Geometric topology puzzle in networking:

Core versus anti-core of classical versus quantum networks

E. Jonckheere

Department of Electrical and Computer Engineering
Department of Mathematics
University of Southern California
jonckhee@usc.edu
http://ee.usc.edu/~jonckhee

Paradoxical statements

- Boris Rozovskii (USC)
- S. S. Sritharan (DARPA)

"If the Internet has worked it is because there was no mathematics in it!"
"The time is ripe for mathematicians, statisticians, and control persons to have a serious look at Internet security!"

But, a "dirty little secret" remained unexplained:

What mathematics to expect?

- In classical networks:
- Routing-driven
- Dijkstra
- Single-path flow
- Congestion core
- Coarse metric geometry
- Hop-distance
- Gromov boundary ∂_{∞}
- Geometric topology
- ???
- ???
- ???
- ???
- ???
- ???
- In quantum networks:
- Physics-driven
- ???
- Feynman multi-path integral
- Anti-core
- Coarse metric geometry

- $d(i, j)=-\log p_{\max }(i, j)$
- Gromov boundary ∂_{∞}
- ???
- Projective geometric
- Global phase
- Number theory
- Simultaneous Diophantine approximation
- LLL-algorithm
- Riemann zeta function

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Gromov-hyperbolic geodesic spaces

A geodesic space (G, d) is Gromov hyperbolic iff every triangle has an inscribed triangle with its perimeter not exceeding a precise bound:

$$
\delta(G):=\sup _{a, b, c \in G} \inf \left\{\begin{array}{r}
x \in[b, c] \\
d(x, y)+d(y, z)+d(z, x): \\
y \in[c, a] \\
z \in[a, b]
\end{array}\right\}<\infty
$$

If $G=(V, E)$ is a graph, then

$$
\arg \inf \left\{\begin{array}{r}
x \in[b, c] \\
d(x, y)+d(y, z)+d(z, x): y \in[c, a] \\
z \in[a, b]
\end{array}\right\} \in V
$$

A "fattened tree" is Gromov hyperbolic, but not conversely!

A tree is $(\delta=0)$-fat.
$\Delta \mathrm{abc}$ are geodesic triangles

$(\delta=2)$

Connection between hyperbolic spaces in Riemannian and Gromov sense

Theorem (Bonk-Schramm): Let $\left(G, d_{G}\right)$ be a Gromov hyperbolic geodesic metric space with bounded growth at some scale. Then there exist an integer n, a convex subset $D \subseteq \mathbb{H}^{n}$, constants λ, k, and a map $f: G \rightarrow D$ such that

$$
\begin{gathered}
\left|\lambda d_{G}(u, v)-d_{D}(f(u), f(v))\right| \leq k, \forall u, v \in G \\
\sup _{x \in D} d_{D}(x, f(G)) \leq k, \forall x \in D
\end{gathered}
$$

Gromov hyperbolic graph:
$\left(G, d_{G}\right)$

$$
\binom{M_{-1}^{2},}{d_{D}(x, y)=\tanh ^{-1}\left|\frac{x-y}{1-x \bar{y}}\right|}
$$

4-point computational implementation of Gromov δ

Given a complete quadrilateral $a b c d$, order the sum of the lengths of opposite diagonals as

$$
L=u+v \geq M=x+y \geq S=z+w
$$

Define

$$
\delta_{4}(a b c d)=\frac{L-M}{2}
$$

Then the geodesic space (G, d) is Gromov hyperbolic iff

$$
\sup _{a b c d \subseteq G} \delta_{4}(a b c d)<\infty
$$

Scaling of Gromov δ_{4}

The Gromov coarse geometry makes sense only for infinite spaces, while real-life graphs, no matter how large, are finite.
We compute the upper bound of $\frac{\delta_{4}}{D}$ in standard spaces,

- hyperbolic,
- Cartan-Alexandrov-Toponogov CAT(0)
- Ptolemaic
 for various scalings D :

$$
\sup _{\substack{a, b, c, d \in M \\
A \xi \leq 0, c(\xi) \leq 0}} \frac{\delta_{4}(a, b, c, d)}{D(a, b, c, d)} \text {, where } \quad D(a, b, c, d)=\left\{\begin{array}{c}
L \\
L+M+S \\
\operatorname{diam}
\end{array}\right.
$$

	hyperbolic	CAT(0)	\circ	Ptolemaic	Spherical
L	0.1307	0.1464		0.1667	0.25
$L+M+S$	0.0572	0.0607	0	0.0714	0.125
diam	0.2788	0.2929		0.2929	0.5

By Tarski-Seidenberg decision: $\left(\frac{\delta_{4}(a b c d)}{L+M+S}\right)_{\text {CAT }(0)}<\frac{\sqrt{2}-1}{2 \sqrt{2}+4}$

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Traffic load and density of traffic load in

The TCP-IP protocol sends traffic from a source s to a destination \boldsymbol{d} along a geodesic. \rightarrow
The demand $s \rightarrow d$ is uniformly distributed over all (s, d) pairs.
Traffic load:

$$
\Lambda_{t}(X):=\iint_{(s, d) \in B_{0}(R) \times B_{0}(R)} \ell(X \cap[s, d]) d \Lambda_{\times}(s, d)
$$

Measure in product space: $d \Lambda_{\times}(s, d)=d A(s) \times d A(d)$
in Poincaré disk: $d A=\frac{4 d x d y}{\left(1-\left(x^{2}+y^{2}\right)\right)^{2}}$
Density of traffic load:
α-core

$$
\lambda_{t}(X)=\frac{\Lambda_{t}(X)}{\operatorname{vol}\left(B_{0}(R)\right)}=\alpha
$$

E. Jonckheere, Mingji Lou, F. Bonahon, and Y. Baryshnikov, "Euclidean versus hyperbolic congestion in idealized versus experimental networks,'" Internet Mathematics, vol. 1, number 7, pp. 1-27, 2011.

Details of Euclidean situation

BIG difference between Euclidean and hyperbolic cases

$$
\lambda_{t}(X) \sim c_{0}(n) \frac{r^{n}}{R^{n-1}}
$$

$$
c_{k_{1}}(n) r^{n} \leq \lambda_{t}(X) \leq c_{k_{2}}(n) r^{n}
$$

$\Lambda_{t}\left(B_{0}(r)\right)=0\left(\left(\operatorname{vol}\left(B_{0}(R)\right)\right)^{1.5} \quad(n=2) \quad \Lambda_{t}\left(B_{0}(r)\right)=0\left(\left(\operatorname{vol}\left(B_{0}(R)\right)\right)^{2}\right)\right.$
$\Lambda_{t}\left(B_{0}(r)\right)=0\left(\left(\operatorname{vol}\left(B_{0}(R)\right)\right)^{1+\frac{1}{n}}\right)(\operatorname{general} n) \Lambda_{t}\left(B_{0}(r)\right)=0\left(\left(\operatorname{vol}\left(B_{0}(R)\right)\right)^{2}\right)$

Experimental verification of theoretical results by Narayan and Saniee (Bell Labs-Nokia)

O.Narayan and Iraj Saniee, "Large-scale curvature of networks," Physical Review E (statistical physics), Vol. 84, No. 066108, Dec. 2011.

Alternative approach to congestion (with F. Bonahon)

For the universal radius, the culprit is the curvature.

$$
M_{-k^{2}<0}
$$

$$
\begin{aligned}
& \text { Blocked-View theorem: }
\end{aligned}
$$

$\forall p \in M$, the view of the half space $H_{x}(\vec{v})$ from p is blocked by the ball $B_{x}\left(r_{0}\right)$, that is, $\left\{q \in M_{-k^{2}}:[p q] \cap B_{x}\left(r_{0}\right) \neq \varnothing\right\} \supset H_{x}(\vec{v})$ for the universal radius $r_{0}=\frac{1}{k} \log (\sqrt{2}+1)$.

Define a fair density of geodesic estimate:

Fair-Cut theorem: For a compact, convex manifold M^{n} of curvature $-k^{2}<0$, the fair congestion estimate is bounded as

$$
\frac{1}{n+1} \leq \Phi\left(M^{n}\right) \leq \frac{1}{2}
$$

Congestion theorem: For a compact, convex manifold M^{n} of curvature $-k^{2}<0$, there exist a universal radius $r_{0}=\frac{1}{k} \log (\sqrt{5}+1)$ and a point $x \in M^{n}$, the gravity center, such that the ball $B_{x}\left(r_{0}\right)$ has congestion density $\Phi(M) \geq \frac{1}{n+1}$.

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Where the Internet meets Grigori Perelman's proof of the Poincaré conjecture

"Mathematicians make the headlines when they do weird things" - F. Bonahon

Since points with negative PL curvature, $K(v)=\frac{2 \pi-\sum_{i, j} \Varangle \Delta v_{i} \hat{v} v_{j}}{\sum_{i j} A\left(\Delta v_{i} v v_{j}\right)}<0$, create congestion, load balancing could be achieved by uniformizing the curvature subject to χ.
This is what Perelman did in his proof of the Poincaré conjecture, using the Ricci flow. Here we use the Yamabe flow.

Evolution of conformal factors $u: V \times[0, \infty) \rightarrow \mathbb{R}$:
 $\frac{d u\left(v_{i}, t\right)}{d t}=-K_{u^{*} d}\left(v_{i}\right) u\left(v_{i}, t\right), \quad u\left(v_{i}, 0\right)=1$ Administrative distance table $w\left(v_{i}, v_{j}\right)$ is modified as

$$
u * w\left(v_{i} v_{j}\right)=u\left(v_{i}\right) w\left(v_{i} v_{j}\right) u\left(v_{j}\right)
$$

Like Perelman, we encountered singularities when $A\left(\Delta v_{i} \hat{v} v_{j}\right)=0$, removable by edge deletion surgery.

For a PL version of the traffic load $\Lambda_{t}(X)$, usually referred to as betweenness

$$
\Lambda_{t}(X):=\iint_{(s, d) \in B_{0}(R) \times B_{0}(R)} \ell(X \cap[s, d]) d \Lambda_{\star}(s, d)
$$

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Spin chains and spin rings

Spin chains and spin rings

Fidelity (or probability) $=\langle\downarrow| e^{-i H t_{f}}|\downarrow\rangle$

- Our objective is to understand
 how excitation is transmitted in spin chains and spin rings of the Heisenberg or XX type in the first excitation subspace.
- Our approach is geometrical:
- Define a distance
- Understand the geometry of the spin network for the given distance
-What does the geometry tell us?
- What are the applications?

Is the design robust against δD and $\delta /$?

Concept of a "quantum router"

Given (|IN $\rangle,|\mathrm{OUT}\rangle$) pair, find biases so as to favor the specified transmission

Is the design robust against δD and $\delta /$?

Concept of a "quantum router"

Given (|IN $\rangle,|O U T\rangle)$ pair, find biases so as to favor the specified transmission

Spintronics devices

Spintronics, or spin electronics, refers to the study of the role played by electron (and more generally nuclear) spin in solid state physics.

Physicists are trying to exploit the spin of the electron rather than its charge to create a new generation of spintronics devices, smaller, more versatile than silicon chips.

Ultra-cold atom optical lattice:

 Navigating in the Cislunar space by Shaken Lattice Interferometry inertial sensing
. $H(x, t)=-\frac{\hat{p}^{2}}{2 m}-\frac{V_{0}}{2} \cos \left(2 k_{L} x+\phi(t)\right)+m a_{x} x$
C. Weidner, "Shaken Lattice Interferometry," Ph.D. dissertation, Univ. Colorado, Boulder, 2018.
F. Ariaei, E. Jonckheere and S. Bohacek, "Tracking Trojan asteroid in periodic and quasi-periodic orbits around the Jupiter Lagrange points using LDV techniques," Physics and Control, St. Petersburg, Russia, 2003, pp. 100-105.

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Maximum state transition probability

Can a quantum network be made a metric space?

Define

$$
d(i, j)=\log \frac{1}{p_{\max }(i, j)}
$$

1) Do we have the triangle inequality $d(i, j) \leq d(i, k)+d(k, j)$?
a) On a uniform spin ring, the triangle inequality has been proved!
b) On a uniform spin chain, the triangle inequality has been computationally verified up to order 500. On a nonumiform spin chain, we observed violations.
2) Do we have $d(i, j)>0$ for $i \neq j$?
a) Yes, for a ring of odd size N (metric space)
b) No, for a ring of even size N (pseudo-metric space)
i. Yes, after anti-podal spin identification (metric space)
c) No, in general, for a chain: "good news/bad news!"

Reachability of maximum transition probability

$$
p(|j, t\rangle,|i, 0\rangle)=\left|\sum_{k=1}^{N}\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle e^{-i \lambda_{k} t^{2}}\right|^{2} \leq\left.\left|\sum_{k=1}^{N}\right|\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right|^{2}=: p_{\max }(i, j)
$$

Clearly, $p_{\text {max }}(i, j)$ can be reached if there exists a time t, large enough, such that

$$
\begin{array}{ll}
-\lambda_{k} t=(2 m+1) \pi, & \text { if } \operatorname{sign}\left(\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right)=-1 \\
-\lambda_{k} t=(2 m) \pi, & \text { if } \operatorname{sign}\left(\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right)=+1
\end{array}
$$

We already perceive

- The flow on the torus: $\frac{d \tilde{x}}{d t}=-\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}\right\} \bmod 2 \pi, \tilde{x}(0)=0$
- The simultaneous Diophantine approximation: $\frac{\lambda_{k}}{\pi} \approx \frac{p_{k}}{q}$

- The Lenstra-Lenstra-Lovasz (LLL) algorithm: $\left|p_{k}-\frac{\lambda_{k}}{\pi} q\right|<\epsilon$

We forgot the global phases!!!

$$
p(|j, t\rangle,|i, 0\rangle)=\left.\left|\sum_{k=1}^{N}\left\langle e^{\left\langle\phi_{j}\right.} j \mid v_{k}\right\rangle\left\langle\left\langle v_{k} \mid e^{\text {th} i}\right\rangle\right\rangle e^{-u_{k} t}\right|^{2} \hat{\sum}\left|\sum_{k=1}^{N}\right|\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right|^{2}=: p_{\max }(i, j)
$$

Clearly, $p_{\max }(i, j)$ can be reached if there exists a time t, large enough, such that

$$
\begin{array}{ll}
-\lambda_{k} t+\left(\phi_{i}-\phi_{j}\right)=(2 m+1) \pi, & \text { if } \operatorname{sign}\left(\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right)=-1 \\
-\lambda_{k} t+\left(\phi_{i}-\phi_{j}\right)=(2 m) \pi, & \text { if } \operatorname{sign}\left(\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right)=+1
\end{array}
$$

But it is unclear what becomes of

- The flow on the torus: $\frac{d \tilde{x}}{d t}=-\operatorname{diag}\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}\right\} \bmod 2 \pi, \tilde{x}(0)=0$
- The simultaneous Diophantine approximation: $\frac{\lambda_{k}}{\pi} \approx \frac{p_{k}}{q}$
- The Lenstra-Lenstra-Lovasz (LLL) algorithm: $\left|p_{k}-\frac{\lambda_{k}}{\pi} q\right|<\epsilon$

Basic attainability condition:

$$
e^{-\imath \lambda_{k} t}=\underbrace{\operatorname{sign}\left(\left\langle j \mid v_{k}\right\rangle\left\langle v_{k} \mid i\right\rangle\right)}_{s_{k}} e^{\imath \phi}, \quad \phi=\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}
$$

Recipe

$$
s_{k}=\exp \left[-l \pi\left(2 n_{k}+\frac{1}{2}\left(s_{k}-1\right)\right)\right], \quad n_{k} \in \mathbb{Z}, \quad \forall k
$$

Substitute and take log

$$
-\boldsymbol{\imath} \lambda_{k} t=-\boldsymbol{\imath} \pi\left(2 n_{k}+\frac{1}{2}\left(s_{k}-1\right)\right)+\boldsymbol{\imath} \phi
$$

Get rid of ϕ by appealing to other modes:

$$
\left(\lambda_{k}-\lambda_{\ell}\right) t=\pi\left(2\left(n_{k}-n_{\ell}\right)+\frac{1}{2}\left(s_{k}-s_{\ell}\right)\right)
$$

Definition: A flow or translation on the torus \mathbb{T}^{2} is said to be minimal iff the orbit of every initial point is everywhere dense in \mathbb{T}^{2}.

Theorem: The flow on the torus is minimal iff the $\left\{\omega_{k, \ell}\right\}_{k, \ell=1: N}$ are linearly independent over the rationals \mathbb{Q}.

$$
\begin{aligned}
\omega_{k \ell} t & =\frac{1}{2}\left(s_{k}-s_{\ell}\right) \bmod 2, \quad \text { flow on torus, } \quad t \in \mathbb{R} \\
\boldsymbol{\theta}_{k \ell} \tau & =\frac{1}{2}\left(s_{k}-s_{\ell}\right) \bmod 2, \quad \text { translation on torus, } \quad \tau \in \mathbb{Z} \\
t & =\frac{2 \tau}{\omega_{m, n}}, \quad \tau \in \mathbb{Z}, \quad m, n=\text { dark states, } \quad \boldsymbol{\theta}_{k, \ell}=\frac{\boldsymbol{\omega}_{k, \ell}}{\omega_{m, n}}
\end{aligned}
$$

Theorem: The translation on the torus is minimal iff the set $\left\{1,\left\{\theta_{k, \ell}\right\}_{k, \ell=1: N}\right\}$ is linearly independent over \mathbb{Q}.

Dark states

$$
H=H_{0}+H_{D}=\sum_{k=1}^{N} \lambda_{k} \Pi_{k}, \quad \Pi_{k}=\left|v_{k}\right\rangle\left\langle v_{k}\right| \text { (if eigenvalue is simple) }
$$

Perfect state transfer (or super-optimality) by control H_{D} :
 on Automatic Control, vol. 63, No. 8, pp. 2523-2536, August 2018. Available at http://ee.usc.edu/~jonckhee and arXiv:1607.05294.

Taking global phases into consideration

Clearly, $p_{\text {max }}(i, j)$ can be reached if there exists a time $\tau \in \mathbb{N}$, large enough, such that

$$
\underbrace{\frac{\lambda_{k}-\lambda_{\ell}}{\pi}}_{\theta_{k \ell}} \boldsymbol{\tau}=\frac{1}{2}\left(s_{k}-s_{\ell}\right) \bmod 2
$$

Now, we have the three-fold interpretation:

- The translation on the torus: $\theta_{k \ell}(\tau+1)=\theta_{k \ell}(\tau)+\left(\left(s_{k}-s_{\ell}\right) \bmod 2\right) / 2$
- The simultaneous Diophantine approximation: $\theta_{k \ell} \approx \frac{p_{k \ell}}{q}$
- The Lenstra-Lenstra-Lovasz (LLL) algorithm: $\left|p_{k \ell}-\theta_{k \ell} q\right|<\epsilon$

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Lenstra-Lenstra-Lovasz (LLL or L³) algorithm

The LLL-algorithm find (the) short(est) basis vectors in a lattice.

$$
\theta=\operatorname{col}\left\{\theta_{k \ell}: k \neq \ell\right\}
$$

lattice base matrix $B(s)$

$$
\underbrace{\left(\begin{array}{cc}
I_{\bar{N} \times \bar{N}} & -\theta \\
0_{1 \times \bar{N}} & s
\end{array}\right)}_{\substack{\text { a vector in the lattice } \\
B(s) Z^{\bar{N}+1}}}\binom{p}{q}=\binom{p-\theta q}{s q)}
$$

$$
B^{*}(s)=\overbrace{\left(\begin{array}{|cccc}
b_{1: \bar{N}, 1}^{*} & b_{1: \bar{N}, 2}^{*} & \cdots & b_{1: \bar{N}, N+1}^{*} \\
b_{\bar{N}+1,1}^{*} & b_{\bar{N}+1,2}^{*} & \cdots & b_{\bar{N}+1, \bar{N}+1}^{*}
\end{array}\right)}^{\text {Reduced basis of short(est) vectors }}
$$

Diophantine approximation error that must be kept small.
Hence lets \downarrow O and a (the) short(est) vector gives a good (best) simultaneous Diophantine approximation.

$$
\begin{aligned}
q & =\frac{1}{S}\left(B^{*}(s)\right)_{\bar{N}+1,1} \\
p_{i} & =\left(B^{*}(s)\right)_{1: \bar{N}, 1}+\theta_{i} q
\end{aligned}
$$

X-weighted LLL-algorithm

X-weighted Diophantine approximation error

$$
\overbrace{\substack{\text { a vector in the lattice } \\
B(s, X) Z^{\bar{N}+1}}}^{\left(\begin{array}{cc}
X & -X \theta) \\
0_{1 \times \bar{N}} & s
\end{array}\right)} \overbrace{p}^{p(s, X)}=\binom{X(p-\theta q)}{q}, \quad X=\left(\begin{array}{ccc}
x_{1,1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & x_{\bar{N}, \bar{N}}
\end{array}\right)
$$

Reduced basis of short(est) vectors

$$
B^{*}(s, X)=\begin{array}{ccccc}
\begin{array}{cccc}
b_{1: \bar{N}, 1}^{*}(s, X) & b_{1: \bar{N}, 2}^{*}(s, X) & \cdots & b_{1: \bar{N}, N+1}^{*}(s, X) \\
b_{\bar{N}+1,1}^{*}(s, X) & b_{\bar{N}+1,2}^{*}(s, X) & \cdots & b_{\bar{N}+1, \bar{N}+1}^{*}(s, X)
\end{array}
\end{array}
$$

$$
\begin{aligned}
q & =\frac{1}{s}\left(B^{*}(s, X)\right)_{\bar{N}+1,1} \\
p_{i} & =\frac{1}{x_{i i}}\left(B^{*}(s, X)\right)_{: \bar{N}, 1}+\theta_{i} q
\end{aligned}
$$

Genetic algorithm to adjust X in support of a conjecture

Given a user-defined s, a genetic algorithm that minimizes the number of parity violations in $p_{k, \ell}$ finds X in about 5 generations and a population of about 200 chromosomes.

Conjecture: Simultaneous Diophantine approximations of arbitrary accuracy and subject to parity constraints always exist.

Proof: ???

> "If neither Lenstra nor Lagarias
> knows, then
> nobody knows!"
> -R. Guralnick

Time to reach transfer probability

$$
\begin{gathered}
p(|j, t\rangle,|i, 0\rangle) \geq p_{\max }(i, j)-\varepsilon_{\text {prob }} \\
q \geq\left(\frac{\pi \bar{N}}{\sin ^{-1}\left(\frac{\varepsilon_{\text {porb }}}{4 K^{\prime}}\right)}\right)^{\bar{N}}
\end{gathered}
$$

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Gromov boundary ∂_{∞}

Definition: A quasi-pole Ω of an infinite graph G is a compact subgraph of such that there exits a geodesic ray from $\omega \in \Omega$ passing within a bounded distance B of every vertex of the graph.
Definition: The Gromov boundary of a graph is the equivalence class of infinite geodesic rays $r, r^{\prime}, r^{\prime \prime}, \ldots$ from $\omega \in \Omega$ under the relation that two rays r, r^{\prime} are equivalent if their Hausdorff distance $d_{H}\left(r, r^{\prime}\right)<\infty$.
Theorem: The Gromov boundary is invariant under quasi-isometry.
$\partial_{\infty}\left(M_{-1}^{2}\right)=S^{1}$ quasi-isometric
$\partial_{\infty}\left(\right.$ hyperbolic tesselation of $\left.M_{-1}^{2}\right)=S^{1}$
$\partial_{\infty}($ binary tree $)=$ Cantor set

Ω

Gromov boundary and congestion

Theorem (Baryshnikov): Consider an infinite network (N, d_{N}) under a demand measure $\Lambda_{\times}(x, y)$ such that $x y \in E \Leftrightarrow \Lambda_{\times}(x, y)>0$ and least cost path routing. If the cardinality of the Gromov boundary is $1,\left|\partial_{\infty} N\right|=1$, then there is no α-congestion core. Idea of proof:

Except for classical networks N quasi-isometric to a semi-infinite chain, $\left|\partial_{\infty} N\right|>1$
Example of classical network quasi-isometric to a semi-infinite chain:

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Transition probabilities in quantum chains

Basic transport equation for doubly-infinite chains:

$$
p_{\max }^{1 / 2}\left(i^{\prime}, j^{\prime}\right)=\frac{4}{\pi^{2}}\left(2+\sum_{m=2,4, \ldots . .} \frac{4}{\left(m^{2} I^{\prime 2}-1\right)\left(m^{2} J^{\prime 2}-1\right)}\right), \quad i^{\prime}+j^{\prime}=0 \bmod 2
$$

$$
i^{\prime}=i-\omega, \quad j^{\prime}=j-\omega
$$

$$
I^{\prime}=\frac{i^{\prime}}{\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)}, \quad J^{\prime}=\frac{j^{\prime}}{\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)}
$$

Anti-core ω defined as

$$
\begin{aligned}
\arg \min _{j} p_{\max }(i, j) & =\omega, \quad \forall i \neq \omega \\
p_{\max }(\omega, i) & =0
\end{aligned}
$$

Feynman path integral:

$$
p_{\max }^{1 / 2}(i, j)=\sum_{k_{1}, k_{2}, \ldots . k_{n-2}=1}^{N} \prod_{i=1}^{n-1} p_{\max }^{1 / 2}\left(k_{i-1}, k_{i}\right)
$$

Quantum number-theoretic computations Riemann zeta-function

Take two numbers i^{\prime}, j^{\prime} and let $i^{\prime}=\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)$. Then

$$
p_{\max }^{11_{2}}\left(i^{\prime}, j^{\prime}\right)=\frac{4}{\pi^{2}}\left(2+\sum_{m=2,4, \underline{1 /(1)}} \frac{4}{\left(m^{2}-1\right)\left(m^{2}\left(\frac{j^{\prime}}{\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)}\right)^{2}-1\right)}\right)
$$

Then the $\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)$ is identified by

$$
p_{\max }^{1 / 2}\left(i^{\prime}, j^{\prime}=\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)\right)=1
$$

Indeed,

$$
p_{\max }^{1 / 2}\left(i^{\prime}, j^{\prime}=\operatorname{gcd}\left(i^{\prime}, j^{\prime}\right)\right)=\underbrace{\frac{4}{\pi^{2}}\left(2+\sum_{m=2,4, \ldots\left(m^{2}-1\right)\left(m^{2}-1\right)}\right)=1}
$$

Proof: $\zeta(2)=\frac{\pi^{2}}{6}$, Euler formula, where $\zeta(s)$ is the Riemann zeta-function

Quantum number-theoretic computations Prime number factorization

$$
\begin{aligned}
& p_{\text {max }}\left(i^{\prime}=p_{1} p_{2}, j^{\prime}=p_{i}\right) \uparrow \\
& p_{\text {max }}\left(i^{\prime}=p_{1} p_{2}, j^{\prime} \neq p_{i}\right) \downarrow
\end{aligned}
$$

Classical versus quantum networks: core versus anti-core

E. A. Jonckheere, S. Schirmer, and F. C. Langbein, " ${ }^{\text {Quantum networks: the anti-core of spin chains," Quantum Information Processing }}$ (QINP), volume 13, pp. 1607-1637, 2014. (DOI 10.1007/s11128-014-0755-5)

Classical versus quantum networks: core versus anti-core

E. A. Jonckheere, S. Schirmer, and F. C. Langbein, " "Quantum networks: the anti-core of spin chains," Quantum Information Processing (QINP), volume 13, pp. 1607-1637, 2014. (DOI 10.1007/s11128-014-0755-5)

Plan of action

- Classical networks
- Coarse geometry
- Routing and congestion
- Load balancing
- Quantum networks
- Excitation-encoded information transport
- Number-theoretic optimal transport
- Classical versus quantum networks
- Gromov boundary: $\partial_{\infty} N_{\text {classical }}$ versus $\partial_{\infty} N_{\text {quantum }}$
- Core versus anti-core
- Conclusion \& Future work
- Wireless networks

Conclusion \& Future work

- We have developed mathematics specific to classical and quantum networks.
- On the quantum side, most work has been devoted to spintronic networks.
- Classical networks have congestion core, while quantum networks have anticore.
- Quantum networks lead to a number-theoretic geometry.
- What mathematics need to be developed for hybrid classicalquantum networks?
- What geometric topology should be developed for quantum entanglement photonic networks?
- How to deploy surveillance at congestion core, while protecting information at anticore?
- Could the number theoretic geometry be formalized?
- Could spintronic computers solve number theoretic problems?

Thank you!

Questions?
jonckhee@usc.edu

