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Abstract

In this paper, we extend the concept of scaled Gromov hyperbolic
graph, originally developed for the Thin Triangle Condition (TTC), to
the computationally simplified, but less intuitive, Four-Point Condition
(FPC). The original motivation was that, for a large but finite network
graph to enjoy some of the typical properties to be expected in negatively
curved Riemannian manifolds, the delta measuring the thinness of a tri-
angle scaled by its diameter must be below a certain threshold all across
the graph. Here we develop various ways of scaling the 4-point delta, and
develop upper bounds for the scaled 4-point delta in various spaces. A
significant theoretical advantage of the TTC over the FPC is that the
latter allows for a Gromov-like characterization of Ptolemaic spaces. As
major network application, it is shown that Scale-Free networks tend to be
scaled Gromov hyperbolic, while Small-World networks are rather scaled
positively curved.

1 Introduction

1.1 Network congestion motivation

The “scaled Gromov hyperbolic” property of networks, as originally defined
in [8], has far reaching implications in network analysis and design, the most
important one is probably congestion. This was best demonstrated by Narayan
and Saniee [18], who used the Rocketfuel data base as testbed and verified
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that those networks pass the δTTC(∆)/diam(∆) < 3/2 scaled hyperbolicity
test. Here ∆ is an arbitrary geodesic triangle embedded in the network, “TTC”
stands for Thin Triangle Condition, in the sense that δTTC(∆) is the minimum
perimeter of all triangles inscribed to ∆, which has to remain “small” compared
with the diameter of the triangle, hence giving ∆ a “thin” external appearance.
Next, Narayan and Saniee implemented a synthetic traffic (driven by a uniformly
distributed demand), and experimentally observed that the Rocketfuel networks
have a maximum congestion vertex v, where traffic (quantified by betweenness)
scales as N2, where N is the order of the network. To epitomize the crucial role
played by the curvature, Narayan and Saniee implemented the same synthetic
traffic on 2-dimensional Euclidean lattices and observed that, in contrast to
hyperbolic networks, the congestion scales as N1.5.

Following up on this line of work, Jonckheere, Bonahon, Lou, Baryshnikov,
and Krishnamachari [10, 14] proved the results of Narayan and Saniee on a con-
tinuous geometry model of the network traffic. A Gromov hyperbolic network
was modeled as a subset X ⊂ Hn of the hyperbolic space, a continuous geometry
traffic function representative of the betweenness was defined, and it was proved
that the maximum of the traffic over a small subset V ⊂ X scales as vol(X)2,
that is, N2, if we identify the number of vertices the network with the volume
vol(X) of its Riemannian geometry counterpart. Furthermore, the maximum
congestion appears for a small subset V around the gravity center of X (see [12]
for the concept of gravity center of a manifold). The same methodology applied
to a Euclidean subset X ⊂ En revealed a congestion scaling as vol(X)1+1/n,
hence confirming the experimental 2-dimensional result of Narayan and Saniee.

Besides the “bad” congestion implication, hyperbolicity has “good” impli-
cation in terms of “navigability” [6].

The Gromov hyperbolic property has implication beyond the realm of classi-
cal networks—specifically, in quantum networks, where the message is encoded
in spin excitation. Uniform spin chains endowed with a metric reflecting the
maximum transfer probability turn out to be Gromov hyperbolic [9], as per
the “scaled 4-point” criterion precisely developed in the present paper. But
contrary to existence of a gravity center as in classical networks, spin chains
have an “anti-gravity center” that acts as a repellor of the excitation encoding
the messages. The reason for this discrepancy is subtle: A classical Gromov
hyperbolic network is quasi-isometric to a tree and hence has a Cantor Gromov
boundary [11], while a Gromov hyperbolic spin chain is not quasi-isometric to
a tree and hence has its Gromov boundary reduced to a singleton [9].

1.2 Scaled Gromov hyperbolic networks

As already alluded to in the previous subsection, the Gromov hyperbolic prop-
erty of metric spaces can be formulated in essentially two different ways. The
first and most intuitive formulation already emphasized in Sec. 1.1 rephrases
the well-known fact that the sum of the internal angles of a geodesic triangle
△ drawn on a negatively curved surface is less than π, endowing the triangle
with a “thin” external appearance. The Gromov δTTC(△) somehow quanti-
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fies how “fat” the triangle △ is, using the more primitive concept of distance,
so that δTTC applies to arbitrary metric spaces, e.g., graphs, subject to the
technical condition that the metric space is geodesic. The δTTC could be the
minimum perimeter of all inscribed triangles, the diameter of the inscribed tri-
angle also referred to as insize, the neighborhood size δTTC such that the union
of δTTC-neighborhoods of two sides of △ contains the third side, etc. A geodesic
metric space is then said to be Gromov hyperbolic if the Thin Triangle Condition
(TTC) holds, that is, there exists a bound δ̄TTC such that δTTC(△) < δ̄TTC for
all geodesic triangles embedded in the space. (See [7, Chap III.H] for a survey.)
All of these measures, however, involve one way or the other the sides of the
triangle and as such require the metric space to be geodesic.

The second formulation precisely removes this geodesic requirement; it does
not involve triangle sides, but it has the added difficulty of requiring four points,
a, b, c, d. Construct the set of all (unordered) pairs of distinct points and parti-
tion this set into 3 subsets of nonintersecting pairs:

{{a, d}, {b, c}} ∪ {{a, b}, {c, d}} ∪ {{a, c}, {b, d}}

The two nonintersecting pairs of points in a subset of the partition are referred to
as opposite, with reference to the geometric interpretation shown in Figure 1.2.
For each subset of the partition, we compute the sum of the distances between
points in pairs and we list the sums in decreasing order as follows:

L := d(a, d) + d(b, c) ≥ M := d(a, b) + d(c, d) ≥ S := d(a, c) + d(b, d)

L,M,S are the largest, medium and smallest such sum, respectively. Define
δ(a, b, c, d) = (L − M)/2. Then an equivalent formulation of the Gromov hy-
perbolic property is existence of a bound δ̄ such that δ(a, b, c, d) < δ̄ for all
quadruples of points, the so-called (Gromov) Four-Point Condition (FPC).

We will sometimes refer to the quadruple (a, b, c, d) as the quadrilateral
�abcd, because the latter is more geometrically appealing, with the word of
caution that, if the space is not geodesic, there might not exist a geodesic edge
[a, b] of length equal to d(a, b).

There are some definite computational advantages at using the FPC instead
of the TTC, as the former does not require computation of geodesics (but it
still requires computation of distances). However, both formulations suffer the
restriction that they are not directly applicable to the real world networks,
where all graphs no matter how awesome their sizes have finite δ’s. This leaves
the investigator in a quandary as to how small δ should be for the graph to
enjoy some Gromov hyperbolic properties. For the TTC, the directing idea was
to scale δTTC relative to the diameter of the triangle and declare the graph
scaled Gromov hyperbolic if δTTC(△)/diam(△) < 3/2, ∀△. The justification
of this bound is that 3/2 is the maximum achievable value of δTTC/diam in
the standard hyperbolic space or in the Euclidean space, while δTTC/diam goes
beyond 3/2 in positively curved spaces. (See [8] for the details.)

In this paper, we basically do the same analysis, but for the FPC. The fact
that 4 instead of 3 points are involved leads to a larger variety of ways to scale δ
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Figure 1: Illustration of the various quantities in case the metric space is geodesic
and the distances can be interpreted as lengths of diagonals of the complete
quadrilateral. For the subset {{a, b} ∪ {c, d}}, the pairs of points {a, b} and
{c, d} and the geodesic diagonals [a, b] and [c, d] are said to be opposite.

than in the TTC case. Here, we consider the following scalings: δ(�)/diam(�),
δ(�)/L(�), δ(�)/(L+M+S)(�), and compute the upper bound of such scaled
δ’s in the standard Riemannian manifold H = M−k2 of constant negative curva-
ture, in the Euclidean space E, and in the standard manifold S = Mk2 of constant
positive curvature. In addition, because the scaled FPC relies on quadrilaterals
instead of triangles as basic geometric objects, the suprema of the scaled δ’s can
also be computed in Ptolemaic space P in quite a natural way. Furthermore, the
recent reformulation of CAT(0) space in term of quadrilateral inequalities [4]
even allows us to compute the suprema of the scaled δ’s in CAT(0) space. To
simplify the notation, the four scaled δ’s are denoted generically as δ/D, where
D is any of the distance elements diam, L, L+M + S, or even L− S. We are
now in a position to formulate our

Major Result: For the scalings D = L, L +M + S, and diam, the various
δ/D’s behave as follows in the hyperbolic (H), Euclidean (E), Ptolemaic (P),
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CAT(0), and spherical (S) spaces:

sup
a, b, c, d ∈ H

d(i, j) ≥ ϵ > 0, i ̸= j

δ(a, b, c, d)

D(a, b, c, d)

< sup
a,b,c,d∈H

δ(a, b, c, d)

D(a, b, c, d)
= sup

a,b,c,d∈E

δ(a, b, c, d)

D(a, b, c, d)
= sup

a,b,c,d∈CAT(0)

δ(a, b, c, d)

D(a, b, c, d)

=
<

}
sup

a,b,c,d∈P

δ(a, b, c, d)

D(a, b, c, d)
,

{
D = diam
D = L,L+M + S

< sup
a,b,c,d∈S

δ(a, b, c, d)

D(a, b, c, d)

(See Table 1.) Furthermore, the Euclidean supremum is easily identified as be-
ing achieved for a 2-dimensional square. As for the D = L−S scaling, only the
first inequality holds, as the others become equalities. �

A few comments are in order to understand the gist of the result. In the
definition of the H and S spaces, the curvature was set to −k2 and k2 across the
respective spaces, but k ̸= 0 was arbitrary. It is already a first observation that
the suprema over the H and S spaces depend only on the sign of the curvature
(see Section 4.3). The requirement that d(i, j) ≥ ϵ > 0, i ̸= j = a, b, c, d, in
the top supremum is to prevent it from being achieved for infinitesimally small
distances among the 4 points, in which case the hyperbolic supremum coincides
with the Euclidean one. It is noted that the diam scaling is a bit deficient, as it
does not provide a distinction between, on the one hand, the H, E, and CAT(0)
spaces and, on the other hand, the P space.

The overall string of (in)equalities is consistent with the TTC intuition that
the δ/D should be “small” in negative curvature and “bigger” in positive curva-
ture [8]. As such, we would declare a metric space scaled Gromov nonpositively
curved if δ(a, b, c, d)/D(a, b, c, d) remains less than or equal to the Euclidean
bound for all quadruples of points.

The δ/D analysis in various spaces was motivated by network problems
(see Section 9.1), but the results raise the fundamental issue as to what spaces
X are “between” the Euclidean and spherical spaces; precisely, supE δ/D <
supX δ/D < supS δ/D. As shown in this paper, the Ptolemaic space with the
proper scaling is one such space, but whether there are other spaces within the
discontinuity gap is widely open.

The scaled TTC analysis relied on a Cartan-Alexandrov-Toponogov (CAT)
comparison argument [8]. Unfortunately, such a geometric approach does not
appear to be workable for the FPC; therefore, here, we resort to a computational-
algebraic approach: The above suprema are first computed numerically (see
Sections 4, 5). From the numerical values of the suprema in various spaces, we

guess their exact values, δ̂/D, as well as the quadrilateral �̂ that achieves the
optimum (see Section 6). Since the conditions for embeddability in Euclidean,

5



CAT(0), and Ptolemaic spaces are purely algebraic, verifying that ∀a, b, c, d,
δ(a, b, c, d)/D(a, b, c, d) ≤ δ̂/D is TRUE and that ∃(a, b, c, d) ∋ δ(a, b, c, d)/D(a, b, c, d) >

δ̂/D is FALSE should, in principle, be manageable via a Tarski-Seidenberg
decision problem. Unfortunately, the MATHEMATICA or MACAULAY1 en-
coding the preceding expressions together with the well-known Cayley-Menger,
CAT(0), and Ptolemaic conditions for embeddability in the corresponding spaces
results in the software running for more than 24 hours, sometimes saturating
memories, without reaching a decision. However, a very recent reformulation
of the CAT(0) conditions [4] allows the Euclidean bound gleaned from numeri-
cal computation to be proved analytically (see Section 7). The Ptolemaic case,
on the other hand, requires part of the quantifier elimination to be done “by
hands,” before MATHEMATICA can positively confirm the bound. The latter
part is a bit involved and therefore relegated to the Appendix.

The practical impact of this work is that comparison between the scaled 4-
point δ of an Internet graph and the bounds achievable in the various reference
spaces for the various scalings allows us to model, in the spirit of coarse geome-
try, such network graphs as Riemannian manifolds, CAT(0), or even Ptolemaic
spaces. In case of a Riemannian manifold model, a finer classification is pro-
vided by the curvature, and it is along that important line of applications [10]
that the classical graph generators differ:

Major Impact: Relative to the diameter scaling, and for a relevant combi-
nation of generator parameters, the standard graph generators (Barabási-Albert
Scale-Free and β-model Watts-Strogatz Small-World) behave as follows:

sup
�⊆{B-A Scale-Free}

δ(�)

D(�)
≈ sup

�⊂H

δ(�)

D(�)
< sup

�⊆{W-S Small-World}

δ(�)

D(�)

(See Figures 2-3.) This conclusion is fully consistent with the TTC analysis [8]:
namely, that for some combination of the graph generator parameters Scale-Free
graphs can be coarsely modeled as negatively curved Riemannian manifolds, and
Small-World graphs are modeled by positively curved manifolds. �

2 4-point inequality, 4-point condition

Consider four points a, b, c, d in a metric space (X, d). As said in the introduc-
tion, we need to consider all distances between all pairs of points. To simplify
the notation, define

u = d(a, d), v = d(b, c); x = d(a, b), y = d(c, d); z = d(a, c), w = d(b, d) (1)

with the assumption, incurring no loss of generality, that

L := u+ v ≥ M =: x+ y ≥ S := z + w (2)

1The MacAulay encoding was done by Dr. Alex Shoshitaishvili.
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Recall that an ultrametric space is a metric space where the triangle inequality
in, say, △abc is strengthened to v ≤ max{x, z} along with inequalities resulting
from permutations of the sides of △abc. The significance of the concept is that
d is ultrametric iff it is the distance on a equidistant tree [19, Th. 6.1], that is,
a tree that has constant distance between its root and its degree one vertices.
The metric space (X, d) is said to satisfy the Four-Point Inequality if it satisfies
a quadrilateral version of the ultrametric condition. With our convention, the
Four-Point Inequality reduces to L ≤ max{M,S}, and further to L = M . It
can be shown that a metric satisfies the 4-point inequality if and only if it is the
distance on a (not necessarily equidistant) tree [19, Th. 6.2]. Hence to make
the space look like a tree at a large scale, the condition L = M is relaxed to
L−M ≤ 2δ. Formally,

Definition 1 The metric space (X, d) is said to satisfy the Gromov Four-Point
Condition (FPC) if there exists a δ̄ < ∞ such that

sup
a,b,c,d∈X

δ(a,b,c,d)︷ ︸︸ ︷
L(a, b, c, d)−M(a, b, c, d)

2
< δ̄

3 Algebraic and trigonometric characterization
of various spaces

Here the various spaces are characterized in a way that is numerically, and
sometimes analytically, tractable.

3.1 Ptolemaic spaces and Cayley-Menger matrix

Definition 2 A metric space (X, d) is said to be Ptolemaic if, for any quadruple
of points {a, b, c, d} ⊆ X,

uv ≤ xy + zw (3)

xy ≤ uv + zw (4)

zw ≤ uv + xy (5)

where u, ..., w are defined as in (1).

Ptolemy’s theorem states that a quadruple of points on a Euclidean circle, and
subject to the convention (2), saturates the first inequality. Less trivial is the
fact that the Euclidean space and the standard constant negative curvature
manifold are Ptolemaic. One can generalize a bit further by saying that a
CAT(0)-space is Ptolemaic (but the converse is not true).
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The Ptolemaic inequalities can be written in matrix format as follows: Define
the “Ptolemaic matrix,”

P =


0 x2 z2 u2

x2 0 v2 w2

z2 v2 0 y2

u2 w2 y2 0


Then it is easily established that

detP = (uv − xy − zw)(xy − uv − zw)(zw − xy − uv)(uv + xy + zw) (6)

and the Ptolemaic conditions are equivalent to detP ≤ 0.
We now look at the more restrictive condition of embeddability in Euclidean

space.

Theorem 1 There exists an isometric embedding ({a, b, c, d}, d) ↪→ Er≤3 or
equivalently the edges of lengths u, v, x, y, z, w form a complete Euclidean
quadrilateral of Er iff the Cayley-Menger matrix

CM =


0 1 1 1 1
1 0 x2 z2 u2

1 x2 0 v2 w2

1 z2 v2 0 y2

1 u2 w2 y2 0


has a sequence of nested principal minors CMI×I , I ⊆ {1, 2, 3, 4, 5}, starting at

order |I| = 2 with CM{1,2}×{1,2} =

(
0 1
1 0

)
and running to order r + 2 such

that
sign(detCMI×I) = −(−1)|I| for |I| ≤ r + 2

detCMI×I = 0 for |I| > r + 2
(7)

Proof. See [5, Th. 41.1, 42.1]. �
Observe that, for |I| = 3, the sign constraints are completely trivial. For

|I| = 4, they yield the triangle inequalities; indeed, for I = {1, 2, 3, 4},

det


0 1 1 1
1 0 x2 z2

1 x2 0 v2

1 z2 v2 0

 = (x− v − z)(v − x− z)(z − x− v)(x+ v + z) (8)

that is, the triangle inequality for the subset of points {a, b, c}. Should the
triangle inequality holds, then by Heron’s theorem the above is −8(A(△abc))2.
For I = {1, 2, 3, 5}, detCMI×I ≤ 0 yields the triangle inequality for {a, b, d};
for I = {1, 3, 4, 5}, the constraint yields the triangle inequality for {b, c, d}, etc.
If, in addition, the last condition detCM ≥ 0 holds, it is well known that
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detCM = 288vol2(�abcd), where vol(�abcd) is the volume of the tetrahedron
made up with the vertices a, b, c, d. Observe that

detCM

= −2x2y4 − 2w4z2 − 2v4u2 − 2x4y2 − 2z4w2 − 2u4v2

+2v2u2y2 + 2w2z2y2 + 2x2w2y2 + 2w2v2u2 + 2x2v2y2 + 2z2v2u2

+2v2w2z2 + 2x2u2y2 + 2x2v2u2 + 2x2z2y2 + 2x2w2z2 + 2z2w2u2

−2v2w2y2 − 2x2v2z2 − 2x2w2u2 − 2z2u2y2 (9)

= 2(u2 + v2)(x2y2 − u2v2 + z2w2) + 2(x2 + y2)(−x2y2 + u2v2 + z2w2)

+2(z2 + w2)(x2y2 + u2v2 − z2w2)

−2x2(u2w2 + z2v2)− 2y2(v2w2 + z2u2)

The case I = {2, 3, 4, 5} does not occur in a nested sequence of principal mi-
nors starting at I = {1, 2}. Observe, however, that detCM{2,3,4,5}×{2,3,4,5} ≤ 0
is equivalent to the Ptolemaic conditions. By a fundamental congruence the-
orem, if there exists a nested sequence of principal minors of alternate signs,
detCM{2,3,4,5}×{2,3,4,5} ≤ 0 and the Ptolemaic conditions holds.

It is trivial, but necessary, to observe that the Ptolemaic and Cayley-Menger
conditions are scale-independent, in the sense that the various inequalities are
preserved under a scaling of the form (u, v, w, x, y, z) 7→ (ku, kv, kw, kx, ky, kz),
k ∈ R∗.

3.2 Quadrilateral inequality for CAT(0)-spaces

As shown in the Appendix, the Cayley-Menger conditions are difficult to manage
in the realm of computer algebra. However, Berg and Nikolaev’s new charac-
terization of CAT(0)-spaces via quadrilateral inequality comes handy as a re-
placement of the Cayley-Menger constraints (see Berg and Nikolaev [4] and [12,
Th. 2.3.1] for a closely related result). The Berg and Nikolaev theorem states
that any geodesic space (X, d) is a CAT(0)-space iff for any quadruple of points
a, b, c, d ∈ X we have

d(a, d)2 + d(b, c)2 ≤ d(a, b)2 + d(b, d)2 + d(d, c)2 + d(c, a)2,

or equivalently
u2 + v2 ≤ (x2 + y2) + (z2 + w2). (10)

along with similar inequalities for the other subsets of the partition.

3.3 Gram matrices

Surprisingly, embeddability of a quadruple of points in a space of constant non-
vanishing curvature is much easier than in the Euclidean case, as embeddability
relies on Gram matrices. Define Mr

κ to be the standard r-dimensional Rieman-
nian manifold of constant curvature κ.
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Theorem 2 There exists an isometric embedding ({a, b, c, d}, d) ↪→ Mr≤3
κ<0 iff

the Gram matrix

G− =


1 cosh(

√
−κx) cosh(

√
−κz) cosh(

√
−κu)

cosh(
√
−κx) 1 cosh(

√
−κv) cosh(

√
−κw)

cosh(
√
−κz) cosh(

√
−κv) 1 cosh(

√
−κy)

cosh(
√
−κu) cosh(

√
−κw) cosh(

√
−κy) 1


has a sequence of nested principal minors G−

I×I , I ⊆ {1, 2, 3, 4}, starting at
order |I| = 1 and running to order r + 1 such that

sign(detG−
I×I) = −(−1)|I| for |I| ≤ r + 1

detG−
I×I = 0 for |I| > r + 1

(11)

Proof. See [5, Th. 106.1 and Cor.]. �

Theorem 3 There exists an isometric embedding ({a, b, c, d}, d) ↪→ Mr≤3
κ>0 iff

diam{a, b, c, d} ≤ π/
√
κ and the Gram matrix

G+ =


1 cos(

√
κx) cos(

√
κz) cos(

√
κu)

cos(
√
κx) 1 cos(

√
κv) cos(

√
κw)

cos(
√
κz) cos(

√
κv) 1 cos(

√
κy)

cos(
√
κu) cos(

√
κw) cos(

√
κy) 1


is positive semi-definite of rank (r+1); that is, there exists a sequence of nested
principal minors G+

I×I , I ⊆ {1, 2, 3, 4}, starting at order |I| = 1 and running to
order r + 1 such that

sign(detG+
I×I) = +1 for |I| ≤ r + 1

detG+
I×I = 0 for |I| > r + 1

(12)

Proof. See [5, Th. 63.1]. �
Again, the sign constraints on G± for |I| = 1, 2 are completely trivial. For

|I| = 3, it is easy to see that, because of the Gram nature of the matrices G±,
the sign constraints are in fact triangle inequalities [7].

More specifically, in the hyperbolic case, it is readily observed that

detG−
{1,2,3}×{1,2,3} = 1− cosh2(

√
−κv)− cosh2(

√
−κx)− cosh2(

√
−κz)

+2 cosh(
√
−κv) cosh(

√
−κx) cosh(

√
−κz)

By the hyperbolic Heron formula, the condition detG−
{1,2,3}×{1,2,3} ≥ 0 is equiv-

alent to the triangle inequality in △abc and

detG−
{1,2,3}×{1,2,3} =((

1 + cosh(
√
−κv) + cosh(

√
−κx) + cosh(

√
−κz)

)
tan

(
A(△abc)

2

))2
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In the spherical case, detG+
{1,2,3}×{1,2,3} ≥ 0 is related to A(△abc) and the

latter is related to the triangle inequalities via L’Huilier’s formula:

tan2
A(△abc)

4
= tan

x+ z + v

4
tan

x+ z − v

4
tan

x+ v − z

4
tan

z + v − y

4

The highest order condition detG± ≥ 0 is related to the volume.
Specifically, if the last condition detG− ≥ 0 holds, then detG− is related to

vol(�abcd), but not via an easy formula [17, Th. 2.2], from which it nevertheless
follows that detG+ = 0 implies that vol(�abcd) = 0.

A bit differently than the Ptolemaic inequality and the Cayley-Menger con-
ditions, the Gram matrix conditions are scale-independent under a rescaling
of the curvature. Specifically, if (u, v, x, y, z, w) is embeddable in Mκ, then
(ku, kv, kx, ky, kz, kw), k > 0, is embeddable in M κ

k2
.

If the Gram matrix is singular, the scale independence holds only under
rescaling of the curvature. As a counterexample, consider two equilateral trian-
gles △abc,△dbc ⊂ M−1, where d(a, b) = d(a, c) = d(b, c) = d(b, d) = d(c, d) = 1;
the two triangles are glued along their common side [b, c] such that the com-
mon foot h of the altitudes [a, h], [d, h] is “between” a and d. The later
“betweenness” concept means that d(a, d) = d(a, h) + d(h, d). The internal

angle of the equilateral triangle is α = cos−1 cosh(1)2−cosh(1)
sinh(1)2 ≈ 0.9188. The

length of the altitude is ℓ([a, h]) = sinh−1(sin(α) sinh(1)) ≈ .8340. Hence
d(a, d) ≈ 1.668. With this system of distances, the principal minor of the
Gram matrix are (1.0,−1.3810978, 1.205158,−0.0), with the last one vanishing,
as expected. However, if we amplify those distances by a factor k > 1, the last
minor of the Gram matrix becomes > 0. Hence the system of points is no longer
isometrically embeddable in the hyperbolic space M−1; the only space in which
it is isometrically embeddable is M− 1

k2
.

4 Generic constrained optimization problem

Finding the upper bounds on the Gromov 4-point δ for the various spaces is
basically a constrained optimization problem:

sup
a,b,c,d

δ(a, b, c, d)

D(a, b, c, d)

subject to the constraint that the quadruple {a, b, c, d} is isometrically embed-
dable in the specific space: negatively curved, Euclidean, Ptolemaic, positively
curved. Since embeddability in the various spaces is expressed in terms of the
distances, the problem is conveniently reformulated in terms of said distances:

sup
u,v,x,y,z,w

L(u, v, x, y, z, w)−M(u, v, x, y, z, w)

2D(u, v, x, y, z, w)

subject to various constraints:

11



• Linear constraints to enforce the fundamental triangle inequalities, L ≥
M ≥ S, and other convenient assumptions incurring no loss of generality.
In addition, in the diameter scaling case, we enforce u to be the diameter.

• Nonlinear constraints to enforce the Ptolemaic inequalities and the various
sign constraints on the principal minors of the Cayley-Menger and Gram
matrices.

4.1 Linear constraints

The 3
(
4
3

)
= 12 triangle inequalities can conveniently be written as

u ≤ min{x+ w, z + y}
v ≤ min{x+ z, w + y}
x ≤ min{z + v, u+ w}
y ≤ min{v + w, u+ z}
z ≤ min{u+ y, v + x}
w ≤ min{v + y, u+ x}

If we define
ξ = (u, v, x, y, z, w)′

the triangle inequalities can be rewritten as Atξ ≤ 0, where At is a 12×6 matrix.
The constraint L ≥ M ≥ S can be rewritten as Almsξ ≤ 0, where Alms is a

2× 6 matrix.
The convenient linear constraints, incurring no loss of generality, are as fol-

lows:
u ≥ v, x ≥ y, z ≥ w

They are convenient because they restrict the diameter to u, x, or z. Again,
they can be rewritten as Awlogξ ≤ 0, where Awlog is a 3× 6 matrix.

The linear constraints are written compactly asAξ ≤ 0, whereA = (A′
t, A

′
lms, A

′
wlog)

′.

12



Specifically,

At =



1 0 −1 0 0 −1
1 0 0 −1 −1 0
0 1 −1 0 −1 0
0 1 0 −1 0 −1
0 −1 1 0 −1 0

−1 0 1 0 0 −1
0 −1 0 1 0 −1

−1 0 0 1 −1 0
−1 0 0 −1 1 0
0 −1 −1 0 1 0
0 −1 0 −1 0 1

−1 0 −1 0 0 1


Alms =

(
−1 −1 1 1 0 0
0 0 −1 −1 +1 +1

)

Awlog =

 −1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1


4.2 Nonlinear constraints

The nonlinear constraints in the various spaces involve either trigonometric or
polynomial inequalities ci(ξ) ≤ 0, with the extra requirement that if one of the
inequalities saturates others might have to saturate as well. The precise sign
requirement is written as c(ξ)E0, to indicate that the embeddability conditions
are more stringent than just c(ξ) ≤ 0.

The nonlinear constraints in a Ptolemaic space are written either as the
three inequalities (3), to be written c1(ξ) ≤ 0, c2(ξ) ≤ 0, c3(ξ) ≤ 0, or as the
single, but higher degree, inequality detP := c1 ≤ 0, where detP is given by (6).
There are no restrictions on the saturation; nevertheless, we keep the notation
c(ξ)E 0.

The new formulation of CAT(0)-spaces involves quadrilateral inequalities,
again without restrictions on the saturation; nevertheless, we keep the notation
c(ξ)E 0.

Regarding the nonlinear constraints of the Euclidean case, those correspond-
ing to determinants of order |I| = size(CM) − 1 = 4 of the relevant Cayley-
Menger matrix involve the product form of the three triangle inequalities in all
four triangles of the quadrilateral; the latter are written ci(ξ) ≤ 0, i = 1, 2, 3, 4,
where for example c1 is given by (8). Should any of them vanishes, then the
determinant of the full matrix detCM =: c5 has to vanish, in which case the
quadruple is embeddable in a subspace of dimension ≤ 2. Therefore, the con-

13



straints can be formalized as C1 ∨ C2 ∨ C3, where

C1 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 < 0)

C2 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 = 0)

C3 = (∀i ∈ {1, 2, 3, 4}, ci ≤ 0) ∧ (∃i ∈ {1, 2, 3, 4} ∋ ci = 0) ∧ (c5 = 0)

We write C1 ∨ C2 ∨ C3 as c(ξ)E 0.
For the Riemannian cases of negative and positive curvature, the constraints

on the principal minors of order |I| = size(G±)− 1 = 3 are triangle inequalities,
to be written ci(ξ) ≤ 0, i = 1, 2, 3, 4. The condition on the full matrix is written
c5(ξ) ≤ 0. Again, one has to be cautious, as if one of the triangle inequalities
saturates, i.e., ci(ξ) = 0 for some i ∈ {1, 2, 3, 4}, then the fifth inequality satu-
rates as well, i.e., c5(ξ) = 0, meaning that the volume vanishes. Therefore, the
constraints can be formalized as C1 ∨ C2 ∨ C3, where

C1 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 < 0)

C2 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 = 0)

C3 = (ci ≤ 0, ∀i ∈ {1, 2, 3, 4}) ∧ (∃i ∈ {1, 2, 3, 4} ∋ ci = 0) ∧ (c5 = 0)

We write C1 ∨ C2 ∨ C3 as c(ξ)E 0.

4.3 Scale independence

Proposition 1 supa,b,c,d∈Mκ̸=0

δ(abcd)
D(abcd) depends only on the sign of the curva-

ture, not on its magnitude.

Proof. Let cκ(ξ)E 0 denote nonlinear embeddability constraints in Mκ̸=0. Let
κ′ be another curvature (of the same sign). It is easily verified that cκ′(ξ) =

cκ

(√
κ′

κ ξ
)
. Define ξ′ =

√
κ′

κ ξ. We have

sup
Aξ ≤ 0

cκ′(ξ)E 0

δ(ξ)

D(ξ)
= sup

Aξ′ ≤ 0
cκ(ξ

′)E 0

δ
(√

κ
κ′ ξ

′)
D

(√
κ
κ′ ξ′

) = sup
Aξ′ ≤ 0
cκ(ξ

′)E 0

δ(ξ′)

D(ξ′)

where the last equality stems from the trivial scale invariance of δ
D . The result

follows from the extreme sides of the above equality. �
Proposition 2 In the Ptolemaic, Euclidean, and CAT(0)-cases, if ξ̂ reaches

sup
Aξ ≤ 0
c(ξ)E 0

δ(ξ)

D(ξ)
,

so does kξ̂, k > 0. In the Mκ̸=0 case, if ξ̂ reaches

sup
Aξ ≤ 0
cκ(ξ)E 0

δ(ξ)

D(ξ)
,

14



then kξ̂, k > 0, reaches

sup
Aξ ≤ 0

cκ/k2(ξ)E 0

δ(ξ)

D(ξ)

Proof. The first part is trivial from the homogeneous property of the Ptolemaic,
Cayley-Menger, and quadrilateral inequality CAT(0)-conditions. The second
part results from manipulation of the arguments of cos and cosh in the Gram
matrix conditions. �

The scaling issue is different in negatively curved and positively curved
manifolds. In the standard positively curved space, it is tacitly assumed that
u, v, x, y, z, w ≤ π√

κ
. In hyperbolic space, the supremum is achieved for an

infinitesimally small quadrilateral. Precisely,

Proposition 3

lim
ϵ↓0

sup
a, b, c, d ∈ Mκ<0

u, v, x, y, z, w ≥ ϵ

δ(a, b, c, d)

D(a, b, c, d)
= sup

a, b, c, d ∈ M0

u, v, x, y, z, w ≥ ϵ

δ(a, b, c, d)

D(a, b, c, d)

Proof. Indeed, the 1×1 and 2×2 conditions on the Gram G− matrix are trivial,
as are the 2× 2 and 3× 3 conditions on the Cayley-Menger CM matrix. Next,
the 3 × 3 conditions on G− are equivalent to the triangle inequalities, as are
the 4× 4 conditions on CM , except for the {2, 3, 4, 5}×{2, 3, 4, 5} condition on
CM , which is equivalent to the Ptolemaic conditions. Hence all that remains
to be proved is the equivalence between the 4 × 4 G− condition at small scale
and the 5× 5 CM condition. Precisely, the proof relies on the observation that
the 4 × 4 Gram G− condition, up to the 8th order, is equivalent to the 5 × 5
Cayley-Menger conditions. Clearly,

G− =


1 1 + x2

2 1 + z2

2 1 + u2

2

1 + x2

2 1 1 + v2

2 1 + w2

2

1 + z2

2 1 + v2

2 1 1 + y2

2

1 + u2

2 1 + w2

2 1 + y2

2 1

+ 0(ξ2)

The determinant of the second order component of G− is found to be

1

16

(
−2x2v2u2y2 − 2x2w2z2y2 − 2z2w2v2u2 + x4y4 + z4w4 + u4v4

+4z4w2 + 4u4v2 + 4v4u2 + 4x4y2 + 4w4z2 + 4x2y4

−4x2w2z2 − 4z2w2u2 − 4v2u2y2 − 4w2z2y2 − 4x2v2u2 − 4x2z2y2

−4x2w2y2 − 4w2v2u2 − 4z2v2u2 − 4x2v2y2 − 4v2w2z2 − 4x2u2y2

+4x2w2u2 + 4z2u2y2 + 4x2v2z2 + 4v2w2y2
)

It is easily seen that the sixth order term of the above is exactly −1
8 detCM . �
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5 Numerical results

The problem is, conceptually, set up as follows:

sup
Aξ ≤ 0
c(ξ)E 0

L(ξ)−M(ξ)

2D(ξ)

where Aξ ≤ 0 are the linear constraints and c(ξ)E0 are the nonlinear constraints.
It is good to recall that L(·), M(·), and D(·) are linear.

The routine fmincon of Matlab is used to find the solution to the constrained
optimization problem. The initial estimate ξ0 is taken to be the solution to
the problem with linear constraints only, which reduces to a (computationally
reliable!) linear programming problem. Indeed, m = supAξ≤0

L−M
2D can be

rewritten as infAξ≤0 (2Dm− (L−M)) = 0. The latter is a linear programming
problem that can be iterated on m using the Matlab routine linprog until a
vanishing minimum is reached.

5.1 Linear programming results

The maxima of L−M
2D subject to the linear constraints only for the various scal-

ings are tabulated in the following table:

supAξ≤0
δ
D

L 0.25

L+M + S 0.125

diam 0.5

L− S 0.5

In fact, these numerical results can be confirmed analytically.

Theorem 4 Consider the linear programming problem

min
Aξ≤0

(2mD − (L−M))

For D = L, ∀m, the solution is

(u, v, x, y, z, w) = ρ(2, 2, 1, 1, 1, 1)

and the optimal cost vanishes for m = 0.25. For D = L+M + S, the solution
is the same, provided m ≤ 0.125 and the optimal cost vanishes for m = 0.125.
For D = diam, the optimal solution is still the same ∀m and the optimal cost
vanishes for m = 0.5. Finally, for D = L − S, the optimal cost vanishes for
m = 0.5.
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Proof. For transparency of the proof, we discard the constraint Awlogξ ≤ 0,

since it is not really necessary, and set A =
(
A′

t A′
lms

)′
. We first follow the

path that the proofs of the D = L, D = L+M +S, D = L−S, and D = diam
cases share in common. The inequality constraint Aξ ≤ 0 is rewritten as an
equality constraint σ+Aξ = 0, where σ ≥ 0 is a vector of slack variables. Next,
it is necessary to impose an upper bound on the solution ξ, for otherwise it is
infinite. Again, this is done by means of another slack vector τ ≥ 0, and the
upper bound ξ ≤ 2 is rewritten as another equality constraint τ + ξ = 2e, where
e =

(
1 1 . . . 1

)′
. Augmenting the state vector as

(
σ′ τ ′ ξ′

)′
, the

constraints can be rewritten as(
I 0 A
0 I I

) σ
τ
ξ

 =

(
0
2

)
Furthermore, if the cost is written as 2mD− (L−M) = γξ, the linear program-
ming tableau is

I14×14 014×6 A14×6 014×1

06×14 I6×6 I6×6 26×1

01×14 01×6 γ1×6 0

Essentially, we set m to its optimum value, and endeavor to show that the
minimum of γξ is indeed 0 for ξ = (2, 2, 1, 1, 1, 1). It is trivial to verify that
ξ = (2, 2, 1, 1, 1, 1) satisfies the constraints and that γξ = 0. The nontrivial step
is to show that ξ = (2, 2, 1, 1, 1, 1) is indeed the optimum. This is accomplished
via a pivoting procedure on the above tableau. As the original tableau stands,
the basic feasible solution is (σ′, µ′, ξ′)′ = (0′, 2′, 0′)′. Since all ξ variables have

to be activated, we move the

 A
I
γ

 part of the tableau across the double

vertical line to the extreme left of the tableau. To compensate for this, 6 among
the σ and τ slack columns have to be moved across the double vertical lines to
the right, where they will become vanishing, hence saturating some constraints.
From the presumed solution, it is easily seen that the constraints to be saturated
are those corresponding to σ{1,2,3,4,14} and τ1. Indeed, σ{1,2,3,4} = 0 yields
saturation of the first four triangle inequalities u ≤ x+w, u ≤ z+ y, v ≤ x+ z,
v ≤ w + y. σ14 = 0 yields saturation of M ≥ S. τ1 = 0 yields saturation of
u ≤ 2. Regarding saturation of v ≤ 2, the latter is equivalent to τ2 = 0, which,
as we will see soon, comes out of the new basic feasible solution. After this
operation, the tableau becomes

A14×6

04×9

I9×9

01×9

014×5
I4×4

010×4

013×1

1
014×1 014×1

I6×6 06×9
01×5

I5×5
06×4 06×1

1
05×1

26×1

γ 01×9 01×5 01×4 0 0 01×1
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We rewrite the above tableau in a more compact format as

A1 A2 b

γ 0 0

By row operation, we convert A1 to the identity matrix, so as to obtain the
near-canonical form:

I20×20 A−1
1 A2 A−1

1 b

γ 0 0

To obtain the canonic form, we reduce γ to 0 by trivial row operations to obtain

I20×20 A−1
1 A2 A−1

1 b

0 c2 0

It follows from the above that the new basic feasible solution is
(
ξ′ σ′

5,...,13 τ ′2,...,6
)′

=

A−1
1 b. It is also easily observed that

(
A−1

1 b
)
16

= τ2 = 0; as expected, the con-
straint v ≤ 2 is saturated. Since the (2, 3)-block element of the above tableau
vanishes, the cost vanishes for the basic feasible solution.

It remains to prove that this solution is optimum. For D = L, we have
γ =

(
−1 −1 2 2 0 0

)
and it follows that

c2 =
(
1/2 1/2 1/2 1/2 1 0

)
Since those relative cost coefficients are nonnegative, optimality is proved [15,
Sec. 3.4]. For the case D = L+M +S, we have γ =

(
−3 −3 5 5 1 1

)
and it follows that

c2 =
(
3/2 3/2 3/2 3/2 2 0

)
Since those coefficients are nonnegative, optimality is proved as well. For D =
L− S, we have γ =

(
0 0 1 1 −1 −1

)
, and it follows that

c2 =
(
0 0 0 0 1 0

)
For D = diam, we have γ =

(
0 −1 1 1 0 0

)
, and it follows that

c2 =
(
0 0 1/2 1/2 1/2 0

)
�

The fact that, in all scaling cases, some components of c2 vanish reveals the
possibility of multiple optima. (Recall that the vanishing of some relative cost
coefficient is necessary but not sufficient for multiple optimal solutions [1].)

Lemma 1 Consider the linear programming problem minĀχ=b̄ γ̄χ = 0. Define
the associated linear programming problems

lpk : min
Ākχk=b̄k

γ̄kχk, k = 0, 1, ...

18



The linear programs are initialized as

γ̄0 = γ̄

Ā0 = Ā

b̄0 = b̄

In this particular application, the initialization is as

γ̄0 = γ̄ =
(
0 0 γ

)
Ā0 = Ā =

(
I 0 A
0 I I

)
b̄0 = b̄ =

(
014×1

26×1

)
Recursively, if χ∗

k−1 is a solution to lpk−1 and, as long as γ̄k−1χ
∗
k−1 < 0, the

program lpk is defined as follows:

Āk =

(
Āk−1

γ̄k−1

)
b̄k =

(
b̄k−1

γ̄k−1χ
∗
k−1

)
and the cost coefficients are defined as

(γ̄k)i = −1 if
(
χ∗
k−1

)
i
= 0

(γ̄k)i = 0 otherwise

Then the solution χ∗
k−1, k = 1, 2, ..., is unique iff γ̄kχ

∗
k = 0.

Proof. The first step k = 1 is proved in [1]. If γ̄1χ1 = 0, the optimal solution
χ∗
0 is unique and the algorithm terminates. If γ̄1χ

∗
1 ̸= 0, the χ∗

0 solution is
nonunique, as the χ1 is another one. But the question now is whether besides
χ0,1 there are still other solutions. Then we use again the results of [1] to check
whether the solution to lp1 is unique. This defines the problem lp2, which sets
the stage for the recursion. Clearly the recursion stops when γ̄kχk = 0. �

For D = L, the first iteration on the algorithm of Lemma 1 yields

χ1 =
(
01×12 01×2 21×6 01×6

)′
along with γ̄1χ1 = −4, so that the χ-solution is nonunique. Even though the
ξ-component vanishes, it is necessary to run the iteration at least one more
time, for there is no way to rule out the next solution having a nonvanishing
ξ-component, hence revealing another ξ-solution. The next iteration yields

χ2 =
(
01×4|0.30771×8 0|0.3077 1.69231×2|1.84611×4 0.30771×2|0.15391×4

)′
Clearly the ξ-component is of the form ρ(2, 2, 1, 1, 1, 1). From here on the ξ-
solution cycles. Hence the ξ = (2, 2, 1, 1, 1, 1) solution is unique, up to a multi-
plicative positive constant.
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For D = L+M + S, the first iteration yields

χ1 =
(
01×12 01×2 21×6 01×6

)′
along with γ̄1χ1 = −4, so that the χ-solution is nonunique. The situation is
pretty much the same as the previous case. The next iteration yields

χ2 =
(
01×4|0.30771×8 0|0.3077 1.69231×2|1.84611×4 0.30771×2|0.15381×4

)′
Like the preceding case, the ξ = (2, 2, 1, 1, 1, 1)-solution is unique up to a mul-
tiplicative positive factor.

As for D = L− S, the first iteration on the algorithm of Lemma 1 yields

χ1 =
(
21×12 01×2 01×6 21×6

)′
along with γ̄1χ1 = −8, so that the χ-solution is nonunique, and more impor-
tantly, the ξ part of the χ solution is nonunique. This component, in fact,
yields an alternate solution that will prove useful in the nonlinear part of the
algorithm. However, running another iteration yields

χ2 =
(
0.46901×4|0.86431×8 0|0.3953 1.3571×2|1.33331×4 0.86431×2|0.66671×4

)′
Clearly, this reveals another ξ = (.8643, .8643, .6667, .6667, .6667, .6667) solu-
tion. The next iteration does not have feasible solution. Hence all ξ solutions
are positive combination of

(2, 2, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2), (.8643, .8643, .6667, .6667, .6667, .6667)

5.2 Nonlinear programming results

The preceding linear constraint solution is utilized as the initial condition to the
nonlinear constraint routine. In all cases, the initial condition to the nonlinear
algorithm was taken to be the (2, 2, 1, 1, 1, 1)-solution, except in the hyperbolic
(L−S)-case, where a combination of the generic solution and the one provided
by Lemma 1,

(2, 2, 1, 1, 1, 1) + (2, 2, 2, 2, 2, 2) = (4, 4, 3, 3, 3, 3),

was chosen to make the algorithm converge. The numerical values of max δ
D

subject to the linear and nonlinear constraints for the various scalings and in
the various spaces appear as shown in Table 1. The optimum edge lengths are
shown in Table 2.

The L, L + M + S, and diam scalings behave roughly the same way. As
intuition tells, one observes an increase of max� δ(�)/D(�) from hyperbolic to
spherical spaces. The hyperbolic ξ ≥ 1√

−κ
column indicates that, for a hyper-

bolic quadrilateral with edge length bounded from below, the sup δ
D remains

below what could be achieved without lower bound, which, for infinitesimally
small edge length, equals the Euclidean bound. On the other hand, there is
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Table 1: Achievable bounds in various spaces for various scalings.

hyperbolic hyperbolic

supAξ≤0,c(ξ)≤0
δ
D subject to Euclidean Ptolemaic spherical

ξ ≥ 1√
−κ

CAT(0)

L 0.1397 0.1464 0.1667 0.25

L+M + S 0.0572 0.0607 0.0714 0.125

diam 0.2788 0.2929 0.2929 0.5

L− S 0.5 0.5 0.5 0.5

a strict inequality between the absolute hyperbolic/Euclidean bound and the
spherical bound. The Ptolemaic space appears “somewhere between” Euclidean
and spherical spaces, which is not surprising since H,E ⊆ P.

The situation is totally different for the L − S scaling, as max δ/(L − S)
remains constant across all spaces. For H, E, and S, this seems to indicate that
max δ/(L − S) = 0 is indicative of constant curvature, but it is unclear what
this means for P.

Regarding the minima, no matter what the scaling is, min δ/D = 0, as the
latter is easily seen to be reached for the degenerate quadrilateral a = c, b = d,
embeddable is all spaces considered.

6 Geometric interpretation of suprema

The numerical values of sup�⊂H,E
δ
D forD = L,L+M+S, diam indicate that the

suprema are reached for a 2-dimensional square, u = v, x = y, z = w. Indeed,
for H with ξ ≥ 1, we have x = y = 1 and z = w = 1, and some hyperbolic
trigonometry in the right angle triangle △ab0, where 0 = [a, d] ∩ [b, c], yields

u = v = 2 cosh−1
(√

cosh(1)
)
= 1.3653, from which the result follows. For E,

the result is trivial to verify.
In positive curvature, the numerical results are consistent with a quadrilat-

eral embedded in a 2-sphere, with the medium and small diagonals [a, b]∪ [b, d]∪
[d, c]∪ [c, a] making the “equator” and with the large diagonals [a, d], [b, c] each
half the circumference in length. On a unit sphere, this yields x = y = u = v =
π
2 and u = v = π, with which the numerical result is consistent.
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Table 2: Optimum edge lengths in various spaces for various scalings.

hyperbolic Euclidean Ptolemaic spherical

(u, v, x, y, z, w)′ ξ ≥ 1√
−κ

hyperbolic

L 1.0000 1.2375 1.0608 3.1416

0.9281 1.2375 0.5304 3.1416

0.6948 0.8750 0.5304 1.5708

0.6948 0.8750 0.5304 1.5708

0.6949 0.8750 0.5304 1.5708

0.6947 0.8750 0.5304 1.5708

L+M + S 1.0000 7.7272 1.0450 0.0496

1.0000 7.7272 0.5225 0.0496

0.6947 5.4640 0.5225 0.0246

0.6945 5.4640 0.5225 0.0246

0.6945 5.4640 0.5225 0.0246

0.6944 5.4640 0.5225 0.0246

diam 1.0000 7.6630 1.3077 0.0534

1.0000 7.6630 1.3077 0.0534

0.7212 5.4185 0.9247 0.0264

0.7212 5.4185 0.9247 0.0264

0.7212 5.4185 0.9247 0.0264

0.7212 5.4185 0.9247 0.0264

L− S 3.7133 7.9753 8.2890 3.1416

3.7133 7.9753 8.2890 3.1416

3.0662 5.6407 5.8613 1.5708

3.0662 5.6407 5.8613 1.5708

3.0662 5.6407 5.8613 1.5708

3.0662 5.6407 5.8613 1.5708
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7 Proof of bound for CAT(0) and Euclidean spaces
for some scalings

Here, we endeavor to prove the bounds in the CAT(0)-space for all scalings, ex-
cept the diameter one, which entails additional expressions making the problem
more involved. The Euclidean bound is proved for the L-scaling. The Euclidean
bound in the (L+M+S)-scaling does not appear to be tractable with the tech-
nique presented here; it, however, can be proved by a Sturm sequence argument
implemented in MAPLE [2].

As is well known, E,H ⊂ CAT(0), so that

sup
�⊂E,H

δ

D
≤ sup

�⊂CAT(0)

δ

D

and we endeavor to derive a bound on the right-hand side of the inequality and
then show that this bound is achievable in E.

The inequality (10) can be written as

(u+ v)2 − 2uv ≤ (x+ y)2 − 2xy + (z + w)2 − 2zw (13)

Since the E and H spaces are known to be Ptolemaic, we can utilize the inequal-
ity

uv ≤ xy + zw

in (13), which yields

(u+ v)2 ≤ (x+ y)2 + (z + w)2

L2 ≤ M2 + S2 (14)

Clearly, (10) ⇒ (14), so that

sup
u2+v2≤x2+y2+z2+w2

δ

D
≤ sup

L2≤M2+S2

δ

D

and we proceed to derive explicit bound on the right-hand side of this inequality
and show that this bound in achievable in E.

7.1 L-scaling, max δ
L
= (

√
2−1)

2
√
2

To show that max δ
L = (

√
2−1)

2
√
2

, it suffices to show the following:

(u+ v)−
√
2(x+ y) ≤ 0

or equivalently
L−

√
2M ≤ 0

Since S ≤ M , from (14) we have

L2 ≤ 2M2
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Therefore,

L ≤
√
2M

⇒ L−
√
2M ≤ 0

The proof is complete under the relaxed constraint L2 ≤ M2+S2 and since the
bound is obviously achieved for a flat Euclidean square, it is the bound for E.
By a similar argument, it is also the bound for H and CAT(0).

7.2 (L+M + S)-scaling max δ
L+M+S

=
√
2−1

2(
√
2+2)

Verifying the bound “by hands” does not appear completely straightforward;
however, it is easily manageable with the help of MATHEMATICA. The latter
indeed confirms that the following expression is TRUE:

∀(L,M,S) ∋ (L2 ≤ M2+S2)∧(L ≥ M ≥ S ≥ 0) ⇒ (L−M) ≤
√
2− 1√
2 + 2

(L+M+S)

7.3 (L− S)-scaling, max δ
L−S

= 1
2

To prove that the inequality δ
L−S ≤ 1

2 always holds, we use the assumption
L ≥ M ≥ S. Since M ≥ S, the inequality L − M ≤ L − S holds. Therefore,
L−M

2(L−S) ≤
1
2 is always true.

8 Geometric interpretation of scaled FPC

Here we show that the L-scaled 4-point condition captures some “thinness”
characteristics of the various geodesic triangles in the network. Consider a
geodesic triangle ∆abc. It can be shown [7, p. 408] that there exist quantities
r, s, t > 0 such that d(a, b) = r + s, d(b, c) = s + t, and d(c, a) = t + r. Define
points ia ∈ [b, c], ib ∈ [c, a], and ic ∈ [a, b] such that d(b, ia) = s, d(ia, c) = t,
d(c, ib) = t, d(ib, a) = r, d(a, ic) = r, and d(ic, b) = s. The points ia, ib,
and ic can be defined as the points of contact of the inscribed circle with the
sides [b, c], [a, c], and [a, b], respectively, of the comparison triangle. Consider
the quadrilateral �abiaib. It can be shown [7, p. 411, Fig. H.6] that L =
d(a, ia) + d(b, ib), M = d(a, b) + d(ib, ia). The L-scaled condition means that
1− M

L ≤ (2b̄L), where b̄L is the bound in the space being analyzed; equivalently,
L(1−2b̄L) ≤ M . For the quadrilateral �abiaib, this yields (d(a, ia)+d(b, ib))(1−
2b̄L) ≤ r + s+ d(ib, ia) ≤ r + s+ 2t. Applying the same reasoning to the other
quadrilaterals and adding the resulting inequalities yields

(d(a, ia) + d(b, ib) + d(c, ic)) ≤
1

1− 2b̄L
(d(a, b) + d(b, c) + d(c, d))

In other words, we obtain a bound on the sum of the distances between the
vertices and the contact points between the opposite sides of the triangle and
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its inscribed circle as a function of the perimeter of the triangle. Clearly, this is
a “fatness” bound.

Repeating the same argument for the (L+M +S)-scaling yields (the details
are left to the reader)

(d(a, ia) + d(b, ib) + d(c, ic)) ≤
1 + 3b̄L+M+S

1− 2b̄L+M+S
(d(a, b) + d(b, c) + d(c, d))

9 Simulation experiments

9.1 Scaled FPC in Small-World, Scale-Free, and other
graph generators

Parallel to what was done in [8], here, we examine the behavior of δ(�)/diam(G),
which is a large-scale approximation of δ(�)/diam(�), for the traditional graph
generators: the Erdös-Rényi purely random graphs, the Barabási-Albert growth/preferential
attachment Scale-Free generator, and the Watts-Strogatz β-model Small-World
generator [3]. In addition, we also consider a slight variant of the growth/preferential
attachment generator: the one where the attachment is uniform. Recall that
the latter is not Scale-Free [3]. The scaling by the diameter of the graph rather
than the diameter of the quadrilateral is motivated by the need to make the
computation tractable.

To draw a fair comparison among all four models, we set the total number of
nodes (50 in the experiment of Fig. 2 and 100 in the experiment of Fig. 3) and
then adjust the parameters of the various models so as to have the same number
of edges M across all four models (for details, see [8] or [13], as the protocol of
this FPC experiment is exactly the same as that of the TTC experiment of [8]).
Then we plot

EM

(
max
�⊂G

δ(�)

diam(G)

)
(15)

versus M , where EM denotes the ensemble average over all graphs of size M
generated by all four models. The results are shown in Figures 2 and 3.

The results are consistent with those of the scaled TTC [8], in the sense that
among all graph generators the Barabási-Albert Scale-Free one comes closest to
being scaled Gromov hyperbolic. More specifically, this phenomenon happens
in an intermediate range of values of M , not too small for otherwise the graph
looks like the start-up tree (δFPC(�) = 0), and not too large for otherwise
the graph has too many quadrilaterals with the potential for too high values
of δFPC . In this region, though, there is a mild discrepancy with [8], in the
sense that the FPC performance (15) does not quite drop below the theoretical
threshold as the TTC performance did. This discrepancy can be explained on
the ground that the graphs on which the TTC and FPC were tested involve
some randomness in the definition of the start-up backbone and the attachment
process, so that in the FPC experiment it was nearly impossible to reproduce
the graphs of the TTC experiment. Besides, the performance is evaluated in a
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Figure 2: The mathematical expectation of max (δ(�)/diam(G)) versus the
total number of edges M for all 4 graph generators of order 50. Observe that
the scale free graph is the closest to being hyperbolic.

very conservative way, as for every graph the worst quadrilateral (with the high-
est δFPC(�)/diam(�)) is chosen, making the performance sensitive to random
events in the backbone and the attachment process.

The findings of Figures 2 and 3 are consistent with the “taxonomy of large-
scale networks” of [18, Figure 5], showing that the relationships among the
various network concepts (power law, Scale-Free, hyperbolic, etc.) are not inclu-
sions, but rather nonempty intersections; e.g., there are power law graphs that
are hyperbolic while other power law graphs are not hyperbolic. To further ex-
emplify the fact that Scale-Free graphs need not be hyperbolic, it was observed
in [6] that Scale-Free networks do not show the traffic congestion anomalies
reported in [10, 14, 18] for hyperbolic networks.

Graphs of order 100 as those utilized in the simulation studies might appear
small by today’s standards; however, the scaled δFPC analysis on graphs of
order 500 was done in a recent experiment on spin networks [9]. Besides, the
next experiment will involve many more vertices.

9.2 Poincaré disk network

To see how the scaled FPC test behaves for a truly hyperbolic network, take
the Poincaré disk; uniformly sample the open unit disk of the complex plane
(the norm is uniformly distributed over [0, 1) and the argument is uniformly
distributed in [0, 2π)). Let us pick 40,000 points and let us plot the histograms
of δFPC(�)/diam(�). It transpires from Fig. 4 that the theoretically established
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Figure 3: The mathematical expectation of max (δ(�)/diam(G)) versus the
total number of edges M for all 4 graph generators of order 100. Observe that
the Scale-Free graph is the closest to being hyperbolic.

bounds are never exceeded.

10 Conclusions

We have shown that scaling the Gromov Four-Point Condition in various ways
and requiring the various scaled quantities to be below the corresponding hy-
perbolic threshold leads to a concept of Gromov hyperbolic space applicable to
finite spaces, revealing a new “thinness” property of the triangles, and relevant
to the classical network graph generators. But probably the deepest question
raised here is what kind of spaces “fill” the discontinuity of sup� δ(�)/D(�)
between Euclidean spaces and Riemannian manifolds of constant positive cur-
vature. These spaces seem to defy constant curvature Riemannian geometry.
The Ptolemaic spaces appear to be such spaces, but whether other such spaces
can be identified is widely open. Another widely open application-oriented ques-
tion is whether there are graphs that can be modeled as Ptolemaic spaces.
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Figure 4: Histogram of δFPC(�)/diam(�) for 40,000 points uniformly chosen
over the open Poincare disk.

11 Appendix: Computational algebra for Ptole-
maic case

In case D(ξ) is polynomial in ξ = (u, v, x, y, z, w), we write

sup
ξ,f(ξ)<0

δ(ξ)

D(ξ)
= b̄ (16)

where f(ξ) =
(
c(ξ) ξ′A′ )′

, where c(ξ) < 0 are the polynomial embeddability
constraints in either Euclidean or Ptolemaic space and Aξ < 0 are the linear
constraints. The above can then be rewritten, in polynomial format, as follows:

f0(ξ) := u+ v − (x+ y)− 2b̄D(u, v, x, y, z, w) < 0

If the scaling factor D is the largest sum of lengths of diagonals, L, the above
becomes

f0(ξ) := u+ v − (x+ y)− 2b̄(u+ v) < 0
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If the δ is scaled by the perimeter of the quadrilateral, then

f0(ξ) := u+ v − (x+ y)− 2b̄(u+ v + x+ y + z + w) < 0

In the Euclidean case and for the scaling D = L, we have a good guess as to

what b̄ is,
√
2−1
2
√
2
; it is even an algebraic number so that the problem can be

reduced to one over Z[ξ], but for the sake of the simplicity of the exposition, we
will not pursue that here.

In the Euclidean case with D = L, the statement (16) can be rephrased
algebraically as the conjunction P ∧ ¬Q of two statements: The first one P
asserts that for all ξ satisfying the constraints, the scaled δ remains below the
bound; the second one ¬Q asserts that there does not exist any ξ satisfying the
constraints and giving a scaled δ above the bound.

Formally, the first statement is to DECIDE whether it is TRUE that, when-
ever f1(ξ) < 0, ..., fM (ξ) < 0, we have f0(ξ) < 0. In the predicate language L1

(see [16]), this statement is written as the formula

P := (∀ξ) ((f1(ξ) < 0 ∧ ... ∧ fM (ξ) < 0) → f0(ξ) < 0)

being TRUE. In MATHEMATICA language, the above formula is written as

ForALL[{ξ1, ..., ξM}, f1 < 0&&...&&fN < 0, f0 < 0]

In MATHEMATICA, it might take several instructions of the form

FullSimplify[%]

before a TRUE or FALSE answer is rendered. The above is, formally, the
universal quantifier ∀ elimination.

The second statement can be formally reworded as the NONEXISTENCE
of real solutions to the system of polynomial equations f1 < 0,..., fM < 0 and
f0 > 0. In the L1 language, we have to DECIDE whether the formula

Q := (∃ξ) (f1 < 0 ∧ ... ∧ fM < 0 ∧ f0 > 0)

is FALSE. In MATHEMATICA language, the above formula is written

Exists[{ξ1, ..., ξN}, f1 < 0&&...&&fM < 0&&f0 > 0]

Again, it might take several iterations on

Resolve[%]

before a final TRUE or FALSE answer is rendered. Formally, the above is
elimination of the existential quantifier ∃.

Thus what needs to be established is that P ∧ ¬Q is TRUE.
Even in the simplified Ptolemaic case, with all constraints properly taken into

consideration, the quantifier elimination ForAll seems to be running forever (a
run of at least 12 hours has ben observed!) It appears therefore that we ought
to simplify the problem “by hands” before submitting it to MATHEMATICA.
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11.1 Tarski-Seidenberg decision for Ptolemaic case, L-scaling

In the L = u+ v scaling, what is overlooked if we just submit the problem “as
is” to MATHEMATICA is the independence of the criterion

(u+ v)− (x+ y) ≤ 2b̄(u+ v) (17)

on the z, w variables. Therefore, those variables are candidate for elimination
“by hands.”

More formally, let B(u, v, x, y, z, w) be the Boolean combination of polyno-
mial inequality constraints of the problem, that is, the sign constraints, the
triangle inequalities, the convention on the opposite diagonals, and the Ptole-
maic conditions. Elimination of z, w consists in deriving a Boolean combination
B(u, v, x, y) such that there exists (z, w) such that B(u, v, x, y, z, w) is TRUE if
and only if B(u, v, x, y) is TRUE.

11.1.1 Convention and sign constraints

Recall that (u, v) and (x, y) are pairs of lengths of diagonals such that u+ v ≥
x + y ≥ z + w. This leaves us the freedom to order the pairs (u, v) and (x, y)
as follows, where we have by the same token enforced the fact that lengths are
nonnegative:

x ≥ y ≥ 0 (18)

v ≥ u ≥ 0 (19)

The reasons for this particular ordering will become clearer later.

11.1.2 Triangle inequalities

Working out the various triangle inequalities, we find the following relevant
inequalities (those that are trivial have been omitted):

y + v ≥ w ≥ u− x

x+ v ≥ z ≥ u− y

x+ u ≥ w ≥ v − y

y + u ≥ z ≥ v − x

Using the convention on the ordering of the pairs (u, v) and (x, y), the above
reduces to

y + v ≥ w (20)

z ≥ u− y (21)

x+ u ≥ w ≥ v − y (22)

y + u ≥ z ≥ v − x (23)
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Clearly, necessary conditions for existence of (z, w) include the inequalities be-
tween the leftmost and rightmost terms of the bottom two strings. The latter
is easily seen to reduce to

v ≤ x+ u+ y (24)

Observe that this resulting inequality is no longer a “triangle” inequality, as
after removing the opposite diagonals [a, c] of length z and [b, d] of length w
the resulting quadrilateral is no longer complete, has no triangles. In fact, the
above is a polygonal inequality.

11.1.3 Opposite diagonal conditions

The opposite diagonal conditions are

u+ v ≥ x+ y ≥ z + w (25)

Using the above triangle inequalities to bound z, w from above, we find the
following:

u+ v ≥ x+ y ≥ z + w ≥ (u+ v)− 2y

≥ (u+ v)− 2x

≥ 2u− (x+ y)

≥ 2v − (x+ y)

Using the convention on the ordering of u, v, x, y, the above simplifies to

u+ v ≥ x+ y ≥ z + w ≥ (u+ v)− 2y (26)

≥ 2v − (x+ y) (27)

Therefore, necessary conditions to be able to eliminate z, w are the inequalities
between the two left-most and the right-most terms, which yield

u+ v ≥ x+ y ≥ (u+ v)− 2y (28)

x+ y ≥ v (29)

11.1.4 Ptolemaic conditions

The Ptolemaic conditions are trivially rewritten

uv − xy, xy − uv ≤ zw ≤ uv + xy (30)

The inequality between the two extreme terms of (30) is trivial. However, the
first inequality and the various triangle inequalities in the triangles having z, w
as sides yield

|uv − xy| ≤ zw ≤ (y + u)(y + v)

≤ (x+ v)(y + v)

≤ (x+ v)(x+ u)

≤ (y + u)(x+ u)
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Utilizing x ≥ y, v ≥ u ⇒ (x+ v) ≥ (u+ y), the above simplifies to

|uv − xy| ≤ zw ≤ (y + u)(y + v)

≤ (y + u)(x+ u)

Again, the inequalities between the extreme terms eliminate z, w. Clearly, there
are 4 such inequalities. Two of them are easily found to be trivial, while the
nontrivial ones are

uv ≤ 2xy + u2 + ux+ uy (31)

xy ≤ 2uv + y2 + uy + vy (32)

Finally, coming back to the second inequality of (30) and using triangle
inequalities in those triangles having z, w as sides yields

(u− y)(v − y) ≤ zw ≤ uv + xy

(u− y)(u− x) ≤ zw ≤ uv + xy

(v − x)(v − y) ≤ zw ≤ uv + xy

(v − x)(u− x) ≤ zw ≤ uv + xy

Expanding and simplifying yields the (linear!) constraints

y − (u+ v) ≤ x

u− (x+ y) ≤ v

v − (x+ y) ≤ u

x− (u+ v) ≤ y

Finally, using the convention x ≥ y, v ≥ u we get

y − x ≤ u+ v (33)

v − u ≤ x+ y (34)

Observe that the above are polygonal inequalities in the incomplete quadrilat-
eral.

11.1.5 Necessary conditions

The necessary conditions for existence of z, w such that B(u, v, x, y, z, w) is
TRUE can be expressed as follows:

B(u, v, x, y) ⊆
(x ≥ y ≥ 0) ∧ (v ≥ u ≥ 0)

∧ (v ≤ x+ u+ y)

∧ (u+ v ≥ x+ y ≥ u+ v − 2y) ∧ (x+ y ≥ v)

∧ (uv ≤ 2xy + u2 + ux+ uy) ∧ (xy ≤ 2uv + y2 + uy + vy)

∧ (y − x ≤ u+ v) ∧ (v − u ≤ x+ y)
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11.1.6 Sufficient conditions

In the preceding, we have written estimates of the form z ≤ z ≤ z̄, w ≤ w ≤ w̄,
s ≤ z +w ≤ s̄, and p ≤ zw ≤ p̄, and we have written z(u, v, x, y) ≤ z̄(u, v, x, y),
etc. as necessary conditions for existence of, and hence the possibility of elim-
inating, (z, w). These conditions are obviously not sufficient, as clearly a dis-
criminant condition is needed. The latter is the inherently difficult step in this
computer algebra problem. Indeed, attempting to execute the apparently simple
MATHEMATICA instructions

Exists[{z, w}, (z ≤ z ≤ z̄)&&(w ≤ w ≤ w̄)&&(s ≤ z+ w ≤ s̄)&&(p ≤ zw ≤ p̄)]

Resolve[%]

results in MATHEMATICA running endlessly. The reason is that, while the
above is simple to express geometrically in the (z, w) plane, it is linguistically
difficult to express in L1 language.

Geometrically, we have to secure nonempty intersection between a rectan-
gle implementing the triangle inequalities (20)-(23), the region between two
hyperbolas implementing the Ptolemaic conditions (30), and a half-plane with
boundary line at a −45o angle implementing the opposite diagonal condition,
the second inequality of (25).

There are two cases to be considered: y + v > x + u and y + v < x + u. If
y+ v > x+u, the rectangle is [v−x, y+u]× [v−y, x+u], the “large” rectangle
of Fig. 5; if y + v < x + u, the rectangle is [u − y, y + u] × [v − y, v + y], the
“small” rectangle of Fig. 6. In either case, the hyperbolas are zw = ±(uv− xy)
and zw = uv + xy. The −45o boundary line of the half-plane is z + w = x+ y.
We have also drawn the lines z +w = u+ v− 2y and z +w = 2v− (x+ y) that
saturate the inequalities (26)-(27), although this is not absolutely necessary.

Take the “small” rectangle [u − y, y + u] × [v − y, v + y]. Clearly, the line
z+w = x+y has to be above the point (u−y, v−y), which requires u+v < x+3y.
Next, we look at the position of the hyperbola zw = |xy − uv| relative to the
point (u − y, v − y). It is easily seen that, as a corollary of u + v > x + y,
uv−xy > (v−y)(u−y), so that the hyperbola zw = uv−xy has to be “above”
the point (u−y, v−y). Clearly, the hyperbola zw = xy−uv is irrelevant. Because
of the Ptolemaic conditions (30), the hyperbola zw = xy + uv is “above” the
hyperbola zw = uv − xy. Therefore, the discriminant issue is the position of
the line z + w = x + y relative to the hyperbola zw = uv − xy. The line and
the hyperbola must intersect, which requires the classical condition:

(x+ y)2 − 4(uv − xy) ≥ 0

The difficulty is to state—linguistically—that the “crescent” between the line
and the hyperbola intersects the rectangle. There lies the problem.

Regarding the “big rectangle” case, first of all, the line z + w = x + y has
to be “above” the point (v − x, v − y), that is, x + y > v − x + v − y, which
trivially holds in view of the opposite diagonal condition (29). The hyperbola
zw = xy−uv is below the point (v−x, v− y), that is, xy−uv < (v−x)(v− y),
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Figure 5: Illustration of the discriminant constraints in (z, w) plane for the
“large rectangle” y + v > x+ u case.

Figure 6: Illustration of discriminant constraints in (z, w) plane for the “small
rectangle” y + v < x+ u case.
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as easily seen from the opposite diagonal condition. Therefore, the hyperbola
zw = xy − uv is irrelevant. The hyperbola zw = uv − xy could be either below
or above the point (v−x, v−y), depending on whether uv < v2+2xy−yv−vx
or uv > v2 +2xy− yv− vx. The latter case is contradictory to the condition of
the “big rectangle” case, so that the former prevails.

Hence we restrict ourselves to the situation uv < v2 + 2xy − yv − vx where
the hyperbola zw = uv − xy is irrelevant. In this case, all that remains to be
imposed is that the hyperbola zw = uv + xy is above the point (v − x, v − y),
that is, uv + xy > (v − y)(v − x), which reduces to the polygonal inequality
v < u+ x+ y, already singled out in (24).

11.2 MATHEMATICA encoding and results

In this subsection, we specifically write down the MATHEMATICA instructions
that implement the preceding ideas. The critical parameter of course is the b̄.
We did “trial and errors” for several different values of b̄. This affects only
the “c” (cost) expression. The other expressions implementing the Ptolemaic
conditions, the triangle inequalities, etc. remain the same.

11.2.1 Triangle inequalities

In MATHEMATICA the triangle inequalities are written

t = (v < x+ u+ y)

11.2.2 Sign and opposite diagonal constraints

They are written as

s = (x > y > 0)&&(v > u > 0)

d = (u+ v > x+ y)&&(x+ y > u+ v− 2y)&&(x+ y > v)

11.2.3 Ptolemaic conditions

The Ptolemaic conditions split into two set of constraints: the nonlinear p-
constraints and the linear q-constraints. There are, respectively, as follows:

p = (u v < 2x y+ û 2+ u x+ u y)&&(x y < 2u v+ ŷ 2+ u y+ v y)

q = (v− u < x+ y)&&(y− x < u+ v)

11.2.4 Cost criterion and results

The computational results give b̄ ≈ 0.1667, hence 2b̄ ≈ 0.3334. In fact, the
numerical value of (u, v, x, y, z, w) indicates that the optimum is obtained for a
quadrilateral degenerated along a line, so that it is fair to conjecture that 2b̄ =
1/3. The problem is that MATHEMATICA has some difficulties in handling the
discriminant conditions. So we start with the necessary conditions, ascertain
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what bound is reached, so as to get an idea as to whether or not the discriminant
conditions saturate.

11.2.5 Necessary conditions: p ∧ q ∧ s ∧ t ∧ d

The cost is encoded as

c = (u+ v− x− y < (u+ v)/3)

Then we submit the following query to MATHEMATICA:

ForAll[{u, v, x, y}, p&&q&&s&&t&&d, c]

Immediately after that, MATHEMATICA just rewrites the constraints and the
cost criterion. Then we ask MATHEMATICA to simplify the expression:

FullSimplify[%]

After about a minute, MATHEMATICA renders a FALSE verdict. This clearly
indicates that the discriminant conditions play a role.

For the sake of the argument, we attempt to establish the bound disregard-
ing the discriminant conditions. For each of the tentative values of 2b̄ in the
following table, MATHEMATICA provides an answer within one minute:

2b̄ 1/3 5/12 11/24 23/48 47/96 1/2
TRUE/FALSE F F F F F T

It follows from the above that the bound, disregarding the discriminant condi-
tions, appears to be 1/2. To confirm this conjecture, we check ∃(u, v, z, w) ∋
p ∧ q ∧ s ∧ t ∧ d ∧ (¬c). In MATHEMATICA language,

Exists[{u, v, x, y}, p&&q&&s&&t&&d&&(!c)]

Resolve[%]

MATHEMATICA returns a FALSE answer. Hence the bound 2b̄ = 1/2 disre-
garding the discriminant conditions is confirmed.

11.2.6 Necessary and sufficient conditions

We first look at the “small rectangle” case. The situation of Fig. 6 is linguisti-
cally rect ∧ r, where

rect = (u+ x > v + y) ∧ (u+ v < x+ 3y)

r = ((x+ y)2 − 4(uv − xy) > 0)

In MATHEMATICA language,

rect = (u+ x > v+ y)&&(u+ v < x+ 3y)

r = ((x+ y)2 − 4(u v− x y) > 0)
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Temporarily disregarding the condition of the nonempty intersection of the rect-
angle and the crescent, we eliminate (z, w) by the following query

∀(u, v, x, y) ∋ (p ∧ q ∧ s ∧ t ∧ d ∧ rect ∧ r) ⇒ c

where c is computed with the guessed bound 1/3. In MATHEMATICA lan-
guage,

ForAll[{u, v, x, y}, p&&q&&s&&t&&d&&rect&&r, c]

FullSimplify[%]

After a few minutes, MATHEMATICA returns a TRUE answer, as expected!
We now look at the “big rectangle” case. In this case, the only additional

condition relative to the necessary conditions is

rect = (y + v > x+ u) ∧ (uv < v2 + 2xy − xv − vy)

In MATHEMATICA language,

rect = (y+ v > x+ u)&&(u v < v2 + 2x y− x v− v y)

Hence we have to check whether

∀(u, v, x, y) ∋ (p ∧ q ∧ s ∧ t ∧ d ∧ rect) ⇒ c

where c is computed with the guessed bound 1/3. In MATHEMATICA lan-
guage,

ForAll[{u, v, x, y}, p&&q&&s&&t&&d&&rect, c]

FullSimplify[%]

After about 5’, MATHEMATICA returns a TRUE verdict, as expected.
The conclusion is that adding the discriminant condition to the necessary

condition case makes the upper bound drops from 1/2 to 1/3, as can reasonably
be expected.
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