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Abstract— We explore the use of policy gradient methods
in reinforcement learning for quantum control via energy
landscape shaping of XX-Heisenberg spin chains in a completely
model agnostic fashion. Their performance is compared to
finding controllers using gradient-based L-BFGS optimisation
with restarts, with full access to an analytical model, target
functional and its gradient. Hamiltonian noise and coarse-
graining of fidelity measurements are considered. Reinforce-
ment learning is able to tackle challenging, noisy quantum
control problems where L-BFGS optimization algorithms strug-
gle to perform well. Robustness analysis of the controllers
found under different levels of Hamiltonian noise indicates that
controllers found by reinforcement learning appear to be less
affected by noise than those found with L-BFGS.

I. INTRODUCTION

Finding robust solutions to Hamiltonian control of quan-

tum devices from superconducting qubits to spintronic cir-

cuits to microwave QED to trapped ions [1], [2], [3], [4]

is crucial to achieve high-fidelity operations in quantum

systems that form the building blocks of Noisy Intermediate

Scale era Quantum (NISQ) devices [5]. Although early-stage

devices are expected to be error-prone and in limited in size,

they could pave the way to revolutionize computation and

simulation at a fundamental level, and have already proven

to be effective tools in physically simulating molecular

networks [6], [7], [8]. Currently, there are two challenges for

NISQ devices: scalability with system size and robustness to

known and unknown uncertainties. For the former, most of

the problem lies in exploration of an exponentially growing

parameter space in the size of the system, which has been

addressed using variational approaches [9], [10] amongst

many others. In this paper we focus on the latter challenge:

optimal control with partial observability in the absence of an

accurate physical model, a regime that is particularly chal-

lenging for the dominant, model-based, open-loop control

approaches.

Two frameworks developed for such control — dual

control theory initiated by Feldbaum in the 1960s [11], [12]

and reinforcement learning (RL) for optimal control [13] —

both coalesce the control problem to approximate dynamic
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programming solved using Bellman’s principle of optimal-

ity [14]. The philosophy is that of initial exploration and

learning of the unknown system model by probing it for

data, and, later, exploiting that information to control it.

Initially the control actions taken by the controlling agent

are sub-optimal as it works with a highly uncertain model

although they can still be seen as optimal in the sense of

solving the Bellman equation step-wise based on the acquired

information. Iterated composition of the solutions achieves

near optimal solutions, eventually.

Our motivation for turning to RL is to look at adaptive

model-agnostic ways of performing general optimization

tasks; specifically, the quantum control problem of Eq. (1).

These methods, in principle at least, promise to have less

overhead compared with functional variation or Pontyragin-

variation-based methods for optimal control which use an

analytical model, and have been the focus of over half a

century of fruitful contribution to quantum control, includ-

ing algorithms such as GRAPE [15] and Krotov [16] that

utilise gradient-based optimisation of a model-based target

functional. Limited knowledge about the system and control

Hamiltonians as well as interactions with the environment,

however, has a strong effect on the performance of such

control schemes.

RL methods are either model-based or model-free, but all

methods can in principle be fully model-agnostic. Model-

based methods involve creation of a model from scratch,

whereas model-free methods skip this step entirely. Prior

work demonstrated the usefulness of deep RL for quantum

optimal control in its application to synthesis of transmon

gates [17], coherent transport by adiabatic passage through

semi-conductor quantum dots [18] and robust two-qubit

gmon gate synthesis [19]. RL is an interesting paradigm

to follow as it aims to tackle and optimize the trade-off

between exploitation and exploration that is the hallmark of

dual control.

In this paper we employ RL to find robust quantum

controls with a fully model-agnostic approach using single

shot measurements, which can be collected experimentally.

Instead of passing unitary operators or density matrices as

the observable information to the RL agent, as considered

in previous work, we only give it access to experimen-

tally observed data and the control parameters that it can

change [10]. This is in line with real world scenarios where

an RL agent might be needed to be deployed in an exper-

imental setting with high levels of uncertainty, commonly

seen in current setups. We further provide a computational re-

source comparison between some classes of policy-gradient-



based RL algorithms to motivate our choice of PPO (Prox-

imal Policy Optimisation) as the best performing algorithm.

We also demonstrate the resilience of RL methods in finding

optimal controllers to (1) measurement and (2) Hamiltonian

noise, where analytical methods break down or consume too

many resources. Of course analytical model optimization has

an advantage over RL when the model describes the physical

system well, as no exploration is required. Increasing uncer-

tainties in the model, however, make an RL or exploratory

approach necessary. Moreover, although L-BFGS is more

likely to find high-fidelity controllers, preliminary robustness

analysis for the controllers found by RL suggests that they

may be more robust to noise than those found by L-BFGS.

This paper is organized as follows. Section II presents

the control problem formulated in an RL paradigm and its

noise model augmentations. Main results about algorithmic

performances of RL and quasi-Newton methods and their

robustness analysis are presented in Section III. Section IV

presents a discussion of this work and potential future

directions.

II. PRELIMINARIES

A. The Control Problem

We consider a simple spin-1/2 system, the XX-Heisenberg

spin chain model, to introduce our formulation of the quan-

tum control problem for RL. Its Hamiltonian Hspin is

Hspin = HC +H0 =

N
∑

n=1

∆nHn +H0

:=

N
∑

n=1

∆nZn +

n
∑

m 6=n

Jmn (XnXm + YnYm)

(1)

where HC is the control Hamiltonian and H0 describes the

natural spin dynamics. Xn = Fn(σx) := 1
(1)⊗· · ·⊗1(n−1)⊗

σ
(n)
x ⊗1(n+1) · · ·⊗1(N) is the expanded Pauli X operator σx

applied on the n-th spin in the system; ∆ = {∆n} are ex-

ternal control parameters; Jmn are the interaction couplings

between spin n and m. YN , Zn are defined equivalently to

Xn for the Pauli operators σy and σz . We only consider a

spin chain with uniform nearest-neighbour couplings such

that Jn,n±1 = 1 (and all other entries are 0), which can be

thought of as a type of quantum wire. The spin network

Hamiltonian Hspin commutes with diagonal operators and

therefore the dynamics can be decomposed into excitation

subspaces [20]. Here, we are only concerned with single

excitations, i.e., only one bit of information can propagate

through the network at a given time, for simplicity. Therefore

we have the single excitation subspace Hamiltonian

Hss :=
∑

n

∆n|n〉〈n|+
∑

m 6=n

Jmn|m〉〈n|. (2)

The unitary time evolution of the single bit propagating

through the network is given by the Schrödinger Eq.,

i~ d
dt
|ψ(t)〉 = Hss(t)|ψ(t)〉, where |ψ(t)〉 is the N dimen-

sional spin-state vector. This is solved by

|ψ(t)〉 = T exp

[

−i

∫ T

t0

Hss(t) dt

]

|ψ(t0)〉 = U∆(T )|ψ(t0)〉

(3)

where time t is measured in units of 1/~ and U∆ is the

unitary exponential of the generating Hamiltonian from time

t0 to T and T is the time ordering operator. The suffix

∆ makes the dependence of the unitary on the control

parameters explicit. Consider some target state |ψ∗〉 and a

state propagated by the unitary from an initial state |ψ(t0)〉.
The state propagation performance is given by the fidelity

F∆ := |〈ψ∗|U∆(T )|ψ(t0)〉|
2, (4)

measuring how close the propagated and target states are.

The resulting optimal control problem is the determination

of the control parameters ∆ that, e.g., represent the action

of applied external magnetic fields, s.t.

∆∗, T ∗ = argmax
∆,T

F∆. (5)

We specifically consider transitions between one-hot en-

coding state vectors (canonical Euclidean basis vectors),

consistent with a single bit propagating through the network.

The most common paradigm for quantum control is dy-

namic [21], [22], i.e., assuming time-dependent controls,

∆n(t), the implementation of which typically requires the

ability to rapidly modulate or switch controllers imple-

mented by physical fields (e.g. lasers or magnetic fields).

An alternative to dynamic control is time-invariant control,

i.e., time-independent control parameters ∆n [23]. This is

analogous to shaping the potential landscape to facilitate the

flow of information from an initial state to the target state.

For example, information encoded in electron or nuclear

spins in quantum dots whose potential can be controlled

by varying voltages applied to surface control electrodes,

creating a potential landscape. The static control problem

has fewer parameters, and so, in some sense, is simpler and

smaller. Moreover, previous work found evidence concerning

good robustness properties of the static controls [24]. They

may also be simpler to implement experimentally as we

do not need to modulate control fields, or could be part

of a more complex dynamic control scheme. However, the

optimisation landscape is challenging [23], and there is no

guarantee that the controllers ∆n found are robust with

respect to uncertainties in the system and interactions with

the environment.

B. Reinforcement Learning Control Paradigm

RL is formulated in the context of a finite Markov decision

process (MDP): given an initial state S , a next state S ′

can be achieved that carries with it some reward R by

performing some action A. State transitions are assumed to

be Markovian and probabilistic and captured by the dynamics

model P (S ′,R|S,A), indicating the probability of going

from S to S ′ with the action A, gainingR. A trainable policy



function π(A|S) is a non-parametric probability distribution

of executing action A given state S . An RL agent following

π and interacts with an environment E associates a state

transition Y : S
A
−→ S ′ with a reward function R(Y ). A

state-action value function Q(S,A) or the value function

V (S) = maxaQ(S, a) is learnt via the feedback loop inter-

action of π with E . The environment can be noisy and highly

stochastic and yet through the high learning potential of

differentiable neural nets as function approximators, a near-

optimal π or Q can be learnt for general control tasks and

more [25]. Learning Q, for example, involves approximately

solving the Bellman optimality equation iteratively, as an

update rule, at every timestep k,

Qk(s, a) := Eπ

[

∞
∑

k=0

γkRτ+k+1|Sτ = s,Aτ = a

]

(6)

≡
∑

s′,r

P (s′, r|s, a)
[

r + γmax
a′

Qk−1(s
′, a′)

]

where γ is some future discounting factor and s′, a′, r are the

summed over next state, next action and reward. Note that

Qk is also the expectation over different policy functions

π of the total discounted rewards obtained from the current

timestep onwards.

General theorems for policy and Q (or value) functions

guarantee iterated policy improvement. This involves com-

puting a new policy, e.g., π′(s) = argmaxa′ Q(s, a′) for

actions a′ drawn from some old policy π. A model is thus

not needed for approximately solving the Bellman equation

as we can directly optimize over the policy by successively

computing better policies (e.g. greedily) to yield an optimal

Q function Q∗(s, a),

Q∗(s, a) = max
π

Q(s, π(s)). (7)

For continuous state and action spaces, this approach does

not work well. For such high dimensional spaces, we op-

timize over the policy by making use of the gradient of

some expected cumulative performance distribution in terms

of the gradient of a differentiable policy πθ. Here, πθ is

represented by a linear two-layer neural network with θ
nonparametrically denoting its trainable weights and biases.

We assume a similar nonparametric neural network form for

Q and/or the value function. Many policy gradient algorithms

are based on this idea [25]. Using backpropagation [26] to

update θ in the direction of the policy gradient, we improve

the policy πθ. By approximately solving the Bellman Eq. (6)

iteratively for finite steps, we evaluate how well it does.

Improvement and evaluation are repeated until a convergence

criterion is met that we state below.

For our control problem, we define the model agnostic

MDP: for learning timestep τ , let Sτ := {∆τ−1, tτ−1} and

Aτ := {δ∆τ−1, δtτ−1} be an action changing Sτ by the

given values. The reward is Rτ := F(|ψτ−1〉, |ψ
∗〉) where

tτ−1 = T is time for which the Hamiltonian is evolved. The

readout time tτ−1 with the ∆τ−1 are the control parameters

for π to change such that the reward is improved. Note

that this means π is a control landscape exploration strategy

with the aim to find control parameters that achieve the

state transition. So the goal, rather than the path to get

there, is important, even if of course a shorter path makes

finding the goal more efficient. We construct an environment

E that a differentiable policy πθ can interact with to obtain

(Sτ ,Aτ ,Rτ ). The state vector satisfies Sτ = Sτ mod Slimit

and we set the the limit Slimit to be ±10 for ∆τ−1 and 30
for tτ−1 to ensure that the control parameters are physical

and realisable in experiments. A reward threshold, e.g. 0.99,

is set as a convergence criterion yielding a single solution

vector S∗τ effectively reducing the problem to optimal time-

independent Hamiltonian searching. The RL optimization

procedure is run for some number of epochs until the reward

threshold is achieved. Each epoch consists of a fixed number

of timesteps of exploring the landscape from an initial

random position. The policy parameters θ and the Q function

are updated via backpropagation every epoch.

The utility of the fact that RL assumes nothing about the

analytical form of the model is expected to be useful if the

environment E is stochastic. To test this hypothesis, we con-

sider two noise models: (1) directly augmenting Hss with a

structured perturbation P ∼ N (0, σ2
noise) where P is a matrix

of the same form as Hss, i.e. tridiagonal, with normally

distributed random values with variance σ2
noise and mean 0.

This simulates noisy or tunably inaccurate physics, e.g. due

to leakage of spin couplings. (2) coarse-graining the fidelity

Rτ to simulate single-shot or inaccurate measurements by

replacing it with R̃τ ∼ Bin(M,Rτ ), drawn from a binomial

distribution where M is the number of measurements made

and Rτ , the true fidelity, is the binomial probability and R̃τ

represents the average single shot measurements to estimate

the fidelity probabilities.

We only consider leakage within the nearest neighbour

spins. Another possible source of noise could be leakage to

the next nearest neighbours due to cross-couplings between

spins in transmon systems or finite laser beam sizes in cold

atom or ion systems. For the purposes of this work, however,

we neglect next-nearest neighbor coupling as it is negligible

or can typically be mitigated in practical systems. Note that

we have also made the actions Aτ noisy by perturbing the

diagonal of Hss but we could have also coarse-grained the

actions to account for the finite resolution of the magnetic

or laser field that actually implements the controls in a real

experiment.

C. Policy Gradient Reinforcement Learning Algorithms

Within the policy gradient subset of RL, we try a number

of algorithms to empirically evaluate which one is most

suitable for our static control problem. We consider trust

region policy optimization (TRPO) [27], proximal policy

optimization (PPO) [28], deep deterministic policy gradi-

ent optimization (DDPG) [29], twin policy delayed DDPG

(TD3) [30] and REINFORCE [25].

REINFORCE is a pure policy-based algorithm that applies

a stochastic gradient ascent update to the policy parameters

θ ← θ + ∇Vπθ
(S0) for some initial state S0. The value

function gradient is computed using the policy gradient



theorem as Eπ

[
∑∞

k=0 γ
kRτ+k+1∇πθ/πθ

]

via Monte Carlo

sampling over trajectories following π.

The others are actor-critic algorithms with an acting policy

critiqued by Qπθ
or Vπθ

. The actor-critic methods make use

of a replay buffer to store MDP transitions of the form

(Sτ ,Sτ+1,Aτ ,Rτ ) and update Qπθ
or Vπθ

following the

Bellman update (Eq. (6)) by random sampling batches of

{S ′,S,R}. TD3 and DDPG make use of the deep deter-

ministic policy gradient for θ updates [31] and TRPO and

PPO use a variant of the natural policy gradient [32]. TD3

uses two Q functions and backpropagated updates are in

the direction of least change while DDPG employs a vanilla

combination of Q and a deterministic policy function jittered

with correlated exploration noise. Note that there is no

objective constraint on the policy that makes sure it does not

vary wildly during parameter updates for different episodes.

PPO and TRPO improve upon this by using a KL-divergence

constraint between the new and old policy to make sure its

variation is constrained during each update. TRPO uses a

trust region method [33] to compute the Hessian of the KL-

divergence with a backtracking line search [34] to update the

parameters of the policy. PPO is simpler and uses clipped

variation bounds on the KL-divergence that is used directly

in the parameter updates of the policy.

III. RESULTS

A. Cost of Reinforcement Learning Algorithms

We first analyse the cost of the policy gradient algorithms

from Section II-C. The costs are expressed as the number

of environment E (or target functional) calls, corresponding

to estimating the fidelity via single-shot measurements, for

an algorithmic run that successfully terminates at a fidelity

threshold. This closely links the performance to experimental

costs and makes different algorithms comparable without

resorting to timing or iteration counts.

We choose to study a noisy transition |0〉 → |2〉 for

chains of length N = 3, . . . , 7. We use 100 single-shot

fidelity measurements to estimate the fidelity of a controller

and a Hamiltonian perturbation noise of σnoise = 0.05. The

“perceived” fidelity is the stochastic fidelity produced by the

noisy environment, as observed from noisy measurements.

We compare it to the “true” fidelity of the controller under

ideal conditions without noise. A perceived fidelity threshold

of 0.99 is set as termination criterion. Fig. 1 shows the

median performance of DDPG, PPO and TD3 over 50 runs.

In terms of environment calls, DDPG performs significantly

worse compared to PPO and TD3, but it is more difficult to

decide between the other two.

TRPO and REINFORCE were excluded from the study

as sufficient statistics could not be obtained. Their behaviour

was highly variable and inconsistent due to a lack of suc-

cessful termination which prevented further analysis. For

REINFORCE, we suspect that this was because of the

absence of a replay buffer to sample a sufficient variation

of transitions and a value/Q function that maps actions

to expected rewards to ground policy parameter updates.

Similarly, TRPO, although successful in achieving fidelities
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Fig. 1. Top: Cost comparison between PPO, TD3 and DDPG for a transition
from |0〉 to |2〉 for chains of length N = 3, . . . , 7 with 100 single shot
measurements and σnoise = 0.05. The algorithms were run 50 times and the
median E calls are plotted with the interquartile range shown to highlight
variation. DDPG is worse compared to the others. A perceived fidelity
threshold of 0.99 was set as the termination criterion. Bottom: True fidelities
for each case. The true fidelities of the controllers generally deteriorate with
increasing chain length.
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Fig. 2. Robustness analysis for PPO, TD3 and DDPG for a transition
from |0〉 to |2〉 for the 50 controllers found in Section III-A for chains
of length N = 4, 5. Ten levels of perturbation noise σnoise = 0, . . . , 0.1

are considered for each controller which is evaluated ten times to yield 500

points per box-plotted fidelity distribution. Left: The increase in interquartile
width of the box plots is slowest for TD3 followed by DDPG and then PPO
which performs most robustly under this measure. Right: The increase in
interquartile width of the box plots is slowest for PPO followed by DDPG
and then TD3. Here the length N is chosen to highlight the worst case
MCRA for TD3 and for PPO.

larger than 0.99 on complicated transitions such as |0〉 → |3〉
for N = 7, was too complicated algorithmically (e.g. the

Hessian computation for the KL constraint) and took much

longer than the rest.

B. Robustness of Reinforcement Learning Controllers

The robustness of the controllers found by RL in Sec-

tion III-A remains unclear and serves as a further criterion to

choose a suitable RL algorithm. We conduct a Monte Carlo

robustness analysis (MCRA) using variable Hamiltonian

perturbation noise σnoise of the 50 controllers computed for

each chain length for all three algorithms. For each controller
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Fig. 3. Comparision between L-BFGS, PPO and randomly guessing
controllers for a transition from |0〉 to |2〉 for chains of length N = 3 to
N = 10 without noise. The algorithms were run 50 times and the median
E calls are plotted with the interquartile range shown to highlight variation.
A threshold of F = 0.99 is set for termination of a run. PPO performance
is upper bounded by random guessing and lower bounded by L-BFGS with
access to a perfect model.

Sτ found, we perturb the Hamiltonian Hss using noise

of the same triagonal form with mean 0 and the variance

σ
(i)
noise = 0.1k/9, k = 0, . . . , 9. We then evaluate the true

fidelities F of the controller Sτ for each level of perturbation

without any additional noise. We repeat this ten times for all

50 controllers and combine the results into a single fidelity

distribution. This allows us to judge the expected fidelity of

the controllers found by the algorithm.

The distributions are represented non-parametrically as 1D

box-plots as shown in Fig. 2 (the other cases are similar, but

are omitted due to space limitations). This figure highlights

that some fidelity distributions are heavy tailed with many

outliers, meaning there is significant variation of fidelity

between some controllers under perturbation. DDPG con-

trollers, despite making more function calls, were the least

robust when it came to preserving the interquartile width of

the performance distribution. For PPO vs. TD3, there are

cases where TD3 is better than PPO’s and vice versa. How-

ever, PPO’s performance was more consistent compared with

TD3’s. TD3, similar to REINFORCE and TRPO, showed

a high variation in successful termination, getting stuck

indefinitely at local minima for some problems, and there

were gaps in the collected statistics due to timeouts. So we

were only able to collect statistics for some N for some of

the cases in Section III-A without rerunning multiple times.

On balance, we find that PPO performs most consistently

compared to the other RL algorithms for multiple repetitions

for different spin transitions. Therefore, we decided to focus

on PPO for the comparison with gradient-based optimisation.

C. Cost of PPO vs. L-BFGS

A first step to compare our chosen RL algorithm, PPO,

with gradient-based optimisation is to analyse the costs in

terms of number of E calls (see Section III-A) under the

noiseless dynamics of the ideal model. For gradient-based
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Fig. 4. Number of E calls comparison between L-BFGS and PPO for a
transition from |0〉 to |2〉 for a chain of length N = 4 as a function of
Hamiltonian perturbation noise σnoise with a termination fidelity threshold
of 0.98. The algorithms were run 50 times and the median E calls are
plotted with the interquartile range shown to highlight variation. PPO E
calls remain around 10

4. An approximately exponential rise in E calls for
L-BFGS is observed.

optimisation, we use L-BFGS with restarts, which performed

well on the studied control problem in earlier work [23].

Fig. 3 shows how function calls scale with the length

of the spin chain, N = 3, . . . , 10, for a transition |0〉 to

|2〉 for PPO, L-BFGS and randomly guessing controllers.

The randomly guessed controllers are used to benchmark

potential deviations in the computational difficulty of the

problem. We stop once a fidelity threshold of 0.99 is crossed.

The spin chain transition is computationally similar for all

N as it depends largely on the relative distance between

the spins, the control and time constraints, which are kept

constant for all the problems we study. There is an initial

jump from N = 3 after which all algorithms manifest a

relatively flat increase in the number of function calls as

the length of the chain increases. This is likely because

transitions in the short 3-chain are easier to achieve as simple

Rabi oscillations which are generally trap free, and due to

the existence of analytical solutions for this case which are

absent for longer chains.

It is not surprising to observe that for an accurate model

L-BFGS is mostly two orders of magnitude better than PPO.

PPO has to consume most of the calls to build up an internal

representation of the model before it can start optimizing.

Adding small stochastic noise to the Hamiltonian should

degrade the performance of L-BFGS considerably in terms

of the number of function calls. To analyze this, we relax

the termination constraint on fidelity to 0.98 and consider

only perturbations to Hss without single shot measurement

noise. Note that single-shot measurement or perturbation

noise renders L-BFGS incapable of estimating fidelities

over 0.99 without making many millions of function calls

(hence the reduction to 0.98 here). Fig. 4 demonstrates an

approximately exponential rise in E calls for L-BFGS as the

strength of the perturbation is increased from σnoise = 0 to

σnoise = 0.1. Clearly Hamiltonian perturbations deteriorate
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Fig. 5. Comparison of 100 model-based L-BFGS controllers computed
without noise and 100 PPO controllers trained only under Hamiltonian
perturbation noise σnoise corresponding to the x axis value for transitions
to the middle and end of chains of length N = 4, 5.

the performance of L-BFGS, while PPO keeps performing

on a similar level than without noise. Single shot measure-

ment noise that was considered in Section III-A has not

been employed here, as this would have made the task L-

BFGS even harder and it has not been designed for noisy

optimisation tasks. Overall these results are likely due to

high sensitivity of the optimization descent step of L-BFGS

to small perturbations in the low rank Hessian components.

This causes the number of steps it has to take in the control

landscape to steeply increase. It is interesting to note that E
calls go down for PPO from around 105 to around 104 in

Fig. 3, and we observe a similar effect in Fig. 1.

D. Robustness of PPO and L-BFGS Controllers

We conduct an MCRA (see Section III-B) to compare

robustness of 100 controllers found by model-based L-

BFGS under ideal conditions and model-free PPO under

low Hamiltonian perturbation noise. There are two cases

worth considering: (1) Robustness of PPO controllers found

at different levels of Hamiltonian perturbation; (2) The

robustness of PPO controllers w.r.t. Hamiltonian perturbation

found at a particular noise level. Both cases are compared to

100 L-BFGS controllers for each transition using the ideal

model without noise. The termination condition, in all cases,

is F ≥ 0.99.

For (1), we consider transitions to the middle and end for

N = 4, 5, as shown in Fig. 5. We use PPO controllers trained

with Hamiltonian perturbation noise σnoise that corresponds

to the noise level on the x axis from 0.01 to 0.1. We find,

as expected, that the width of the fidelity distribution for

L-BFGS controllers slowly increases as σnoise is increased

from 0 to 0.1. The expected fidelity is further dropping

from being concentrated around F = 0.99 to a very flat

width and increasingly heavier tail, down to F = 0. For

PPO controllers, however, we observe that at certain noise

levels, e.g., σnoise = 0.01, 0.04, 0.07, the controllers found

for all problems have narrow distributions compared with

L-BFGS. At other noise levels, e.g., σnoise = 0.08, 0.1
for N = 5, |0〉 to |2〉, they have wider distributions for

some problem, but also narrow distributions for others, e.g.,

σnoise = 0.08, 0.1 for N = 4, |0〉 to |2〉. We conjecture that

added structured perturbations may have a smoothing effect

on the optimization landscape which would result in either

filtration or creation of “barriers” near optima in some cases.

For (2), we consider in addition to the cases of (1), also

transitions to the middle for N = 6, 7. Here the PPO

controllers have been computed for low Hamiltonian per-

turbation noise σnoise = 0.01. Both the L-BFGS controllers

and the PPO controllers become worse with increasing noise

levels. However, the PPO controllers drop off slower, except

in the case of N = 6, |0〉 to |3〉. This suggests that overall

PPO is more likely to find robust controllers.

To investigate this further, the performance of a well-

performing PPO and L-BFGS controller for the N = 5,

|0〉 to |4〉 transition is compared. For each algorithm, out

of the 100 controllers found within the set of controllers

for (2), we select the one with the highest median fidelity

across the ten noise levels to account for the heavy tail nature

of the performance distribution. Then, for each controller,

the Hamiltonian is perturbed as Hss + δP where P is

the perturbation direction and δ its strength. P is sampled

uniformly on a 9D Euclidean sphere, created by the five

perturbation for ∆n and a further four for the coupling

strengths. The fidelity was computed along these directions

for a perturbation strength from −0.1 to 0.1. The density of

the curves is estimated at specific perturbation strengths and

plotted as a violin plot. Results are shown in Fig. 7. The

PPO controller is clearly not at a maximum of the fidelity,

so some perturbations have a better chance to improve the

fidelity. The L-BFGS controller is at a fidelity maximum,

which means that most perturbation directions, including

those on the couplings which are not control parameters,

reduce the fidelity. Similar behaviour has been observed for

other controllers.

IV. DISCUSSION AND CONCLUSION

Our main finding is that policy gradient RL methods allow

nonparametric constructions of optimization models even

under highly noisy conditions as seen in Section III-A where

pure model-based methods perform poorly as seen in Sec-

tion III-C. We have quantified costs in terms of the number

of function or environment calls. In the absence of noise, RL

performance is lower bounded by model-based optimisation

and upper bounded by pure random guessing. This implies

that a nonparametric model is being constructed. The cost of

model construction is relatively bounded by random guessing

for RL under noisy conditions. However, the number of calls
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Fig. 6. Comparison of controllers found by model-based L-BFGS without
noise and PPO trained under low Hamiltonian perturbation noise σnoise =

0.01 and perfect measurements. We consider transitions to the middle and
end of chains of length N = 4, 5 and to the middle of N = 6, 7.

is still high. Model-based RL or Bayesian methods could be

explored to reduce the reliance on information acquisition.

In Section III-B, a Monte Carlo robustness analysis and

consistency of PPO for variations of the energy landscape

control problem is used to motivate our choice of PPO

for comparison with L-BFGS with restarts to understand

robustness of controllers found by RL. We demonstrate that

RL controllers found under low Hamiltonian perturbation

noise levels are typically more robust compared with those

found by L-BFGS but there is variation within the quality

of their robustness that needs to be explored more as a

function of their clustering and correlation of locations in

the optimization landscape. It appears that in some cases

RL finds controllers that may not be optimal for the ideal

model, but perform robustly at high fidelity under noisy

conditions. This suggests that Hamiltonian noise in partic-

ular can improve robustness of some controllers. RL is a

promising avenue for feedback adaptive control with less

overhead compared with variational methods and is arguably

comparatively better with uncertainties. However, a careful

Fig. 7. Robustness comparison of a well performing PPO (top) and
L-BFGS (bottom) controller for N = 5, |0〉 to |4〉. The left plots (a)
and (c) show 1, 000 overlayed fidelity curves, sampled along different
Hamiltonian perturbation directions. The right plots (b) and (d) show
the density distribution of these curves at specific perturbation strengths,
sampling the fidelity at a given strength uniformly over the perturbation
directions.

construction of the control problem in an RL paradigm is

needed before its application.
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