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Abstract— This work develops a congestion management
method for the power grid utilizing the notion of curvature.
It initially uses the curvature concept to detect areas prompt
to congestion (negative curvature areas) and it subsequently
applies load balancing techniques (through FACTS devices)
and load (storage devices) deployment to maximize curvature
(grid decongestion) and cost-effectively minimize the generated
energy throughout the grid, while at the same time guar-
anteeing stability under phase angle and voltage constraints.
Two different curvature definitions are compared (Ollivier-Ricci
Curvature and Effective Resistance Curvature), and an entropy
concept suitable to power grid is introduced as a new measure
to analyze grid congestion.

I. INTRODUCTION

Congestion Management of the Power Grid has been
extensively researched within the last few years; a com-
prehensive literature review can be found in [9], [10],
[11], [12], [13], [14] and [15]. Within all the algorithms
and strategies developed throughout the years we would
mention the followings: Generator Rescheduling (GR), load
shedding, Distributed Generation (DG), Optimal Power Flow
(OPF), Flexible Alternating Current Transmission System
(FACTS) devices, implementable via Artificial Bee Colony
algorithm (ABC), Genetic Algorithms (GA) and Strength
Pareto Evolutionary Algorithm (SPEA), just to name a few.

This work introduces a novel congestion management
(CM) technique that basically grounds its roots in the notion
of curvature. The curvature is essentially utilized to detect
areas prompt to congestion (negative curvature areas); once
these areas are identified via the curvature analysis, FACTS
devices are deployed to maximize the curvature, but more
practically storage devices are deployed to buses/links to
reduce the flow of active power. Both deployments are
dictated by the curvature analysis. To cost-effectively reduce
the generation of energy throughout the entire grid, an
Optimal Power Flow (OPF) algorithm is implemented to
minimize the cost of energy production while maintaining
stability under the usual phase angle and voltage constraints.
Therefore, two objectives are simultaneously reached: grid
decongestion and energy generation cost reduction.

Two curvature notions are compared: the local Ollivier-
Ricci Curvature (definition in Sec. III) and the global Effec-
tive Resistance Curvature( [19]). Both of them are effectively
used to detect all the critical (negatively curved) edges
prompt to transmit most of the active power within the
grid. The Ollivier-Ricci Curvature (ORC) concept traces its
origins back to the earth mover’s distance idea developed
in the Napoleonic era with the objective of effectively move
earth from one point to the other to level off the landscape.

The Earth Mover’s effort is mathematically quantified as the
Wasserstein 1-metric distance, and it is also known as the
transportation cost (Gaspard Monge, 1781).

Finally, towards the end of this work, a Markov chain
entropy is introduced, compared with the curvature, and
applied to the power grid aiming at providing additional
global information on the behavior of the grid.

A. Outline of paper

We begin in Section II with an overview of various
simplifications of the power flow equations, the “DC power
flow equations,” and derive the P and Q graphs, all of which
are resistive network models of the various power flows. The
construction of such mathematical models will be our very
first step to start analyzing the power grid. Let us emphasize
that this work will analyze the IEEE 300 bus system, a
benchmark example that starts by showing how an existing
connection architecture with no more than 300 nodes already
has congestion implications.

Sec. III summarizes the relevant literature to review the
notion of curvature (namely ORC and ERC) and the notion
of congestion within grids/graphs.

Sec. IV starts the construction of the proposed method
for congestion management of the IEEE 300 bus system.
Initially, the curvature concept is utilized to detect negatively
curved lines/edges. Once the congested regions are identified,
Sec. IV-B executes a heuristic procedure to simultaneously
balance the loads possibly using FACTS and more practically
deploying storage devices within the grid. Both allocations
methods, FACTS and storages, are guided by the curvature
analysis itself. While doing the heuristic tune up/allocation
mentioned above, an OPF (Optimal Power FLow) algorithm
is run behind the scene to secure a cost-effective generation,
minimizing a quadratic generation cost functional under
AC model assumptions and under constraints on the phase
angles and bus voltages to secure grid stability under such
changes. We emphasize the fact that the overall congestion
management approach is developed and compared under both
curvature notions presented in Sec. III, aiming at developing
a wider range of choices that could facilitate the extension
of this approach to other fields of research.

All of the simulations and methods presented till this
point can be extended to take line rating considerations
into account; this allows the method to handle realistic line
limits. Sec. VII summarizes the main definitions and ideas
embraced within the procedure to account for the capacity
of the lines, usually determined by the thermal rating [33].
Sec. VI proposes the Entropy as an extra measure for grid



analysis, exploiting the fact that ORC and Entropy are closely
related.

Finally, Sec. VIII recaps what has been proposed in this
work and opens up future research lines.

II. RESISTIVE NETWORK MODELS OF POWER FLOWS

Given two buses k and m specified by their voltage
magnitude and phase angle pairs (Vk, θk) and (Vm, θm),
resp., connected by a transmission line with admittance
Ykm = Gkm − jBkm, the power flow equations are well
known as

Pkm = GkmV
2
k +BkmVkVm sin(θk − θm)

−GkmVkVm cos(θk − θm),

Qkm = BkmV
2
k −BkmVkVm cos(θk − θm)

−GkmVkVm sin(θk − θm),

where Pkm and Qkm are the active and reactive power,
resp., flowing from bus k to bus m. Under the standard
approximations of a nearly lossless lines (Gkm ≈ 0) with
small phase angle differences (θk ≈ θm), the power flow
equations are simplified to become

Pkm = BkmVkVm(θk − θm), Qkm = VkBkm(Vk − Vm).

Hence, Pkm can be viewed as the current flowing through
a resistor ρkm = 1/BkmVkVm driven by a voltage potential
difference θk−θm. Active powers injected at some buses are
then modeled as currents injected at the corresponding nodes
of the resistive network. Let us call this resistive network the
P -graph.

Similarly, but subject to a discrepancy to be explained
soon, Qkm can be viewed as the current flowing through
a resistor ρkm = 1/BkmVk driven by a voltage potential
difference Vk − Vm. The discrepancy relative to the active
power case is that the resistor is directional, ρkm 6= ρmk.
We refer to this directed resistive network as the Q-digraph.
Ricci curvature concepts for such digraphs are developed in
the context of Finsler geometry [1].

III. CURVATURE AND CONGESTION

This work suggests that one of the main steps towards
a succesfull congestion management method is to be able
to effectively detect congestion areas. Having that in mind,
this work proposes a geometric approach to the congestion
management problem. Basically, we propose, as core strategy
of the method, the utilization of the curvature notion to detect
areas prompt to congestion (negative curvature areas). The
bridge between negative curvature and congestion in power
networks was established in [17] and [19].

As mentioned above, this work will present results utiliz-
ing two different curvature definitions, namely: Ollivier-Ricci
Curvature and Effective Resistance Curvature.

A. Local Curvature Notion: The Ollivier-Ricci Curvature
The Ollivier-Ricci concept has recently been applied to

many different fields outside mathematics itself. A clear
example is the usage of ORC to differentiate biological net-
works corresponding to cancer cells from normal cells [7],
and the detection of changes in brain structural connectivity
in people with ASD (Autism Spectrum Disorders) [8]. It
need not be said that ORC has been long applied in image
processing too ( [16]); thus, ORC as a first step in CM seems
natural. The following subsection briefly defines the ORC for
graphs. A better detailed review of the ORC notion can be
found in [2], [3], [4], [5] and [6].

1) Wasserstein Distance, Earth Mover’s Distance (EMD)
and ORC: Let H be a discrete metric space equipped with
a metric d(., .), and let cij be the cost of moving a unit
mass from xi to xj ; both xi and xj belong to H . Denote
with p and q two probability distributions in H . Let πij ≥ 0
be the amount of mass to be transferred from xi to xj .
The so-called OPT (Optimal Mass Transportation) is the
problem of finding an optimal transfer of mass from p to q
with minimum cost. This can be formulated as ( [8]):

min
π

∑
i,j

ci,jπi,j , (1)

subject to∑
j

πi,j = pi, ∀i,∑
i

πi,j = qj , ∀j,

πi,i ≥ 0, ∀i, j,

(2)

where i and j are connected via an edge. If the previously
formulated problem is solved with a cost ci,j = d(xi, xj)

r

for any positive integer r, then it is said that the solution of
the optimization problem is the r-Wasserstrein Distance.
Moreover, if r = 1, the solution is called Earth Mover’s
Distance.

Let now (X, d) be a geodesic metric space equipped with
probability measures {px : x ∈ X}. Then the Ollivier-Ricci
curvature k(x, y) along the geodesic joining x to y is defined
as

W1 = (1− k(x, y))d(x, y), (3)

where W1 is the EMD distance and d the geodesic distance
within the space.

Recall now from Sec. II that our method will initially
calculate a resistive network model called P -graph; thus,
we will have a G = (V,E,w) graph, where V is the set
of nodes/buses, E is the set of lines/edges, and w is the set
of resistances/weights. Following our previous equations, the
geodesic distance d(x, y) of the ORC formulation for a graph
will be represented by the minimum number of steps/hops
needed to go from x to y. Therefore, after this recap, a
simple and short way to calculate the ORC k(x, y) can be
implemented through a linear programming script, and this
is what has been done in the forthcoming sections.
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Fig. 1. Flat areas of ρlrp/ρeff curves for the P -graph of the IEEE300 bus
system indicating negative curvature along the corresponding paths

B. Global Curvature Notion: Effective Resistance Curvature

We define the Effective Resistance Curvature of an ide-
alized infinite resistive network via the fraction, already
defined in [19],

lim
ρlrp(k,m)→∞

ρlrp(k,m)

ρeff(k,m)
≥ 1. (4)

In the above, ρlrp(k,m) is the resistance of the least resistive
path from k to m in the network, obtained for example by
the Bellman-Ford or the Dijkstra algorithm, and ρeff(k,m)
is the effective resistance “seen” at the port km. Precisely,
inject a current I at node k and draw the same current at
node m; then, ρeff(k,m) := (Vk−Vm)/I , where Vk and Vm
represent voltages induced at nodes k and m, resp.

Definition 1 (Negative Effective Resistance Curvature):
An infinite network is said to be negatively curved if (4) is
bounded and positively curved otherwise. A finite network
is said to be negatively curved if the fraction (4) is near its
lower bound.
This curvature concept is specialized for power flow prob-
lems, although it has some commonalities with the Gro-
mov [19], [20] and the Ollivier-Ricci [25] concepts. The
latter is a curvature concept, along a path rather than at a
vertex, directly related to transport and hence congestion.

If we construct the P -graph model (see Section II) of
the IEEE300 bus network and compute the various frac-
tions (4) for various buses, we obtain a family of curves as
depicted in Fig. 1. Recall from [17], [19] that each curve
corresponds to an initial node a and plots all possibles
ratios ρlrp(a, k)/ρeff(a, k) versus k 6= a. Given a bus a,
the various k-buses are relabeled so that the various ratios
ρlrp(a, k)/ρeff(a, k) are in increasing order.

Considering ρlrp(a, k)/ρeff(a, k) ≥ 1, the ratio could
reach its lower bound, making the related curve “flat” with
ρlrp(a, k)/ρeff(a, k) ≈ 1. In this situation, most of the
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Fig. 2. Curvature centrality of critical nodes, β(a), as per Definition 4.
The height of each bar represents the number of times each critical bus
appears within all critical lines.

current (in the resistive model) or power (in the power grid)
from a to k will flow along the least resistive path, hence
overloading the transmission lines along that path. In the
Monge-Kantorovich set up, this means that the transport is
along a privileged path; in the Ollivier-Ricci curvature set
up, it means that the curvature is negative.

From Fig. 1, it is clear that the IEEE300 P -graph model
has several overloaded lines corresponding to flat curves.
More accurate inspection reveals that there are at least 15
buses with a flattening behavior along the entire grid, which
is further betrayed by the consistent congestion behavior
depicted in Fig. 2 (Sec. III-C).

Conversely, if ρlrp(a, k)/ρeff(a, k) is monotone increasing
above 1, this implies that there are many paths of a resistance
slightly above ρlrp, and so the current or power will be
distributed along those various paths without overloading
some specific ones. In the Monge-Kantorovich set up, this
means that the transport is along many paths; in the Ollivier-
Ricci curvature set up, it means that the curvature is positive.

Going back to Fig. 1, recall that each curve is formed
by the points that represent the values of the ratio
ρlrp(a, k)/ρeff(a, k) for a fixed bus a and varying buses k.

Definition 2 (Critical Buses): A bus a is critical if its
related ρlrp(a, k)/ρeff(a, k) curve tends to be a flat line for
the majority of varying buses k.

Note that various points on a ρlrp(a, k)/ρeff(a, k)
curve represent ratio values for different paths, named
(a, 1), (a, 2), · · · , and so, the curve carries information about
many branches, which form different paths. Therefore, the
topological information extracted from a flat curve is directly
related to the transmission lines connected to its correspond-
ing bus.

Definition 3 (Critical Lines): A critical line is a transmis-
sion line connected to a critical bus.

The critical lines/buses are responsible for most of the
congestion in the grid.

Note: this work will indistinguishably use the critical
buses/lines idea for any of the two curvature notions quoted
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Fig. 3. Curvature Values of Critical Edges

above; thus, a critical bus/line would be the one associated
with negative curvature connotation regardless of the curva-
ture definition invoked.

C. New Curvature Centrality Concept

Different graph theoretic centrality measures specialized to
the power grid can be found in the literature [18], [21]–[23].
The present work, which follows in the footsteps of [17],
has the unique feature that it relates directly to congestion
(Def. 2 and Def. 3), rather than referring to a graph-theoretic
feature that can be related to congestion.

Definition 4 (Centrality): The curvature centrality β(a) of
a critical bus a is the number of times the bus a appears in
the “flat” paths revealed by the ρlrp/ρeff diagram.

Clearly, the flat areas of the ρlrp/ρeff curves are revealing
that the grid/network has serious topological defect that
creates high curvature centrality (hence congestion) as ev-
idenced by Fig. 2. Unfortunately, the topology of the grid
can only be changed at significant cost, so that we will have
to find less costly alternatives to manipulate the curvature.

IV. OLLIVIER-RICCI CURVATURE DRIVEN OPTIMAL
POWER FLOW (ORC-OPF)

A. Negative Curvature Detection via ORC

We start this section by building up a P-graph of the IEEE
300 bus system; this is done following Sec. II. Once the
resistive network of the power grid is acquired, we calculate
the Ollivier-Ricci curvature of every edge in the model,
aiming at detecting those edges that have negative curvature.
Bear in mind that what we actually have is a pure resistive
network model (P -graph) that can be seen as an undirected
weighted graph; thus, an ORC calculation for every edge is
straightforward using Sec. III.

Fig. 3 shows the ORC value for every edge in the grid. We
actually have 409 edges within the grid (x-axis), and almost
25 edges show a negative ORC value (y-axis).

Observe that this brief section has identified the
cause/reason to propose a congestion management proce-
dure; it has detected the critical edges, which are the lines
prompt to be overloaded within the grid. Therefore, if we are
able to smooth over the curvature throughout the grid, we
will be avoiding congestion. This is actually what is done in
the next section, and it is basically a heuristic procedure that
makes positively curved those areas of the grid originally
negatively curved.

B. FACTS, Storage Devices and the full ORC-OPF

Recall from Sec. II that the P -graph is basically a re-
sistive network model composed of ρkm = 1/BkmVkVm
resistances, where k and m are the different buses of the
grid (k 6= m), Vk and Vm are the voltages at buses k and m
resp., and Bkm is the susceptance value of the line (edge)
that joins buses k and m.

Clearly, in order to change the negative curvature value of
an edge, we need to change the resistance value (distance)
of such edge, with the aim of obtaining a positive curvature
value for it.

The only possible variables that we have available for
changing the resistances are the voltages Vk and Vm, and the
susceptance Bkm, but if we leave the voltages unchanged for
the grid voltage stability operations, we are only left with the
susceptance value Bkm (≈ 1/Xkm).

This is actually the only choice due to the DC assumptions
(mostly the Gkm ≈ 0 assumption), which sets the format of
the ρkm to be dependent only on voltages (Vk and Vm) and
the susceptance (Bkm).

This seems to be a serious limitation, because just a change
in the suceptance might not be enough to do a nontrivial load
balancing of the grid. Here is the approach that will be taken:
for the purpose of the ORC calculation on each edge, we will
enforce the DC assumptions in order to be able to have a
relevant P -graph and consequently a curvature value for each
edge. Once the curvature values are computed for all lines
and the negative curvature areas are spotted, we will switch to
AC conditions to smooth out the curvature (which is actually
more realistic). This will allow us to have Gkm 6= 0, and
consequently we will have a new variable (Rkm) to adjust,
which in turn will facilitate the curvature smoothing process.
Actually, while no control can be directly exercised upon the
line susceptances, the apparent susceptances can be modified
by, for example, FACTS series compensation to modify
line impedance and static synchronous series compensator
(SSSC) that connects an inductive or capacitive reactance in
series with the transmission line.

This curvature smoothing process (making the negative
curvature areas positive using FACTS) has been done heuris-
tically and it was done at the same time a collection of
loads were deployed in the surroundings of the critical edges.
Clearly, this second stage of the proposed method allows
energy storage by converting the power consumed by the
deployed loads to Gibbs free energy, while at the same time
minimizing the overall cost of generating active and reactive
power within the grid.



Once the load balancing is performed and the loads are
deployed, a new set of power flow equations are embedded
in a convex optimization algorithm, with the objective of
minimizing a polynomial cost function of the active and
reactive power of each generator. Clearly, this is also done
under the AC assumptions. We illustrate below the structure
of the nonlinear programming algorithm:

Algorithm IV.1: AC COST OPTIMIZATION(θ, V, Pg, Qg,)

minθ,V,Pg,Qg

∑gensize
k=1 CAC(Pg,k, Qg,k),

subject to

FAC(θ, V, Pg, Qg) = 0,

θi ≤ θi ≤ θ̄i, i = 1, ..., bussize,

vi ≤ vi ≤ v̄i, i = 1, ..., bussize,

P g,k ≤ Pg,k ≤ P̄g,k, k = 1, ..., gensize,

Q g,k ≤ Qg,k ≤ Q̄g,k, k = 1, ..., gensize.

return (θ, V, Pg, Qg)

In the algorithm, Pg,k and Qg,k stand respectively for the
active and reactive power generated by generator k, gensize
is the number of generators in the grid, x = [θ, v, Pg, Qg]
is the optimization state variable where θ is the phase angle
vector carrying the bus phase angle, v stands for the bus
voltages vector, Pg and Qg are respectively the vectors
of active and reactive powers generated by the generators;
bussize is the number of buses in the grid; CAC(.) is a
degree-2 cost function that weights the cost of generation of
each generator k:

CAC(Pg,k, Qg,k) = αg,k(Pg,k)2 + βg,k(Pg,k)+

+δg,k(Qg,k)2 + ψg,k(Qg,k) + γg,k.
(5)

FAC(·) = 0 represents the dynamic of the AC power flow.
Finally, (P g,k, P̄g,k), (Q

g,k
, Q̄g,k), (θi, θ̄i) and (vi, v̄i) are the

min and max limits for Pg,k, Qg,k, θi and vi, respectively.
Observe that the cost function is composed of ′gensize′

order-two polynomials that could be built up differently
for each generator; thus, we can weigh (choosing αg,k,
βg,k, δg,k, ψg,k and γg,k) each generator cost differently by
shaping each polynomial separately.

The combination of the different steps made till this point
constitutes what we call the Ollivier-Ricci Curvature Driven
OPF (ORC-OPF), and it is summarized in Table I.

The overall procedure has been implemented in Matlab
using the MATPOWER package. A modified version of
the Ulas Yilmaz ORC software has been generated and
implemented based on [16]. The results and a comparison
with a standalone AC OPF optimization method applied
to the IEEE 300 bus system are summarized in Table II.
The total amount of storages deployed were 24, all of them
deployed in the surroundings of critical lines. Also, a total
of 30 critical lines were adjusted (load balancing) so as to
maximize the curvature.

Ollivier-Ricci Curvature value for every edge after implementation of the ORC-OPF
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Fig. 4. Curvature Values of Critical Edges (no negative curvature values
are present)

Observe from Table II that the optimal cost of generation
proposed by the ORC-OPF spend almost 15% less energy
than the optimal generation proposed by the standalone OPF;
thus, these numbers clearly show the effectiveness of the
proposed method. Moreover, it can be claimed now that the
structure of the grid is no longer so prompt to congestion
as the original one, because the ORC-OPF method not only
has achieved less energy usage, but it has also smoothed
over the negative curvatures areas indicated in Fig. 3. This
can be clearly seen in Fig. 4, where no trace of negative
ORC values can be found—and this is actually the main
goal of the method. Notice that Fig. 4 shows more edges than
Fig. 3; the reason is that the edges belonging to the deployed
loads added after the ORC-OPF implementation have been
included. We also highlight the fact that in order to calculate
the ORC curvature we are using a graph abstraction, the
P -graph. This is basically done because the ORC needs a
graph and a distance to be computed. As a consequence, we
utilize the DC assumptions to eliminate the non-linearities
and generate a simple graph/model of the grid. Although
we worked with AC assumptions during the load balancing
and the OPF energy optimization, we analyze part of the
results (curvature maximization) under the DC assumptions,
because it is the fundamental tool to generate the ORC values
that guide the overall method. We however choose the AC
model within the main steps of the procedure, just to be
closer to the real behavior of the grid, where dissipation and
non-linearities are present.

V. EFFECTIVE RESISTANCE CURVATURE DRIVEN
OPTIMAL POWER FLOW (ERC-OPF)

Recall that, under the Effective Resistance Curva-
ture notion, the critical nodes are identified via the
ρlrp(k,m)/ρeff(k,m) tool/plots shown in Fig. 1 and such
critical nodes are more clearly shown in Fig. 2 along with
their centralities. This type of plots are basically showing
how many transmission lines within the grid are behav-



TABLE I
OLLIVIER-RICCI CURVATURE DRIVEN OPF ”MAIN STEPS”

ORC-OPF
(IV-B)

identify critical buses
adjust B’s and R’s (w / FACTS) of critical lines
deploy loads around critical buses
run AC Cost Optimization Algorithm

TABLE II
TOTAL COST FUNCTIONS VALUES (AC MODEL WITH CONVENTIONAL

OPF AND WITH ORC-OPF IMPLEMENTATION)

(dollars/hr) Total Cost Function Value
with conventional OPF 719730.00

with ORC-OPF 613730.00

ing as overloaded paths, which is captured by the ratio
ρlrp(k,m)/ρeff(k,m). In order to understand the identifica-
tion of these particular paths, recall that the branches of a tree
are always congested, and that their ρlrp(k,m)/ρeff(k,m)
ratios are always equal to one, because the shortest path
resistance coincides with ρeff (effective resistance) in the
branches of a tree. It turns out that the Effective Resistance
Curvature notion captures more negative areas/critical buses
than the ORC notion. Therefore, we should expect a better
perfomance than the ORC-OPF; and this is actually the
case. Applying exactly the same FACTS/storages allocation
procedure done in the ORC-OPF but utilizing the critical
buses depicted in Fig. 2, the overall ERC-OPF method yields
the cost-reduction outcome shown in Table III. Clearly, if
we compare Table II and Table III, we observe that the
ERC-OPF approach utilizes an optimal set of generators that
spend almost 30% less energy than the conventional OPF
case, and a 20% less energy that the ORC-OPF. All these
ERC-OPF improvements with respect to the ORC-OPF are
easily explained by the fact that the Effective Resistance
Curvature is a global curvature notion, and that the Ollivier-
Ricci Curvature is a local edge curvature calculation; thus,
the ERC captures a proper global snapshot/state of the overall
grid in each step of its calculation.

The drawback of this ERC-OPC approach is that is
more time consuming than the ORC-OPF due to its higher
complexity. Therefore, depending on the application, an a
priori suitable choice of the curvature notion before the
implementation of the CM approach might be pertinent.

TABLE III
TOTAL COST FUNCTIONS VALUES (AC MODEL WITH CONVENTIONAL

OPF AND WITH ERC-OPF IMPLEMENTATION)

(dollars/hr) Cost Function Value
with conventional OPF 719730.00

with ERC-OPF 492280.00

VI. GRID ENTROPY MEASURE

This section develops an entropy-based measure suitable
for weighted graphs. In our case, a weighted graph would

be a P-graph resistive network model of the power grid; a
graph that we have utilized to construct the two different
curvature notions that gave rise to this CM approach. The
idea is to define a measure that is positively correlated with
the curvature increment of the grid [28]. Recall that the
proposed CM method implements a curvature maximization
as a core step towards an efficient cost-effective curvature
driven OPF; thus, to have a topological index that measures
this increment would be helpful and handy for a simple
inspection of the new curvature state of the grid. The uti-
lization of graph metrics to analyze the structure of networks
have been extensively used in many different fields such as:
computer sciences, biology and mathematical chemistry [30].
Most of this work founds its origins in the well known work
of Shannon in the 1950’s. Other authors further developed
the entropy concept and applied it to graphs (Rashevsky,
Mowshowitz, Chen et al, [29]). Here we’ll use the R.
Kazemi [30] approach:

Definition 5 (Grid Entropy): For an edge weighted graph
G = (V, E, w), the entropy of G is defined by:

I(G,w) = −
∑
uv∈E

pu,vlog(pu,v) (6)

where
pu,v = w(u, v)/

∑
uv∈E

w(u, v). (7)

In our case, the weighting function w(uv) will be the
resistance value of each edge. In order to be able to compare
the new measure and the curvature we utilize the Global
Ollivier-Ricci curvature value, which is just the average
curvature value of the edge curvatures previously utilized
(Fig. 3 and Fig. 4).

Although the IEEE 300 bus system presents negative
curvatrue areas, the overall (average) Ollivier-Ricci curvature
value is a positive quantity; thus, after the implementation of
the ORC-OPF we should expect an average curvature incre-
ment within the grid. This is clearly explained by recalling
that the CM approach embraces a curvature maximization.
Therefore, we should also expect (as per [28] ) a positive
increment in the entropy; this can be observed in Table IV,
where a global Ricci curvature values has been compared
against the entropy of the power grid, before and after the
implementations of the ORC-OPF.

TABLE IV
GLOBAL CURVATURE VALUES VS GRID ENTROPY

(IEEE300 Bus, AC P-graph ) Global ORC Value Grid Entropy
before ORC-OPF 0.8633 5.2608
after ORC-OPF 0.9676 6.1607



As we mentioned above, the suggested CM approach
maximizes the curvature; thus, it reduces the negative areas
of the grid, making a more uniform or homogenous grid.
Therefore, to obtain a higher entropy after the ORC-OPF
implementation is natural and physically expected. If we go
back to the second law of thermodynamics, we clearly have
a higher entropy value (in an isolated system) as we move
towards an equlibrium; and this is actually what is happening
as we smooth out the curvature of the grid with the CM
approach. On the other hand, an initial heterogenous state of
the grid (with positive/negative curvature areas disseminated
throughout the grid) cannot have another entropy value than
a lower one compared with a posteriori homogenous state (
after grid curvature maximization).

VII. LINE RATING CONSIDERATIONS

As mentioned in previous sections, all of the simulations
have taken into account line rating considerations; this has
been accomplished by restricting the active power flowing
through the lines to a maximum of 700MW. This is actually
a way to account for the capacity of the lines, usually
determined by the thermal rating [33], [35], [36].

In particular, the following definitions have been applied:
Definition 6 (DC Utilization Factor): The utilization fac-

tor for the branch (k,m) under DC model assumptions is
defined as

µDC = Pk,m/LCk,m,

where LC stands for line capacity, the maximum active
power allowed (in MW) through the branch (k,m).

Definition 7 (AC Utilization Factor): The utilization fac-
tor for the branch (k,m) under AC model assumptions is
defined as

µAC =
√
P 2
k,m + P 2

m,k/LCk,m.

The impact of adding the line limitation constraints

µDC; k,m ≤ 1, µAC; k,m ≤ 1,

in the DC and AC ORC-OPF approach is barely noticeable
in the overall final cost function values for a line limit of
LCk.m = 700MW, although it underlines an important ad-
vantage within the complete method: the ORC-OPF scheme
is able to handle realistic line limits.

Fig. 5 shows a line utilization histogram (in percentage)
for the IEEE 300 bus system with a line rating of 700 MW
(on the active power of the branches) under AC analysis.
As mentioned earlier, the line rating inclusion within the
proposed load balancing encompasses a promising analysis
tool: it would basically consists in the direct inclusion of
thermal rating considerations for bare overhead conductors.

The increase of thermal stress due to variable weather or
other conditions [31], [32], [35], [36] could easily trigger a
line overloading that might end up in a blackout (e.g., 1996
Western North America blackout [33]). As another scenario,
when a major line trips, power is rerouted along other lines
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Fig. 5. Utilization Factor (µAC) for the AC model of the IEEE300
bus system with ORC-OPF implementations and a 700 MW active power
constraint

that may not have been designed to carry such an amount of
power and hence are likely to be overloaded and trip, leading
to a chain reaction effect [34]. Thus, a real time power flow
calculation that includes a DLR (Dynamic Line Rating [35])
could certainly help to assess power grid functionality.

VIII. DISCUSSION AND CONCLUSION

This work has proposed an Ollivier-Ricci / Effective
Resistance Curvature based electrical load balancing pro-
cedure that can take line rating into consideration. Once
the curvature analysis has identified the stress points,
line admittances are adjusted by FACTS, loads are being
deployed, and finally the generation is optimally readjusted
within feasibility constraints (including line ratings) in such
a way as to reduce the overall cost of generation.

It is suggested that the loads that are deployed to mitigate
congestion be used to store energy, even recharge electrical
vehicles, although the latter would require thorough schedul-
ing analysis, which is left for further research.

The case-study investigated in this paper is the IEEE 300
bus system, in which load balancing immediately appears to
be an issue. By choosing these nontrivial examples, the cur-
vature analysis has revealed restrictions that the topological-
combinatorial properties of the power network impose on
what can be achieved in terms of load balancing. From this
latter perspective, the paper has proposed to start re-thinking
what can be done, and at what cost. The best option appears
to be the combined load deployment/cost reduction.

As is known, the power grid is a dynamic nonlinear system
acting at different time-scales, some aspects of which, like
the fractal behavior of the PMU signals, are still poorly
understood [26], [27]. Since it is still very unclear how the
fractional dynamics betrayed by the PMU signal analysis
can be used for enhanced modeling, here we have limited
ourselves to utilize the AC model for combined curvature
smoothing and generation cost reduction.



The new ORC-OPF / ERC-OPF optimization procedure
has reduced the overall cost of generation, necessary to
sustain the power flow, relative to the standalone OPF. The
line rating considerations have opened a door for the future
inclusion of thermal rating calculations. Towards the end
of this work, a new Grid Entropy measure has also been
presented in order to accompany the curvature analysis of
the grid. This topological index basically gives a snapshot
of the increment of the curvature through the maximization
procedure embraced in the ORC-OPF approach, and it ex-
ploits the positive correlation between the entropy and the
Ricci curvature. Finally, as a future step of this work, an
optimization procedure that includes the hitherto unknown
dynamical effects revealed by the data driven approach
of [26], [27] could further enhance the combined curvature
smoothing/cost reduction for real grids.
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