
B◦
>q◦

)
+− q◦>a◦

where each entry of B◦>q◦ represents temperature-difference
along the corresponding edge. Let q∗◦ be the ~ED(q◦) mini-
mizing solution and let us rearrange and partition B◦>q∗◦ into
positive, zero and negative components. Accordingly, B◦ gets
partitioned into B⊕, B∅ and B	, which respectively contain
the incidence information of edges with positive, zero and
negative values in B◦>q∗◦. Likewise, σ gets partitioned into
σ⊕, σ∅ and σ	. Then at q◦ = q∗◦, we obtain

~ED(q∗◦) =− q∗>◦ a◦ +
1

2

(
q∗>◦ B⊕

)
+ diag(σ⊕)

(
B>⊕ q

∗
◦
)

+

+
1

2

(
q∗>◦ B∅

)
+ diag(σ∅)

(
B>∅q

∗
◦
)

+ (76a)

+
1

2

(
q∗>◦ B	

)
+ diag(σ	)

(
B>	 q

∗
◦
)

+. (76b)

Observe that (76a) is strongly zero due to the (·)+ operation.
On the other hand, (76b) vanishes since B>∅q

∗
◦ = 0. In light

of (B>⊕ q
∗
◦)

+ = B>⊕ q
∗
◦, we then obtain

~ED(q∗◦) =
1

2
q∗>◦ B⊕ diag(σ⊕)B>⊕ q

∗
◦ − q∗>◦ a◦ . (77)

Since a◦ is feasible, each nonzero heat source connects to
the sink through at least one directed path. Thus, under
any flow that keeps q◦ entrywise finite, the edges with
positive temperature-difference build a connected graph with
the node d. On the other hand, q∗◦ is entrywise finite as
it minimizes ~ED(q◦), and so the corresponding edges in
B⊕ build a connected graph with the node d. This implies
that B⊕ diag(σ⊕)B>⊕ is a positive definite matrix. Thus, the
functional 1

2 q◦
>B⊕ diag(σ⊕)B>⊕ q◦ − q◦>a◦ is strictly convex

in q◦ and so finds its minimum at the critical point, where its
first order variation with respect to q◦ vanishes. Comparing
this with (77), it turns out that the minimizing q∗◦ must satisfy

a◦ = B⊕ diag(σ⊕)B>⊕ q
∗
◦ . (78)

Utilizing B>⊕ q
∗
◦= (B>⊕ q

∗
◦)

+ and (B>	 q
∗
◦)

+ = (B>∅q
∗
◦)

+ = 0,
one can rephrase (78) as

a◦ = B◦ diag(σ)
(
B◦
>q∗◦

)
+ = ~L◦q

∗
◦

that recovers the nonlinear Poisson equation (52) at q∗◦. Fur-
ther, q∗◦ is unique as it minimizes the strictly convex functional
1
2 q◦
>B⊕ diag(σ⊕)B>⊕ q◦ − q◦>a◦. �
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Proof of Theorem 7 (Nonlinear Thomson Principle)

Consider (54) as the primal optimization problem and let
us construct its Lagrangian dual problem as

max
λ

min
f<0

(
L(λ,f) := f> diag(σ)−1f + 2λ>

(
a◦ −B◦f

))
where λ < 0 is the vector of Lagrange multipliers. From the
first order condition ∇f L = 0, we get fopt = diag(σ)B◦

>λ.
Then enforcing the constraint fopt < 0 leads to B◦>λ < 0,
which is equivalent to B◦>λ = (B◦

>λ)+. Thus, we obtain

fopt = diag(σ) (B◦
>λ)+. (79)

Plugging this fopt into the Lagrangian L and utilizing the
structure of ~L◦ in (35), we obtain

L(λ) = −λ>~L◦ λ+ 2λ>a◦ .

Then the dual problem reads maxλ L(λ), which is equivalent
to the following minimization problem:

min
λ

1

2
λ>~L◦ λ− λ>a◦ . (80)

Further, as f < 0 makes a convex set and L(λ,f) is a convex
function, the duality gap is zero, and so both the primal and
dual problems result in the same optimal solution.

Comparing (80) with the nonlinear Dirichlet equation (53),
it remains to show that the Lagrangian multipliers λ are
identical to the node temperatures q◦. In (79), multiplying
both sides by B◦ and using the ~L◦ expression, we obtain

~L◦λ = B◦f
opt = a◦ (81)

where the second equality comes from the constraint in the
primal problem (54). Further, by Th. 6, the nonlinear Poisson
equation ~L◦q◦ = a◦ has a unique solution. Putting this against
(81) leads to λ = q◦, which concludes the proof. �

Proof of Theorem 8 (HD Minimum Routing Cost)

It was shown by Th. 6 that if a◦ is feasible, then under
the nonlinear heat equations (48)–(49), the stationary value of
the nonlinear Dirichlet energy ~ED(q◦) is strictly minimized.
It was shown by Th. 7, on the other hand, that minimizing
~ED(q◦) is equivalent to minimizing the stationary value of
total energy dissipation ~ER(f) on the graph. Then the proof
immediately follows from Th. 5 which states that under a
stabilizable arrival rate a◦, HD fluid model complies with
the nonlinear heat equations (48)–(49). Note that if a◦ is
stabilizable, i.e., it satisfies condition (17), then its feasibility
is trivial in the sense of Def. 10. �

Proof of Theorem 9 (HD Pareto Optimality)

Observe that HD policy minimizes Q at β = 0, minimizes
R at β = 1, and changes weight on these two objectives
by altering β between 0 and 1. In fact, HD transforms the
two objectives of minimizing Q and R into an aggregated
objective function by multiplying each objective function by a
weighting factor and summing up the two weighted objective
functions. Further, the weighted sum is a convex combination
of objectives as the sum of weighting factors β and 1−β

equals 1. Under the assumption that the region (Q ,R) has
a convex Pareto boundary, the proof then follows by the fact
that the entire boundary can be reached using the weighted-
sum method [40]–[42] that changes the weight on the weighted
convex combination of the two objective functions. �
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APPENDIX B

Graph Laplacian

Consider a connected, weighted graph with set of nodes V ,
set of undirected edges E , node-edge incidence matrixB, edge
weight vector σ and the Laplacian L := B diag(σ)B>. One
can verify that x>Lx =

∑
ij∈E σij(xi − xj)

2 > 0, which
means L is positive semi-definite. Observe that L1 = 0, which
implies that 1 is an eigenvector corresponding to the smallest
eigenvalue λ1 = 0. For the second smallest eigenvalue λ2,
let ν be the eigenvector orthogonal to 1. Thus, ν>1 = 0 and
λ2 = ν>Lν =

∑
ij∈E σij(νi − νj)2. Assume λ2 = 0. Since

the graph is connected, there exists a path between every
two nodes, which enforces ν = c1 for a constant c. This
contradicts ν>1 = 0, and so λ2 must be positive.

Let L† be the Moore-Penrose pseudoinverse of L. Both L
and L† have the same eigenvectors, while two corresponding

eigenvalues are reciprocals of each other, except that 1 replaces
the zero eigenvalue of L. One can verify that

L† =
(
L+

1

n
1>1

)−1

− 1

n
1>1 with n := |V|.

Also L† enjoys the structural property of L†1 = 0.
The Dirichlet Laplacian L◦ := B◦ diag(σ)B◦

> is made
from L by discarding the entries corresponding to a reference
node d. Let E = E1 + E◦, where E◦ is the set of edges with
one end connected to node d. One can verify that ∀x 6= 0,

x>L◦x =
∑
ij∈E1σij(xi − xj)

2 +
∑
id∈E◦σid x

2
i > 0

which means L◦ is positive definite and so invertible. Further,
L◦1 = y is a nonzero vector with non-negative coordinates,
where yi = 0 if id ∈ E1 and yi > 0 if id ∈ E◦.

Sometimes, it is misunderstood that L◦ carries the same
eigenvalues as L but the zero, which is not true.

Resistive Network

Associate to our connected weighted graph an electric
network, where each edge ij ∈ E is replaced by a linear
lumped resistor with the conductance of σij . Let electrical
currents be injected into (resp. drawn from) the network by
positive (resp. negative) independent current sources attached
to the nodes. Let a node d be grounded at zero voltage potential
and let no other grounded node exist in the network. (Note
the difference between a grounded node and a node with zero
voltage.) At the nodes other than d, let u◦ be the vector of
current sources and v◦ the vector of induced voltages.

R1: Combining Kirchhoff’s Current Law (KCL) and Ohm’s
law leads to u◦ = L◦v◦ and v◦ = L−1

◦ u◦.
R2: One may envision d as a node, also referred to as sink,

that collects the net current injected into the network, i.e.,
algebraic sum of current sources, and feeds it back to the
sources so as to make an adiabatic process. This leads to

u = Lv with ud = −
∑
i∈V\{d}ui and vd = 0.

Let L† be the Moore-Penrose pseudoinverse of L. One can
verify the inverse relationship as
v = L†u− c1 with c := (L†u)d = −

∑
i∈V\{d}(L

†u)i.

R3: Passivity: For u◦ 6= 0, the cumulative energy spent
by all current sources is always positive, i.e., u◦>v◦> 0. This
does not imply that the energy spent by each individual current
source is always positive too.

R4: If u◦< 0 (resp. u◦4 0), then v◦< 0 (resp. v◦4 0).
Further, v◦ � 0 (resp. v◦ ≺ 0), if currents are nonzero at
the nodes neighbor to ground. The converse is not true, i.e.,
imposing positive (resp. negative) voltages at all nodes could
entail negative (resp. positive) current sources at some nodes.

R5: Each positive (resp. negative) current source creates
the largest positive (resp. negative) voltage at the node to
which it is connected. The magnitude of created voltage at the
nodes reduce along every possible path towards the ground in
proportion to the edge conductances.

R6: Superposition of sources: The voltage at each node
equals the algebraic sum of the voltages created by each
current source separately while all other sources are zero.
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R7: Superposition of resistors: Given a resistive network G,
consider two sub-networks G1 and G2 with the same set of
nodes, edges and current sources, but with the resistance of
each edge in G being equal to the parallel of corresponding
resistances in G1 and G2. The voltage at each node in G equals
the algebraic sum of the corresponding voltages in G1 and G2.
The current through each edge in G equals the algebraic sum
of the corresponding currents in G1 and G2.

R8: The effective electrical resistance between two nodes i
and j, using the Moore-Penrose pseudoinverse, is given by

reff
ij = L†ii +L†jj − 2L†ij .

Alternatively, the Dirichlet Laplacian provides

reff
ij =

{
(L−1
◦ )ii + (L−1

◦ )jj − 2 (L−1
◦ )ij if i, j 6= d

(L−1
◦ )ii otherwise .

Rayleighs monotonicity principle states that if the resistance
of one edge increases (resp. decreases), the effective resistance
between every two nodes also increases (resp. decreases) or
remains unchanged.


