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Heat-Diffusion: Optimal Dynamic Routing for
Multiclass Multihop Wireless Networks

Reza Banirazi, Edmond Jonckheere, Bhaskar Krishnamachari

Abstract—A new routing policy, named Heat-Diffusion (HD),
is developed for multiclass, multihop wireless networks subject
to stochastic arrivals, randomly varying topology, and channel
interference. The new policy uses only current queue backlogs
and current channel states, without requiring the knowledge of
topology and arrivals. We show that HD is throughput-optimal
in the sense that it stabilizes all stabilizable arrival rates. We also
show that among all stabilizing routing policies, HD minimizes
a quadratic routing penalty defined by endowing each channel
with a time-varying cost-factor. Beyond this, we consider a class
of routing policies which base decisions only on current queue
backlogs and current channel states, possibly using the knowledge
of arrival statistics and channel state probabilities. It is shown
that in this class, HD minimizes average total queue congestion,
and so average network delay. Introducing a control parameter
to trade average delay for average routing cost, it is also shown
that in the aforementioned class of routing policies, HD provides
a Pareto optimal tradeoff between these two criteria. Moreover,
we show that HD fluid limit follows graph combinatorial heat
equation and so Kirchhoff’s laws on electrical networks. This
particularly opens a new way to analyze wireless networks using
powerful tools from heat calculus and circuit theory.

I. INTRODUCTION

Throughput optimality, i.e. utilizing the full capacity of a
wireless network, is critical to respond to increasing demand
for wireless applications. The seminal work in [1] showed that
the queue-differential, channel-rate-based Back-Pressure (BP)
algorithm is throughput optimal under very general conditions
on arrival statistics and channel state probabilities. Follow-up
works showed that the class of throughput-optimal policies is
indeed large [4]–[7]. The challenge is then to develop one that,
in addition, is optimal relative to some other objectives.

We propose the Heat-Diffusion (HD), a throughput-optimal
policy which operates under the same general conditions and
with the same complexity as BP, while holding the following
important qualities: (i) HD minimizes average routing cost in
the sense of Dirichlet. Endowing each wireless link with a
cost-factor, we define Dirichlet routing cost as the product
of the link cost-factor and the square of the link flow rate.
This routing cost may reflect different topology-based penal-
ties, e.g. channel quality, routing distance, power usage, etc.
(ii) Consider the class of routing algorithms which use only
current queue occupancies and current channel states, possibly
together with the knowledge of arrival/channel probabilities.
In this class, HD minimizes average total queue congestion,
which is proportional to average network delay by Little’s
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Theorem. (iii) In the above class, suppose that the performance
region built on the average delay and the Dirichlet routing cost
is convex. Then HD operates on the Pareto boundary of this
region by changing a control parameter which compromises
between the two objectives.

A. Related Work

The study of BP schemes has been a very active research
area with wide-ranging applications and many recent theoreti-
cal results. In packet switches, congestion-based scheduling
was extended to admit more general functions of queue
lengths with a particular interest on α-weighted schedulers
using α-exponent of queue lengths [5]. There has been a
non-proved conjecture that heavy traffic delay is minimized
when α→ 0. A discussion of this was given in [8] along
with some counterexamples. As another extension in packet
switches, [6] introduced Projective Cone Schedulers (PCS)
to allow scheduling with non diagonal weight assignments.
The work in [7] generalizes PCS using a tailored “patch-
work” of localized piecewise quadratic Lyapunov functions.
In wireless networks, shadow queues enabled BP to handle
multicast sessions and reduce the number of actual queues that
need to be maintained [9]. Replacing queue-length by packet-
age, [10] introduced a delay-based BP policy. To improve BP
delay performance, [11] proposed place-holders with Last-In-
First-Out (LIFO) scheduling. Adaptive redundancy was used
in [12] to reduce light traffic delay in intermittently connected
mobile networks. Using graph embedding, [18] combined
BP with greedy routing in hyperbolic coordinates to obtain
a throughput-delay tradeoff. Some attempts have been done
to adopt the original framework for handling finite buffer
sizes [13]. Many researchers have focused on solving the
centralized BP scheduling in a distributed fashion so as to
make the implementation more convenient [14], [15]. There
have also been several reductions of BP to practice in the form
of distributed wireless protocols of pragmatically implemented
and experimentally evaluated [16], [17].

A common theme to nearly all the papers on BP strategy,
going back to the original work [1], is that the policy is
derived via the minimization of a bound on the drift of
an energy function. While this is sufficient to prove queue
stability for all stabilizable arrival rates, it cannot secure an
optimal performance with respect to either queue congestion
or routing cost. Further, BP-based schemes ensure stability
via maximizing the number of forwarding packets. While
this is fine in networks without routing decision, such as
packet switches and one-hop wireless networks, it can induce
unnecessary packet transmissions on a multihop network,
which in turn increases queue variation and routing cost.
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B. Contribution

We derive HD from the combinatorial analogue of clas-
sic heat equation on smooth manifolds. Translating “queue
occupancy measured in packets” to “heat quantity measured
in calories,” the fluid limit of interference HD flow mimics
a suitably-weighted non-interference heat flow, in agreement
with the Second Principle of Thermodynamics. The key con-
tributions of this work are as follows.

First, we introduce a new paradigm that might be called
“Wireless Network Thermodynamics.” This builds a deep
connection between wireless networking and well-studied do-
mains of physics and mathematics. In particular, it opens a
way to take advantage of powerful tools from circuit theory,
such as effective resistance and graph Laplacian, and those
from geometry, such as heat calculus and curvature, in the
analysis and design of stochastic, packet-based, time-slotted
queuing networks constrained by link interference.

Second, the new policy reduces the Dirichlet routing cost to
its minimum feasible value. To the best of our knowledge, this
is the first time a feasible routing algorithm asserts the strict
minimization of a cost function subject to network stability,
i.e. bounded average delay. We show that the drift-plus-penalty
approach of [3] can get only close to the minimum of this
routing cost at the expense of infinitely large network delay.

Third, the new policy minimizes average network delay in
the class of all algorithms which make routing decision as a
pure function of current queue congestion and current channel
states, including the ones with perfect probability knowledge
on arrivals and channel states. This important class contains
stationary randomized algorithms [3], original BP policy [1],
and most BP derivations [4]–[17].

Fourth, in the above-mentioned class of routing algorithms,
through changing a control parameter, HD provides a Pareto
optimal performance with respect to average delay and Dirich-
let routing cost under the convexity assumption on Pareto
boundary. This means that no other policy in this class can
make a better tradeoff between these two performance criteria
than what HD does. It equivalently means that any deviation
from HD operating point will lead to the performance degra-
dation in at least one of these criteria.

Last but not least, HD enjoys the same algorithmic structure
and complexity as BP, giving them the same wide-reaching
impact. Further, this paves the way to leverage all advanced
improvements to BP to further enhance HD quality, and also
to practice via a smooth software transition from BP to HD.

C. Outline of Paper

The next section provides preliminaries. We introduce HD
policy in Sec. III followed by HD key property which is
fundamental to other qualities, and then some illustrative
examples. Using Lyapunov drift, Sec. IV shows that HD is
throughput-optimal, and that in a class of routing algorithms,
it minimizes average delay. In Sec. V we propose the physics-
oriented model of heat process on a directed graph. Using
fluid limit theory, Sec. VI shows that in limit, HD packet flow
resembles combinatorial heat flow on the underlying directed
graph. Using heat calculus, Sec. VII shows that HD strictly

minimizes the Dirichlet routing cost. We discuss HD Pareto
optimality in Sec. VIII. The paper is concluded in Sec. IX.

II. PRELIMINARIES

We consider a wireless network operating in slotted time
with normalized slots n ∈ {0, 1, 2, · · · }. The network is
described by a simple, directed connectivity graph with set
of nodes V and directed edges E . New packets with different
destinations in a set K ⊆ V randomly arrive into different
nodes, requiring a multihop routing. Packets of the same
destination form a class. Each node i holds a separate queue
q

(d)
i for each d-class to transmit over its outgoing links. Each

link may transmit packets from only one class at each slot.
Wireless channels may change due to node mobility or

surrounding conditions. Assuming the sets V and E change
much slower than channel states, we fix them during the time
of our interest. Then a temporarily unavailable link (due to,
e.g., obstacle effect, channel fading, etc.) is characterized by
zero link capacity. We assume that channel states remain fixed
during a timeslot, while they may change across slots.

In wireless networks, transmission over a channel can hap-
pen only if certain constraints are imposed on transmissions
over the other channels. An interference model specifies these
restrictions on simultaneous transmissions. Given an interfer-
ence model, a maximal schedule is a set of channels such that
no two channels interfere with each other, and no more channel
can be added to it without violating the model constraints.
We describe a maximal schedule with a scheduling vector
π ∈ {0, 1}|E| where πij = 1 if the channel ij is included.
Given a connectivity graph (V, E), we define the scheduling
set Π as the collection of all maximal scheduling vectors.

Consider a wireless link ij ∈ E . The link capacity µij(n),
which is frequently called link transmission rate in literature,
counts the maximum number of packets the link can transmit
at the slot n. The link actual-transmission f (d)

ij (n), on the other
hand, counts the number of d-class packets genuinely sent over
the link at the slot n. Each link is also endowed with a cost-
factor ρij(n) > 1 that represents the cost of transmitting one
packet over the link at the slot n.

A discrete-time stochastic process x(n) is stable if

x := lim sup
τ→∞

1/τ
∑τ−1

n=0
E{x(n)} <∞ (1)

where E denotes expectation.1 A queuing network is stable if
all its queues are stable. A traffic rate matrix is stabilizable if
there exists a routing policy to stably support it. For a routing
policy, stability region is the set of all traffic rate matrices that
it can stably support. Network layer capacity region C is the
union of the stability regions achieved by all routing policies
(possibly unfeasible). A routing policy is throughput-optimal
if it stabilizes the entire capacity region.

A. Problem Statement

For a constrained network described above, we propose
HD algorithm that solves the three stochastic optimization

1This definition of stability is frequently called strong stability in contrast
with other weaker stability definitions such as rate stability. It is shown that
strong stability entails all of the other forms of stability [3, Theorem 2.8].



3

problems as follows. It is important to note that these problems
must be solved at the network layer alone. This is totally
different from cross-layer optimization [22]–[25] which aims
to control congestion by tuning arrival rates into the network
layer. With no control on arrivals, our basic assumption is
that the arrival rates lie within the network capacity region
making the system stabilizable. Obviously, nothing prevents
one to install a flow controller on top of HD or develop an
HD-based Network Utility Maximization (NUM) protocol.
• Dirichlet routing cost minimization problem:

Minimize: R :=
∑
ij∈E

∑
d∈K

ρij
(
f

(d)
ij

)2
Subject to: Throughput optimality

(2)

where the overbar notation denotes the lim sup expected time
average as (1). The loss function R is important from two
aspects. As a quadratic cost function, it connects routing cost
minimization to fundamental optimization methods in linear
regression theory and linear-quadratic optimal control. By con-
cept, it spreads out traffic with a weighted bias towards lower
penalty links that reminds the optimal diffusion processes in
physics, such as heat flow and electrical current.

It is shown in [2], [3] that a stationary randomized algorithm
can solve the optimization problem (2). While such a policy
exists in theory, it is intractable in practice as it requires a full
knowledge of channel state probabilities. Further, assuming all
of the probabilities could be accurately estimated, the network
controller would still need to solve a dynamic programming
problem for each topology state, where the number of states
grows geometrically with the number of channels. However,
we show in Th. 8 that HD policy solves this problem without
requiring the knowledge of arrival statistics or channel state
probabilities, and without dealing with dynamic programming.
• Average network delay minimization problem:

Minimize: Q :=
∑
i∈V

∑
d∈K

q
(d)
i

Subject to: Network constraints.
(3)

Solving this problem for a general case requires the Markov
structure of topology process, plus arrival and channel state
probabilities. Then in theory, the solution is obtained through
dynamic programming for each possible topology along with
solving a Markov decision problem. By even having all of
the required information, the number of queue backlogs and
channel states increase exponentially with the size of network,
making dynamic programming and Markov decision theory
prohibitive. In fact, even for the case of a single channel, it is
difficult to implement the resulting stochastic algorithms [26].
While having a practical solution for a general case seems
dubious, we show in Th. 3 that HD policy solves this problem
within an important class of routing algorithms, without re-
quiring any of the above-mentioned information, and without
dealing with dynamic programing or Markov decision process.
• Pareto optimization problem:

Minimize: (1− β) Q+ β R

Subject to: 1) Throughput optimality
2) Network constraints

(4)

where β ∈ [0, 1] is a control parameter to determine relative
importance between average delay and average routing cost.
To the best of our knowledge, this is the first time such a multi-
objective optimization problem is addressed in the level of
network layer. While even the corresponding single-objective
optimization problems are not easy to manage, we show in
Th. 9 that within the class of routing algorithms defined in
problem (3), HD policy solves problem (4) subject to convex
Pareto boundary on the feasible (Q,R) region.

B. Original Back-Pressure Policy

The original BP [1] for network layer, at every timeslot n
observes queue backlogs q(d)

i (n) and estimates channel capac-
ities µij(n) to make a routing decision as follows.

1) BP weighing: For every link ij and on each class d find
q

(d)
ij (n) := q

(d)
i (n)− q(d)

j (n) and select the optimal class

d∗ij(n) := arg max
d∈K

q
(d)
ij (n). (5)

Then give a weight to the link using its estimated capacity as

wij(n) := µij(n) q
(d∗)
ij (n)+ (6)

where x+ := max{0, x} for any x.
2) BP scheduling: Find the scheduling vector such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (7)

where ties are broken arbitrarily.
3) BP forwarding: Over each activated link with wij(n) > 0

transmit from the class d∗ij(n) at full capacity µij(n). If there
is no enough d∗-classes at node i, transmit null packets.

C. V-Parameter Back-Pressure Policy

To incorporate the Dirichlet routing cost R into the original
BP, the drift-plus-penalty approach [2], [3], which we refer
to as V-parameter BP hereafter, adds a usage cost to the link
queue-differential via replacing the link weight (6) by

wij(n) := µij(n)
(
q

(d∗)
ij (n)− V ρij(n)µij(n)

)+
(8)

where V ∈ [0,∞) trades queue occupancy for routing penalty.
Note that the original BP is recovered for V = 0.

The V-parameter BP yields a Dirichlet routing cost within
O(1/V ) from its minimum feasible value to the detriment of
growing average delay by O(V ) relative to that of the original
BP [3]. Thus the policy is not able to achieve minimum routing
cost subject to throughput optimality, i.e. finite delay.

Another issue is that the resulting tradeoff depends on both
V and the network with two negative consequences: (i) The
same V leads to different tradeoffs in different networks.
(ii) The resulting tradeoff changes by network topology and
arrival rates. Hence, finding a proper V is difficult in practice.

III. PARETO OPTIMAL HEAT-DIFFUSION POLICY

To provide a convenient way of unifying the new scheme
with the previous works on BP, we design HD with the same
complexity, in both computation and implementation, as BP.

A. Heat-Diffusion Algorithm

Our proposed policy for the network layer, at every times-
lot n observes queue backlogs q(d)

i (n) and estimates channel



4

TABLE I
COMPARING HD WITH V-PARAMETER BP IN A UNICLASS NETWORK.

W
ei

gh
in

g f̂ij(n)
BP µij(n)

HD min
{(

1−β + β/ρij(n)
)
qij(n)

+, µij(n)
}

wij(n)
BP µij(n)

[
qij(n)− V ρij(n)µij(n)

]
+

HD 2
(
1−β + β/ρij(n)

)
qij(n)f̂ij(n)− f̂ij(n)2

Scheduling π(n) = argmaxπ∈Π
∑

ij∈E πijwij(n)

Forwarding fij(n) =

{
f̂ij(n) if πij(n) = 1

0 otherwise

capacities µij(n) and channel cost-factors ρij(n) to make a
routing decision as follows.

1) HD weighing: For each link ij the optimal class is
obtained, in the same way as BP, from

d∗ij(n) := arg max
d∈K

q
(d)
ij (n). (9)

To weigh the link, every link first calculates the number of
packets it would transmit if it were activated:

f̂ij(n) := min
{
φij(n)q

(d∗)
ij (n)+, µij(n)

}
φij(n) := (1−β) + β/ρij(n)

(10)

where the control parameter β is as defined in (4), and the hat
notation denotes a predicted value which would not necessarily
be realized. Then the link weight is determined by

wij(n) := 2φij(n)q
(d∗)
ij (n)f̂ij(n)− f̂ij(n)2. (11)

2) HD scheduling: Find the scheduling vector, in the same
way as BP, such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (12)

where ties are broken arbitrarily.
3) HD forwarding: Over each activated link transmit f̂ij(n)

number of packets from the class d∗ij(n), meaning that

f
(d)
ij (n) =

{
f̂ij(n) if πij(n)=1 & d=d∗ij(n)

0 otherwise
(13)

where f (d)
ij (n) represents the number of d-classes which are

actually transferred over the link ij at the slot n. It is
important to discriminate between genuinely realized f (d)

ij (n)

and predicted value f̂ij(n), also between actual transmission
f

(d)
ij (n) and link capacity µij(n).

Table 1 compares HD and V-parameter BP algorithms,
emphasizing the same structure and complexity. For simplicity,
the table shows a single destination case.

Remark 1: (i) Since ρij(n) > 1 by assumption, we have
0 < φij(n) 6 1 for all β ∈ [0, 1]. (ii) If q(d∗)

ij (n) 6 0, i.e.
qi(n) 6 qj(n) for all classes, we get f̂ij(n) = 0 due to (10),
and wij(n) = 0 from (11). In this case, even if the link were
scheduled by (12), still no packet would be transmitted on it.
(iii) If q(d∗)

ij (n) > 0, we have q(d∗)
ij (n)+ = q

(d∗)
ij (n), and since

f̂ij(n) 6 φij(n)q
(d∗)
ij (n) due to (10), thus the link weight (11)

is always nonnegative. (iv) As qij(n)+6qi(n) and φij(n)61,
the value of f̂ij(n) never exceeds the number of packets in
the transmitting node.

Remark 2: In a very special case that all link capacities are
the same, i.e. µij(n) = µ(n), and all link queue-differentials
are always less than it, i.e. qij(n) < µ(n), HD with β = 0
and α-weighted policy of [5] with α = 2 become equivalent.
Packet switches are well suited to this special case.

B. Highlights of Heat-Diffusion Design

H1: While BP is derived by link capacity µij(n), HD
emphasizes on actual number of transmittable packets f̂ij(n),
though it also takes into account the link capacity through (10).
Thus HD allocates resources only based on genuinely trans-
mittable packets, without counting on null packets.

H2: The link weight (11), which itself directly controls
the scheduling optimization problem, is taken quadratic in the
queue-differential qij(n), where for φij(n)qij(n) 6 µij(n) is
simplified into wij(n) = φij(n)2qij(n)2. This contrasts with
BP weighing wij(n) = µij(n)qij(n) which is linear in qij(n).
The quadratic weight is central to the HD key property (Th. 1)
from which all other HD qualities originate.

H3: Varying the convexity factor β makes a universal
tradeoff in performance that depends neither on the network
nor on the arrivals with the following significant results:
• For all β ∈ [0, 1] the policy is throughput-optimal (Th. 2).
• For β = 0 the average total queue congestion Q, and

so average delay, decreases to its minimum feasible value
within the class of routing algorithms which rely only on
current queue backlogs and current channel states (Th. 3).

• Raising β increases the average delay in return for a lower
routing cost, where the exclusive merit of HD is to provide
the best tradeoff between these two objectives (Th. 9).

• For β = 1 the Dirichlet routing cost R reaches its least
feasible value (Th. 8) through an optimal tradeoff with
average delay. Note that in the V-parameter BP, delay grows
to infinity as routing cost is pushed towards its minimum.

Figure 1 graphically compares the operation of HD for β ∈
[0, 1] with V-parameter BP for V ∈ [0,∞), assuming that
the performance region has a convex Pareto boundary. The
performance region is restricted to all Q achievable by the
class of routing algorithms which act based only on current
queue congestion and current channel states.

H4: Unlike BP that forwards the highest number of packets
over activated links, HD controls the packet forwarding by
limiting it to φij(n)qij(n) with the maximum φij = 1 at β = 0
and the minimum φij = 1/ρij at β = 1. This reduces queue
oscillation by the decrease of unnecessary packet forwarding
across the links, which itself reduces power consumption and
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Fig. 1. Graphical description of HD Pareto optimality with respect to average
queue congestion and Dirichlet routing cost, compared with BP performance.
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routing penalty. Thus it is not surprising to see that φij is
decreasing, and so having a higher impact, by increasing β that
means more emphasis on routing penalty. Forwarding a factor
of queue differentials rather than filling up the link capacities
also complies with mimicking heat flow on the underlying
graph (Th. 5) that in effect minimizes time average routing
cost via Dirichlet Principle (Th. 8).

C. The Key Property of Heat-Diffusion Policy

The next theorem formalizes the HD key property which
is central to the proof of Th. 2 on HD throughput-optimality,
Th. 3 on HD delay minimization, and Th. 5 on the connec-
tion between HD fluid limit and combinatorial heat equation
leading to Th. 8 on HD routing cost minimization.

Theorem 1: At every timeslot n and for all β ∈ [0, 1], the
HD policy solves the following optimization problem:

Maximize:
∑
ij∈E

∑
d∈K

2φij(n)q
(d)
ij (n)f

(d)
ij (n)− f (d)

ij (n)2

Subject to: Network constraints
(14)

where φij(n) = (1−β) + β/ρij(n) as defined in (10).
Proof: It follows directly from the HD algorithm (9)–(13)

and is given in the appendix.

D. Illustrative Examples

To focus only on the policy itself, we take everything
deterministic in our examples here. This assures us that the
results purely show the policy performance not contaminated
by stochastic effects. We however know that all HD properties
are analytically proven for stochastic arrivals and random
topologies under very general conditions.

Two-queue downlink: Consider a base station that transmits
data to two downlink users, where at most one link can be
activated at each timeslot. Let link 1 be of capacity µ1 = 3
(packets/slot) and link 2 of time-varying capacity µ2 > 2.
Assume at every timeslot one packet arrives for each user. It is
easy to verify that for µ2 < 1.5 the given arrival is beyond the
capacity region. The performance of HD and BP are compared
in Fig. 2 for q1(0) = q2(0) = 0. The leftmost panel depicts the
timeslot evolution of q1(n)+q2(n) for µ2 = 18. The rightmost
panel depicts the steady-state average of total queue length as a
function of µ2. In BP the average total queue length increases
linearly in µ2, while HD holds the optimal performance for all
admissible link capacities. This confirms H1 in the previous
subsection, i.e., the efficiency of scheduling based on actual
transmittable packets rather than link capacities.
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Fig. 2. Performance of HD versus BP in the two-queue downlink.
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Fig. 3. Performance of HD versus BP in the lossy link network.

Lossy link network: Consider the 4-node network of Fig. 3
with lossy links and subject to 1-hop interference model. The
links are labeled with both ETX and capacity, where ETX
is a quality metric defined as the expected number of data
transmissions required to send a packet without error over the
link. Assume at every timeslot a single packet arrives at node 1
destined for node d. Following [16], let ρij = ETXij . For zero
initial conditions, Fig. 3 compares the performance of HD with
BP. While HD easily stabilizes the total queued packets at one
for any β > 0, trying with different values of V indicates the
weakness of V-parameter BP in aptly supporting the arrival.
This simplistically shows one of the impacts of entering the
link cost-factor ρij as a multiplicand in the HD formula (12)
rather than an addend in the V-parameter BP formula (8).

Power minimization: Consider the sensor network of Fig. 4
subject to 1-hop interference model. Each link ij has a noise
intensity Nij ∈ [1, 15] which is randomly assigned at first
and keeps constant during the simulation. We adopt Shannon
capacity µij = Bij log2(1 + Pij/Nij) with Pij the power
transmission and Bij the bandwidth. In each timeslot, two
packets arrive at nodes 1, 2, 3, and 4 destined for the sink S.
The aim is to minimize ρijfij

2 where ρij = Pij/µij . For
simplicity, we fix Pij = 15 and Bij = 5 for all links, so that
the capacity of each link is determined by its noise intensity.

Figure 4 displays timeslot evolution of total queue lengths
for HD with β = 0, and for the original BP where V = 0.
Besides minimizing the average queue congestion, we notice
little steady-state oscillations in HD contrary to large variations
in BP that verifies H4. Figure 5 displays the tradeoff between
queue congestion and power usage concurring with HD Pareto
optimality displayed by Fig. 1. The attention is drawn on
the rapid growth of queue lengths in V-parameter BP when
average power usage is pushed downwards. Figure 6 displays
timeslot evolution of total power usage for HD with β = 1,
and for BP with V = 1000. Smaller oscillations in HD
endorses both H1 and H4, showing the defect of capacity-
based scheduling and maximum packet forwarding in BP.
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Fig. 4. Total queue backlog of HD versus BP in the power minimization.
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IV. CONGESTION MINIMIZING ROUTING POLICY

A. State Space Representation of the System

Consider a general multiclass queuing network with q(d)
i (n)

being the integer number of d-classes in the node i at the
slot n as before. Assuming that the backlog of d-classes in
the destination d is zero for all d ∈ K, the state variables of
the system are represented by the hyper-vector

q◦(n) :=
[
q

(1)
◦ (n), . . . , q

(|K|)
◦ (n)

]>∈ R(|V|−1)|K| (15)

q
(d)
◦ (n) :=

[
q

(d)
1 (n), . . . , q

(d)
d−1(n), q

(d)
d+1(n), . . . , q

(d)
|V|(n)

]
.

where q(d)
d (n) ≡ 0 is dropped from the set of state variables.

Throughout the paper, we use a ◦ subscript to denote a
reduced vector or matrix obtained by discarding the entries
corresponding to the destination node d.

Let a stochastic process a(d)
i (n) represent the integer number

of exogenous d-classes arriving into the node i at the slot n.
Discarding a(d)

d (n) ≡ 0, the hyper-vector of node arrivals

a◦(n) :=
[
a

(1)
◦ (n), . . . ,a

(|K|)
◦ (n)

]>∈ R(|V|−1)|K| (16)

a
(d)
◦ (n) :=

[
a

(d)
1 (n), . . . , a

(d)
d−1(n), a

(d)
d+1(n), . . . , a

(d)
|V|(n)

]
.

Likewise, the hyper-vector of link actual-transmissions

f(n) :=
[
f (1)(n), . . . ,f (|K|)(n)

]>∈ R|E||K|

f (d)(n) :=
[
f

(d)
1 (n), . . . , f

(d)
|E|(n)

] (17)

where as before, f (d)
ij (n) is the integer number of d-classes

successfully transmitted over the link ij at the slot n. It is
important to discriminate between the hyper-vector f(n) and
the vector µ(n) ∈ R|E| representing link capacities at the
slot n. In particular, while link capacities vary by topology,
link actual-transmissions are assigned by a routing policy
subject to 0 6 f (d)

ij (n) 6 min{q(d)
i (n), µij(n)}.

Given a directed graph (V, E), let B denote the node-edge
incidence matrix in which Bi` is 1 if node i is the tail of
directed edge `, is −1 if i is the head, and is 0 otherwise. For

a class d, let B(d)
◦ denote a reduction of B through discarding

the row corresponding to the destination node d. We refer to
B(d)
◦ as the basis incidence matrix with respect to the node d.

Extending this notion to a multiclass framework, we build the
generalized basis incidence matrix

B◦ := diag
( [
B(1)
◦ , . . . ,B(|K|)

◦
] )
∈ R(|V|−1)|K|×|E||K| (18)

where diag(v) is the diagonal matrix expansion of vector v.
One can verify that B◦f(n) is a hyper-vector in which the

entry corresponding to node i and class d is given by

(B◦f)
(d)
i (n) =

∑
b∈out(i)

f
(d)
ib (n)−

∑
a∈in(i)

f
(d)
ai (n)

where in(i) and out(i) respectively denote the set of incoming
and outgoing neighbors of node i.

Using these ingredients, the f -controlled, stochastic state
dynamics of a multiclass queuing network is captured by

q◦(n+ 1) = q◦(n) + a◦(n)−B◦f(n). (19)

Considering the difference between link capacity and link
actual transmission explains why despite traditional notation
in literature, we do not need any (·)+ operation in (19).

B. Characteristic of Network Capacity Region

Let a stochastic process S(n) =
(
S1(n), · · · , S|E|(n)

)
represent channel states at the slot n, describing conditions
that affect channel capacities and link cost-factors. We assume
that S(n) is an ergodic stationary process that takes values in
a finite, but arbitrarily large, set S. Thus by Birkhoff’s ergodic
theorem, each state S ∈ S has a probability given by

s := P
{
S(n)=S

}
= lim sup

τ→∞
1/τ

∑τ−1

n=0
IS(n)=S (20)

where
∑
S∈S s = 1 and I is the indicator function.

Consider a connectivity graph (V, E) together with a chan-
nel state process S(n). For an arrival rate vector a to be in
the network capacity region C, the necessary and sufficient
condition is the existence of a set of link actual-transmissions
such that their expected time averages jointly satisfy node flow
conservation and link capacity constraints, that is

a
(d)
i =

∑
b∈out(i)

f
(d)
ib −

∑
a∈in(i)

f
(d)
ai (21)∑

i∈V
a

(d)
i =

∑
a∈in(d)

f
(d)
ad (22)∑

d∈K
f

(d)
ij 6

∑
S∈S

s E
{
µij(n)

∣∣S(n) = S
}

(23)

where the overbar notation is as defined in (1). Equalities (21)
and (22) respectively secure flow conservation at intermediate
nodes and at the destination d. Specifically, the matrix form
of (21) becomes a◦ = B◦f showing the time average of (19)
subject to queue stability. The right hand side of (23) reads µij
and so the inequality guarantees the link capacity constraint.
Analytically important, the constraints (21)–(23) imply that
the capacity region is convex, closed, and bounded [2].

Note that the link actual-transmissions are not fixed, but
depend on the routing policy. Also observe that the num-
ber of routing policies which can potentially meet the con-
straints (21)–(23) is infinite. Among them are the ones that
use the simple probability concept of distributing packets
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randomly so as the desired time averages (21)–(23) can
be achieved. These stationary randomized policies typically
require perfect knowledge of arrival and channel probabilities,
making them an impractical solution. However, the fact that
these queue-independent policies exist plays a crucial role in
the analytical proof of HD properties in this section.

C. HD Throughput-Optimality for All β

To analyze the HD stability, we exploit the theory of
Lyapunov stability for discrete-time systems. Unlike most of
previous results in literature that use the sum of squares of
queues as a Lyapunov candidate, we do not confine our atten-
tion only to classic quadratic functions derived from symmetric
positive definite matrices. Let the Lyapunov candidate

W (n) := q◦(n)>
(
B◦B◦

>)−1B◦Φ(n)B◦
>q◦(n)

Φ(n) := I|K| ⊗ diag
(
φ(n)

) (24)

where φ(n)∈ R|E| is the vector of φij(n) as defined in (10),
Im denotes the identity matrix of size m, and ⊗ denotes tensor
product. Note that

(
B◦B◦

>)−1B◦Φ(n)B◦
> is not a symmetric

matrix. Nevertheless, the next lemma ensures that the W (n)
function of (24) is indeed an energy function. Also note that
for β= 0 where Φ(n) = I|E||K|, or for the case that all links
are of the same cost-factor where Φ(n)=αI|E||K| for a scalar
α > 0, the W (n) functional of (24) reduces to the sum of
squares of queue lengths.

Lemma 1: Consider a wireless network with a connected
topology. Then M◦(n) :=

(
B◦B◦

>)−1B◦Φ(n)B◦
> is quasi-

positive for all n in the sense that x>M◦(n)x > 0 for any
vector x, with equality if and only if x = 0. Further,

B◦
>M◦(n)x = Φ(n)B◦

>x , ∀x∈ R(|V|−1)|K|. (25)

Proof: It is given in the appendix.
Letting the Lyapunov drift ∆W (n) := W (n + 1) −W (n)

and substituting for q◦(n+ 1) from (19) lead to

∆W (n) =
(
a◦(n)−B◦f(n)

)>(M◦(n) +M◦(n)>
)
q◦(n)

+ a◦(n)>M◦(n)a◦(n) + f(n)>B◦
>M◦(n)B◦f(n)

− f(n)>B◦
>(M◦(n) +M◦(n)>

)
a◦(n)

where M◦(n)=
(
B◦B◦

>)−1B◦Φ(n)B◦
> as defined in Lem. 1.

Lemma 2: For arbitrary vectors x,y ∈ R(|V|−1)|K|,

x>
(
M◦(n)>+M◦(n)

)
y 6 η x>M◦(n)y.

for a scalar η which takes the value 1 if x>M◦(n)y 6 0 and
the value 3 if x>M◦(n)y > 0.

Proof: It is given in the appendix.
Exploiting Lem. 2 in the Lyapunov drift equation yields

∆W (n) 6 η
(
a◦(n)−B◦f(n)

)>M◦(n)q◦(n)

+ a◦(n)>M◦(n)a◦(n) + f(n)>B◦
>M◦(n)B◦f(n)

− f(n)>B◦
>(M◦(n) +M◦(n)>

)
a◦(n).

(26)

where η takes the value either 1 or 3 depending on if the
functional (a◦ −B◦f)>M◦q◦ is either negative or positive.

Turning back to the HD key property, we can formulate (14)
in matrix form to obtain the following corollary to Th. 1.

Corollary 1: At every timeslot n and for all β ∈ [0, 1], the
HD policy maximizes the f -controlled functional

D(f , β, n) := 2f(n)>Φ(n)B◦
>q◦(n)− f(n)>f(n) (27)

subject to network constraints, where Φ(n) is as in (24). ♦
In the Lyapunov drift (26), let us replace f>B◦>M◦q◦ with

f>ΦB◦
>q◦ in light of Lem. 1, add and subtract term η

2 f
>f ,

and use the D(f , β, n) expression of (27), to obtain

∆W (n) 6 η a◦(n)>M◦(n)q◦(n)− η

2
D(f , β, n)

+ f(n)>B◦
>M◦(n)

(
B◦f(n)− a◦(n)

)
+ a◦(n)>M◦(n)a◦(n)− η

2
f(n)>f(n).

(28)

Now consider a traffic rate a◦ being interior to the capacity
region C, i.e. there exists a vector ε with positive entries such
that a◦+ ε ∈ C. Thus by condition (21), there exists a hyper-
flow f ′(n) such that B◦f ′ = a◦ + ε. At the same time,
Corollary 1 guarantees that D(f?, β, n) > D(f ′, β, n) for
all β and at each slot n, where f?(n) represents the link
actual-transmissions provided by HD at the slot n. Then the
next theorem is proven by showing that the expected value of
Lyapunov drift (26) is bounded for all β ∈ [0, 1].

To simplify the proofs, throughout this section we assume
both arrival and channel state processes are independently
and identically distributed (i.i.d.) over timeslots. However, all
the results can easily be extended to non-i.i.d. systems with
stationary ergodic processes of finite mean and variance.

Theorem 2: Suppose that arrivals and channel states are
i.i.d. over timeslots. The HD policy is throughput-optimal for
all β ∈ [0, 1], meaning that it guarantees network stability
under all stabilizable arrival rates.

Proof: For ease of notation, we will often drop the time
variable (n). Taking conditional expectation from (28) given
the current queue backlogs q◦(n) yields

E
{

∆W |q◦
}
6 η E

{
a◦
>M◦

∣∣q◦} q◦ − η

2
E
{
D(f , β)

∣∣q◦}
+E

{
a◦
>M◦a◦ + f>B◦

>M◦B◦f (29)

− f>B◦>(M◦ +M>◦ )a◦ −
η

2
f>f

∣∣∣q◦}
where the conditional expectation is with respect to the ran-
domness of arrivals, channel states, and routing decision—in
case of a randomized routing algorithm.

Observe that M◦(n) =
(
B◦B◦

>)−1B◦Φ(n)B◦
> is a func-

tion only of control parameter β and link cost-factors ρij(n).
Since arrivals are independent of both β and ρij ,

E
{
a◦
>M◦

∣∣q◦} = E
{
a◦
>∣∣q◦}+ E

{
M◦
∣∣q◦}.

Both β and ρij are independent of q◦, so is M◦, which means
that E{M◦|q◦} = E{M◦} = M◦ where the last equality is
due to the i.i.d. assumption on channel states. On the other
hand, since the network layer routing controller has no impact
on arrivals, a◦(n) is an independent system variable which is
not influenced by anything. Therefore, a◦(n) is statistically
uncorrelated with the random variable q◦(n). This results in
E{a◦>|q◦} = E{a◦>} = a◦ where the last equality is due to
the i.i.d. assumption on arrivals. Putting these together yield

E
{
a◦
>M◦

∣∣q◦} q◦ = a◦
>M◦ q◦. (30)

Let f(n) be the link actual-transmissions provided by HD
with β ∈ [0, 1] at the slot n, and f ′(n) the ones provided
by any alternative policy. In light of Cor. 1, for each slot n
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we have D(f , β, n) > D(f ′, β, n). Considering this with the
equality (25) implies that

D(f , β, n) > 2f ′(n)>B◦
>M◦(n) q◦(n)− f ′(n)>f ′(n).

Taking conditional expectation leads to

E
{
D(f , β)

∣∣q◦} > 2E
{
f ′>B◦

>M◦
∣∣q◦} q◦ − E

{
f ′>f ′ ∣∣q◦}

for any alternative transmission decision f ′(n). This includes
the case when f ′(n) is produced by a routing algorithm which
makes independent, stationary, and randomized transmission
decisions at each slot n based only on the current link
capacities, and so independent of both queue backlogs and link
cost-factors [2]. Let us fix f ′(n) for such an algorithm. By in-
dependency of f ′(n) from q◦ and M◦, E

{
f ′>B◦

>M◦
∣∣q◦} =

E
{
f ′>B◦

>}E{M◦∣∣q◦}. Since a◦ is interior to the capacity
region C, f ′(n) can be arranged to stabilize an arrival rate
a◦+ε ∈ C. Then by the feasibility condition (21) and the i.i.d.
assumption on arrivals and channel states, E{B◦f ′} = a◦+ε.
Also we already showed that E{M◦|q◦} = M◦. Therefore,
E
{
f ′>B◦

>M◦
∣∣q◦} = (a◦ + ε)>M◦. Using this equality in

conditional expectation of the D functional above,

E
{
D(f , β)

∣∣q◦} > 2 (a◦ + ε)>M◦ q◦ − E
{
f ′>f ′ ∣∣q◦} (31)

Exploiting the equality (30) and the inequality (31) in the
drift inequality (29) leads to

E
{

∆W |q◦
}
6 −η ε>M◦ q◦ + E

{
Γ |q◦

}
(32)

Γ := a◦
>M◦a◦ + f>B◦

>M◦B◦f

−f>B◦>(M◦ +M>◦ )a◦ +
η

2
(f ′>f ′−f>f).

Investigating Γ(n), note that (i) all arrivals have finite mean
and variance, (ii) each link actual-transmission is at most equal
to the link capacity which is finite, and thus both f(n) and
f ′(n) have a finite upper bound, and (iii) matrix M◦(n) is
quasi-positive in the sense of Lem. 1, and so all its eigenvalues
are positive and bounded (recall that φij(n) 6 1). Therefore,
the expected value of Γ(n) is finite at each slot n, and so
there exists a scalar Γmax such that E{Γ |q◦} 6 Γmax. Now
investigating ε>M◦ q◦, note that (i) ε is a vector of positive
entries, (ii) q◦(n) is a vector of nonnegative entries, and
(iii) M◦(n) has all of its eigenvalues positive. Therefore, there
exists a positive scalar λmin for which ε>M◦ q◦ > λminε

>q◦.
Using these two inequalities in (32) leads to

E
{

∆W |q◦
}
6 −η λmin ε

>q◦ + Γmax.

Define εmin as the smallest entry of the ε vector. Then for
‖q◦‖ > Γmax

/
(η λminεmin) we get E{∆W |q◦} < 0. Then

by Theorem 2 in [33], the queuing system is stable and so a◦
is in the HD stability region. As ε can be arbitrarily small, this
implies that any traffic rate a◦ being interior to the capacity
region C is stabilized by HD with any β ∈ [0, 1], meaning that
HD is throughput optimal for all β ∈ [0, 1].

D. Minimum Network Delay with β = 0

The HD Pareto optimality stands on two pillars: minimiza-
tion of average delay Q for β = 0, and minimization of
Dirichlet routing cost R for β = 1. In this subsection we
establish the first pillar. Prior to stating the main result in
Th. 3, we propose two lemmas which are used in the proof.

Lemma 3: The HD policy with β = 0 maximizes

2f(n)>B◦
>q◦(n)− f(n)>B◦

>B◦f(n) (33)

at every timeslot n subject to network constraints.
Proof: It is given in the appendix.

Considering Lem. 3 and Cor. 1 together, it turns out that
both the functional (27) at β = 0, where Φ(n) becomes the
identity matrix, and the functional (33) are maximized for
the same control action f(n). It is worth to remark that the
claim is not about the same maximum value for these two
functionals, but about the same maximizing solution f(n).

Lemma 4: Suppose that a general routing policy stabilizes
an arrival rate vector a◦ resulting in timeslot queue occupan-
cies q◦(n) and link actual-transmissions f(n). Then

2Cov{B◦>q◦,f} − Var{B◦f}= Var{a◦} (34)

where for two arbitrary random variables X and Y we define
Cov{X,Y } := E{X>Y } − E{X}>E{Y } and Var{X} :=
Cov{X,X}, and where the overbar notation denotes the
lim sup expected time average as (1).

Proof: It is given in the appendix.
The equality (34) implies that a stabilizing routing decision

with a higher average total variance of link forwardings
necessarily results in a higher average total covariance between
link forwardings and link queue differentials.

Having Lem. 3 and Lem. 4, the next theorem is proven
in the class of all routing algorithms whose routing decision
is a function only of current queue congestion and current
channel states. This important class includes all opportunistic
max-weight schedulers which do not incorporate the Markov
structure of topology process into their decisions, among
which is BP [1] and most its derivations [4]–[17]. It also
includes all stationary randomized algorithms which make a
routing decision as a pure (possibly randomized) function only
of current channel states, typically using the perfect knowledge
of arrival statistics and channel state probabilities.

Theorem 3: Suppose that arrivals and channel states are
i.i.d. over timeslots. Consider a class of routing algorithms
which act based only on current queue backlogs and current
channel states. Within this class, the HD policy with β = 0
solves the average network delay minimization problem in (3).

Proof: For ease of notation, we will often drop the time
variable (n). Consider a stabilizable traffic rate a◦ interior to
the stability region of a “generic” routing policy which acts
based only on current queue backlogs and current channel
states. Also consider the functional (33) in Lem. 3, which
is maximized by HD with β = 0, and let us denote it with
G(f , q◦, n). If the generic policy maximizes G every timeslot,
it results in the same time average performance as that of HD
with β = 0. Thus we suppose that G obtained by the generic
routing policy is not maximal. This implies that there exist a
routing algorithm (possibly unfeasible), which also acts based
only on current queue backlogs and current channel states, and
a sufficiently small scalar δ > 0 such that every timeslot the
algorithm can stabilize the traffic rate a◦ + δ1 while making
G greater than or equal to that of the generic routing policy,
where 1 denotes the vector of all ones with the same size as
a◦. We refer to this algorithm as “fictitious” as we do not
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intend to know how it really works. To assure that such an
algorithm exists, one may endow it with the ability of perfect
precognition to predict all future events without uncertainty.

Let f(n) and q◦(n) denote the timeslot quantities provided
by the generic routing policy. Also let f ′(n) be provided
by the above-defined fictitious algorithm at the slot n given
the current queue backlogs q◦(n). In view of the fact that
G(f ′, q◦, n) > G(f , q◦, n) for every timeslot, we have

2E{B◦f ′}> E{q◦}+ 2Cov{B◦>q◦,f ′}
− E{B◦f ′}>E{B◦f ′} − Var{B◦f ′} >

2E{B◦f}> E{q◦}+ 2Cov{B◦>q◦,f}
− E{B◦f}>E{B◦f} − Var{B◦f}

where the expectation is with respect to the randomness of
arrivals, channel states, and routing decision—in case of ran-
domized algorithms. We also have E{B◦f ′} = E{B◦f}+ δ
due to the feasibility condition (21) and the i.i.d. assumption
on arrivals and channel states. Plugging this equation in the
above inequality, we obtain

2 δ1>E{q◦} > 2δ1>E{B◦f ′} − δ21>1

+
(

2Cov{B◦>q◦,f} − Var{B◦f}
)

−
(

2Cov{B◦>q◦,f ′} − Var{B◦f ′}
)

which holds for each timeslot. Summing over timeslots 0 until
τ − 1, dividing the sum by τ , and taking a lim sup of τ →∞
lead to the following time average result:

2 δ1> q◦ > 2 δ1>(B◦f
′)− δ21>1

+
(

2Cov{B◦>q◦,f} − Var{B◦f}
)

−
(

2Cov{B◦>q◦,f ′} − Var{B◦f ′}
)
.

Due to Lem. 4, the second and the third lines are canceling
each other, which leaves the inequality with

2 δ1> q◦ > 2 δ1>(B◦f
′)− δ21>1. (35)

Now consider the HD policy with β = 0 and suppose that
it provides f?(n) and q?◦(n) at each slot n. Again, let f ′(n)
be provided by the fictitious algorithm at each slot n, but this
time given the current queue backlogs q?◦(n). Due to Lem. 3,
G(f ′, q?◦, n) 6 G(f?, q?◦, n) at every slot n. Performing the
similar steps of taking expectation and then translating the
results into the time average form, and using the equality
E{B◦f ′} = E{B◦f?}+ δ, we obtain

2 δ1> q?◦ 6 2 δ1>(B◦f
′)− δ21>1 (36)

Comparing (35) and (36) leads to δ1>q?◦ 6 δ1>q◦. This
means that for any generic routing policy which acts based
only on current queue backlogs and current channel states
and stabilizes an arrival rate a◦ via creating an average queue
congestion q◦, there exists a δ > 0 such that δ1>q?◦ 6 δ1

>q◦
where q?◦ is the average queue congestion if HD with β = 0
is employed to stabilize the arrival rate a◦. Then observing
that δ1>q?◦ 6 δ1>q◦ is an equivalent expression for Q? 6 Q
with Q as defined in (3) concludes the proof.

V. CLASSICAL VERSUS COMBINATORIAL HEAT PROCESS

To design a routing policy within the spirit of heat diffusion,
we need to bring the heat equation from ordinary smooth

geometry to the purely combinatorial domain of a network. To
formulate the heat diffusion process on a graph, we use the
theory of combinatorial geometry where the notion of chains-
cochains provides a genuine counterpart for differential forms
in geometry. In this fashion, values on vertices, edges, and
faces become analogues of pointwise functions, line integrals,
and surface integrals, respectively. Having these fundamental
elements of arbitrary degree, important structures and invari-
ants of the smooth geometry are directly transferred to the
discrete setting, culminating in a discrete Hodge theory which
leads to Laplace-deRham operator. Interested readers can find
the details in [27] and references therein.

A. Continuous Heat Diffusion on Manifolds

On a smooth manifold M charted in local coordinates x,
let Q(x, t) be the spatial distribution of temperature, F (x, t)
be the heat flux, and A(x, t) be the scalar field of heat sources
(with minus for sinks). The law of heat conservation entails

∂Q(x, t)

∂t
= −divF (x, t) +A(x, t). (37)

Fick’s law states that heat flows from warm to cold regions
with the heat flow proportional to the temperature gradient,

F (x, t) = −σ(x)∇Q(x, t) (38)

where σ(x) is thermal diffusivity quantifying how fast heat
moves through the material. Putting (37) and (38) together,

∂Q(x, t)

∂t
= div

(
σ(x)∇Q(x, t)

)
+A(x, t). (39)

To solve this equation uniquely, besides time initial condition,
one needs to prescribe conditions of Q on a boundary ∂M.

B. Continuous Heat Diffusion on Undirected Graphs

In the context of combinatorial geometry, we view a graph
as a simplicial 1-complex and transfer the elements of classic
heat equations to this cell complex as a discrete domain. In
doing so, the smooth manifoldM is replaced by a 0-chain vec-
tor, pointwise functions Q(x, t) and A(x, t) are respectively
replaced by 0-cochain vectors q(t) and a(t) (node variables),
line integral F (x, t) is replaced by a 1-cochain vector f(t)
(edge variable), and thermal diffusivity σ is replaced by an
edge weight vector σ.

The structure of a p-complex is fully described by a collec-
tion of k incidence matrices for 1 6 k 6 p. Specifically, the
k-incidence matrix provides the algebraic boundary operator
which transforms a k-chain into its oriented set of boundary
cells. Conversely, the adjoint of the incidence matrix represents
the coboundary operator which acts on cochains resembling
the exterior derivative in classic geometry.

As a 1-complex, a graph has only the 1-incidence relation
given by the node-edge incidence matrix B of Sec. IV, except
that we substitute edge direction for algebraic topological edge
orientation. Note that on a cell complex, the “orientation”
gives an arbitrary direction to each cell. Specifically, edge
orientation on a graph specifies which direction of flow is
taken positive. This is totally different from edge direction on
a directed graph discussed in the next subsection.

Using the above setup, on an undirected graph with node d
as the single sink, the combinatorial analogue of the classic
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heat equations (37)–(39) are given by

q̇(d)(t) = −Bf (d)(t) + a(d)(t) , qd(t) = 0 (40)

f (d)(t) = diag(σ)B>q(d)(t) (41)

q̇(d)(t) = −B diag(σ)B>q(d)(t) + a(d)(t) , qd(t) = 0 (42)

where a dot on the top represents time derivative. Notice the
boundary ∂M on the manifold is reduced to a single node d
on the graph. Emphasizing this, the superscript (d) indicates
that all generated heat in the graph goes into the node d.

Imposing the boundary condition qd(t) = 0, one can elimi-
nate the sink d from (40)–(42). This yields the reduced set of
continuous-time graph heat equations with the sink d as

f (d)(t) = diag(σ)B(d)>
◦ q

(d)
◦ (t) (43)

q̇(d)
◦ (t) = −L(d)

◦ q
(d)
◦ (t) + a

(d)
◦ (t)

L(d)
◦ := B(d)

◦ diag(σ)B(d)>
◦

(44)

where the ◦ subscript denotes a reduced quantity as before.
The linear operator L(d)

◦ is called Dirichlet Laplacian with
respect to the node d, which is a positive definite matrix.

C. Continuous Heat Diffusion on Directed Graphs

On a directed graph, the combinatorial heat conserva-
tion (40) remains unchanged, but the Fick’s law (41) must be
modified to allow the flow in only one direction. Let the edge
orientation concur with the edge direction. Like the undirected
case, one can drop the sink d from the equations by fixing the
boundary condition qd(t) = 0. Then we obtain the reduced set
of continuous-time heat equations on a directed graph as

f (d)(t) = diag(σ) max
{
0, B(d)>

◦ q
(d)
◦ (t)

}
(45)

q̇(d)
◦ (t) = −~L(d)

◦ q
(d)
◦ (t) + a

(d)
◦ (t)

~L
(d)
◦ := B(d)

◦ diag(σ)B(d)>
◦ diag

(
II
B

(d)>
◦ q

(d)
◦ (t)�0

) (46)

where 0 denotes the zero vector, max is taken entrywise, and
IIv�0 is the entrywise indicator vector function that its entry i
is one if vi>0, and zero otherwise. We call ~L(d)

◦ the nonlinear
Dirichlet Laplacian acting on a directed graph.

Remark 3: For the first time, heat diffusion on directed
graphs is formulated via a nonlinear Laplacian. This is in
agreement with the recent work in [28] showing that heat diffu-
sion on Finsler manifolds, the natural counterparts of directed
graphs in continuous domain, leads to a nonlinear Laplacian.
In the graph literature, different linear Laplacians have been
proposed for directed graphs [29, Sec. 3]. While successful
to address some purely graphical issues, they are not able to
convey the physics of the diffusion process, nor the intrinsic
nonlinearity due to the one-way flow restrictions.

VI. WIRELESS NETWORK THERMODYNAMICS

Note that (45)–(46) still represent a deterministic, contin-
uous, uniclass process with no link interference. The latter,
particularly, makes the wireless problem quite intractable.
Nevertheless, in this section we advocate a genuine diffusion
process on stochastic, time-slotted, multiclass, interference
networks by showing that the HD fluid limit at β=1 follows
graph heat equations on a suitably-weighted directed graph.

A. Fluid Limit of Heat-Diffusion Policy

Fluid limit of a stochastic process is the limiting dynamics
obtained by scaling in time and amplitude. Under very mild
conditions, it is shown that these scaled trajectories converge
to a set of deterministic equations called fluid model. Using
this deterministic model, one can analyze the rate-level, rather
than packet-level, behavior of the original stochastic process.
For the details, refer to [20], [21] and references therein.

Fluid limit: Let X(ω, t) be a realization of a continuous-
time stochastic process X along a sample path ω. Define
the scaled process Xr(ω, t) := X(ω, rt)/r for any r > 0.
A deterministic function X̃(t) is a fluid limit if there exist a se-
quence r and a sample path ω such that limr→∞X

r(ω, t)→
X̃(t) uniformly on compact sets. For a stable flow network,
the existence of fluid limits is guaranteed if exogenous arrivals
are of finite variance. It is further shown that each fluid limit is
Lipschitz-continuous, and so differentiable, almost everywhere
with respect to Lebesgue measure on [0,∞) [20], [21].

Cumulative process: To develop a continuous-time approxi-
mation of the system, we model the network by its cumulative
processes. Let atot

◦ (n) and f tot(n) be the hyper-vector of
cumulative node arrivals and cumulative link transmissions up
to the slot n. Assuming atot

◦ (0)=0 and f tot(0)=0,

q◦(n) = q◦(0) + atot
◦ (n)−B◦f tot(n).

Let f̂ (d)
ij (n) be the predicted number of d-classes that the

link ij would transmit if it were activated in the slot n, and
form the hyper-vector f̂(n) conformably structured as f(n)
in (17). Also let Tπ(n) be the cumulative number of timeslots
in which the scheduling vector π ∈ Π has been selected.
Assuming Tπ(0) = 0, it is not difficult to verify that

f tot(n) =
∑
π∈Π

n∑
k=1

(
Tπ(k)− Tπ(k−1)

)(
(1|K| ⊗ π)� f̂(k)

)
where 1m is the vector of all ones with the size m, and �
denotes the entrywise product. The first parenthesis in the sum
is equal to one if the scheduling vector π has been selected at
the slot k, and zero otherwise. The term (1|K|⊗π) extends the
scheduling vector π ∈ R|E| to be used in a multiclass fashion.
Then its entrywise product with f̂(k) represents the number
of packets that could be transferred from each class over each
link if the scheduling vector π was selected. It is important to
note that at every timeslot, the routing policy determines each
entry of f̂(k) and selects a scheduling vector π∈Π.

General equations: Given a sample path ω, we extend a
time-slotted process to be continuous-time via linear interpo-
lation in each interval (n, n+1). Let exogenous arrivals occur
at the beginning of each timeslot, so that atot

◦ (t) represents
the cumulative arrivals by the time t. Assuming normalized
timeslots with the period of time unit, we obtain a set of
continuous-time, stochastic, basic equations as

q◦(t) = q◦(0) + atot
◦ (t)−B◦f tot(t) (47)

ḟ tot(t) =
∑

π∈Π
Ṫπ(t)

(
(1|K| ⊗ π)� f̂(t)

)
(48)

Ṫπ(t)
π∈Π

=

{
1 if π is chosen at time t
0 otherwise (49)∑

π∈Π
Tπ(t)= t with Tπ(t) nondecreasing. (50)
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The equality (48) entails the existence of a δ > 0 such that

f
tot(d)
ij (t′)−f tot(d)

ij (t) =
∑

π∈Π
πij f̂

(d)
ij (t)

(
Tπ(t′)− Tπ(t)

)
for any t′∈ [t, t+ δ]. This expresses the fact that if a link has
a positive flow of d-classes at time t, the number of d-classes
transmitted by the link in the interval [t, t′] ⊂ [t, t + δ] is
equal to the amount of time it has been activated during [t, t′]
multiplied by its transmission rate prediction at time t.

Particular equations: While (47)–(50) hold for any stable
network operating under an arbitrary non-idling routing policy,
each policy determines f̂(t) and Tπ(t) in its own particular
way. Specifically, referring to (9)–(13), HD imposes

f̂
(d)
ij (t)

HD
=

{
min

{
φij(t)q

(d)
ij (t)+, µij(t)

}
if d=d∗ij(t)

0 otherwise
(51)

w(t)
HD
= f̂(t)�

(
2 Φ(t)B◦

>q◦(t)− f̂(t)
)

(52)

π(t) = arg maxπ∈Π (1|K| ⊗ π)>w(t) (53)

where φ(t) ∈ R|E| is the vector of φij(t) = (1−β)+β/ρij(t)
as defined in (10), Φ(t) = I|K|⊗diag

(
φ(t)

)
as defined in (24),

and w(t)) ∈ R|E||K| is a hyper-vector consists of the weights
assigned by HD to each class on each link at time t. The
immediate conclusion from the link weighing (52) and the
link scheduling (53) is that the HD key property stated by
Th. 1 in packet-level can equally be asserted in rate-level.

Corollary 2: At any given time t and for all β ∈ [0, 1], the
HD policy maximizes the f -controlled functional

D(f , β, t) = 2f(t)>Φ(t)B◦
>q◦(t)− f(t)>f(t) (54)

subject to network constraints. ♦
For a comparison, observe that the original BP imposes

f̂
(d)
ij (t)

BP
=

{
min

{
q

(d)
i (t), µij(t)

}
if d=d∗ij(t) & q

(d)
ij (t)>0

0 otherwise

w(t)
BP
=
(
1|K| ⊗ µ(t)

)
�
(
B◦
>q◦(t)

)+
where µ(t) ∈ R|E| is the vector of link capacities at time t,
and v+ := max{0, v} for any vector v with max taken
entrywise. Accordingly, at any time t the policy maximizes(
1|K|⊗ µ(t)

)>(B◦>q◦(t))+ subject to network constraints.
Arrival and topology: Assume that every stochastic exoge-

nous arrival a(d)
i (n) is of finite mean and variance. To derive a

deterministic continuous-time fluid model, all stochastic input
variables and all time-varying system parameters are replaced
by their expected time average values. This provides us with
another set of equations as

atot
◦ (t) = a◦ t , ρ(t) = ρ , µ(t) = µ . (55)

where ρ(t) ∈ R|E| is the vector of link cost-factors at time t.
The existence of ρ and µ is assured by (20), precisely as

µ =
∑

S∈S
s E
{
µ(n)

∣∣S(n) = S
}

ρ =
∑

S∈S
s E
{
ρ(n)

∣∣S(n) = S
}
.

Though the HD routing decision does not depend on the
average values in (55), the existence and finiteness of these
values are important in the proof of the next theorem.

Theorem 4: Define the HD fluid model as the collection
of deterministic continuous-time equations (47)–(55). Then

under the HD policy with β ∈ [0, 1], each fluid limit X̃(t) =(
q̃◦(t), f̃

tot(t), T̃π(t)
)

satisfies the HD fluid model.
Proof: The proof follows the same line of argument

proposed by [20, Theorem 2.3.2] or [21, Proposition 4.12]
and is omitted for brevity.

B. Thermodynamic-Like Packet Routing

Consider a wireless network of |K| classes subject to an
arrival rate stabilized by a routing policy. In steady-state
condition, for the flow of each class d there exists a fluid limit
X̃(d)(t). We claim that under HD routing with β ∈ [0, 1], every
fluid limit X̃(d)(t) takes the form of the heat process on the
underlying directed graph with suitably-weighted edges.

To conceptualize this claim, think of |K| fictitious graphs, all
of the same incidence matrix as that of the wireless network
and with the edge weights σij = φij . Associate with each
arrival a(d)(n) on the real network a corresponding heat source
with intensity a(d) on the related fictitious graph for which
the node d is the single sink. In this fashion, we create |K|
isolated deterministic graphs, on each of which the flow of
heat is governed by (45)–(46). Joining these |K| decoupled
systems, we obtain our target trajectory with the dynamics of

f?(t) = Σ max
{
0, B◦

>q?◦(t)
}

(56)

q̇?◦(t) = −~L◦q?◦(t) + a◦
~L◦ := B◦ΣB◦

>diag
(
IIB◦>q?◦(t)�0

) (57)

where q?◦(t), a◦ and f?(t) are conformably structured as (15),
(16) and (17), respectively, and Σ := I|K| ⊗ diag(σ) with σ
the vector of edge weights.2 Then we claim that the HD fluid
model (47)–(55) follows the target model (56)–(57).

Note that σij = φij depends not only on the link cost-
factor ρij , but also on the control parameter β, meaning that
varying β leads to different edge weights, and so different
graph topologies. Also note that in our target model, the sum
of multiclass heat flows on each link is assumed to be less
than the expected average of link capacity µij . This is imposed
since the graph heat equations (45)–(46) are derived under the
assumption that heat flow on each link follows the Fick’s law
of diffusion, not disturbed by the link capacity.

To gain a better insight, let us first consider the case
of a uniclass network (single destination). Let packets be
routed under the HD policy (microscopic flow). Thus at every
timeslot, the policy activates a particular set of links to transmit
a specific number of packets over them. Obviously, each link
transmits packets at some slots and is switched off at some
other slots. Then the claim says that if we look at the average
flow in limit (macroscopic flow), it mimics the heat flow on
the underlying directed graph, where the limit flow of each
link is determined by counting the total number of packets
transmitted over the link during a sufficiently large period of
time divided by the time duration. But the more interesting
part appears when a multiclass network is considered. Now
if we look at the limit flow of each individual class, it still

2As an extension of nonlinear Dirichlet Laplacian ~L(d)
◦ with the size of

(|V| − 1) × (|V| − 1) in (46), one may call ~L◦ the generalized nonlinear
Dirichlet Laplacian which is of the size (|V|−1)|K|× (|V|−1)|K| and acts
on a multiclass directed graph with |K| different classes.
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mimics the heat flow on the underlying directed graph, but of
course with respect to its corresponding destination node.

Theorem 5: Consider the generalized graph heat equations
as defined in (56)–(57), and suppose that the multiclass heat
flow (56) satisfies the link capacity constraints (23). Then
the HD fluid model (47)–(55) with β ∈ [0, 1] asymptotically
converges to the generalized graph heat equations (56)–(57)
with σij = φij . In particular, the HD fluid model with β = 0
converges to the generalized heat equations on an unweighted
directed graph, and the HD fluid model with β = 1 converges
to the generalized heat equations on a directed graph with the
edge weights σij = 1/ρij .

Proof: We show that q◦(t) and f(t) respectively converge
to q?◦(t) and f?(t) in limit. Note in (56)–(57) that q?◦(t),
and accordingly f?(t), reach their steady-state conditions
exponentially fast. Thus it is sufficient to show that q◦(t) and
f(t) respectively converge to the stationary values of q?◦(t)
and f?(t) where q̇?◦(t) = 0. In other words, we prove that the
two systems have the same behavior in steady-state condition,
while they can possibly be different in transients.

Consider the continuous-time Lyapunov function

Y (t) :=
(
q◦(t)− q?◦

)>M◦ (q◦(t)− q?◦ ) (58)

where M◦ =
(
B◦B◦

>)−1B◦ΦB◦
> represents the expected

time average of non-symmetric matrix M◦(n) as defined
in Lem. 1, and where q?◦ represents the time-independent
stationary value of q?◦(t). Recall that all eigenvalues of M◦(t)
are strictly positive by Lem. 1 and so Y (t) is a positive-definite
and radially unbounded function with respect to

(
q◦(t)− q?◦

)
.

Taking time derivative from (58), we obtain

Ẏ (t) = q̇◦(t)
>(M◦>+M◦

)(
q◦(t)− q?◦

)
(59)

Exploiting Lem. 2 in the latter leads to

Ẏ (t) 6 η q̇◦(t)
>M◦

(
q◦(t)− q?◦

)
(60)

where η takes the value either 1 or 3 depending on if the
functional (a◦ −B◦f)>M◦q◦ is either negative or positive.
Since η is a positive coefficient, it has no impact on the
Lyapunov argument and can simply be omitted, but for the
sake of consistency we prefer to keep it in the statements.

Plugging (55) in (47) and taking time derivative lead to

q̇◦(t) = a◦ −B◦ḟ tot(t). (61)

Note in (51) that the entry of f̂(t) corresponding to link ij
and class d specifies the number of d-classes the link will send
per unit time if it is activated at time t. Then f(t) identifies
the vector of rate of actual-transmissions realized at time t.
Now assume that the entry of f(t) corresponding to link ij
and class d at time t is equal to x > 0, meaning that at time t
the link transmits x number of d-classes per unit time. Then
it should be obvious that the same entry of ḟ tot(t) at time t
must be also equal to x. This can be seen more formally from

ḟ tot(t) = lim
δ→0

f tot(t+ δ)− f tot(t)

δ
= f(t) (62)

in light of limδ→0 f
tot(t+ δ) = f tot(t) + δf(t).

On the fictitious graph, when the system in steady-state
condition, i.e. when q̇?◦(t) = 0, we obtain a◦= ~L◦q

?
◦ = B◦f

?

in which f? represents the time-independent stationary value
of f?(t). Plugging this and (62) in (61) yields

q̇◦(t) = B◦f
? −B◦f(t). (63)

Substituting (63) for q̇◦(t) in (60) yields

η−1 Ẏ (t) 6
(
B◦f

? −B◦f(t)
)>M◦(q◦(t)− q?◦).

Then exploiting the equality (25) of Lem. 1 leads to

η−1 Ẏ (t) 6
(
f? − f(t)

)>ΦB◦
>(q◦(t)− q?◦).

Multiply two sides by 2, add and subtract f(t)>f(t) + f?>f?

to the right-hand side, and expand the parentheses to get

2 η−1 Ẏ (t) 6−
(
2f(t)>ΦB◦

>q◦(t)− f(t)>f(t)
)

(64a)

+
(
2f?>ΦB◦

>q◦(t)− f
?>f?

)
(64b)

−
(
2f?>ΦB◦

>q?◦ − f
?>f?

)
(64c)

+
(
2f(t)>ΦB◦

>q?◦ − f(t)>f(t)
)

(64d)

On the right-hand side of (64), first observe that (64a) and
(64b) are characterized on the wireless network given queue
backlogs q◦(t), while (64c) and (64d) are characterized on
the fictitious graph given temperatures q?◦. Recalling the D
functional of (54) evaluated at ρ(t) = ρ of (55), then observe
that (64a) equals −D(f , β, t) yielded by the HD forwarding
f(t) and (64b) equals D(f?, β, t) yielded by f?. On the wire-
less network, Cor. 2 asserts that given current queue backlogs
q◦(t), the D functional yielded by HD forwarding is larger
than that yielded by any alternative forwarding which respects
link capacity constraints. We assumed, on the other hand,
that under f? the sum of multiclass heat flows remain lower
than average link capacities, and so f? respects link capacity
constraints. This implies that −D(f , β, t) +D(f?, β, t) 6 0,
meaning that on the right-hand side of (64) the summation of
(64a) and (64b) is nonpositive. Therefore,

2 η−1 Ẏ (t) 6−
(
2f?>ΦB◦

>q?◦ − f
?>f?

)
(65a)

+
(
2f(t)>ΦB◦

>q?◦ − f(t)>f(t)
)

(65b)

Now we show that on the fictitious graph, the functional
H(f) := 2f>ΦB◦

>q?◦−f>f is maximized at f = f? subject
to link directionality. The statement easily follows from

H(f) =
∑

ij∈E

∑
d∈K

2φij q
?(d)
ij f

(d)
ij −

(
f

(d)
ij

)2
where link directionality entails f (d)

ij > 0 for every link ij and
every class d. Then to maximize H(f) one needs to assign
f

(d)
ij = 0 whenever q?(d)

ij 6 0, and f (d)
ij = φij q

?(d)
ij otherwise.

Translating this into matrix form, the maximizing f is obtained
as fopt = Φ max

{
0, B◦

>q?◦
}

. Comparing the latter with (56),
it is seen that f?= fopt for Σ = Φ.

On the right-hand side of (65), observe that (65a) equals
−H(f?) and (65b) equals H(f(t)). By the argument above,
given temperatures q?◦ on the fictitious graph, H(f?) yielded
by f? is larger than that yielded by any other alternative
including f(t). Therefore, −H(f?) +H(f(t)) 6 0, meaning
that the summation of (65a) and (65b) is nonpositive, which
leads to 2 η−1 Ẏ (t) 6 0. As η takes the value either 1 or 3,
the latter is equivalent to Ẏ (t) 6 0.

Consider a joint solution
(
q◦(t), q

?
◦
)

to the HD fluid
model (47)–(55) with β ∈ [0, 1] and to the generalized graph
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heat equations (56)–(57) with σij = φij . Let Ω be the largest
invariant set in the set of all points for which Ẏ (t) = 0. Since
Y (t) is a radially unbounded, positive definite function with
Ẏ (t) 6 0, LaSalle’s Invariance Principle implies that every
joint solution

(
q◦(t), q

?
◦
)

asymptotically converges to Ω. Now
we show that Ω contains only the point

(
q?◦, q

?
◦
)
.

If Ẏ(t) = 0, then as M◦>+ M◦ is a symmetric positive-
definite matrix, (59) entails q◦(t) = q?◦ and/or q̇◦(t) = 0.
Recall that q?◦ is the stationary value of q?◦(t), which means
q̇?◦ = 0. Thus also q◦(t) = q?◦ leads to q̇◦(t) = 0. Now if
q̇◦(t) = 0, then (63) entails B◦f(t) = B◦f

?, which implies
B◦f(t)→B◦f? as t→∞. Noting that f? is not in the null
space of B◦ as B◦f?= a◦ 6= 0, it equally implies that

limt→∞ f(t)→ f?. (66)

It also implies that B◦f tot(t)→B◦f?tot as t→∞. Now let
us take a limit of t→∞ from (47) to obtain

lim
t→∞

q◦(t) = q◦(0) + lim
t→∞

(
atot
◦ (t)−B◦f tot(t)

)
.

Observe that atot
◦ (t) is the same for both of the HD fluid

model on wireless network and the generalized heat equation
on fictitious graph. Then the latter equation is equivalent to

lim
t→∞

q◦(t) = q◦(0) + lim
t→∞

(
q?◦(t)− q?◦(0)

)
= lim
t→∞

q?◦(t) +
(
q◦(0)− q?◦(0)

)
= q?◦ +

(
q◦(0)− q?◦(0)

)
Note that the system (56)–(57) reaches its steady-state condi-
tion independent of its initial condition. Thus as we concern
only about steady-state value q?◦, the initial value q?◦(0) can
be taken arbitrarily. Then taking q?◦(0) = q◦(0) leads to

limt→∞ q◦(t)→ q?◦ . (67)

Therefore, if Ẏ(t) = 0, then (67). This entails that the invariant
set Ω has only one element

(
q◦(t)=q?◦ , q

?
◦
)
, which ensures

that the limits (66) and (67) are globally valid.
Remark 4: The assumption that the multiclass heat

flow (56) satisfies the link capacity constraints (23) indeed
guarantees that the sum of multiclass heat flows on each link
remains lower than the expected average of link capacity µij .
Thus it guarantees that for a given arrival rate vector a◦, it is
possible at all to stabilize the network such that the fluid limit
asymptotically follows the generalized graph heat equations.
In essence, the assumption imposes a mild constraint in the
sense that it can be satisfied by most practical networks where
the networks are not in heavy traffic condition. At the same
time, notice that in heavy traffic condition, there is indeed no
room for minimizing a routing cost because technically, every
existing path has to carry a data flow near to its maximum ca-
pacity. Also worth to observe that the assumption intrinsically
deals with network topology, arrival rates, link capacities, and
link cost-factors, meaning that despite being mild in practice,
it bears a theoretically deep and comprehensive concept.

VII. COST MINIMIZING ROUTING POLICY

To establish the second pillar of HD Pareto optimality, we
show in this section, via Dirichlet Principle, that the Dirichlet
routing cost R in (2) reaches its minimum feasible value under

HD with β=1. In fact, we prove a more general result showing
that HD with any β ∈ [0, 1] solves the following β-dependent
optimization problem:

Minimize:
∑
ij∈E

∑
d∈K

(
f

(d)
ij

)2/
φij

Subject to: Throughput optimality
(68)

where for β=1 we get φij = 1/ρij that recovers the problem
of Dirichlet routing cost minimization in (2).

A. Classic Dirichlet Principle

In steady-state conduction, the amount of heat entering any
region of an object is equal to the amount of heat leaving out
the region. Thus while partial derivatives of temperature with
respect to space may either be zero or have nonzero values,
all time derivatives of temperature at any point are uniformly
zero. This leads to the classic Poisson equation

div
(
σ(x)∇Q(x)

)
+A(x) = 0

which formulates the stationary heat transfer by substituting
zero for the time derivative of temperature in (39). Then
Dirichlet Principle states that the Poisson equation has a
unique solution which minimizes the Dirichlet energy

E
(
Q(x)

)
:=

∫
M

( 1

2
σ‖∇Q(x)‖2 −Q(x)A(x)

)
dx

among all twice differentiable functions Q(x) that respect the
boundary conditions on ∂M.

B. Dirichlet Principle on Undirected Graphs

To derive the combinatorial analogue of Poisson equation
on undirected graphs, one identifies classic div with the
boundary operator B, and classic gradient ∇ with the minus3

of coboundary operator −B>. Fixing qd(t) = 0, we obtain

−L(d)
◦ q

(d)
◦ + a

(d)
◦ = 0 (69)

which correctly realizes (44) in steady-state condition. Like
the classic case, this equation has a unique solution which
minimizes the combinatorial Dirichlet energy

E(q
(d)
◦ ) :=

1

2
q

(d)>
◦ L(d)

◦ q
(d)
◦ − q(d)>

◦ a
(d)
◦ . (70)

The proof of Dirichlet Principle is much simpler in the
combinatorial case. In fact, since L(d)

◦ is positive definite,
E(q

(d)
◦ ) is convex and thus has a minimum at the critical point,

where its first order variation vanishes. This readily leads to
the combinatorial Poisson equation (69).

C. Dirichlet Principle on Directed Graphs

Essentially, the Poisson equation on a directed graph should
capture the steady-state behavior of combinatorial heat diffu-
sion process established as (46). This leads to

−~L(d)
◦ q

(d)
◦ + a

(d)
◦ = 0. (71)

The difficulty arises from the fact that contrary to the linear
Laplacian L(d)

◦ on undirected graphs, the ~L
(d)
◦ here is a

3In vector calculus, the gradient of a scalar field is positive in the direction
of increase of the field. On a graph, on the other hand, the gradient of a node
variable is taken positive in the direction of decrease of the variable. By the
same reason, the classic Laplace operator is a negative semi-definite operator,
while the graph Laplacian is a positive semi-definite matrix.
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nonlinear operator. Thus the easy way of proving Dirichlet
Principle on undirected graphs is ceased to exist on here. Ob-
serve that in (70), the directional derivative of 1

2 q
(d)>
◦ L(d)

◦ q
(d)
◦

along q(d)
◦ is simply L(d)

◦ q
(d)
◦ , as appeared in (69), by the

reason that L(d)
◦ is a symmetric positive definite matrix. On

a directed graph, on the other hand, ~L(d)
◦ is an operand-

dependent nonlinear operator which retains neither linearity
nor symmetricity properties. Therefore, we can not claim that
~L

(d)
◦ q

(d)
◦ in (71) is the directional derivative of 1

2 q
(d)>
◦ ~L

(d)
◦ q

(d)
◦ .

Nevertheless, by the next theorem we extend the concept of
Dirichlet Principle to directed graphs with nonlinear Laplacian.

Theorem 6: On a directed graph, the Poisson equa-
tion (71) has a unique solution which minimizes combinatorial
Dirichlet-like energy functional

~E(q
(d)
◦ ) :=

1

2
q

(d)>
◦ ~L

(d)
◦ q

(d)
◦ − q(d)>

◦ a
(d)
◦ (72)

where ~L(d)
◦ is the nonlinear Dirichlet Laplacian as in (46).

Proof: Using (46) one can expand ~L(d)
◦ to obtain

~E(q
(d)
◦ ) =

1

2

(
q

(d)>
◦ B(d)

◦
)+

diag(σ)
(
B(d)>
◦ q

(d)
◦
)+−q(d)>

◦ a
(d)
◦ .

Note that each entry of B(d)>
◦ q

(d)
◦ ∈ R|E| represents the

temperature-difference along the corresponding edge.
Let

∗
q

(d)
◦ be the ~E minimizing solution. We partition

B(d)>
◦

∗
q

(d)
◦ according to the sign of its entries. Accordingly,

the incidence matrix B(d)
◦ gets partitioned as

B(d)
◦ =

(
B

(d)
◦+
∣∣ B(d)
◦∅
∣∣ B(d)
◦−

)
(73)

where B(d)
◦+, B(d)

◦∅, and B(d)
◦− respectively denote the partitions

of B(d)
◦ which contain the incidence information of edges with

positive, zero, and negative temperature-difference. Likewise,
the edge weights get partitioned into σ =

(
σ+ |σ∅ |σ−

)
.

Then ~E(q
(d)
◦ ) at q(d)

◦ =
∗
q

(d)
◦ can be shown as

~E(
∗
q

(d)
◦ ) = − ∗q(d)>

◦ a
(d)
◦ +

1

2

∗
q

(d)>
◦ B

(d)
◦+ diag(σ+)B

(d)>
◦+

∗
q

(d)
◦

+
1

2

(∗
q

(d)>
◦ B

(d)
◦∅
)+

diag(σ∅)
(
B

(d)>
◦∅

∗
q

(d)
◦
)+

(74a)

+
1

2

(∗
q

(d)>
◦ B

(d)
◦−
)+

diag(σ−)
(
B

(d)>
◦−

∗
q

(d)
◦
)+

(74b)

where we used
(
B

(d)>
◦+

∗
q

(d)
◦
)+

= B
(d)>
◦+

∗
q

(d)
◦ . Observe that

(74b) is strongly zero due to the (·)+ operation. Also (74a)
vanishes because B(d)>

◦∅
∗
q

(d)
◦ = 0. Therefore,

~E(
∗
q

(d)
◦ ) =

1

2

∗
q

(d)>
◦ B

(d)
◦+ diag(σ+)B

(d)>
◦+

∗
q

(d)
◦ −

∗
q

(d)>
◦ a

(d)
◦ .

Since the network is stabilizable, for every heat source there
must exist at least one directed path to the destination d.
Then

∗
q

(d)
◦ must be entrywise finite because it minimizes

functional (72). This implies that under the optimum heat
distribution

∗
q

(d)
◦ , the set of edges of positive temperature-

difference must build a connected graph with node d. There-
fore, B(d)

◦+ diag(σ+)B
(d)>
◦+ is a symmetric positive-definite

matrix (see the proof of Lem. 1). It turns out that ~E(
∗
q

(d)
◦ )

is convex and thus has a minimum at the critical point, where
its first order variation vanishes. Thus

∗
q

(d)
◦ must satisfy

a
(d)
◦ = B

(d)
◦+ diag(σ+)B

(d)>
◦+

∗
q

(d)
◦ . (75)

In view of
(
B

(d)>
◦+

∗
q

(d)
◦
)+

= B
(d)>
◦+

∗
q

(d)
◦ and

(
B

(d)>
◦−

∗
q

(d)
◦
)+

=(
B

(d)>
◦∅

∗
q

(d)
◦
)+

= 0, (75) can be stated as

a
(d)
◦ = B

(d)
◦+ diag(σ+)

(
B

(d)>
◦+

∗
q

(d)
◦
)+

+B
(d)
◦∅ diag(σ∅)

(
B

(d)>
◦∅

∗
q

(d)
◦
)+

+B
(d)
◦− diag(σ−)

(
B

(d)>
◦−

∗
q

(d)
◦
)+
.

Using matrix form (73), the latter is equivalent to

a
(d)
◦ = B(d)

◦ diag(σ)
(
B(d)>
◦

∗
q

(d)
◦
)+

= ~L
(d)
◦
∗
q

(d)
◦

which recovers the Poisson equation (71).
Next, take a variation along the links with zero temperature-

difference and let
�
q

(d)
◦ be the new heat distribution. By

sufficiently small variation, the links which have either positive
or negative temperature-difference under

∗
q

(d)
◦ distribution keep

the same sign of temperature-difference under
�
q

(d)
◦ distribution

too, but those with zero temperature-difference under
∗
q

(d)
◦

may go into different conditions under
�
q

(d)
◦ . Therefore, we

still have the equalities
(
B

(d)>
◦+

�
q

(d)
◦
)+

= B
(d)>
◦+

�
q

(d)
◦ and(

B
(d)>
◦−

�
q

(d)
◦
)+

= 0, but the entries of B(d)>
◦∅

�
q

(d)
◦ may not be

zero anymore. Let us define a positive scalar

ε := lim sup
�
q
(d)
◦ →

∗
q
(d)
◦

1

2

(�
q

(d)>
◦

~L
(d)
◦
�
q

(d)

◦ −
∗
q

(d)>
◦

~L
(d)
◦
∗
q

(d)

◦

)
= lim sup
�
q
(d)
◦ →

∗
q
(d)
◦

1

2

(�
q

(d)>
◦ B

(d)
◦∅
)+

diag(σ∅)
(
B

(d)>
◦∅

�
q

(d)
◦
)+

where sup is taken over all directions of
�
q

(d)
◦ . Then defining

δ :=
∣∣�q(d)>
◦ a

(d)
◦ −

∗
q

(d)>
◦ a

(d)
◦
∣∣ leads to

~E(
�
q

(d)
◦ )− ~E(

∗
q

(d)
◦ ) > ε− δ.

Thus for every ε > 0, picking | �q(d)
◦ −

∗
q

(d)
◦ | sufficiently small

such that δ < ε guarantees that ~E(
�
q

(d)
◦ )> ~E(

∗
q

(d)
◦ ). Therefore,

the optimum heat distribution is robust against variation, which
together with the convexity of ~E around its critical point entail
that

∗
q

(d)
◦ is the unique solution that minimizes ~E(q

(d)
◦ ). As a

consequence,
∗
q

(d)
◦ must be the unique root for the first order

variation of ~E as well. This entails the minimizing
∗
q

(d)
◦ to be

the unique solution of the Poisson equation (71).
Remark 5: Though the Dirichlet Principle on undirected

graphs has been known for a long time, its extension to
directed graphs is completely new to literature. As a model
of heat flow on a directed graph, conceptualize an electrical
network with placing a diode on each edge. The current, which
mimics the combinatorial heat flux, moves along the negative
gradient of voltage, but only under the condition of respecting
the diode direction. Another example is a piping network of
liquid/gas with a check valve on each line. Again the liquid/gas
flows along the negative gradient of pressure, while each check
valve allows the flow in only one direction.

D. Dirichlet Routing Cost Minimization

Extending Th. 6 to the multiclass heat diffusion process
on directed graphs, the steady-state solution to (57) must
minimize the multiclass version of functional (72). More
precisely, the generalized Poisson equation

−~L◦q?◦ + a◦ = 0 (76)
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has a unique solution which minimizes the generalized
Dirichlet-like energy functional

~E(q?◦) =
1

2
q?>◦ ~L◦ q

?
◦ − q?>◦ a◦ (77)

where q?◦ ∈ R(|V|−1)|K| and ~L◦ ∈ R(|V|−1)|K|×(|V|−1)|K| are
as defined in (57). Yet the framework of this result is not
aligned with what we need for the optimization problem (68).
The next theorem resolves this incongruity by showing that
minimizing (77) is indeed the dual of minimizing energy
dissipation on the directed graph with zero duality gap.

Theorem 7: On a directed graph, minimizing the gener-
alized Dirichlet-like energy functional (77) is equivalent to
solving the constrained optimization problem

Minimize: ~ER(f?) := f?>Σ−1f?

Subject to: B◦f
? = a◦

(78)

which represents total energy dissipated on the graph.
Proof: By the principle of duality, the primal optimization

problem (78) can be viewed as the Lagrangian dual problem

Maximize:
λ<0

inf
f?

(
J := f? Σ−1f?+ 2λ>

(
a◦ −B◦f?

))
(79)

where λ is the vector of Lagrange multipliers. Since f? is
continuously differentiable, so is J , and thus the infimum
occurs where the gradient is equal to zero, leading to

∇f?J = 0 ⇒ B◦
>λ = Σ−1f?.

Because f? is entrywise nonnegative, the latter is equivalent to(
B◦
>λ
)+

=Σ−1f?. Multiplying both sides byB◦Σ and using
the definition of ~L◦ in (57) yield ~L◦λ = B◦f

? where f? rep-
resents the steady-state value of f?(t). Further, in (57) at the
steady-state condition, i.e. q̇?◦(t) = 0, we have ~L◦q?◦ = a◦
in which q?◦ represents the steady-state value of q?◦(t). Also
from (56) and (57) together we have B◦f? = ~L◦q

?
◦, which

with ~L◦q?◦ = a◦ implies B◦f? = a◦. Considering this with
the previous result of ~L◦λ = B◦f

?, we obtain ~L◦λ = a◦.
In light of Th. 6, on the other hand, the Poisson equation
~L◦q

?
◦ = a◦ has a unique solution. Comparing this with

~L◦λ = a◦ results in λ = q?◦ < 0.
In (79), the first term of J is equal to f? Σ−1ΣΣ−1f?,

while Σ−1f? =
(
B◦
>q?◦

)+
from (56). Thus the first term

of J can be replaced by
(
q?>◦ B◦

)+
Σ
(
B◦
>q?◦

)+
= q?>◦ ~L◦q

?
◦.

Regarding the second term of J , we already showed that
B◦f

? = ~L◦q
?
◦. Thus the second term can be replaced by

2λ>
(
a◦ − ~L◦q?◦

)
. Then using the result of λ = q?◦ leads to

J = −q?>◦ ~L◦q?◦ + 2 q?>◦ a◦.

Substituting the latter for J in the dual problem (79) leads
to the minimization problem (77). Furthermore, since the
objective function in (79) is obviously convex, the duality gap
is zero and thus the dual problem (77) results in the same
optimal values that the primal problem (78) does.

It is worth to compare Th. 7 with the famous law of
minimum dissipative energy on electrical networks [30]. In
essence, Th. 7 extends this law to directed graphs, or to
resistive-diode networks for that matter. Then the upshot is
due to the connection between heat diffusion process on a
directed graph and HD fluid limit on a wireless network.

Theorem 8: Consider the generalized graph heat equa-
tions (56)–(57), and suppose that the multiclass heat flow (56)
satisfies the link capacity constraints (23). Then the HD policy
with β ∈ [0, 1] solves the β-dependent optimization prob-
lem (68). In particular, if the generalized heat flow satisfies the
link capacity constraints for σij = 1/ρij , then the HD policy
with β = 1 solves the Dirichlet routing cost minimization
problem as defined in (2).

Proof: In Th. 8, it is shown that under the multiclass
heat equations (56)–(57), the stationary value of generalized
Dirichlet-like energy ~E is strictly minimized. In Th. 8, on
the other hand, it is shown that minimizing ~E is exactly
the same as minimizing the stationary value of graph energy
dissipation ~ER. Then the proof immediately follows from
Th. 5 which states that the limiting dynamics of HD with
β ∈ [0, 1] comply with the deterministic, multiclass heat
equations (56)–(57) with σij = φij . Note that in light of Th. 5,
every expected time average value on the stochastic wireless
network governed by HD policy follows the corresponding
stationary value obtained from multiclass heat equations on the
suitably weighted directed graph. In particular, the objective
function in (68) complies with the graph energy dissipation ~ER
in (78) for σij = φij . By the same token, the Dirichlet routing
cost R in (2) follows ~ER for σij = 1/ρij .

Remark 6: This is the first time a network-layer routing
policy asserts the strict minimization of a routing penalty
subject to network stability. As an unpractical solution, it can
be shown that there exists a stationary randomized algorithm
which solves this minimization problem, but it requires a full
knowledge of arrival statistics and channel state probabilities,
and also involves solving an intractable dynamic program-
ming [2], [3]. Thus far, the only practical approach to this
problem has been the V-parameter BP policy of Sec. II that
can get close to the optimal solution, but at the expense
of unbounded increase in the average delay, which causes
network instability. We remark, however, that the V-parameter
approach holds for more general cost functions, and is not
restricted to the particular structure of Dirichlet routing cost.

VIII. PARETO OPTIMAL PERFORMANCE

Minimizing average delay and minimizing average routing
cost are often conflicting objectives, meaning that as one
decreases the other increases. This leads to a natural multi-
objective optimization framework. Then the ideal operating
points are on the Pareto boundary since they correspond to
equilibria from which any deviation will lead to the perfor-
mance degradation in at least one objective.

A. Strong Pareto Optimality for Nonuniform Link Costs

We have shown that HD with β = 0 minimizes the average
network delay Q within the class of all routing algorithms
which depend only on current queue congestion and current
channel states (optimization problem (3)). We have also shown
that under a mild assumption on link capacities, HD with
β = 1 strictly minimizes the Dirichlet routing cost R among
all possible routing algorithms and subject to network stability
(optimization problem (2)). Now consider the region built
on the joint variables (Q,R) in which Q is achievable by
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the aforementioned class of routing algorithms. Assume that
this region has a convex Pareto boundary. Then the next
theorem claims that the HD with β ∈ [0, 1] operates on this
Pareto boundary, meaning that it solves the multi-objective
optimization problem (4).

Theorem 9: Define Q as in (3) and R as in (2). Consider
the region of all joint variables (Q ,R) with Q obtained
by a routing algorithm which acts based only on current
queue backlogs and current channel states, and suppose that
this region has a convex Pareto boundary. Also consider the
generalized graph heat equations (56)–(57) with σij = 1/ρij ,
and suppose that the multiclass heat flow (56) satisfies the link
capacity constraints (23). Then the HD policy with β ∈ [0, 1]
operates on the Pareto boundary of (Q ,R) region.

Proof: Since the region (Q ,R) has a convex Pareto
boundary, it is known that the entire boundary can be reached
by the weighted-sum method [31], in which the Pareto front
is obtained by changing a weight between the two objective
functions. Then the proof easily follows with observing that
the HD policy minimizes Q at β=0, minimizes R at β=1, and
varies the relative importance between these two objectives by
changing the convexity factor β between 0 and 1.

Remark 7: This is the first time a network-layer routing
policy asserts Pareto optimal performance with respect to av-
erage delay and an average routing cost subject to throughput
optimality. To the best of our knowledge, addressing such
a multi-objective optimization problem at the network layer,
even without throughput optimality constraint, is completely
new. Also worth to note that in the case of non-convex Pareto
boundary, HD with β ∈ [0, 1] still covers the operating points
on convex parts of the boundary, although some Pareto optimal
operating points lie on non-convex parts [31].

B. Weak Pareto Optimality for Unit Link Costs

When all links are of unit cost-factor, we get φij = 1 for all
β, and thus HD policy has the same performance independent
of β. Considering this observation together with Th. 3 implies
that the average delay Q must be minimized for all β ∈ [0, 1].
Considering it together with Th. 8, on the other hand, implies
that the Dirichlet routing cost R must also be minimized for
all β ∈ [0, 1]. Holding these two requirements at the same
time entails that Q and R must be minimized together, which
equivalently means that the Pareto boundary of (Q ,R) region
must shrink into one point. Such an operating point is called
weakly Pareto optimal in the sense that no tradeoff is allowed
as it is impossible to strictly improve at least one objective.
The upshot is formalized by the next corollary.

Corollary 3: Consider (Q ,R) region as defined in Th. 9.
Suppose that the generalized heat flow (56) on an unweighted
multiclass graph satisfies the link capacity constraints (23).
Then under unit cost-factors for all links, the Pareto boundary
of (Q ,R) region reduces to one point, and the HD policy
operates at this point for all β ∈ [0, 1]. ♦

Figure 7 depicts the feasible region on the joint variables
(Q ,R) under unit cost-factors for all links. In contrast with
Fig. 1, it also emphasizes the HD operation at weakly Pareto
optimal point for all β ∈ [0, 1] in comparison with V-parameter
BP performance for V ∈ [0,∞).
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Fig. 7. Graphical description of weak Pareto boundary under unit cost-factors
for all links, depicting the HD operating point compared with BP performance.

IX. CONCLUSION

To summarize, we have introduced the new Heat-
Diffusion (HD) routing policy for network layer. Within the
class of all routing algorithms which perform based only
on current queue congestion and current channel states, HD
obtains a Pareto optimal tradeoff between average delay and
Dirichlet routing cost. In particular, in the above-mentioned
class, HD achieves the minimum average delay. Further, under
a mild assumption on link capacities, HD strictly minimizes
the Dirichlet routing cost among all possible routing algo-
rithms (not restricted to the above-mentioned class). Besides
these, HD is strongly connected to the classical world of
Thermodynamics that we believe opens the door to a rich array
of theoretical techniques that could be applied in future work
to analyze and optimize communication in stochastic networks
constrained with channel interference.
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APPENDIX

A. Proof of Theorem 1

Under the assumption that each link may transmit packets
from only one class at each timeslot, the maximization prob-
lem (14) can be solved in two steps: First, for each link find[
dopt
ij (n), fopt

ij (n)
]

= arg maxd,f 2φij(n) q
(d)
ij (n)f − f2 (80)

wopt
ij (n) := 2φij(n)q

(doptij )

ij (n)fopt
ij (n)− fopt

ij (n)2. (81)

Second, use the link weights wopt
ij (n) to solve

πopt(n) = arg max
π∈Π

∑
ij∈E

πij w
opt
ij (n). (82)

Comparing (81) with the HD weighing (11), and (82) with
the HD scheduling (12), the proof is fulfilled by showing that
the solution to (82) follows d∗ij(n) in (9) and f̂ij(n) in (10).
Using the first derivative test on 2φij(n) q

(d)
ij (n)f − f2 with

respect to q
(d)
ij (n), it is seen that dopt

ij (n) = arg maxd q
(d)
ij (n)

which equals d∗ij(n) in (9). By taking the first derivative
with respect to f , on the other hand, we obtain fopt

ij (n) =

φij(n) q
(d∗)
ij (n). Adding to this the link constraints that fij(n)

must be nonnegative and at most equal to the link capacity,
results in fopt

ij (n) = min
{
φij(n) q

(d∗)
ij (n)+, µij(n)

}
which

follows f̂ij(n) in (10) and concludes the proof. �
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B. Proof of Lemma 1

First we show that the matrix B◦ΣB◦> is symmetric posi-
tive definite for any diagonal matrix Σ with positive diagonal
entries. Since the wireless network has a connected topology,
it is known that any sub-matrix obtained from its incidence
matrix by removing one or more rows has full row rank [32].
This means that B(d)

◦ has full row rank for any d ∈ K.
Accordingly, theB◦ matrix of (18) has full row rank, implying
that the symmetric positive semi-definite matrix B◦ΣB◦> has
full rank, and so is symmetric positive definite.

As B◦B◦> is symmetric positive definite, so is its in-
verse. Also B◦Φ(n)B◦

> is symmetric positive definite
since the Φ(n) matrix of (24) is diagonal with posi-
tive diagonal entries for all n. Thus M◦(n) is a prod-
uct of two symmetric positive definite matrices, and there-
fore it is similar to

(
B◦B◦

>)1/2M◦(n)
(
B◦B◦

>)−1/2 =(
B◦B◦

>)−1/2B◦Φ(n)B◦
>(B◦B◦>)−1/2. The latter is con-

gruent to B◦Φ(n)B◦
> and so symmetric positive definite.

Thus M◦(n) has positive eigenvalues for all n, meaning that
x>M◦(n)x > 0 for an arbitrary vector x 6= 0.

Here we show that B◦>M◦(n)x = Φ(n)B◦
>x for an

arbitrary vector x. Since M◦(n) =
(
B◦B◦

>)−1B◦Φ(n)B◦
>,

and since B◦B◦> is a symmetric positive definite matrix,
we have B◦B◦

>M◦(n)x = B◦Φ(n)B◦
>x. Now assume

B◦
>M◦(n)x 6= Φ(n)B◦

>x. Then since x is an arbitrary
vector, the equality B◦B◦

>M◦(n)x = B◦Φ(n)B◦
>x im-

plies that both B◦>M◦(n)x and Φ(n)B◦
>x must belong to

the null space of B◦, which results in B◦B◦>M◦(n)x =
B◦Φ(n)B◦

>x = 0. But this is in contradiction with the posi-
tive definiteness of B◦Φ(n)B◦

>, and therefore the assumption
that B◦>M◦(n)x 6= Φ(n)B◦

>x is not correct. �

C. Proof of Lemma 2

Replacing M◦ +M>◦ with 2M◦ + (M>◦ −M◦), we need
to prove that for arbitrary vectors x,y ∈ R(|V|−1)|K|,

2x>M◦(n)y + x>
(
M◦(n)>−M◦(n)

)
y 6 η x>M◦(n)y

for η being either 1 or 3 depending on if x>M◦(n)y is either
negative or positive. This is equivalent to prove that

x>
(
M◦(n)>−M◦(n)

)
y 6 (η − 2)x>M◦(n)y.

Considering that η switches between 1 and 3 corresponding
to the sign of x>M◦(n)y, it is easy to see that to prove the
above inequality, it is sufficient to prove that∣∣x>(M◦(n)>+M◦(n)

)
y
∣∣ 6 ∣∣x>M◦(n)y

∣∣ .
Dropping (n) for brevity, the latter is equivalent to

x>(M>◦ −M◦)yy>(M◦−M>◦ )x 6 x>M◦ yy
>M>◦ x,

which by some matrix algebra can be transformed to

x>(2M◦−M>◦ )yy>M◦ x > 0. (83)

First observe that as M◦−M>◦ is a skew-symmetric matrix,
z>(M◦−M>◦ ) z = 0 for an arbitrary vector z. Therefore,
z>(2M◦−M>◦ ) z = z>M◦ z which shows that 2M◦−M>◦
is a quasi-positive matrix in the sense of Lem. 1.

Now we show that for any quasi-positive matrix A, there
exist two symmetric positive definite matrices L and R such

that A = LR. As a square matrix, A has a Jordan decom-
position as A = V JV −1 where J is a Jordan form with
positive diagonal entries, as A has all eigenvalues positive.
Then choose L = V EV> and R = (V −1)>E−1JV −1

where E is a symmetric positive definite matrix commuting
with J . Since L is congruent to E, it has positive eigenvalues,
and so it is a symmetric positive definite matrix. Likewise,
since R is congruent to E−1J , it has positive eigenvalues,
and so it is a symmetric positive definite matrix. To see why
E−1J has positive eigenvalues, observe that it is similar to
E1/2E−1JE−1/2 = E−1/2JE−1/2 and so congruent to J
which has positive eigenvalues.

Turing back to (83), let D := (2M◦ −M>◦ )yy>M◦.
Since both 2M◦−M>◦ and M◦ are quasi-positive, they can
be decomposed into the product of two symmetric positive
definite matrices as 2M◦−M>◦ = L1R1 and M◦ = L2R2

that leads to D = L1R1 yy
>L2R2. Then D is similar to

R
1/2
2 L1R1 yy

>L2R
1/2
2 and so congruent to L1R1 yy

>L2.
Applying this rule iteratively, it is seen that D is congruent
to yy>, and therefore both of them has the same number
of negative eigenvalues. But yy> is a symmetric positive
semi-definite matrix for any vector y and so has no negative
eigenvalue, meaning that D also has no negative eigenvalue.
Then it is obvious that x>Dx > 0 which concludes (83). �

D. Proof of Lemma 3

The time variable (n) is often dropped for brevity. We want
to show that at every slot n, HD with β = 0 maximizes

DP (f) := 2f(n)>B◦
>q◦(n)− f(n)>B◦

>B◦f(n) (84)

subject to network constraints. At first we temporarily ignore
the network constraints including link interference, link capac-
ity, and link directionality. Afterwards, we will add the effect
of these constraints into the picture.

Ignoring link interference, the vector space F formed by
the collection of admissible link actual-transmissions f(n)
becomes a convex set. To see this, observe that in the ab-
sence of link interference, for any two admissible link actual-
transmissions f1(n),f2(n) ∈ F and for any scalar c ∈ [0, 1],
the link actual-transmission cf1(n) + (1 − c)f2(n) is also
admissible and so is in F . Then we show that DP (f) is strictly
concave on F . Considering any f1(n),f2(n) ∈ F and any
scalar c ∈ [0, 1], we need to show that

DP (cf1 + (1− c)f2) > cDP (f1) + (1− c)DP (f2).

Expanding the DP function as defined in (84), and after some
elementary matrix algebra, we need to show that

c (1− c)
(
B◦f1 −B◦f2

)>(B◦f1 −B◦f2

)
> 0

which is correct for any c ∈ [0, 1] and any f1(n) and f2(n)
not in the null space of B◦. Assuming that the destination
node d can only receive d-classes, it is a simple network flow
argument to show thatB◦f 6= 0 for any admissible f(n) ∈ F ,
meaning that f(n) can not be in the null space of B◦.

Having shown that DP (f) is strictly concave, the DP (f)
maximization problem has a unique solution which solves
∇fDP (f) = 0 leading to B◦>B◦f = B◦

>q◦. Let

g
(d)
ij (n) :=

(
B◦
>B◦f(n)

)(d)

ij
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which represents the entry of hyper-vector B◦>B◦f corre-
sponding to the edge ij and class d at the slot n. Then the
maximizing f(n) is the one which respects g(d)

ij (n) = q
(d)
ij (n)

for any link ij and any class d.
Next assume that a routing policy takes αf (d)

ij = q
(d)
ij for a

scalar α>0 which will be determined later. By the argument
above, such a policy can maximize DP (f) every timeslot,
if it complies with g

(d)
ij = αf

(d)
ij . Plugging this in (84), the

maximum of DP (f) is found as

Dmax
P =

∑
ij∈E

∑
d∈K

f
(d)
ij

(
2 q

(d)
ij − αf

(d)
ij

)
. (85)

Substituting αf (d)
ij = q

(d)
ij yields

Dmax
P =

1

α

∑
ij∈E

∑
d∈K

(
q

(d)
ij

)2
(86)

which represents the maximum of DP (f) for a specific value
of α > 0 and in the absence of all network constraints.

Now let us add the network constraints into the picture.
Obviously, the Dmax

P as (86) is no longer attainable. However,
going one step back to the Dmax

P in (85), under αf (d)
ij = q

(d)
ij

forwarding regime, one can find the maximizing f by solving
the following optimization problem at every slot n:

Maximize:
∑
ij∈E

∑
d∈K

2 q
(d)
ij (n)f

(d)
ij (n)− f (d)

ij (n)2

Subject to: Network constraints.
(87)

Let us first determine α∗ which maximizes (87). Obviously,
the maximizing α is the smallest one. However, the following
expression shows that α can not go lower than one:

f>f
(a)

6
(
B+
◦ f
)>(
B+
◦ f
) (b)

6 q◦
>q◦

(c)
= f>B◦

>B◦f
(d)
= αf>f

which leads to α∗ = 1. The inequality (a) reads the fact that∑ ∑ ∑
i∈V b∈out(i) d∈K

(
f

(d)
ib

)2
6
( ∑ ∑ ∑
i∈V b∈out(i) d∈K

f
(d)
ib

)2

.

Note that B+
◦ represents the incidence matrix in (18) where all

−1 entries are replaced by 0. Thus B+
◦ f is a hyper-vector in

which the entry corresponding to node i and class d shows the
outgoing flow of class d from the node i. The inequality (b)
says that in each timeslot the number of d-classes leaving a
node i is at most equal to the queue backlog of class d at
the node i. The equality (c) comes from the DP maximizing
condition B◦>B◦f = B◦

>q◦. To see this, multiply both sides
by B◦ to get (B◦B◦

>)B◦f = (B◦B◦
>) q◦ and then the

positive definiteness of B◦B◦> gives the result. Finally, the
equality (d) readsB◦>B◦f = αf , which follows from the DP

maximizing condition B◦>B◦f = B◦
>q◦ together with the

forwarding regime αf (d)
ij = q

(d)
ij , or equivalently αf = B◦

>q◦.
Fixing α = 1, the optimization problem (87) is identical to

the one in (14) for φij(n) = 1, or equivalently β = 0. We
have shown in Th. 1 that HD with β ∈ [0, 1] solves (14) at
each slot n. Taking β = 0, it implies that HD with β = 0
solves (87) at each slot n, which concludes the proof. �

E. Proof of Lemma 4

The time variable (n) is often dropped for brevity. Consider
the basic quadratic Lyapunov function W (n) := q◦(n)>q◦(n)

and find the Lyapunov drift ∆W (n) = W (n+ 1)−W (n) by
substituting for q◦(n+ 1) from (19). This leads to

∆W = 2a◦
>q◦−2a◦

>B◦f −2f>B◦
>q◦+a◦

>a◦+f>B◦
>B◦f .

Taking expectation from ∆W above yields

E{∆W} = 2E{a◦}>E{q◦} − 2E{a◦}>E{B◦f}
− 2E{B◦f}>E{q◦} − 2Cov{B◦>q◦,f}
+ E{a◦}>E{a◦}+ Var{a◦}
+ E{B◦f}>E{B◦f}+ Var{B◦f}.

where the expectation is with respect to the randomness of
arrivals, channel states, and routing decision—in case of a
randomized routing algorithm. The assumption in the above
equality is that the network layer controller has no impact
on arrivals. This means that a◦(n) is an independent vari-
able in the sense that it is not influenced by the controller.
Thus a◦(n) is statistically uncorrelated with the random
variables q◦(n) and f(n), meaning that Cov{a◦, q◦} = 0
and Cov{a◦,B◦f} = 0.

By some elementary matrix algebra, the drift expectation
E{∆W} above can be recast as

E{∆W} = E{a◦−B◦f}>E{a◦−B◦f+ 2 q◦}
− 2Cov{B◦>q◦,f}+ Var{B◦f}+ Var{a◦}

where the equality holds for every timeslot. Summing over
timeslots 0 until τ − 1, dividing the sum by τ , and taking a
lim sup of τ →∞ result in

lim sup
τ→∞

1/τ
∑τ−1

n=0
E{a◦(n)−B◦f(n)}>E{h(n)} =

+ 2Cov{B◦>q◦,f} − Var{B◦f} − Var{a◦}

where h(n) := a◦(n) − B◦f(n) + 2 q◦(n), and where we
have used lim supτ→∞(W (τ)−W (0))/τ = 0 as the routing
policy stabilizes a◦ and so keeps W (n) = q(n)>q(n) finite
at each timeslot. Next we show that the left hand side of the
equality above is zero which yields the result.

Observe that h(n) is entrywise nonnegative because a◦(n)
is entrywise nonnegative and B◦f(n) 4 q◦(n), saying that
in each timeslot the number of packets leaving a node is at
most equal to the node queue backlog, where curly-inequality
denotes an entrywise comparison. Also notice that h(n) is
finite because (i) a◦(n) has finite mean and variance, (ii) f(n)
is finite since forwarding on each link is bounded with the link
capacity which is finite, and (iii) E{q◦(n)} is finite due to the
queue stability. Thus there exist constant vector bounds hmin

and hmax such that 0 4 gmin 4 E{g(n)} 4 gmax ≺∞ for
each slot n. This implies that

(a◦ −B◦f )>gmin 6

lim
τ→∞

1/τ
∑τ−1

n=0
E{a◦(n)−B◦f(n)}>E{g(n)} 6

(a◦ −B◦f )>gmax

Since a◦ is stabilized by the routing policy, the feasibility
condition (21) compels a◦=B◦f leading to

lim
τ→∞

1/τ
∑τ−1

n=0
E{a◦(n)−B◦f(n)}>E{g(n)} = 0

which concludes the proof. �



19

REFERENCES

[1] L. Tassiulas, A. Ephremides. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop
radio networks. Tr. Autom. Cont., 37:1936–1949, 1992.

[2] L. Georgiadis, M. Neely, R. Tassiulas. Resource allocation and cross-layer
control in wireless networks. Found. Tren. Net., 1:1–144, 2006.

[3] M. Neely. Stochastic Network Optimization with Application to Commu-
nication and Queueing Systems. Morgan & Claypool, 2010.

[4] J. Dai, W. Lin. Asymptotic optimality of maximum pressure policies in
stochastic processing networks. Ann. Appl. Prob., 18:2239–2299, 2008.

[5] D. Shah, D. Wischik. Optimal scheduling algorithms for input-queued
switches. INFOCOM, 2006.

[6] K. Ross, N. Bambos. Projective cone scheduling (PCS) algorithms for
packet switches of maximal throughput. Tr. Net., 17:976–989, 2009.

[7] M. Naghshvar, H. Zhuang, T. Javidi. A general class of throughput-
optimal routing policies in multi-hop wireless networks. Tr. Info. Theo.,
58:2175–2193, 2012.

[8] T. Ji, E. Athanasopoulou, R. Srikant. Optimal scheduling policies in small
generalized switches. INFOCOM, 2009.

[9] L. Bui, R. Srikant, A. Stolyar. A novel architecture for delay reduction
in back-pressure scheduling algorithm. Tr. Net., 19:1597–1609, 2011.

[10] B. Ji, C. Joo, N. Shroff. Delay-based back-pressure scheduling in multi-
hop wireless networks. INFOCOM, 2011.

[11] L. Huang, S. Moeller, M. Neely, B. Krishnamachari. LIFO-backpressure
achieves near optimal utility-delay tradeoff. WiOpt, 2011.

[12] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, M. Neely. Back-
pressure with adaptive redundancy (BWAR). INFOCOM, 2012.

[13] D. Xue, R. Murawski, E. Ekici. Distributed utility-optimal scheduling
with finite buffers. WiOpt, 2012.

[14] L. Bui, S. Sanghavi, R. Srikant. Distributed link scheduling with constant
overhead. Tr. Net., 17:1467–1480, 2009.

[15] L. Jiang, J. Walrand. Approaching throughput-optimality in distributed
CSMA scheduling algorithms with collisions. Tr. Net., 19:816–829, 2011.

[16] S. Moeller, A. Sridharan, B. Krishnamachari, O. Gnawali. Routing
without routes: the backpressure collection protocol. IPSN, 2010.

[17] J. Martnez, J. Bafalluy. Design, implementation, tracing of dynamic
backpressure routing for NS-3. SIMUTools, 2011.

[18] E. Stai, J. Baras, S. Papavassiliou. Throughput-delay tradeoff in wireless
multi-hop networks via greedy hyperbolic embedding. MTNS, 2012.

[19] G. Sharma, R. Mazumdar, N. Shroff. On the complexity of scheduling
in wireless networks. MobiCom, 2006.

[20] J. Dai. Stability of fluid and stochastic processing networks. MaPhySto
Misc. Pub., no. 9, 1999.

[21] M. Bramson. Stability of queueing networks. Prob. Surv., 169-345, 2008.
[22] X. Lin, N. Shroff. Joint rate control and scheduling in multihop wireless

networks. CDC, 2004.
[23] M. Neely, E. Modiano, C. Li. Fairness and optimal stochastic control

for heterogeneous networks. INFOCOM, 2005.
[24] A. Eryilmaz, R. Srikant. Fair resource allocation wireless networks using

queue-length-based scheduling and congestion control. INFOCOM, 2005.
[25] A. Stolyar. Maximizing queueing network utility subject to stability:

greedy primal-dual algorithm. Que. Sys., 50:401-457, 2005.
[26] R. Berry, R. Gallager. Communication over fading channels with delay

constraints. Tr. Info. Theo., 48:1135–1149, 2002.
[27] D. Arnold, R. Falk, R. Winther. Finite element exterior calculus: from

Hodge theory to numerical stability. Amer. Math. Soc., 47:281–354, 2010.
[28] S. Ohta, K. Sturm. Heat flow on Finsler manifolds. Comm. Pure Appl.

Math., 62:13861433, 2009.
[29] D. Boley, G. Ranjan, Z. Zhang. Commute times for a directed graph

using an asymmetric Laplacian. Lin. Algeb. Applic., 435:224–242, 2011.
[30] P. Doyle, J. Snell. Random walks and electrical networks. Math. Assoc.

America, 1984.
[31] I. Kim, O. Weck. Adaptive weighted-sum method for bi-objective opti-

mization: Pareto front generation. Struct. Mult. Opt. 29:149–158, 2005.
[32] W. Chen. Applied Graph Theory: Graphs and Electrical Networks. North

Holland Publishing, 1976.
[33] E. Leonardi, M. Melia, F. Neri, M. Marson. Bounds on average de-

lays and queue size averages and variances in input-queued cell-based
switches. INFOCOM, 2001.




