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Abstract—Although synchronous PMUs are being deployed
across the grid, it is not economical to place them at every
node. Therefore, at some nodes in the system state estimators
will be used. Both PMUs and state estimators are prone to false
data injection attacks. Thus, it is crucial to have a mechanism
for fast and accurate detection of malicious tampering; both for
preventing the attacks that may lead to blackouts, and for routine
monitoring and control tasks of smart grid.
We propose a decentralized false data injection detection scheme
based on Markov graph of bus phase angles. We utilize Condi-
tional Covariance Test (CCT) to learn the structure of smart
grid. Using the DC power flow model, we show that under
normal circumstances, and because of walk-summability of the
grid graph, the Markov graph of voltage angles matches the
power grid graph; otherwise, a discrepancy should trigger the
alarm. Local grid topology is available online from the protection
system and we exploit it to check for mismatch.
Our method can detect the most recent stealthy deception attack
on power grid that assumes knowledge of bus-branch model
of the system and is capable of deceiving the state estimator.
Specifically, under the stealthy deception attack, the Markov
graph of phase angles changes. To the best of our knowledge, our
remedy is the first to comprehensively detect this sophisticated
attack and it does not need additional hardware. Moreover,
our detection scheme is successful no matter the size of the
attacked subset. Simulation of various power networks confirms
our claims.

Index Terms—Bus phase angles, structure learning, Condi-
tional Covariance Test, false data injection detection

I. INTRODUCTION

Synchronous Phasor Measurement Units are being mas-
sively deployed throughout the grid and provide us with
synchronized measurements relevant to the state of grid health.
Currently, PMU’s provide the fastest measurements of grid
status. As a result, recent monitoring and control schemes
rely primarily on PMU measurements. For example, [1] tries
to increase voltage resilience to avoid voltage collapse by
using synchronized PMU measurements and decision trees.
In addition, [2]–[4] rely on phase angle measurements for
fault detection and localization. Nevertheless, we need to
consider that it is not economical to place PMUs in every node.
Therefore, in some nodes in the system, State Estimators will
still be used. PMUs are prone to false data injection attack
and even if we do not consider that, part of the grid using the
state estimators is the window to false data injection attacks.

Therefore, aforementioned methods can be deluded by false
data injection attack. Thus, it is crucial to have a mechanism
for fast and accurate discovery of malicious tampering; both
for preventing the attacks that may lead to blackouts, and for
routine monitoring and control tasks of smart grid.
We have designed a decentralized false data injection attack
detection mechanism that utilizes bus phase angles Markov
graph. We utilize Conditional Covariance Test (CCT) [5] to
learn the structure of smart grid. We show that, under normal
circumstances, and because of the grid graph structure, the
Markov graph of voltage angles matches the power grid graph;
otherwise, a discrepancy should trigger the alarm. Because of
the connection we have made between Markov graph of bus
angle measurements and the grid topology, our method can
be performed in a decentralized manner, i.e. at each subnet-
work. Currently, sub-network topology is available online and
global network structure is available hourly [2]. Not only by
decentralization can we increase the speed and get closer to
online detection, but also we increase accuracy and stability by
avoiding communication delays and synchronization problems
when trying to send measurement data between locations far
apart. We noticeably decrease the amount of exchanged data
to address privacy concerns as much as possible.
We show that our method can detect the most recently
designed attack on power grid that can fool the State Esti-
mator [6]. The attack assumes the knowledge of bus-branch
model of the grid. To the best of our knowledge, our method is
the first to detect such a sophisticated attack comprehensively
and efficiently with any number of attacked nodes.
Although in [7] the authors suggest an algorithm for PMU
placement such that this attack is observable, they only claim
an algorithm for 2-node attack and empirical approaches for
3,4,5 node attacks. According to [7], for cases where more than
two nodes are under the attack the complexity of the approach
is disheartening. Considering the fact that finding the number
of needed PMUs is NP hard and [7] gives an upper bound
and use a heuristic method for PMU placement; we need to
mention that our algorithm has no hardware requirements, the
complexity does not depend on number of nodes under attack
and it works for any number of attacked nodes. It is worth
mentioning that even in the original paper presenting the attack
for a relatively small network (IEEE-30) seven measurements



from five nodes are manipulated. So it seems that the 2-node
attack is not the most probable one.
Dependency graph approach is used in [4] for topology fault
detection in grid. However, since attacks on state estimators
are not considered, such methods can be deceived by false
data injection. Furthermore, [4] uses a constrained maximum
likelihood optimization for finding the information matrix
while here an advanced structure learning method is used
that captures power grid structure better. This is because in
power grid the edges are distributed over the network. This is
discussed in section 3.A
The rest of this paper is organized as follows: In section II we
show that bus phase angles form a Gaussian Markov Random
Field (GMRF) and discuss that their Markov graph follows the
grid structure. In section III we explain Conditional Covariance
Test (CCT) [5] which we use for obtaining the Markov graph
between bus phase angles and discuss how we leverage it
to perform optimally for power grid. The stealthy deception
attack on the state estimator is introduced in section IV. We
elaborate on our detection scheme in section V. Simulations are
presented in section VI and section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

A Gaussian Markov Random Field (GMRF) is a family
of jointly Gaussian distributions, which factor according to
a given graph. Given a graph G = (V,E), with V =
{1, ..., p}, consider a vector of Gaussian random variables
X = [X1, X2, ..., Xp]

T , where each node i ∈ V is associated
with a scalar Gaussian random variable Xi. A Gaussian
Markov Random Field on G has a probability density function
(pdf) that may be parametrized as

fX(x) ∝ exp[−1

2
xTJx+ hTx]; (1)

where J is a positive-definite symmetric matrix whose sparsity
pattern corresponds to that of the graph G. More precisely,

J(i, j) = 0⇐⇒ (i, j) /∈ E. (2)

The matrix J = Σ−1 is known as the potential or information
matrix, the non-zero entries J(i, j) as the edge potentials, and
the vector h as the vertex potential vector. In general, Graph
G = (V,E) is called the Markov graph(graphical model)
underlying the joint probability distribution fX(x) where the
node set V represents each random variable Xi and the edge
set E is defined in order to satisfy local Markov property. For
a Markov Random Field, local Markov property states that
Xi ⊥ X−{i,N(i)}|XN(i), where XN(i) represents all random
variables associated with the neighbors of i in graph G and
X−{i,N(i)} denotes all variables except for Xi and XN(i).

B. Bus phase angles as GMRF

We now apply the preceding to bus phase angles. The DC
power flow model [8] is often used for analysis of power sys-
tems in normal steady-state operations. When system is stable,
the phase angle differences are small, so sin(θi−θj) ∼ θi−θj .

By the DC power flow model, system state X can be described
using bus phase angles. The power flow on the transmission
line connecting bus i to bus j is given by

Pij = bij(Xi −Xj), (3)

where Xi and Xj denote the phasor angles at bus i and j
respectively, and bij denotes the inverse of the line inductive
reactance. The power injected at bus i equals the algebraic
sum of the powers flowing away from bus i:

Pi =
∑
j 6=i

Pij =
∑
j 6=i

bij(Xi −Xj). (4)

whenever bus i and j are not connected bij = 0. Thus, it
follows that the phasor angle at bus i could be represented as:

Xi =
∑
j 6=i

{ bij∑
i 6=j bij

}Xj +
1∑

j 6=i bij
Pi. (5)

Because of load uncertainty injected power can be modelled
as a random variable [9] and since injected power models the
superposition of many independent factors (e.g. loads), it can
be modelled as a Gaussian random variable. Thus, the linear
relationship in (3) implies that the difference of phasor angles
across a bus could be approximated by a Gaussian random
variable truncated within [0, 2π). Considering the fixed pha-
sor at the slack bus, it is assumed that under steady-state,
phasor angle measurements can be considered as Gaussian
variables [4].
The next step is to find the correct neighboring relationship
between Xi’s. From (5), we can see the relationship between
Xi’s and the nodes connected to them electrically. Thorough
analysis of the second term of (5) shows that this term causes
some second-neighbor relationships between Xi’s which are
weaker than the relationship between immediate neighbors.
This approximation falls under the generic fact of the tapering
off of Fourier coefficients. So, we can approximate the neigh-
boring relationship to be only that of immediate neighbors in
grid graph. The proofs are omitted due to page limits. We
explain shortly why CCT best describes this approximation
and why this approximation is in fact true for a grid graph,
meaning local local Markov property holds for N(i), where
N(i) denotes the nodes that are electrically connected to node
i in the power grid.

III. STRUCTURE LEARNING

A. Conditional Covariance Test

In order to learn the structure of the power grid, we
utilize the new Gaussian Graphical Model Selection method
called Conditional Covariance Test (CCT) [5]. CCT method
estimates the structure of underlying graphical model given
i.i.d. samples of the random variables. CCT method is shown
in Algorithm 1.

In Algorithm 1, the output is an edge set corresponding
to graph G given n i.i.d. samples xn, each of which has p
variables, a threshold ξn,p (that depends on both p and n) and
a constant η ∈ N, which is related to the local vertex separation



Algorithm 1 CCT (xn; ξn,p, η) for structure learning using
samples xn [5]

Initialize Ĝnp = (V, ∅)

For each (i, j) ∈ V 2,
if minS⊂V \{i,j}

|S|≤η
Σ̂(i, j|S) > ξn,p,

then
add (i, j) to the edge set of Ĝnp .

end if
Output:Ĝnp

property (described later). In our case, each bus phase angle
represents one of the p variables.
The sufficient condition for output of CCT to have structural
consistency with underlying Markov graph between variables
is that the graph has to satisfy local separation property
and walk-summability [5]. An ensemble of graphs has the
(η, γ)-local separation property if for any (i, j) /∈ E(G), the
maximum number of paths between i,j of length at most γ
does not exceed η. A Gaussian model is said to be α-walk
summable if ||R̄|| ≤ α < 1 where R̄ = [|rij |] and ||.|| denotes
the spectral or 2-norm of matrix, which for symmetric matrices
is given by the maximum absolute eigenvalue [5]. R is the
matrix consisting of partial correlation coefficients. It is zero
on diagonal entries and for non-diagonal entries we have:

rij ,
Σ(i, j|V \ {i, j})√

Σ(i, i|V \ {i, j})Σ(j, j|V \ {i, j})

= − J(i, j)√
J(i, i)J(j, j)

(6)

rij , the partial correlation coefficient between variables Xi

and Xj for i 6= j, measures their conditional covariance given
all other variables [10].
Power grid structure (which coincides with Markov graph of
bus phase angles) is an example of bounded local path graphs
which satisfies local separation property. We also checked the
analyzed networks for walk-summability condition. It is shown
in [5] that under walk summability, the effect of faraway
nodes on covariance decays exponentially with distance and
the error in approximating the covariance by local neighboring
decays exponentially with distance. So by correct tuning of the
threshold ξn,p and enough number of samples, we expect the
output of CCT method to follow the grid structure.
CCT distributes the edges fairly uniformly across the nodes
while `1 method tends to cluster all the edges together between
the “dominant” variables leading to a densely connected
component and several isolated points [5]. Therefore, CCT
is more suitable for detecting the structure of the power grid
where the edges are distributed over the network. It should be
noted that the computational complexity of CCT is O(pη+2),
which is efficient for small η [5]. η is the parameter associated
with local separation property described above.

The sample complexity associated with CCT method is n =
Ω(J−2min log p) where Jmin is the minimum absolute edge
potential in the model [5].

B. Decentralization

We want to find the Markov graph of our bus phasor
measurements. Since we have made the connection between
electrical connectivity and correlation, this helps us to decen-
tralize our method to a great extent. We consider the power
network in its normal condition. It consists of different areas
connected together via border nodes. So we decompose our
network into these sub-areas. Our method can be performed
locally in sub-networks. The sub-network connection graph is
available online from protection system at each sub-network
and can be readily compared with bus phase angles Markov
graph. In addition, only for border nodes, we need to consider
their out-of-area neighbors as well. This can be done either
by receiving measurements from neighbor sub-networks or
by solving the power flow equations for that border link.
Therefore we run CCT for each sub-graph to figure out the
Markov graph. Then we compare it with online network graph
information to detect false data injection attack.
This decentralization reduces complexity and increases speed.
Our decentralized method is a substitute for considering all
measurement throughout the power grid,which requires a huge
amount of data exchange and computation. In addition to
having less nodes to analyse, this decentralization leads us
to a smaller η and greatly reduces computational complexity,
which makes our method capable of being executed in huge
networks. Moreover, utility companies are not willing to
expose their information for economical competition purposes
and there has been several attempts to make them do that [11].
So it is desired to reduce the amount of data exchange
between different areas and our method adequately fulfils this
requirement.

C. Online calculations

For monitoring the power grid, we need an on-line algo-
rithm. Therefore, we need to have an iterative method to make
use of new data without the need to recalculate. Here, we
derive an iterative formulation for sample covariance matrix.
Then it can be used for calculating the conditional covariance
using

Σ̂(i, j|S) := Σ̂(i, j)− Σ̂(i, S)Σ̂−1(S, S)Σ̂(S, j). (7)

As we know, in general

Σ = E[(X − µ)(X − µ)T ] = E[XXT ]− µµT . (8)

Let Σ̂(n)(X) denote the sample covariance matrix for a vector
X of p elements from n samples and µ̂(n)(X) be the sample
mean for that. In addition, let X(i) be the ith sample of our
vector. Then we have

Σ̂(n)(X) =

1

n− 1

n∑
i=1

X(i)X(i)T − µ̂(n)µ̂(n)T . (9)



Therefore,

Σ̂(n+1)(X) =
1

n
[

n∑
i=1

X(i)X(i)T +X(n+1)X(n+1)T ]

−µ̂(n+1)µ̂(n+1)T ; (10)

where
µ̂(n+1) =

1

n+ 1
[nµ̂(n) +X(n+1)]. (11)

By keeping first term in (9) and sample mean, our updating
rule is (10). Thus, we revise the sample covariance as soon
as any bus phasor measurements changes and leverage it to
reach conditional covariances needed for CCT.

IV. STEALTHY DECEPTION ATTACK

The most recent and most realistically dreaded false data
injection attack on the power grid is introduced in [6]. For
a p-bus electric power network, the l = 2p − 1 dimensional
state vector x is (θT , V T )T , where V = (V1, ..., Vp) is the
vector of voltage bus magnitudes and θ = (θ2, ..., θp) vector
of phase angles. It is assumed that the nonlinear measurement
model for state estimation is defined by z = h(x) + ε,
where h(.) is the measurement function, z = (zP , zQ) is
the measurement vector consisting of active and reactive
power flow measurements and ε is the measurement error.
H(xk) := dh(x)

dx |x=xk denotes the Jacobian matrix of the
measurement model h(x) at xk.
The goal of the stealthy deception attacker is to compromise
the measurements available to the State Estimator (SE) such
that za = z + a, where za is the corrupted measurement
and a is the attack vector. Vector a is designed such that
the SE algorithm converges and the attack a is undetected
by the Bad Data Detection scheme. Then it is shown that,
assuming the DC power flow model, such an attack can only
be performed locally with a ∈ Im(H), where H = HPθ is
the matrix connecting the vector of bus injected powers to
the vector of bus phase angles, i.e., P = HPθθ.

V. STEALTHY DECEPTION ATTACK DETECTION

The fundamental idea behind our detection scheme is that
of structure learning. Our learner, CCT method, is tuned with
correct data representing the data structure, which corresponds
to grid graph. Therefore, any attack that changes the structure
alters the output of CCT method and this triggers the alarm.
Let us consider the aforementioned attack more specifically.
As we are considering the DC power flow model the state
vector introduced in [6] reduces to the vector of voltage angles,
X . Since a ∈ Im(H), ∃d; a = Hd.

za = z + a = H(X + d) = HXa, (12)

where Xa represents the vector of angles when the system is
under attack, za is the attacked measurement vector and X is
the phasor angle vector. Considering (4), we have Hij = −bij
for i 6= j and Hii =

∑
i6=j bij , where bij denotes the inverse

of the line inductive reactance. We have

Xa = X + d = H−1P +H−1a = H−1(P + a), (13)

As definition of H matrix shows, it is of rank p−1. Therefore
the above H−1 means pseudo inverse of H matrix. Another
way to address this singularity is to remove the row and
column associated with slack bus.
From (13),

Σ(Xa, Xa) = H−1[Σ(P + a, P + a)]H−1
T

= H−1[Σ(P, P ) + Σ(a, a)]H−1
T
. (14)

The above calculation assumes the attack vector being in-
dependent of current values in the network as demonstrated
in [6].
An attack is considered successful if it causes the operator to
make a wrong decision. For that matter, the attacker would not
insert just one wrong sample. In addition, if the attack vector
remains constant, it does not cause any reaction. Therefore, the
attacker is expected to insert random vectors a during some
samples. Thus Σ(a, a) 6= 0 and

Σ(Xa, Xa) 6= Σ(X,X) (15)

It is not difficult to show that if we remove the assumption
on independence of attack vector and injected power, (15)
still holds.
Considering (15) and the fact that matrix inversion enjoys
uniqueness property, this means that in case of an attack,
the new Σ−1 will not be the same as network’s J matrix
in normal condition, i.e. Σ−1(Xa, Xa) 6= Jnormal, and as
a result, the output of CCT method will not follow the grid
structure. We use this mismatch to trigger the alarm. In order
to find all the buses whose measurements are ruined, we
notice that if at least one measurement is ruined in a pair
(i, j), the sample covariance between i,j changes. We utilize
this to trace back to all attacked nodes as soon as alarm is
triggered. The attack is performed locally and because of
local Markov property, we are certain that no nodes from
other sub-graphs contributes to the attack.
We should emphasize that the considered attack assumes
the knowledge of the system’s bus-branch model. So the
attacker is equipped with very critical information. Yet, we
can mitigate such an intelligent attack. Next, we show that
simulation of various power networks including IEEE 14-bus
system and IEEE 30-bus system confirms our claims.

VI. SIMULATION

We consider IEEE 14-bus system as well as IEEE-30 bus
system. First, we feed the system with Gaussian demand
and simulate the power grid. We use MATPOWER [12] for
solving the DC power flow for various demand and use the
resulting angle measurements as the input for CCT algorithm.
We leverage YALMIP [13] and SDPT3 [14] to perform CCT
method in MATLAB.
With right choice of parameters and threshold, and enough



measurements, the Markov graph follows the grid structure.
We use edit distance metric for tuning the threshold value.
After the threshold is set, our detection algorithm works in
the following manner. Each time the procedure is initiated,
i.e. any PMU angle measurement or state estimator output
changes, it updates the conditional covariances based on new
data, runs CCT and checks the edit distance between Markov
graph of phasor data and grid structure. A discrepancy triggers
the alarm and then the system uses the information matrix to
reach correlation matrix and trace the changes to find all the
buses under the attack.
Next we introduce the stealthy deception attack to the system.
The attack is claimed to be successful only if performed locally
on connected nodes. Having this constraint in mind, for IEEE-
14 test case the maximum number of attacked nodes is 6
and for IEEE 30-bus system this number is 8. For IEEE-14
network, we consider the cases where 2 to 6 nodes are under
attack. For IEEE-30 network, we consider the cases where
2 to 8 nodes are under attack. For each case and for each
network, we simulate all possible attack combinations. This is
to make sure we have checked our detection scheme against
all possible stealthy deception attacks. Each case is repeated
1000 times for different attack vector values.
With enough number of samples, our algorithm is 100%
successful in detecting all cases and types of attacks discussed
above, both for IEEE-14 and IEEE-30 bus systems. The
minimum number of samples for having 100% detection rate
for IEEE 14-bus system is 130 and it is 50 for IEEE 30-bus
system. Since IEEE-30 is more sparse compared to IEEE 14-
bus system, our method performs better in the former case.Yet,
for a 60 Hz system, detection speed for IEEE 14-bus system
is quite astonishing as well.
Another interesting fact is detection rate’s trend as the number
of measurements increases. This is shown in Fig.1 for IEEE
14-bus system. Detection rate is averaged over all possible
attack scenarios. It can be seen that even for small number of
measurements our method presents a good performance. The
detection rate is 90% with 30 samples.
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Fig. 1: Detection rate for IEEE 14-bus system

VII. DISCUSSION AND CONCLUSION

We proposed a decentralized false data injection attack
detection scheme that is capable of detecting the most
recent stealthy deception attack on smart grid SCADA.
To the best of our knowledge, our remedy is the first
to comprehensively detect this sophisticated attack. As
stated before, computational complexity of our method is
polynomial and the decentralized property makes our scheme
suitable for huge networks with bearable complexity and run
time. Consequently, our approach can be extended to bigger
networks, namely IEEE-118 and IEEE 300-bus systems.
It is worth mentioning that, with similar calculations, we can
consider the case where the attacker manipulates reactive
power data to lead the state estimator to wrong estimates of
voltage. Such an attack can be designed to fake a voltage
collapse or tricking the operator to cause a voltage collapse.
The detection can be done by linearisation of AC power flow
and considering the fluctuations around steady state. Then
following the algorithm we introduced here, it readily follows
that such an attack can also be detected following the similar
approach as we did here for bus phase angles and active power.
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