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Paradoxical statements 
• Boris Rozovskii (USC) 
 
 
 
 
 
 
 
“If the Internet has worked it is 
because there was no 
mathematics in it!” 

• S. S. Sritharan (DARPA) 
 
 
 
 
 
 
 
“The time is ripe for 
mathematicians, statisticians, 
and control persons to have a 
serious look at Internet 
security!” 

But, a “dirty little secret” remained unexplained:  
Why are a very few routers very badly congested?  



What mathematics to expect? 
• In classical networks: 

– Routing-driven 
• Dijkstra 
• Single-path flow 
• Congestion core 

– Coarse metric geometry 
• Hop-distance 
• Gromov boundary 𝜕∞ 
• Geometric topology 
• ??? 

– ??? 
– ??? 

• ??? 
 

• ??? 
• ??? 

• In quantum networks: 
– Physics-driven 

• ??? 
• Feynman multi-path integral 
• Anti-core 

– Coarse metric geometry 
• 𝑑 𝑖, 𝑗 = − log𝑝max 𝑖, 𝑗  
• Gromov boundary 𝜕∞ 
• ??? 
• Projective geometric 

– Global phase  
– Number theory 

• Simultaneous Diophantine 
approximation 

• LLL-algorithm 
• Riemann zeta function 

≠ 

≠ 

≠ 

≠ 



Plan of action 
• Classical networks 

– Coarse geometry 
– Routing and congestion 
– Load balancing 

• Quantum networks 
– Excitation-encoded information transport 
– Number-theoretic optimal transport 

• Classical versus quantum networks 
– Gromov boundary: 𝜕∞𝑁classical versus 𝜕∞𝑁quantum 
– Core versus anti-core 

• Conclusion & Future work 
– Wireless networks 
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A geodesic space 𝐺,𝑑  is Gromov hyperbolic iff 
every triangle has an inscribed triangle with its 
perimeter not exceeding a precise bound: 

Gromov-hyperbolic geodesic spaces 

If 𝐺 = 𝑉,𝐸  is a graph, then  
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A “fattened tree” is Gromov hyperbolic,  
but not conversely! 

 A tree is              -fat.  ( )0=δ
( )2=δ
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∆abc are 
geodesic 
triangles 

x=y=z 
y 

z=x 



Connection between hyperbolic spaces in 
Riemannian and Gromov sense 
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Theorem (Bonk-Schramm): Let 𝐺,𝑑𝐺  be a Gromov hyperbolic geodesic metric space with 
bounded growth at some scale. Then there exist an integer 𝑛, a convex subset 𝐷 ⊆ ℍ𝑛, 
constants 𝜆, 𝑘, and a map 𝑓:𝐺 → 𝐷 such that 

Gromov hyperbolic graph: Poincaré disk: 



4-point computational implementation of Gromov 𝛿 

L u v M x y S z w= + ≥ = + ≥ = +
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Given a complete quadrilateral 𝑎𝑎𝑎𝑎, order the sum of the lengths of opposite 
diagonals as 

Define 

Then the geodesic space 𝐺,𝑑  is Gromov hyperbolic iff 



Scaling of Gromov 𝛿4 
The Gromov coarse geometry makes sense only for infinite spaces, while real-life 
graphs, no matter how large, are finite.  
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We compute the upper bound of 𝛿4
𝐷

 in standard spaces,  
• hyperbolic,  
• Cartan-Alexandrov-Toponogov CAT 0   
• Ptolemaic  

for various scalings D:  

hyperbolic    CAT(0) Ptolemaic Spherical 

𝐿 0.1307 0.1464 0.1667 0.25 

𝐿 + 𝑀 + 𝑆 0.0572 0.0607 0.0714 0.125 

diam 0.2788 0.2929 0.2929 0.5 

4

CAT(0)

( ) 2 1
2 2 4

abcd
L M S
δ −  < + + + 

By Tarski-Seidenberg decision: 

E. Jonckheere, P. Lohsoonthorn, and F. Ariaei, ``Scaled Gromov four-point condition for network graph curvature computation,“ 
Internet Mathematics, volume 7, number 3, pp. 137-177, 2011.  
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Traffic load and density of traffic load in U  
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in Poincaré disk: 

0 ( )X B r=

( ) ( ), ( )d s d dA s dA d×Λ = ×Measure in product space: 
Poincaré disk 

The TCP-IP protocol sends traffic from a source s to a destination d along a geodesic. 

E. Jonckheere, Mingji Lou, F. Bonahon, and Y. Baryshnikov, ``Euclidean versus hyperbolic congestion in idealized versus 
experimental networks,'‘ Internet Mathematics, vol. 1, number 7, pp. 1-27, 2011.  
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Density of traffic load: 

The demand 𝑠 → 𝑑 is uniformly distributed over all 𝑠,𝑑  pairs.  

Traffic load: 

α-core 
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Details of Euclidean situation 
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Details of hyperbolic situation 
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Experimental verification of theoretical results 
by Narayan and Saniee (Bell Labs-Nokia) 

NlnEuclidean

5.1N

2

hyperbolic
N

O.Narayan and Iraj Saniee, “Large-scale curvature of networks,” Physical Review E (statistical physics), Vol. 84, No. 
066108, Dec. 2011. 

( )( )vol 0RN V B= =



Alternative approach to congestion 
 (with F. Bonahon) 
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Blocked-View theorem: 
∀𝑝 ∈ 𝑀, the view of the half-space 𝐻𝑥 𝑣⃗   
from p is blocked by the ball 𝐵𝑥 𝑟0 , that is, 
 
 
for the universal radius 𝑟0 = 1

𝑘
log 2 + 1 . 

For the universal radius, 
the culprit is the curvature.  



Fair-Cut theorem: For a compact, convex manifold 𝑀𝑛 of curvature −𝑘2 < 0,  
the fair congestion estimate is bounded as   
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Define a fair density of geodesic estimate: 

( )1 1
1 2

n

n
M≤ Φ ≤

+

Congestion theorem: For a compact, convex manifold 𝑀𝑛 of curvature −𝑘2 < 0,  
there exist a universal radius 𝑟0 = 1

𝑘
log 5 + 1  and a point 𝑥 ∈ 𝑀𝑛, the gravity 

center, such that the ball 𝐵𝑥 𝑟0  has congestion density  Φ 𝑀 ≥ 1
𝑛+1

. 

For the congestion density,  
the culprit is the dimension!  



Plan of action 
• Classical networks 

– Coarse geometry 
– Routing and congestion 
– Load balancing 

• Quantum networks 
– Excitation-encoded information transport 
– Number-theoretic optimal transport 

• Classical versus quantum networks 
– Gromov boundary: 𝜕∞𝑁classical versus 𝜕∞𝑁quantum 
– Core versus anti-core 

• Conclusion & Future work 
– Wireless networks 



M. Lou, E. Jonckheere, Y. Baryshnikov, F. Bonahon, and B. Krishnamachari,  ``Load Balancing by Network Curvature Control,  International 
Journal of Computers, Communications and Control (IJCCC), ISSN 1841-9836, vol.6(1), pp. 134-149, March 2011.  

Where the Internet meets Grigori Perelman’s proof 
of the Poincaré conjecture 
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Since points with negative PL curvature, 𝐾 𝑣 =
2𝜋−∑ ∢Δ𝑣𝑖𝑣�𝑣𝑗𝑖,𝑗
∑ 𝐴 Δ𝑣𝑖𝑣𝑣𝑗𝑖𝑗

< 0, create congestion, 

load balancing could be achieved by uniformizing the curvature subject to 𝜒.   
This is what Perelman did in his proof of the Poincaré conjecture, using the Ricci flow.  
Here we use the Yamabe flow. 

Evolution of conformal factors 𝑢:𝑉 × [0,∞) → ℝ:  

Administrative distance table 𝑤 𝑣𝑖 , 𝑣𝑗   
is modified as  

Like Perelman, we encountered singularities when 𝐴 Δ𝑣𝑖𝑣�𝑣𝑗 = 0,  
removable by edge deletion surgery. 

“Mathematicians make the headlines  
when they do weird things”  
– F. Bonahon 
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original path load balanced path 

For a PL version of the traffic load Λ𝑡 𝑋 , usually referred to as betweenness 
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Spin chains and spin rings 
 
 

excitation readout 
• Our objective is to understand 

how excitation is transmitted in 
spin chains and spin rings of the 
Heisenberg or XX type in the 
first excitation subspace. 

• Our approach is geometrical: 
• Define a distance 
• Understand the geometry of 

the spin network for the 
given distance 

• What does the geometry tell us? 
• What are the applications? 

Fidelity (or probability) = fiHte−↓ ↓
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Given (|IN⟩, |OUT⟩) pair, find biases so as to favor the specified transmission 
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 Ring-structured 
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Is the design robust against δD and δJ? 

IN= ↓ OUT= ↑



k

1+k

???1 =+kDδ ???1, =+Jδ


1+

Local bias fields Dk 

Concept of a “quantum router” 
Given (|IN⟩, |OUT⟩) pair, find biases so as to favor the specified transmission 
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Is the design robust against δD and δJ? 

D k
 Ring-structured 
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IN= ↑ OUT= ↓



Spintronics devices 

Physicists are trying to 
exploit the spin of the 

electron rather than its 
charge to create a new 

generation of spintronics 
devices, smaller, more 

versatile than silicon chips. 

Spintronics, or spin 
electronics, refers to the 
study of the role played by 
electron (and more 
generally nuclear) spin in 
solid state physics. 



Ultra-cold atom optical lattice:  
Navigating in the Cislunar space by  

Shaken Lattice Interferometry inertial sensing 

C. Weidner, “Shaken Lattice Interferometry,” Ph.D. dissertation, Univ. Colorado, Boulder, 
2018. 
F. Ariaei, E. Jonckheere and S. Bohacek, “Tracking Trojan asteroid in periodic and  
quasi-periodic orbits around the Jupiter Lagrange points using LDV techniques,”  
Physics and Control, St. Petersburg, Russia, 2003, pp. 100-105.   
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Maximum state transition probability  
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Eigen-expansion  
of Hamiltonian 
𝐻𝑁×𝑁 in the single 
excitation 
subspace! 

solution 𝜓 𝑡   to 
Schrödinger’s equation  
with initial quantum state i 

initial  
condition 

terminal  
or desired  
condition 

$1,000,000 question: Can we have equality?   ( ) ( )0 maxsup , , ,0 ,t p j t i p i j≥ =



Can a quantum network be made a metric space? 

( )max

1( , ) log
,

d i j
p i j

=
Define 

1) Do we have the triangle inequality 𝑑 𝑖, 𝑗 ≤ 𝑑 𝑖, 𝑘 + 𝑑 𝑘, 𝑗  ? 
a) On a uniform spin ring, the triangle inequality has been proved!  
b) On a uniform spin chain, the triangle inequality has been 

computationally verified up to order 500. On a nonumiform spin 
chain, we observed violations. 

2) Do we have 𝑑 𝑖, 𝑗 > 0 for 𝑖 ≠ 𝑗  ? 
a) Yes, for a ring of odd size N (metric space) 
b) No, for a ring of even size N (pseudo-metric space) 

i. Yes, after anti-podal spin identification (metric space) 
c) No, in general, for a chain: “good news/bad news!” 

P. Bogdan, E. Jonckheere, and S. Schirmer, ``Multi-fractal Geometry of Finite Networks of Spins: Nonequilibrium Dynamics beyond 
Thermalization and Many-Body-Localization,” Chaos, Solitons & Fractals,  vol. 103, pp. 622-631, October 2017. arXiv:1608.08192 [quant-ph]. 
E. Jonckheere, F. C. Langbein, and S. G. Schirmer, "Curvature of quantum rings,“ International Symposium on Control, Communications and 
Signal Processing, Rome, Italy, May 02-04, 2012. 



Reachability of maximum transition probability 
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Clearly, 𝑝max 𝑖, 𝑗  can be reached if there exists a time t, large enough,  
such that  

Can we achieve equality? 

We already perceive 
• The flow on the torus: 𝑑𝑥�

𝑑𝑑
= −diag 𝜆1, 𝜆2, … 𝜆𝑁  mod 2π , 𝑥� 0 = 0 

• The simultaneous Diophantine approximation: 𝜆𝑘
𝜋
≈ 𝑝𝑘

𝑞
 

• The Lenstra-Lenstra-Lovasz (LLL) algorithm: 𝑝𝑘 −
𝜆𝑘
𝜋
𝑞 < 𝜖  

E. Jonckheere, S. Schirmer, and F. Langbein, ̀ `Information transfer fidelity in spin networks and ring-based quantum routers," 
Quantum Information Processing (QINP), DOI 10.1007/s11128-015-1136-4, 2015.  
Available at http://ee.usc.edu/~jonckhee  and arXiv:submit/1359959 [quant-ph] 24 Sep 2015.  

http://ee.usc.edu/~jonckhee


We forgot the global phases!!! 
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Clearly, 𝑝max 𝑖, 𝑗  can be reached  if there exists a time t, large enough,  
such that  

much more likely to happen! 

But it is unclear what becomes of  
• The flow on the torus: 𝑑𝑥�

𝑑𝑑
= −diag 𝜆1, 𝜆2, … 𝜆𝑁  mod 2π , 𝑥� 0 = 0 

• The simultaneous Diophantine approximation: 𝜆𝑘
𝜋
≈ 𝑝𝑘

𝑞
 

• The Lenstra-Lenstra-Lovasz (LLL) algorithm: 𝑝𝑘 −
𝜆𝑘
𝜋
𝑞 < 𝜖 

E. Jonckheere, S. Schirmer, and F. Langbein, ̀ `Information transfer fidelity in spin networks and ring-based quantum routers," 
Quantum Information Processing (QINP), DOI 10.1007/s11128-015-1136-4, 2015.  
Available at http://ee.usc.edu/~jonckhee  and arXiv:submit/1359959 [quant-ph] 24 Sep 2015.  

http://ee.usc.edu/~jonckhee
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Basic attainability condition: 

Recipe   

Substitute and take log 

Get rid of φ by appealing to other modes: 

Back to flow on torus,  
where the global phase has tacitly been taken into consideration 
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Definition: A flow or translation on the torus 𝕋2 is said to be minimal  
iff the orbit of every initial point is everywhere dense in 𝕋2.  

Theorem: The flow on the torus is minimal iff  
the 𝜔𝑘,ℓ 𝑘,ℓ=1:𝑁 are linearly independent over the rationals ℚ. 
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2
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Theorem: The translation on the torus is minimal iff  
the set   1, 𝜃𝑘,ℓ 𝑘,ℓ=1:𝑁  is linearly independent over ℚ. 



Dark states 
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Perfect state transfer (or super-optimality) by control 𝐻𝐷: 
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11-ring: |𝑖 = 1⟩ ↦ |𝑗 = 3⟩, that is, 𝜓 0 = 𝑒1 ↦ 𝜓 𝑡 = 𝑒3 

    0.0000   -0.0000    0.6914   -0.7014    0.0064    0.0893    0.1481 
   -0.0000    0.0000   -0.1714    0.0000    0.6098    0.0000    0.7738 
   -0.0000   -0.0000    0.6914    0.7014    0.0064   -0.0893    0.1481 
    0.0000    0.0000   -0.0854   -0.0893   -0.5604   -0.7014    0.4227 
   -0.0009   -0.0009    0.0001    0.0001    0.0008    0.0009   -0.0006 
    0.7070    0.7070    0.0000    0.0000    0.0000    0.0000   -0.0000 
   -0.0103   -0.0100   -0.0000   -0.0000   -0.0000   -0.0000    0.0000 
    0.0103   -0.0100   -0.0000    0.0000   -0.0000    0.0000    0.0000 
   -0.7070    0.7070    0.0000   -0.0000    0.0000   -0.0000   -0.0000 
    0.0009   -0.0009    0.0001   -0.0001    0.0008   -0.0009   -0.0006 
   -0.0000    0.0000   -0.0854    0.0893   -0.5604    0.7014    0.4227 

 - 0.0000    0.0000   -0.0000   -0.0000 
    0.0000    0.0000   -0.0000   -0.0000 
    0.0000    0.0000    0.0000   -0.0000 
    0.0000    0.0000    0.0009   -0.0010 
    0.0000    0.0000    0.6453   -0.7639 
   -0.0103   -0.0100    0.0008   -0.0010 
   -0.7070   -0.7070    0.0000   -0.0000 
    0.7070   -0.7070   -0.0000   -0.0000 
    0.0103   -0.0100   -0.0010   -0.0008 
   -0.0000    0.0000   -0.7639   -0.6453 
   -0.0000    0.0000   -0.0010   -0.0009 

V= 

dark states dark states symmetry! 

+1         -1          +1        -1         +1 

S. Schirmer, E. Jonckheere, and F. Langbein,  ``Design of feedback control laws for information transfer in spintronics networks,“ IEEE Transactions 
on Automatic Control, vol. 63, No. 8, pp. 2523-2536, August 2018. Available at http://ee.usc.edu/~jonckhee and arXiv:1607.05294. 

http://ee.usc.edu/~jonckhee


Taking global phases into consideration 

( )
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Clearly, 𝑝max 𝑖, 𝑗  can be reached if there exists a time 𝜏 ∈ ℕ, large enough,  
such that  

Equality can be achieved! 

Now, we have the three-fold interpretation:  
• The translation on the torus: 𝜃𝑘ℓ 𝜏 + 1 = 𝜃𝑘ℓ 𝜏 + 𝑠𝑘 − 𝑠ℓ mod2 /2 
• The simultaneous Diophantine approximation: 𝜃𝑘ℓ ≈

𝑝𝑘ℓ
𝑞

 

• The Lenstra-Lenstra-Lovasz (LLL) algorithm: 𝑝𝑘ℓ − 𝜃𝑘ℓ𝑞 < 𝜖 

E. Jonckheere, S. Schirmer, and F. Langbein, ̀ `Information transfer fidelity in spin networks and ring-based quantum routers," 
Quantum Information Processing (QINP), DOI 10.1007/s11128-015-1136-4, 2015.  
Available at http://ee.usc.edu/~jonckhee  and arXiv:submit/1359959 [quant-ph] 24 Sep 2015.  
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Lenstra-Lenstra-Lovasz (LLL or L3) algorithm 
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The LLL-algorithm find 
(the) short(est) basis 
vectors in a lattice. 

Diophantine approximation error  
that must be kept small. 
Hence let s↓0 and a (the) 
short(est) vector gives a good 
(best) simultaneous Diophantine 
approximation.  
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X-weighted LLL-algorithm 
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Genetic algorithm to adjust X in support of a conjecture 
Given a user-defined s, a genetic algorithm that minimizes the number of parity violations 
in  𝑝𝑘,ℓ finds X in about 5 generations and a population of about 200 chromosomes. 

Conjecture: Simultaneous Diophantine approximations of arbitrary accuracy  
and subject to parity constraints always exist. 

Proof: ??? 
“If neither Lenstra 

nor Lagarias 
knows, then 

nobody knows!” 
—R. Guralnick 



Time to reach transfer probability 
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Gromov boundary 𝜕∞ 

Definition: The Gromov boundary of a graph is the equivalence class of infinite geodesic 
rays 𝑟, 𝑟′, 𝑟𝑟, … from 𝜔 ∈ Ω under the relation that two rays 𝑟, 𝑟𝑟 are equivalent if their 
Hausdorff  distance 𝑑𝐻 𝑟, 𝑟𝑟 < ∞. 

( )2 1
1M S∞ −∂ =

( )binary tree Cantor set∞∂ =

Definition: A quasi-pole Ω of an infinite graph 𝐺 is a compact subgraph of such 
that there exits a geodesic ray from 𝜔 ∈ Ω passing within a bounded distance 𝐵 of 
every vertex of the graph.   

( )2 1
1hyperbolic tesselation of M S∞ −∂ =

Theorem: The Gromov boundary is invariant under quasi-isometry.  

quasi-isometric 

r
'r



Gromov boundary and congestion 
Theorem (Baryshnikov): Consider an infinite network 𝑁,𝑑𝑁  under a demand measure 
Λ× 𝑥, 𝑦  such that 𝑥𝑥 ∈ 𝐸 ⟺ Λ× 𝑥, 𝑦 > 0 and least cost path routing. If the cardinality 
of the  Gromov boundary is 1,  𝜕∞𝑁 = 1, then there is no 𝛼-congestion core.  

Except for classical networks N quasi-isometric to a semi-infinite chain, 𝜕∞𝑁 > 1 

Example of classical network quasi-isometric to a semi-infinite chain: 
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( ) ( ) ( )( ) ( )
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f

Idea of proof: 

Y. Baryshnikov and G. Tucci, “Asymptotic traffic flow in a hyperbolic network,” International Symposium on Communications, Control, and Signal 
Processing (ISCCSP), Rome, Italy, May 2-4, 2012. 

1N∞∂ =
Ω 1N∞∂ >Ω

α-core 
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Transition probabilities in quantum chains 
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Quantum number-theoretic computations 
Riemann zeta-function 

Take two numbers 𝑖′, 𝑗𝑗 and let 𝑖′ = gcd 𝑖′, 𝑗𝑗 . Then  
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Then the gcd 𝑖′, 𝑗𝑗  is identified by   
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Proof: 𝜁 2 = 𝜋2

6
 , Euler formula,  

where 𝜁 𝑠  is the Riemann zeta-function 



Quantum number-theoretic computations 
Prime number factorization 
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Classical versus quantum networks: core versus anti-core 

i← j →( )lim ,d i j = ∞

ω
congestion core 

classical 2G∞∂ =

i← j →( )lim , 0d i j =

ω
anti-core 

quantum 1G∞∂ =

E. A. Jonckheere, S. Schirmer, and F. C. Langbein,  ``Quantum networks: the anti-core of spin chains,“ Quantum Information Processing 
(QINP), volume 13, pp. 1607-1637, 2014. (DOI 10.1007/s11128-014-0755-5) 

=

≠
( )classicaldiam G = ∞

( )quantumdiam G = ∞
if couplings  

are engineered 

For fair  
comparison 
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Conclusion & Future work 
• We have developed 

mathematics specific to 
classical and quantum 
networks. 

• On the quantum side, most 
work has been devoted to  
spintronic networks. 

• Classical networks have 
congestion core, while 
quantum networks have anti-
core. 

• Quantum networks lead to a 
number-theoretic geometry.  

• What mathematics need to be 
developed for hybrid classical-
quantum networks? 

• What geometric topology 
should be developed for 
quantum entanglement 
photonic networks? 

• How to deploy surveillance at 
congestion core, while 
protecting information at anti-
core? 

• Could the number theoretic 
geometry be formalized? 

• Could spintronic computers 
solve number theoretic 
problems? 



Thank you! 

Questions? 
jonckhee@usc.edu  

mailto:jonckhee@usc.edu
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