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This supplementary material carries three sections as ap-
pendices to the main paper, with its title and authors being
replicated above. The first appendix contains the proof of all
theorems and lemmas in the main paper. The second appendix
studies the performance of proposed HD routing policy versus
V-parameter BP in a real sensor network with forty five
wireless sensors. The third appendix is a brief review of graph
Laplacian matrix and its properties.

APPENDIX A
PROOF OF THEOREMS AND LEMMAS

Note that in the proofs we often drop timeslot variable (n)
for ease of notation and concision.

Proof of Theorem 1 (HD Key Property)
One can verify that

D(f , q◦, n) =
∑

ij∈E
2φij(n)qij(n)fij(n)− fij(n)2.

Let us temporarily relax all network constraints. Then each
link-related component of D(f , q◦, n) turns to be strictly
concave. For each link ij, by taking the first derivative with
respect to fij , we find the maximizing link transmission
foptij = φijqij . Considering the link constraints that fij must
be non-negative and at most equal to the link capacity yields

foptij = min{φij qij+, µij}
which follows f̂ij in (6). Considering the link interference
constraint, on the other hand, enforces to activate the links that
contribute most to the D maximization. Then assuming that an
interference model does not let a node transmit to more than
one neighbor at the same time, the latter directly leads to the
max-weight scheduling (8) alongside the HD weighting (7),
which concludes the proof. �

Proof of Lemma 1
Define ∆ := B◦B◦

> and ∆φ := B◦ΦB◦
>, which are both

positive definite matrices. Since ∆
1/2
φ ∆−1∆

1/2
φ is congruent

to ∆−1 which has only positive eigenvalues, by Sylvester’s
law of inertia, ∆

1/2
φ ∆−1∆

1/2
φ has only positive eigenvalues

too. The latter is similar to M◦, and so they have the same
eigenvalues, proving that M◦ has only positive eigenvalues.

We now show that x>M◦ x > 0. Letting v := ∆−1x and
substituting for M◦, it suffices to show that

(B◦
>v)>

(
ΦB◦

>B◦
)
(B◦
>v) > 0 . (A1)
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Doing another change of variable, let f := B◦
>v that rep-

resents an edge vector in which fij = vi − vj , ∀ ij ∈ E .
Recall that B◦ is a signed node-edge incidence matrix with
arbitrarily assigned algebraic topological edge orientations. Let
us assign edge orientations such that fij > 0, ∀ ij ∈ E . Then
to fulfill (A1), it suffices to show that f>ΦB◦

>B◦ f > 0
subject to f < 0, which reads fij > 0, ∀ ij ∈ E . To this
end, we equivalently show that minimum cost in the following
optimization problem is non-negative:

min
f<0

f>ΦB◦
>B◦ f .

Let us construct the Lagrangian dual problem

max
λ<0

min
f

(
L(λ,f) := f>ΦB◦

>B◦ f − λ>f
)

(A2)

with λ being the vector of Lagrange multipliers. Since the
primal variable f is continuously differentiable, so the La-
grangian L, and thus the minimum occurs where ∇f L = 0,
which leads to

λ =
(
B◦
>B◦Φ + ΦB◦

>B◦
)
fopt.

Substituting fopt in (A2) and noting that both fopt and λ are
entrywise non-negative, we obtain

max
λ<0

L(λ) = max
λ<0

−1

2
λ>fopt = 0 . (A3)

By the weak duality theorem, the minimum of the primal
problem is greater than or equal to the maximum of the
dual problem. Thus, (A3) entails minf<0 f

>ΦB◦
>B◦f> 0,

which equally means x>M◦ x > 0.
It remains to show that x>M◦ x = 0 only if x = 0, which

is equivalent to show that matrixM◦
>+M◦ is positive definite.

Since x>(M◦
>+M◦)x> 0 already guarantees that M◦

>+M◦
is positive semi-definite, it suffices to show that M◦

>+ M◦
has no zero eigenvalue. Let us assume it does, which implies
the existence of an eigenvector ν 6= 0 such that

(M◦
>+M◦)ν = 0 . (A4)

Because M◦ is the product of two positive definite matrices,
ν 6= 0 entails M◦ν 6= 0, which leads to (M◦ν)>M◦ν +
(M◦

>ν)>M◦
>ν > 0. Utilizing (A4) in the latter results in

ν>
(
M◦
>−M◦

)2
ν < 0

which is not true as (M◦
>−M◦)2 is a symmetric positive

semi-definite matrix. Therefore, M◦
>+M◦ has no zero eigen-

value and so is symmetric positive definite. �

Proof of Lemma 2
By definition of M◦, we already have B◦B◦>M◦ x =

B◦ΦB◦
>x, which could easily be seen by substituting M◦
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from (18). Thus, to prove the claim, it suffices to show that
for any vectors x and y, equality B◦y = B◦ΦB◦

>x entails
y = ΦB◦

>x. To this end, we utilize the properties of heat
equations on undirected graphs (see Sec. VII-B).

Consider a thermal graph with reduced node-edge incidence
matrix B◦ and edge thermal diffusivity matrix Φ and let the
destination node be fixed at zero temperature. As the first
scenario, let us envision y as the vector of heat fluxes through
the branches, implying that B◦y represents the vector of heat
sources injected at the nodes (see (32) and (33) under constant
heat sources.) As the second scenario, envision x as the vector
of temperatures at the nodes, implying that ΦB◦

>x represents
the vector of heat fluxes through the branches and B◦ΦB◦>x
represents the vector of heat sources injected at the nodes.

Assuming B◦y = B◦ΦB◦
>x means that the thermal graph

is charged by the same configuration of heat sources in both
scenarios above. It follows that the vector of temperatures
at the nodes are also the same as the Dirichlet Laplacian is
positive definite in (33). Hence, in both scenarios the vector
of heat fluxes through the branches must be equal, because
B◦ has full row rank in (32). This entails y = ΦB◦

>x, which
concludes the proof. �

Proof of Lemma 3

Let us replace M◦ +M◦
> by 2M◦ + (M◦

>−M◦). Doing
some matrix manipulation, we need to show that there exists
such 1 6 η 6 3 that for arbitrary vectors x and y,

x>(M◦
>−M◦)y 6 (η − 2)x>M◦ y . (A5)

To this end, it suffices to show
∣∣x>(M◦

>−M◦)y
∣∣ 6∣∣x>M◦ y∣∣, which then makes the inequality (A5) true for

η = 1 in case of x>M◦ y 6 0, and for η = 3 in case of
x>M◦ y > 0. This is equivalent to show that the following
inequality holds:

x>(M◦
>−M◦)yy>(M◦−M◦

>)x 6 x>M◦ yy
>M◦

>x .

By little algebra, the latter can be rephrased as

x>(2M◦−M◦
>)yy>M◦ x > 0 .

To prove the above inequality, it suffices to show that the min-
imum objective value in the following optimization problem
is non-negative:

minx,y x>(2M◦−M◦
>)y y>M◦x

s.t. x>M◦x > 0 , y>M◦y > 0

where the constraints are enforced in light of Lem. 1. The
Lagrangian dual problem, with λx and λy as the Lagrange
multipliers, is found as

max
λx,λy>0

min
x,y

(
L := x>(2M◦−M◦

>)y y>M◦x

− λx x>M◦x− λy y>M◦y
)

Imposing the first order conditions ∇x L = 0 and ∇y L = 0
leads to
λx (M◦

>+M◦)x = 2M◦y y
>M◦x+ 2M◦

>y y>M◦
>x

− 2M◦
>y y>M◦x

λy (M◦
>+M◦)y = 2M◦xx

>M◦y + 2M◦
>xx>M◦

>y

− 2M◦xx
>M◦

>y .

Let us plug these two equations into the Lagrangian L and
utilize the identities x>M◦

>y = y>M◦x := a and x>M◦y =
y>M◦

>x := b with a and b being scalars. One can easily
confirm the following identities:

L = (2 a b− b2)− λx x>M◦x− λy y>M◦y
λx x

>(M◦
>+M◦)x = 2 (2 a b− b2)

λy y
>(M◦

>+M◦)y = 2 (2 a b− b2).

Then by little algebra, the Lagrangian can be transformed to

L =
1

4
λx x

>(M◦
>+M◦

)
x+

1

4
λy y

>(M◦
>+M◦

)
y

− λx x>M◦x− λy y>M◦y

=
1

4
λx x

>(M◦
>− 3M◦

)
x+

1

4
λy y

>(M◦
>− 3M◦

)
y .

Since M◦−M◦
> is skew-symmetric, both x>(M◦ −M◦

>)x
and y>(M◦ −M◦

>)y vanish. In light of x>M◦x > 0 and
y>M◦y > 0, the Lagrangian dual problem reads

max
λx,λy>0

L = max
λx,λy>0

−1

2

(
λx x

>M◦x+ λy y
>M◦y

)
= 0 .

This entails x>(2M◦−M◦
>)yy>M◦ x > 0 by the weak du-

ality theorem that the maximum of the dual problem provides
a lower bound for the minimum of the primal problem. �

Proof of Theorem 2 (HD Throughput Optimality)

To simplify the proof, we assume arrivals to be i.i.d.
over timeslots. For non-i.i.d. arrivals with stationary ergodic
processes of finite mean and variance, a similar analysis can
be done using N -slot Lyapunov drift [27], where the queue
evolution (10) is modified to

q◦(n+N) = q◦(n) +

n+N−1∑
k=n

a◦(k)−
n+N−1∑
k=n

B◦f(k) . (A6)

One can view N as the time required for the system to reach
“near steady state,” noting that in the i.i.d. case, the steady
state is reached on each and every timeslot, and so N = 1.

Back to the proof for i.i.d. arrivals, suppose that a◦ is
interior to the network capacity region C. Thus, there exists an
ε > 0 such that a◦+ ε1 ∈ C. Since the stationary randomized
algorithm that generates f ′(n) is throughput optimal [27], it
can stabilize the arrival a◦ + ε1 at each timeslot. The i.i.d.
assumption on arrivals then leads to

E{a◦−B◦f ′} = a◦ − (a◦ + ε1) = −ε1

implying that both a◦ and f ′ reach their steady states on
each and every timeslot. Plugging this into the Lyapunov drift
inequality (23) yields

E
{

∆W |q◦
}
6 −η ε1>E{M◦} q◦ + Γmax . (A7)

Let us assume that there exists a µ> 0, which is explored later,
such that 1>E{M◦} q◦ > µ1>q◦. Using this in the latter drift
inequality leads to

E
{

∆W |q◦
}
6 −η µ ε1>q◦ + Γmax .

Thus, E{∆W |q◦} < 0 for any
∑
i qi > Γmax

/
(η µ ε). This

implies that the queuing system is stable and so a◦ is in the
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HD stability region. Thus, any arrival rate a◦ being interior
to the network capacity region is stabilized by HD with any
β ∈ [0, 1], meaning that HD is throughput optimal for all
β ∈ [0, 1].

We now show that there exists such a µ> 0 that satisfies
1>E{M◦} q◦ > µ1>q◦. Let us temporarily ignore the expec-
tation and solve the problem for M◦. The claim is trivial for
q◦ = 0, and so we assume q◦ 6= 0. Further, q◦ represents the
vector of queue occupancies on the wireless network that are
always non-negative. Let ‖q◦‖1 represent the `1 norm of q◦,
defined as the sum of all queue occupancies. With no loss of
generality, one may normalize ‖q◦‖1 to one. The problem can
then be rephrased as finding a µ > 0 such that

min
‖q◦‖1=1,q◦<0

1>(M◦ − µI) q◦ > 0 .

The latter is a standard linear programming problem. Using
simplex method, the minimum lies on a vertex of the simplex,
where the vertices of the simplex are the natural basis elements
ej : j = 1, ..., |V|. Thus, the µ is to be sought such that

1>
(

(M◦):,j − µ ej
)
> 0 .

This immediately leads to µ = minj 1>M◦ ej .
It remains to show that 1>M◦ ej > 0 for every natural

basis ej . By Lem. 3, there exists such a 1 6 η 6 3 as

η 1>M◦ ej > 1>
(
M◦
> +M◦

)
ej

which implies (η − 1) 1>M◦ ej > 1>M◦
> ej . The right hand

side is always positive by the next electrical circuit argument,
which implies (η − 1) 1>M◦ ej > 0. The latter entails η > 1
and 1>M◦ ej > 0 as we desired.

To argue that 1>M◦
> ej = e>j M◦ 1 > 0, by substituting

M◦ from (18), we need to show

e>j (B◦B◦
>)−1(B◦ΦB◦

>) 1 > 0 .

Let us associate node-edge incidence matrix B◦ with a
resistive network and ej with the vector of independent
current sources attached to the nodes. Then the vector v :=
(B◦B◦

>)−1ej reads the voltages induced at the nodes. Since
ej implies that electrical current is injected into the network
by a single current source at the node j, the resulting voltage
at each node is non-negative (v < 0). Further, the voltages at
the node j and at least at one of the nodes neighbor to ground
(destination node) are always positive. On the other hand, the
elements of each row of the Dirichlet Laplacian B◦ΦB◦> sum
to zero, except for those rows representing the nodes neighbor
to ground, which always sum to a positive value. (Recall
that B◦ is obtained from B by discarding the row related
to ground.) This implies that in the vector u := (B◦ΦB◦

>) 1,
the components related to the nodes neighbor to ground are
positive, and others are zero. Considering the conditions of u
and v together, we get e>j M◦ 1 = v>u > 0.

Replacing M◦ by E{M◦}, the same argument leads to µ =
minj 1>E{M◦} ej > 0, which concludes the proof. �

Proof of Lemma 4
Considering the maximum of G(f) subject to f < 0, the

Lagrangian dual problem is obtained as

min
λ<0

max
f

(
L(λ,f) := 2f>B◦

>q◦ − f
>B◦
>B◦f + λ>f

)

with λ being the vector of Lagrange multipliers. Using the
first order condition ∇f L = 0, we get

2B◦
>B◦f

opt = 2B◦
>q◦ + λ . (A8)

Plugging λ from (A8) into the Lagrangian L leads to

min L = fopt>B◦
>B◦f

opt.

By the weak duality theorem, the maximum of the primal
problem is smaller than or equal to the minimum of the dual
problem. Further, the duality gap is zero as L(λ,f) is a convex
functional, which leads to

max G = fopt>B◦
>B◦f

opt.

Substituting the latter into the G functional entails

fopt>B◦
>q◦ − f

opt>B◦
>B◦f

opt = 0 . (A9)

One can verify, on the other hand, that B◦>B◦f is an edge
vector, in which the entry corresponding to edge ij reads

(B◦
>B◦f)ij = (B◦f)i − (B◦f)j . (A10)

Under the K-hop interference model, two wireless links that
share a common node cannot be scheduled in the same
timeslot. Thus, for each scheduled link ij ∈ E , we get the
net outflow for node i as (B◦f)i = fij . When node j is not
the final destination, we get (B◦f)j = −fij , and when it is,
we get (B◦f)j = 0. (Recall that B◦ is a reduction of B
by discarding the row related to the final destination.) Using
these identities in (A10), we get (B◦

>B◦f)ij = ϑijfij with
ϑij defined in (6). Substituting the latter into (A9), we obtain

foptij

(
qij − ϑijfoptij

)
= 0 .

Considering the link constraints that fij must be non-negative
and at most equal to the link capacity yields

foptij = min{ qij+/ϑij , µij}
which follows f̂ij in (6) with β = 0. Next is to activate
the links that contribute most to the G maximization that
directly leads to the max-weight scheduling (8) alongside the
HD weighting (7) with β = 0, concluding the proof. �

Proof of Lemma 5

Consider W (n) := q◦(n)>q◦(n) as the classical quadratic
Lyapunov candidate and take expectation from the Lyapunov
drift ∆W (n) = W (n+ 1)−W (n) to obtain

E{∆W} = E{a◦−B◦f}>E{a◦−B◦f+ 2 q◦}
− 2Cov{B◦f , q◦}+ Var{B◦f}
+ 2Cov{a◦, q◦−B◦f}+ Var{a◦}

(A11)

where the equality holds at each timeslot and expectation is
with respect to the randomness of arrivals, channel states and
(possibly) routing decision. Let g := a◦ −B◦f + 2 q◦, sum
over timeslots 0 until τ − 1, divide by τ and take a lim sup
of τ → ∞ from both sides of (A11) to obtain the following
expected time average equation:

lim sup
τ→∞

1

τ

τ−1∑
n=0

E{a◦(n)−B◦f(n)}>E{g(n)} =

+ 2Cov{B◦f , q◦} − Var{B◦f}
− 2Cov{a◦, q◦−B◦f} − Var{a◦}

(A12)
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where we utilized lim supτ→∞(W (τ)−W (0))/τ = 0, as the
routing policy stabilizes a◦ and so keeps W (n) finite with
probability 1 at each timeslot.

It remains to show that the left-hand side of (A12) vanishes.
Observe that g(n) is entrywise non-negative and finite. Thus,
there exist constant vectors gmin and gmax such that

0 4 gmin 4 E{g(n)} 4 gmax.

Hence, the left-hand side of (A12) is bounded from below
to (a◦−B◦f )>gmin and from above to (a◦−B◦f )>gmax.
Further, as a◦ is stabilized by the routing policy, the feasibility
condition in (17) entails a◦= B◦f , implying that the left-hand
side of (A12) vanishes. �

Proof of Theorem 3 (HD Minimum Delay)

To simplify the proof, we assume arrivals are i.i.d. over
timeslots, with the understanding that it can easily be modified
to yield similar result for non-i.i.d. arrivals, using the N -slot
analysis derived from (A6).

Consider an arrival rate a◦ interior to the stability region of
a D-class routing policy, which we refer to it as “generic”. Let
the timeslot quantities f(n) and q◦(n) be produced by such
a generic routing policy. If this generic routing policy also
maximizes the G functional (24) at each slot n, by Assum. 1,
it will result in the same Q as that of HD policy at β = 0.
Thus, we assume the G obtained by the generic policy is not
maximal. Then for a sufficiently small ε > 0, there exists a
routing algorithm (possibly unfeasible) that can stabilize the
arrival a◦+ ε1 while making G(f , q◦, n) not less than that of
the generic routing policy at each slot n. Let us refer to this
algorithm as “fictitious,” as we do not intend to know how it
really works. To rest assure that such an algorithm exists, one
may endow it with the ability of perfectly predicting all future
events with no uncertainty.

Let f ′(n) represent the vector of link actual transmissions
produced by the fictitious algorithm at slot n given q◦(n).
Taking expectation from G(f ′, q◦, n) > G(f , q◦, n) and
considering E{B◦f ′} = E{B◦f}+ ε1 due to the feasibility
condition (17) and the i.i.d. arrivals, we obtain

2 ε1>E{q◦} > 2 ε1>E{B◦f ′} − ε21>1

+
(

2Cov{B◦f , q◦} − Var{B◦f}
)

−
(

2Cov{B◦f ′, q◦} − Var{B◦f ′}
)

which holds for each timeslot. Summing over timeslots 0 until
τ−1, dividing by τ and taking a lim sup of τ →∞ from both
sides lead to the following expected time average inequality:

2 ε1>q◦ > 2 ε1>(B◦f
′)− ε21>1

+
(

2Cov{B◦f , q◦} − Var{B◦f}
)

−
(

2Cov{B◦f ′, q◦} − Var{B◦f ′}
)
.

Let us exploit Lem. 5 in the second and third lines and apply
the identities Cov{a◦+ε1, q◦−B◦f ′} = Cov{a◦, q◦−B◦f ′}
and Var{a◦ + ε1} = Var{a◦} to obtain

2 ε1>q◦ > 2 ε1>(B◦f
′)− ε21>1

+ 2Cov{a◦,B◦f ′} − 2Cov{a◦,B◦f} .

Since f produced by the generic routing policy is independent
of arrival statistics, we get Cov{a◦,B◦f} = 0. Replacing
1>q◦ by the Q expression as defined in (2), we then obtain

2 εQ > 2 ε1>(B◦f
′) + 2Cov{a◦,B◦f ′} − ε21>1 . (A13)

Consider this time HD policy at β = 0 with the timeslot
quantities of q?◦(n) and f?(n). Let again f ′(n) be produced
by the fictitious algorithm at each slot n to stabilize the arrival
a◦ + ε1, but this time, given q?◦(n). In light of Lem. 4,
G(f ′, q?◦, n) 6 G(f?, q?◦, n) at each slot n. Performing the
similar steps of taking expectation, exploiting E{B◦f ′} =
E{B◦f?} + ε, translating the results into the expected time
average form, using the fact that Cov{a◦,B◦f?} = 0 as f?

is independent of arrival statistics, and applying Lem. 5 by
knowing that HD policy is throughput optimal and so stabilizes
a◦, we obtain

2 εQ? 6 2 ε1>(B◦f
′) + 2Cov{a◦,B◦f ′}− ε21>1 . (A14)

Comparing (A13) and (A14) along with ε > 0 lead to Q?6 Q.
This means the average network delay under HD policy with
β = 0 remains less than or equal to that under any other
D-class routing policy, which was called “generic” here. �

Proof of Theorem 4 (HD Fluid Model)
The proof follows the exact same line of argument proposed

in [36, Theorem 2.3.2] and [37, Proposition 4.12]. �

Proof of Theorem 5 (Wireless Network Thermodynamics)
Let q?◦(t) and f?(t) denote the HD fluid model variables.

Consider the continuous-time Lyapunov function

Y (t) :=
(
q?◦(t)− qopt◦

)>
M◦

(
q?◦(t)− qopt◦

)
where M◦ =

(
B◦B◦

>)−1B◦ΦB◦
> represents the time aver-

age expectation of matrix M◦(n) as defined in (18). Taking
time derivative from Y (t), we obtain

Ẏ (t) = q̇?◦(t)
>(M◦> + M◦

)(
q?◦(t)− qopt◦

)
.

Exploiting Lem. 3 in the latter leads to

Ẏ (t) 6 η q̇?◦(t)
>M◦

(
q?◦(t)− qopt◦

)
(A15)

for an 1 6 η 6 3. As a positive coefficient, η has no impact
on the Lyapunov argument and can simply be omitted, but for
the sake of consistency we prefer to keep it in here.

To find an appropriate expression for q̇?◦(t), let us begin by
plugging (39) in (38) and taking time derivative to obtain

q̇?◦(t) = a◦ −B◦ḟ?tot(t) . (A16)

Note in (43) that the entry of f̂(t) corresponding to link ij
specifies the number of packets the link will send per unit
time if it is activated at time t. Then f(t) identifies the vector
of rate of actual transmissions realized at time t. Assume now
that the entry of f(t) corresponding to link ij at time t is
equal to x> 0, i.e., at time t the link transmits x number of
packets per unit time. Then it should be obvious that the same
entry of ḟ tot(t) at time t must also be equal to x. In light of
limδ→0 f

tot(t + δ) = f tot(t) + δf(t), this can be explained
more formally by the classical definition of limit as

ḟ tot(t) = lim
δ→0

f tot(t+ δ)− f tot(t)

δ
= f(t) .
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Further, (48)–(49) imply a◦= ~Lopt
◦ qopt◦ = B◦f

opt. Exploiting
these latter identities in (A16) yields

q̇?◦(t) = B◦f
opt−B◦f?(t) . (A17)

Returning to the Lyapunov argument, let us substitute (A17)
in (A15) and utilize equality (19) in Lem. 2 to obtain

η−1 Ẏ (t) 6
(
fopt − f?(t)

)>
ΦB◦

>(q?◦(t)− qopt◦ )
.

Multiplying both sides by two, adding and subtracting the term
f?(t)>f?(t) + fopt>fopt on the left-hand side, and recasting
the terms lead to

2 η−1 Ẏ (t) 6 −
(
2f?(t)>ΦB◦

>q?◦(t)− f
?(t)>f?(t)

)
(A18a)

+
(
2fopt>ΦB◦

>q?◦(t)− f
opt>fopt

)
(A18b)

−
(
2fopt>ΦB◦

>qopt◦ − f
opt>fopt

)
(A18c)

+
(
2f?(t)>ΦB◦

>qopt◦ − f
?(t)>f?(t)

)
. (A18d)

Characterizing (A18a) and (A18b) on the wireless net-
work given q?◦(t), they respectively read −D(f?, q?◦, t) and
D(fopt, q?◦, t). Under Assum. 1 and in light of the HD fluid
equations (43) and (45), the immediate result of Th. 4 is that
at each time t, HD fluid limit maximizes the D functional
compared to any alternative forwarding that satisfies wireless
network constraints. The fopt obviously meets the direction-
ality constraints due to the structure of the reference thermal
model. It also meets the capacity constraints due to Assum. 2.
Hence, (A18a) + (A18b) 6 0 which leads to

2 η−1 Ẏ (t) 6 −
(
2fopt>ΦB◦

>qopt◦ − f
opt>fopt

)
(A19a)

+
(
2f?(t)>ΦB◦

>qopt◦ − f
?(t)>f?(t)

)
. (A19b)

We now characterize (A19a) and (A19b) on the reference
thermal model and let

H(f) := 2f>ΦB◦
>qopt◦ − f

>f .

One can show that given qopt◦ , the maximum of H occurs at
f = fopt produced by heat flow. To this end, rephrase H as

H(f) =
∑

ij∈E
2φij q

opt
ij fij −

(
fij
)
2

where directionality constraints entail fij> 0. To maximize H ,
one then needs to assign fij = 0 if qoptij 6 0, and fij= φij q

opt
ij

otherwise. Putting this back in a matrix form, we arrive at the
same expression as fopt in (48). Further, the maximizing f
is unique by the reason that a given qopt◦ leads to a unique
B◦
>qopt◦ , and so to unique qoptij components, as the matrix B◦

has full row rank. From H(fopt) > H(f?(t)), we then obtain
(A19a) + (A19b) 6 0, which by 1 6 η 6 3 yields Ẏ (t) 6 0.

Let Ω be the largest invariant set in the set of all q?◦(t)
trajectories for which Ẏ (t) = 0. Since Y (t) is a non-
negative and radially unbounded function with Ẏ (t) 6 0,
LaSalle’s invariance principle states that every trajectory q?◦(t)
asymptotically converges to Ω. It remains to show that Ω
contains only the trivial trajectory of q?◦ = qopt◦ . If Ẏ = 0,
then (2) entails H(f?(t)) = H(fopt). We previously showed
as well that fopt maximizes H and is unique, which implies

f? = fopt. (A20)

The intentionally dropped time variable (t) in (A20) empha-
sizes that f?(t) turns to be stationary by converging to fopt,
meaning that q?(t) converges to a stationary q? too.

Given q?, the equality (A20) entails that fopt must maxi-
mize D, which implies foptij = 0 if q?ij6 0, and foptij = φij q

opt
ij

otherwise. In a matrix form, this is equivalent to fopt =
Φ max

{
0,B◦

>q?◦
}

. Putting the latter against the equation (48)
leads to

max
{
0, B◦

>q?◦
}

= max
{
0, B◦

>qopt◦
}
. (A21)

Consider a directed edge ad with its head at the destination
node, which has zero queue on the wireless network and zero
temperature on the reference thermal model. By (A21), q?a
and qopta must be equal. Repeating this argument eventually
yields (q?◦)

+ = (qopt◦ )+, as any node with positive queue (resp.
positive temperature) on the wireless network (resp. on the
reference thermal model) must be connected to the destination
node d through a directed path. Further, observe that q?◦< 0, as
queues cannot be negative in a wireless network, and qopt◦ < 0,
as temperatures cannot fall below zero in a thermal system
with no negative heat source. Thus, q?◦ = qopt◦ , which together
with (A20) conclude the proof. �

Proof of Theorem 6 (Nonlinear Dirichlet Principle)

One can verify, by the ~L◦ structure in (35), that

~ED(q◦) =
1

2

(
q◦
>B◦

)
+ diag(σ)

(
B◦
>q◦

)
+− q◦>a◦

where each entry of B◦>q◦ represents temperature-difference
along the corresponding edge. Let q∗◦ be the ~ED(q◦) mini-
mizing solution and let us rearrange and partition B◦>q∗◦ into
positive, zero and negative components. Accordingly, B◦ gets
partitioned into B⊕, B∅ and B	, which respectively contain
the incidence information of edges with positive, zero and
negative values in B◦>q∗◦. Likewise, σ gets partitioned into
σ⊕, σ∅ and σ	. Then at q◦ = q∗◦, we obtain

~ED(q∗◦) =− q∗>◦ a◦ +
1

2

(
q∗>◦ B⊕

)
+ diag(σ⊕)

(
B>⊕ q

∗
◦
)
+

+
1

2

(
q∗>◦ B∅

)
+ diag(σ∅)

(
B>∅q

∗
◦
)
+ (A22a)

+
1

2

(
q∗>◦ B	

)
+ diag(σ	)

(
B>	 q

∗
◦
)
+. (A22b)

Observe that (A22a) is strongly zero due to the (·)+ operation.
On the other hand, (A22b) vanishes since B>∅q

∗
◦ = 0. In light

of (B>⊕ q
∗
◦)

+ = B>⊕ q
∗
◦, we then obtain

~ED(q∗◦) =
1

2
q∗>◦ B⊕ diag(σ⊕)B>⊕ q

∗
◦ − q∗>◦ a◦ . (A23)

Since a◦ is feasible, each nonzero heat source connects to
the sink through at least one directed path. Thus, under
any flow that keeps q◦ entrywise finite, the edges with
positive temperature-difference build a connected graph with
the node d. On the other hand, q∗◦ is entrywise finite as
it minimizes ~ED(q◦), and so the corresponding edges in
B⊕ build a connected graph with the node d. This implies
that B⊕ diag(σ⊕)B>⊕ is a positive definite matrix. Thus, the
functional 1

2 q◦
>B⊕ diag(σ⊕)B>⊕ q◦ − q◦>a◦ is strictly convex

in q◦ and so finds its minimum at the critical point, where its
first order variation with respect to q◦ vanishes. Comparing
this with (A23), it turns out that the minimizing q∗◦ must satisfy

a◦ = B⊕ diag(σ⊕)B>⊕ q
∗
◦ . (A24)
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Utilizing B>⊕ q
∗
◦= (B>⊕ q

∗
◦)

+ and (B>	 q
∗
◦)

+ = (B>∅q
∗
◦)

+ = 0,
one can rephrase (A24) as

a◦ = B◦ diag(σ)
(
B◦
>q∗◦

)
+ = ~L◦q

∗
◦

that recovers the nonlinear Poisson equation (52) at q∗◦. Fur-
ther, q∗◦ is unique as it minimizes the strictly convex functional
1
2 q◦
>B⊕ diag(σ⊕)B>⊕ q◦ − q◦>a◦. �

Proof of Theorem 7 (Nonlinear Thomson Principle)

Consider (54) as the primal optimization problem and let
us construct its Lagrangian dual problem as

max
λ

min
f<0

(
L(λ,f) := f> diag(σ)−1f + 2λ>

(
a◦ −B◦f

))
where λ < 0 is the vector of Lagrange multipliers. From the
first order condition ∇f L = 0, we get fopt = diag(σ)B◦

>λ.
Then enforcing the constraint fopt < 0 leads to B◦>λ < 0,
which is equivalent to B◦>λ = (B◦

>λ)+. Thus, we obtain

fopt = diag(σ) (B◦
>λ)+. (A25)

Plugging this fopt into the Lagrangian L and utilizing the
structure of ~L◦ in (35), we obtain

L(λ) = −λ>~L◦ λ+ 2λ>a◦ .

Then the dual problem reads maxλ L(λ), which is equivalent
to the following minimization problem:

min
λ

1

2
λ>~L◦ λ− λ>a◦ . (A26)

Further, as f < 0 makes a convex set and L(λ,f) is a convex
function, the duality gap is zero, and so both the primal and
dual problems result in the same optimal solution.

Comparing (A26) with the nonlinear Dirichlet equation (53),
it remains to show that the Lagrangian multipliers λ are
identical to the node temperatures q◦. In (A25), multiplying
both sides by B◦ and using the ~L◦ expression, we obtain

~L◦λ = B◦f
opt = a◦ (A27)

where the second equality comes from the constraint in the
primal problem (54). Further, by Th. 6, the nonlinear Poisson
equation ~L◦q◦ = a◦ has a unique solution. Putting this against
(A27) leads to λ = q◦, which concludes the proof. �

Proof of Theorem 8 (HD Minimum Routing Cost)

It was shown by Th. 6 that if a◦ is feasible, then under
the nonlinear heat equations (48)–(49), the stationary value of
the nonlinear Dirichlet energy ~ED(q◦) is strictly minimized.
It was shown by Th. 7, on the other hand, that minimizing
~ED(q◦) is equivalent to minimizing the stationary value of
total energy dissipation ~ER(f) on the graph. Then the proof
immediately follows from Th. 5 which states that under a
stabilizable arrival rate a◦, HD fluid model complies with
the nonlinear heat equations (48)–(49). Note that if a◦ is
stabilizable, i.e., it satisfies condition (17), then its feasibility
is trivial in the sense of Def. 10. �

Proof of Theorem 9 (HD Pareto Optimality)

Observe that HD policy minimizes Q at β = 0, minimizes
R at β = 1, and changes weight on these two objectives

by altering β between 0 and 1. In fact, HD transforms the
two objectives of minimizing Q and R into an aggregated
objective function by multiplying each objective function by a
weighting factor and summing up the two weighted objective
functions. Further, the weighted sum is a convex combination
of objectives as the sum of weighting factors β and 1−β
equals 1. Under the assumption that the region (Q ,R) has
a convex Pareto boundary, the proof then follows by the fact
that the entire boundary can be reached using the weighted-
sum method [38]–[40] that changes the weight on the weighted
convex combination of the two objective functions. �

APPENDIX B
REAL EXPERIMENT RESULTS AND ANALYSIS

To analyze the performance of HD in a real sensor net-
work, we have implemented the HD algorithm, referred to
as Heat-Diffusion Collection Protocol (HDCP) here, and the
V-parameter BP algorithm, referred to as Backpressure Col-
lection Protocol (BCP) here, on Contiki OS and used the CTP
implementation available with the Contiki OS. We perform a
set of evaluation experiments on an indoor wireless network
testbed called Tutornet [41] with forty five IEEE 802.15.4-
based Tmote-sky nodes distributed over a floor with roughly
80, 000 sq.ft of area. The network topology is presented in
Fig. A1 where the marked node is the sink, the rest of the
nodes are the source nodes, and the furthest node is three
hops away from the sink. We use the channel number 26 with
Tmote sky power level 31 for this experiment. The number
of neighbors to each node varies from 19 to 35 with an
average of 29. However, only about 7-8 of the neighbors
are typically connected via good links (ETX ≈ 1). Thus,
the topology is very diverse with a considerable number of
different paths between any two nodes in the network, which
well represents a multihop wireless network. On the negative
side, a considerable amount of interference exists among the
nodes, limiting the bandwidth, which well represents a time-
varying wireless network. The data packets in our experiments
are all 26 Bytes in size.

All the experiments are performed on weekdays during
daytime with lots of moving people and physical objects
around. Each experiment is performed for 35 min: the network
settles down during the first 5 min and the data is collected

Fig. A1. Real experiment testbed with forty five IEEE 802.15.4-based Tmote-
sky nodes distributed over a floor with roughly 80, 000 sq.ft of area.
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Fig. A2. Performance of HDCP versus BCP and CTP for a low power
communication stack: (Top) Goodput to the sink for each node, (Bottom)
Average ETX path costs to the sink for each node.

during the next 30 min. Each experiment is repeated at least
10 times to improve the confidence levels.

The goodput of each source node is defined as the number of
packets received by the sink over a one second interval. Note
the direct correlation between cumulative goodput of all nodes
and network throughput. The end to end delay calculation
for each packet is performed by adding up all the queuing
and processing delays in all intermediate nodes, which can be
determined by locally time stamping packets during reception
and departure. This ignores the propagation times which in
any case are negligible compared to the processing delays.

We evaluate HDCP performance in terms of different values
of β and different packet generation rates. We select the value
of V to be 2 for BCP, which has empirically shown to be an
efficient operating point for Tutornet [10].

Low Power Communication Stack Based Experiments: In
order to verify the performance of HDCP on a low power
communication stack, we performed a set of experiments
with 35 sources and one sink (first 36 nodes of the testbed).
For these experiments, we used CX-MAC protocol, a version
of X-MAC that is provided in Contiki, with duty cycle of
5% for HDCP, BCP and CTP. However, the choice of CX-
MAC protocol over the other protocols is just a matter of
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Fig. A3. Thirty second windowed average sourced packet delivery ratio with
synthetically generated interfering 802.15.4 Channel 26 traffic.

the availability of Contiki implementation. Further, since we
are using a duty cycle, we also need to cut-back our source
rates to a very low rate. For the presented set of experiments,
we used a packet generation rate of 1 packet per 60 seconds
(i.e., 1/60 PPS). The results in Fig. A2 show that HDCP with
β = 1 performs well in a low power communication stack, at
a very low duty cycle setting where even CTP shows some
deterioration in fairness of goodput.

In order to estimate the actual energy consumptions, we
record the different components of energy consumption using
the Contiki PowerTrace tool (in terms of the percentage of
time spent in different radio phases: transmit, listen/receive).
Based on our traces, in HDCP with 5% duty cycle, the radio
of each node is on for 5.92% of the total execution time, out
of which the node is transmitting and receiving approximately
0.65% and 5.27% of the total execution time, respectively. To
get the actual energy consumption, one can use the current
and voltage ratings from the specifications of the devices
used in the experiment. For example, in Tmote-sky, the rated
voltage of operation is approx 3.3V and the average current
consumptions are 17.4mA and 19.7mA for radio transmission
and radio reception, respectively. This results in approximately
113.78mJ energy consumption in each Tmote-Sky for the
experiment period of 30 minutes.

External Interference: We evaluate the performance of
HDCP with the optimized β = 1 in the presence of external
interference and compare it with both BCP and CTP. This is
necessary because the 802.15.4 radios share frequency band
with WiFi, Bluetooth and other Zigbee radios, which as a
result their performance often suffers from severe interference.
To emulate such scenarios, we performed a set of experiments
with 40 sources and a single sink (Node 1) while four nodes
are used as interference sources on Channel 26. (All nodes are
transmitting in Channel 26 but on different Contiki channels.)
The interfering nodes are inactive for the first five minutes
of the experiment, periodically transmit for next 15 minutes,
and become inactive again for the last five minutes of the
experiment. During the on period, each of the interfering nodes
transmits 110 Byte packets at a rate of 100PPS for 15 seconds
and then does not transmit anything for the next 15 seconds,
and so on. Furthermore, we reduced the power level of all
41 nodes from level 31 to level 15 whereas the interfering
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Fig. A4. Thirty second windowed average sourced packet delivery ratio with
real interference scenario on 802.15.4 Channel 13.
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nodes were kept at level 31, which aims to intensify the effect
of interference. The outcome of this set of experiments is
presented in Fig. A3 that plots the delivery percentage of the
packets over a series of 30 seconds time window for CTP, BCP
with V = 2 and HDCP with β = 1. While CTP performance
significantly suffers from the interference, both HDCP and
BCP maintain their efficient ratio of packet delivery.

The above interference settings are used to stay consistent
with those in the original BCP paper [10]. However, it is
known that the simple Gilbert-Eliot model used for ETX
estimation might work perfectly with some specific synthetic
interference models, while failing in real interference scenar-
ios. In order to explore the performance of HDCP algorithm
in presence of real interference, we performed a set of ex-
periments with 44 source nodes and one sink node, running
on Channel 13 of the 802.15.4 standard, known as one of the
most interfered channels. We also compare the performance
of HDCP based on the Gilbert-Eliot (GE) ETX model with
the performance of BCP with the GE model, as well as with
the HDCP configured by the ETX model used in [10].

For this set of experiments, we do not use the link switching
method as we empirically found that interference itself causes
sufficient link switching, thereby, adding extra link switching
negatively affects performance. The results in Fig. A4 demon-
strate that even in the presence of constant real interference,
the HDCP algorithm with Gilbert-Eliot ETX model performs
comparable to the BCP and the HDCP algorithms with the
basic ETX model [10], while outperforms the CTP algorithm.
Further, both figures show that HDCP and BCP can achieve
approx 85% delivery ratio in the presence of interference,
while CTP achieves approx 70%.

APPENDIX C
GRAPH LAPLACIAN

Consider a connected, weighted graph with set of nodes V ,
set of undirected edges E , node-edge incidence matrixB, edge
weight vector σ and the Laplacian L := B diag(σ)B>. One
can verify that x>Lx =

∑
ij∈E σij(xi − xj)

2 > 0, which
means L is positive semi-definite.

In vector calculus, the gradient of a scalar field is positive in
the direction of increase of the field. On a graph, on the other
hand, we take the gradient of a node variable positive in the
direction of decrease of the variable. By the same reason, the
classical Laplace operator is a negative semi-definite operator,
while the graph Laplacian is a positive semi-definite matrix.

Observe that L1 = 0, which implies that 1 is an eigenvector
corresponding to the smallest eigenvalue λ1 = 0. For the sec-
ond smallest eigenvalue λ2, let ν be the eigenvector orthogonal
to 1. Thus, ν>1 = 0 and λ2 = ν>Lν =

∑
ij∈E σij(νi−νj)2.

Assume λ2 = 0. On a connected graph, there exists a path
between every two nodes, which enforces ν = c1 for a
constant c. This contradicts ν>1 = 0, and so λ2 is positive.

Let L† be the Moore-Penrose pseudoinverse of L. Both L
and L† have the same eigenvectors, while two corresponding
eigenvalues are reciprocals of each other, except that 1 replaces
the zero eigenvalue of L. One can verify that

L† =
(
L+

1

n
1>1

)−1
− 1

n
1>1 with n := |V|.

Also L† enjoys the structural property of L†1 = 0.
The Dirichlet Laplacian L◦ := B◦ diag(σ)B◦

> is made
from L by discarding the entries corresponding to a reference
node d. Let E = E1 + E◦, where E◦ is the set of edges with
one end connected to node d. One can verify that ∀x 6= 0,

x>L◦x =
∑
ij∈E1σij(xi − xj)

2 +
∑
id∈E◦σid x

2
i > 0

which means L◦ is positive definite and so invertible. Further,
L◦1 = y is a nonzero vector with non-negative coordinates,
where yi = 0 if id ∈ E1 and yi > 0 if id ∈ E◦.

Sometimes, it is misunderstood that L◦ carries the same
eigenvalues as L but the zero, which is not true.

In combinatorial geometry, one can view graph as a 1-
complex, where B is its 1-incidence matrix that describes
the correlation between all oriented 1-cells (edges) and 0-cells
(nodes) in the complex.

The structure of incidence matrix B is the same for both
directed and undirected graphs except that the edge directions
in directed graphs are substituted for the arbitrarily assigned
algebraic topological edge orientations in undirected graphs.
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