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Abstract

Rhythmic surface Electromyographic (sEMG) bursts for which their returns occur at ir-

regular times are analyzed and compared among healthy and injured central nervous sys-

tems. The rhythmic electrophysiological activity in the present study has been defined as

“Bursting Rate Variability” (BRV) due to the inherent aperiodicity of successive sEMG bursts,

which are concomitant with “doublet” waveforms in the D8 subband of the Daubechies 3

wavelet decomposition of the raw signal. A key element in the analysis is the precise time-

localization of D8 doublets that requires a statistical waveform matching between the D8

doublet and the burst in the raw sEMG signal. This study has been conducted over a pe-

riod of 10 years, in which 7 healthy and 2 unhealthy individuals volunteered and presented

a total of ∼8,000 doublets: it was observed that doublets were more prevalent in healthy

than unhealthy subjects, and that the probability distribution of return times was best fitted

with Normal Mixtures in healthy subjects, compared to the Weibull distribution as the best

fit in unhealthy ones based on the corrected Akaike Information Criterion (AICc) for model

selection. Finally, the rate in the occurrence of doublets appears to be within 60-88 bursts

per minute, suggesting a possible connection between BRV and the heart rate dynamics.
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1 INTRODUCTION

1 Introduction

The surface electromyographic (sEMG) activity recorded along the paraspinal muscles has

been seen to present standing wave properties [1, 2] when the research subject is placed in

the prone position and is applied light pressure at some specific “gateway” points of the spine

(usually the neck and the coccyx) to elicit the oscillation.

The motion usually starts in a chaotic fashion at the distal ends of the spine, propagates cau-

dally, until it settles in a standing wave pattern, which can undergo “period halving bifurcations,”

transitioning away from chaos [3]. At that stage, no further digital stimulus is required, indi-

cating that the rhythmic movement is innervated by a Central Pattern Generator (CPG) [4, 5],

as argued in [1]. A further confirmation of the CPG hypothesis is that two quadriplegic subjects

have been able to sustain the so-called spinal wave [1, 6, 7].

Besides CPG, another important aspect of this movement is coherence at a distance; the antin-

odes of the wave are indeed in coherent motion, with a wavelength in the order of ∼1 m, hence

qualifying as coherence at a distance [8, 9, 10].

The specificity of this CPG-innervated, coherent motion is confirmed by the Daubechies 3

(db3) wavelet decomposition [11, 12] of the sEMG signal, more specifically, by the “doublet”

waveforms repeating themselves in an aperiodic fashion in the D8 subband of the wavelet de-

composition. Due to surface electromyography being a superposition of multiple Motor Unit

Action Potential (MUAP) trains (see [13, Fig. 3-4]), it is still a bit unclear at this stage whether

the observed “doublets” are two discharges of motor units firing in unison, or single discharges of

coupled motor units firing one after the other (see [14, 15, 16] for further details on the double

discharge phenomenon). In either case, the observed doublet waveform conforms to the defini-

tion of an “exceptional doublet” of [14, Fig. 5B], “exceptional” in the sense of large intradoublet

interspike interval. Indeed, the intradoublet interspike interval duration of ∼62.5 ms—that we

have measured peak-to-peak from the D8 doublet waveform—exceeds the conventional limits

of 2-20 ms according to the standardization of doublets set by the American Association of Neu-

romuscular & Electrodiagnostic Medicine [17]. However, it has been reported in [14] that the

standard range of doublets can be exceeded as Piotrkiewicz et al. [14] report exceptional dou-

blets with 37 ms of intradoublet time in the human soleus muscle. Furthermore, the Discrete

Wavelet Transform (DWT) has also served to obtain the doublet total time duration [18] of

∼125 ms measured from onset to offset of the wavelet waveform at scale 8, which spans the

time comprised by two wavelet transform coefficients at this scale.

Besides these early findings, the crucial observation that launched this research is the near-

synchrony between the onsets of the doublets observed on the D8 traces and the onsets of the
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1 INTRODUCTION

FIGURE 1

Raw paraspinal surface electromyographic signal of a healthy individual, superimposed with its 8-level

wavelet transformed sub-signal; its scalogram is shown below: The D8 doublet is a precise sequence of

(+) peaks and (−) dips, defined here as the π-κ-ρ-σ-τ sequence because of its similarity with the cardiac

cycle. The concordance between the D8 and the burst here appears naturally without preprocessing.

bursts of accrued sEMG activity visible on the raw signal traces, as shown in Figs. 1 and 2. The

“nearness” of the time localizations of the doublets and the bursts is crucial here.

By definition of the wavelet decomposition, the repetition of the DWT frame generating the

D8 subband is periodic, while the sequence of bursts is not. Therefore, some time-shifting of the
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1 INTRODUCTION

FIGURE 2

Raw thoracic surface electromyographic signal (in red) of control subject #4, superimposed with its 8-

level wavelet transformed sub-signal (in green); its scalogram is shown below: Note that at the first,

second, and third bursts the matching between the raw sEMG signal and its 8-level sub-signal is better

than the one at the fourth burst. The recovery of the matching between the fourth burst and its D8

doublet is shown in Fig. 4, where different time delays are applied before wavelet processing.

raw signal trace is necessary to acquire a good waveform matching between a specific burst and

its D8 doublet. It turns out that this time-shifting is different from one burst to the other, leading

to a variability of the time interval between successive bursts, which is referred to as Bursting

Rate Variability (BRV).
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2 METHODS

The empirical distribution of the time intervals between successive bursts differ from one

subject to another, but the types of continuous probability distributions already differentiates

the BRV of quadriplegic (Figs. 8a and 8b) versus control subjects (Figs. 7a, 7b, 7c, and 7d).

The quadriplegic subjects consistently presented the Weibull (Type III Extreme Value [19]) dis-

tribution as the best fit, and mixtures of normal distributions in the case of control subjects,

this discrepancy already points to some neurophysiological applications of BRV, but probably

more importantly, it could allow for a dynamical understanding of the bursting or doublet phe-

nomenon in abnormal conditions. The various sEMG signals are indeed generated by some

complicated dynamics, nearly impossible to model from “first principles.” However, the Gener-

alized Extreme Value (GEV) theory [20] endeavors to identify the qualitative properties of such

dynamics, no matter how complicated, from the return time of extreme events, like the bursts.

2 Methods

2.1 Methods: control and quadriplegic subjects

For our analysis, a population of 9 volunteers, 7 control (healthy) and 2 quadriplegic subjects

(presenting a total of ∼8,000 doublets) were chosen, the latter subjects with a cervical spinal

cord injury at the C5 vertebral level [1, 7].

To draw an objective comparison between the two types of subjects, the subjects with

quadriplegia and the healthy ones had their recordings taken during the same session. Before

recordings, the subjects had signed the Informed Consent drafted by the investigators and ap-

proved by the University Park Campus (UPC) Institutional Review Board (IRB) of the University

of Southern California.

2.2 Methods: electrode placement

The data utilized in this investigation have been recorded over a period of a little more than

10 years. All along those recordings, we have followed a consistent recording protocol: Surface

electromyography (sEMG) reduced-noise tripolar electrodes (“Uni Patch Tyco EMG Electrodes

Round Disk 7500 2.25 diameter Ag snaps”) were placed at cervical (C2-C3), thoracic (T4-T6),

lumbar (L3), and sacral (S2-S4) positions; all with the same sampling rate of 4,000 samples per

second.

The sensitive input prongs of the front-end electronics were initially at a 45-deg. angle

with the muscle fibers and subsequently aligned with the back-muscle fibers, without significant

difference observed in the results.
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2.3 Methods: equipment 2 METHODS

2.3 Methods: equipment

The most recent (<4 years) recordings were made with an Insight Discover sEMG station to-

gether with a Measurement ComputingTM USB-1608FS device for analog-to-digital conversion,

while the earlier recordings (10 years ago) were done with an Insight Millennium sEMG station

interfaced with a Computer Board PCMCIA DAS16/16 card analog-to-digital converter.

2.4 Methods: wavelet transform

We picked up the Daubechies DB3 wavelet decomposition, originally [1] for the motivation

that its D8 subband provided the best correlations among the subband signals at different points

along the spine (hence promoting the “coherence at a distance” aspect). Later [3], however, it

was discovered that under some conditions the D7 subband was preferable.

Parallel to this line of thoughts, it was found by the present and other investigators that the

mother function of the DB3 mimics the MUAPs detected by the electrodes [1, 21], which makes

the DB3 the ideal tool for picking up relevant waveforms in an otherwise messy sEMG signal

corrupted by noise and motion artifacts.

Furthermore, it was found that the D8 of the db3 allowed for accurate localization of dou-

blets most of the times [1, 2, 3]. A wavelet similar to db3, the Daubechies 4 (db4), appears

to mimic a doublet but did not provide satisfactory results as it failed to pick up the onset of

some bursts as accurately as the db3 did it. Even though the db4 has more rounded crests and

troughs, the db3 kernel still adheres more to the shape of observed electromyographic bursts

and the exceptional doublets of [14, Fig. 5B] as the amplitude of the first trough in the db3

wavelet is less negative than its second trough as in [14, Fig. 5B]; however, this reverses in the

case of the db4 kernel, in which the first trough is more negative than the second one. Another

wavelet tested face-to-face against db3, the Daubechies 2 (db2), did not clearly show the bursts

start and end points, compared to db3 that allowed better differentiation between two adjacent

doublets.

2.5 Methods: waveform matching

To solve the “shift variance” issue of the DWT of many signals [22] causing in our particular

application some of the D8 doublets not to have well-defined peaks and dips (see doublet #4

in Fig. 2), or causing the πκρστ peaks and dips to be horizontally offset with respect to the

raw sEMG (see the ρ-peak of doublets #1 and #3 in Fig. 2), we shift the sampling times of the
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2.5 Methods: waveform matching 2 METHODS

wavelet coefficients by delaying the time at which the DWT begins. This makes the coefficients

span different sections of the same raw sEMG signal.

A matching increment of the π-wave, πκ-slope, κ-wave, κρ-slope, ρ-wave, ρσ-slope, σ-wave,

στ -slope, and τ -wave with the raw sEMG burst around doublet #4 of Fig. 2 is obtained by

omitting the first 20, 40, and 60 samples (see Figs. 3b, 3c, and 3d, respectively) before wavelet

processing. This results in recovering the precise peak-dip sequence of the πκρστ complex of

doublet #4”’ in the raw burst signal, until achieving the benchmark waveform match of Fig. 1.

Due to the periodic nature of the DWT, continuing to delay the signal by omitting the first

80, 100, and 120 samples (see Figs. 3e, 3f, and 3g, respectively) before wavelet processing,

results in getting away from and losing the previously recovered peak-dip sequence obtained

with doublet #4”’. This implies that the amount of delay is not necessary to be longer than one

fourth of the time a single coefficient spans at this particular level, in our case, since an 8-level

coefficient spans ∼62.5 ms, then a 15 ms delay (omitting th first 60 samples) was enough to

recover the πκρστ peak-dip sequence of doublet #4 as shown in Fig. 3d.

As a consequence of the variability in the occurrence of the bursts, the process of delaying the

raw sEMG signal before wavelet processing to achieve optimal waveform matching is different

from one raw bursting waveform to another one. Fig. 4 shows how the best-suited time delay

for doublet #4”’ is not the best suited for doublets #1”’, #2”’, #3”’, as compared with doublets

#1, #2, #3 of Fig. 2 when no time delay had been applied.

To make the above procedure optimal, the errors of this πκρστ versus raw burst waveform

matching are gathered in a multi-objective optimization function, of which the Pareto front is

identified using expert rules. If a given delay for the πκρστ waveform parameters is on the

Pareto-optimal front as in Fig. 3d, then this provides a good match; whereas if some delays are

not on the Pareto-optimal front as those in Figs. 3a, 3b, 3c, 3e, 3f and 3g, then they do not

provide a good match.

The expert rules that automatically obtain the minimal error—illustrated in Fig. 3 with verti-

cal lines—between the ρ-wave locations of each D8 doublet and the peak of its raw burst consist

of a series of nested conditional statements (if-then-else rules) inside a for loop, with index value

that represents the chronological position of each doublet appearing in the time series, (see

flowchart of Fig. 5).

Due to the raw sEMG signal being corrupted with high-frequency noise, and in order to

increase the precision in finding the times at local maxima for each D8 doublet, a Savitzky-

Golay filter is applied to the raw sEMG before being processed by the expert system. In the

present study, three pre-programmed delays of 5 ms, 10 ms, and 15 ms have been entered into
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FIGURE 3

Raw thoracic surface electromyographic signal of control subject #4 (in red) centered around doublet

#4 of Fig. 2, superimposed with its 8-level wavelet transformed sub-signal when (a) no delay (in dark

green), (b) 5 ms delay (in dark blue), (c) 10 ms delay (in black), (d) 15 ms delay (in magenta), (e) 20

ms delay (in light green), (f) 25 ms delay (in yellow), and (g) 30 ms delay (in cyan) is applied to the

raw sEMG signal before wavelet processing, where the peak time errors of the ρ-wave are |e4′′′ | < |e4′′ | <

|e4′(4) | < |e4′ | < |e4′(5) | < |e4′(6) | < |e4|: The D8 doublet with the smallest error (#4”’) belongs to the

Pareto-optimal front, whereas D8 doublets #4, #4’, #4”, #4’(4), #4’(5), and #4’(6) do not.

the expert system algorithm as an example to attain the best waveform matching among distinct

delays. Fig. 3 shows snapshots of the effect of delaying the sEMG signal every 5 ms delays. Since

the DWT is periodic, a complete cycle occurs in 30 ms, thus, guidelines on pre-setting the delay

values are in the range from 1 to 30 ms. It is worth noting that the expert system also considers

the case of no delay time for the D8 doublets that are naturally matched with the sEMG bursts,

which is represented with a zero-delay time.
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2.5 Methods: waveform matching 2 METHODS

FIGURE 4

Raw thoracic surface electromyographic signal (in red) of subject #4 (control) time-shifted by 15 ms (in

red), superimposed with its 8-level wavelet transformed sub-signal (in green); its scalogram is shown

below: A time shift of 15 ms (skipping the first 60 samples) on the raw signal before wavelet processing

is sufficient for the fourth D8 doublet to better match the raw sEMG signal than when no time shift is

applied to the raw signal as in Fig. 2.
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The complete sEMG signal processing technique, from data collection to probability distri-

bution fitting, passing through 8-level DWT, delaying, smooth filtering, and including the expert

rules is depicted in the flowchart of Fig. 5.

2.6 Methods: empirical vs theoretical distributions and statistical software

There are two ways to construct the histogram of the time between the ρ-waves of successive

D8 waveforms, or “return time” for short: In one procedure are included in the sample set only

those ρρ-intervals between ρ-waves that are naturally matched with their corresponding bursts

(without time shifting), discarding those that do not appear to match, such as doublet #4 of

Fig. 2. However, some doublets might appear to naturally match with their sEMG bursts—for

instance, doublets #1 and #3 of Fig. 2—and considering the ρ-wave locations of these two

doublets would add unwanted observational errors to the distribution fit analysis since a better

match was found by the expert system (see doublets #1’ and #3’ of Fig. 6). These undesired

errors can be eliminated in the other “enhanced” procedure achieved with the expert system and

the time-shifted DWT at various time delays; therefore, the latter procedure shall be preferred

to increase preciseness in the distribution fitting of return times.

In the enhanced procedure, the histogram is constructed with accrued accuracy with ρρ-

intervals after optimal time shifting to match all bursts with their respective D8’s. The latter, by

the same token, also increases the sample size.

The statistical software SAS® Studio 3.4 and JMP Pro 13 (both by the SAS Institute) were

used to find the theoretical probability distributions that best fit the frequency histograms of

doublet return times based on the (corrected) Akaike Information Criterion (AICc) for model

selection; the results are summarized in Table 1. In the case where the Weibull distribution was

the best ranked in the AICc sense, it was checked for a goodness of fit using the Cramer-von

Mises-W test. As for the best-ranked normal mixture distribution, the Pearson’s chi-squared test

was used. In both cases, the null hypothesis (H0) states that the observed frequency distribution

is consistent with the estimated theoretical distribution, and small p-values (<0.05) would reject

H0 in favor of the alternative hypothesis (H1) that the data is not from the theoretical distribution.
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3 MODEL SELECTION CRITERION AND SAMPLE SIZE GUIDELINES

FIGURE 5

Complete sEMG signal processing and analysis flowchart: The raw sEMG signal passes through d pre-

defined delays to time shift its 8-level sub-signal and its smoothed sEMG signal. In the example of this

paper, the number of delays is d = 3, with values of θ0 = 0 ms, θ1 = 5 ms, θ2 = 10 ms, θ3 = 15 ms. Thus,

the expert system finds the minimal errors among ρ-waves (shown in Fig. 4) between the d + 1 pairs of

signals that come from the same sEMG trace, enhancing waveform matching and providing the Pareto

front ρρ-interval times (and/or ρ-wave magnitudes) for probability distribution analysis.

3 Model selection criterion and sample size guidelines

3.1 Best fitting probability distribution

Akaike’s approach to finding the best probability distribution fit is a Maximum Likelihood Es-

timation technique [23] that seeks to provide a measure of fitting relative to distinct probability

models by estimating parameters that maximize their Likelihood function.

The corrected Akaike Information Criterion, (correction for overfitting) is defined as AICc =

AIC + 2k(k+1)
n−k−1 , where n is the sample size, k is the number of parameters, and AIC = 2k −

2LogLikelihood(θ), where θ represents the parameters to be estimated for a given model.

Let X1, X2, . . . , Xn be a set of continuous random variables with joint density function

fθ(X) depending on the parameters θ. The Likelihood function L(θ) = fθ(x1, x2, . . . , xn),

sometimes written as L(θ|x), is the joint probability distribution fθ(x1, x2, . . . , xn) with pa-

rameters θ of the set of n random variables evaluated at the observed values from the sample.

The LogLikelihood represents the natural log of the Likelihood function, which is often pre-

ferred as it simplifies the calculations of critical values.

12



3.2 Sample size guidelines3 MODEL SELECTION CRITERION AND SAMPLE SIZE GUIDELINES

Since there is no prior knowledge of the underlying distribution of doublet return times, the

AICc—by means of estimating the parameters that provide the largest plausibility for obtaining

the observed values for several probability models—provides a point of comparison among the

probability models that the samples are most likely to come from, serving as a means for model

selection. Some of the models tested face-to-face in this sense include the Gamma, Weibull,

Exponential, LogNormal, GLog, Johnson Su, Johnson Sl, Gaussian, and Normal 2 & 3 Mixture

probability densities.

Akaike [23] reformulates the maximization of the LogLikelihood function by working with

its negative value (minimization of the LogLikelihood function), in such case, lower values of

AICc denote better model fits.

Since the AICc only provides a ranking among different types of distributions and does not

warn for poorly fitted models, a Goodness-of-fit test for the model with the lowest AICc comple-

ments this part of the model selection technique, ensuring that the best-ranked model represents

a good fit.

3.2 Sample size guidelines

To construct guidelines on the minimum and the maximum number of return times to con-

sider in the distribution fit analysis, we performed simulations (with 5,000 trials at different

sample sizes in the range from 5 to 5,000) by random sampling from an underlying distribution

and obtained the number of times a given distribution was the best fit in the AICc sense.

The two-parameter Weibull distribution (α, β)

f(x;α, β) =
β

α

(x
α

)β−1
e−(

x
α)

β

; for α, β > 0; x ≥ 0,

where α and β are the scale and shape parameters, respectively, was found to be the most

robust at small sample sizes as it required the smallest sample size (n) to be identified as the

best fit most of the trials. For instance, Fig. 9 in the Appendix section shows that at least n ≈ 6

samples were required to achieve ∼30-60% success rate for several parameter values of α and

β, compared with Gamma (λ = 4, scale = 1) with at least n ≈ 26 with ∼32% success rate,

Gaussian
(
µ = 100, σ2 = 302

)
with at least n ≈ 130 with ∼40% success rate, Normal 3 Mixture

with at least n ≈ 120 with ∼25% success rate, and Normal 2 Mixture with at least n ≈ 38 with

∼37% success rate as shown in Fig. 10 in the Appendix section. Due to the high robustness

of the Weibull distribution at small sample sizes that we observed with simulations, it is not

surprising that the Weibull distribution is widely applied in reliability tests [24, 25, 26], which

are often hampered with small sample sizes.
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4 RESULTS

FIGURE 6

Zoom around the four bursts of raw thoracic sEMG trace (in red) of subject #4 first shown in Fig. 2,

superimposed with a delayed 8-level sub-signal (in green); their respective scalogram is shown below:

The D8 doublets #1’, #2, #3’, and #4”’ correspond to time-shifting the DWT at the Pareto front time

delays of 5 ms, 0 ms, 5 ms, and 15 ms, respectively, obtained for each doublet by the expert system.

As regard to the maximum number of return times to consider in the distribution fitting anal-

ysis, a stopping rule can be determined when the AICc approaches a minimum value, meaning

that the percentage change of AICc approaches zero as the sample size increases as shown in

Figs. 11 and 12 in the Appendix section for two different individuals.

4 Results

4.1 Results: waveform matching

Although the time locations in the first three doublets of Fig. 2 were lost in the process to

retrieve the ρ-wave of D8 doublet #4, as shown in Fig. 4, the expert system recovered and found

the Pareto time localization of the other doublets at each predefined delay.

With the predefined delay values inputted in the expert system for waveform matching (0,

5, 10, and 15 ms), the delays θ1 = 5 ms for doublet #1’, θ0 = 0 ms for doublet #2, θ1 = 5 ms

for doublet #3’, and θ3 = 15 ms for doublet #4”’ have been found by the expert system to be on

the Pareto front (see Fig. 6).

Furthermore, the scalograms of Fig. 6, that are obtained for each burst by their respective

delay times found by the expert system, also show that the πκρστ wave is constructed by mainly

two relatively high and successive D8 coefficients (each spanning 60 ms), correlating with our
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description of a high incidence of multiple neurons firing double “exceptional” spikes [14] within

each burst.

4.2 Results: theoretical probability distributions

Among the 24 paraspinal signals, the Weibull distribution was found to be the best proba-

bility fit in the AICc sense among the subjects with quadriplegia as shown in Figs. 8a and 8b;

whereas the Normal 2 & 3 Mixtures were prevalently the best fit among control subjects as

shown in Figs. 7a, 7b, 7c, and 7d. These results are summarized in Table 1 in the Appendix

section along with the parameter estimates for the best-fitted distributions.

4.3 Results: control versus quadriplegic subjects

The contrasting difference in the results of the present study between quadriplegic and con-

trol patients, namely in their probability distributions of doublet return times and sample sizes,

points to “doublets” becoming more prevalent (and with multimodal return times) in healthy

neuromuscular systems than unhealthy ones. Furthermore, the more predominant rhythmic

synchronization of neurophsyological activity of healthy subjects is consistent with the hypoth-

esis that coherence at a distance is an indication of the nervous system able to coordinate the

activity of many muscles [1, 9, 10].

5 Discussion

5.1 Neurophysiological personality

We hypothesize that the rhythmic bursts represent a synchronization of multiple MUs firing

exceptional doublets, and that there is a probable connection between them and the dynam-

ical system theory of the return time of rare events [27, 28] and the Generalized Extreme

Value (GEV) theory of such rare events [20, 29] and the neurophysiological studies by Pi-

otrkiewicz [14]. In the last-mentioned studies, double-firing motor units classified as single,

repetitive, and exceptional doublets, constituted a small percentage (9.5%) of recorded neu-

ronal discharges and were considered as “unusual” discharges, whereas the exceptional type

was even more unusual (∼1%).

In this CPG entrainment technique, those doublets deemed exceptional can be reproduced at

will, in contrast to the studies by Piotrkiewicz [14], where the volunteers were not trained to

evoke doublets.
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5.2 Heart Rate Variability and Bursting Rate Variability 5 DISCUSSION

FIGURE 7

Probability distribution fitting of return times from healthy subjects: (a) lumbar spine signal of Subject

#6 with Normal 2 Mixture (AICc = −272.53), Normal 3 Mixture (AICc = −265.98), and Weibull

(AICc = −199.41), (b) sacral signal of Subject #8 with Normal 3 Mixture (AICc = −187.61), Normal

2 Mixture (AICc = −186.31), and Weibull (AICc = −167.78), (c) cervical signal of Subject #5 with

Normal 3 Mixture (AICc = −95.26), Normal 2 Mixture (AICc = −87.19), and Weibull (AICc = −51.56),

and (d) cervical signal of Subject #8 with Normal 2 Mixture (AICc = −236.16), Normal 3 Mixture

(AICc = −230.59), and Weibull (AICc = −194.86). Lower AICc values indicate a better distribution fit.

5.2 Heart Rate Variability and Bursting Rate Variability

Similar to the normal resting heart rate range from 60 to 100 beats per minute [30], here

the observed doublet return time rate is between 60 and 88 cycles per minute, which indicates

a possible connection between HRV and BRV.

It might be argued that the repetitive sEMG bursts represent a cardiac noise artifact. How-

ever, if we were observing an electrocardiographic (ECG) artifact in the sEMG traces, then we

would expect the ECG artifact to have similar time parameters as those observed in a clinical

ECG. Table 3.1 in [31] shows that the typical P-wave, QRS-complex, and corrected QT-interval

durations for a healthy male adult have normal values and limits of 110 ± 20 ms, 100 ± 20 ms,

and 400±40 ms respectively. Thus, a typical cardiac PQRST-wave duration would span a total of

510± 60 ms. Furthermore, Fig. 3 of [30] shows a textbook example of an ECG cycle in normal

conditions with a total duration of ∼570 ms.
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FIGURE 8

Probability distribution fitting of return times from patients with quadriplegia: (a) Thoracic signal of

Subject #2 with Weibull (AICc = −45.69), Normal 2 Mixture (AICc = −41.36), and Normal 3 Mixture

(AICc = −35.46), (b) lumbar spine signal of Subject #1 with Weibull (AICc = −231.43), Normal 2

Mixture (AICc = −227.36), and Normal 3 Mixture (AICc = −227.12). Lower AICc values indicate a

better distribution fit.

In this sEMG phenomenon, the πκρστ -wave and the κρσ-complex span shorter durations

of ∼125 ms and ∼62.5 ms resp., compared with the equivalent cardiac PQRST-wave and QRS-

complex durations of 510± 60 ms and 110± 20 ms resp.

Besides the difference in total wavelength between the cardiac cycle and “doublets,” it is

worth stressing that here variability does not appear to occur within the doublet (peak-dip intra-

doublet time), but rather on the outside (inter-doublet return time), as the πκρστ wave duration

of ∼125 ms appears to be prevailingly fixed among doublets. This is unlike HRV, where a

considerable amount of variability occurs among waves within same cardiac cycles (e.g. QT

prolongation [32]).

To further exemplify the difference between a pure ECG trace and the πκρστ wave found

here in the sEMG traces, studies show that the return time distributions of R-waves in ECG

recordings have been found Erlang in normal subjects, and a weighted average of Erlang with a

second distribution (e.g. Weibull) in patients with arrhythmia [33, 34].

5.3 Off-line and On-line BRV for Biofeedback Applications

For biofeedback applications, our objective is to help quadriplegic patients recover some

motor control by learning how to evoke more doublet oscillations with return time distribution

deviating from Weibull towards normal mixtures.

Another objective is to conduct on-line assessments by means of implementing the complete

off-line technique described in section 2.5 with real-time DWT [35]. For real-time muscle per-
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formance evaluations, it would reinforce the training process to help increase the number of

synchronized motor units, resulting in stronger muscle contractions [36].

The proposed technique is not restricted to only paraspinal muscles as it may span the evalu-

ation of the neuromuscular system to a greater extent—for instance, to assess rhythmic involun-

tary contractions such as tremors, or uterine contractions in pregnancy. In the former, it could

provide feedback to therapies in the field. In the latter, it would monitor the return times of

uterine EMG bursts to potentially warn for signs of imminent, false, or preterm labor [37].

6 Conclusions

The major contribution in this paper is the identification of a new neurophysiological phenomenon—

the Bursting Rate Variability that bears some resemblance to Heart Rate Variability, but that still

differs from it in several respects. BRV is based on recursively shifting the Daubechies 3 wavelet

transform of the raw electromyographic signal to successively exhibit perfect MUAP doublets at

the D8 level.

The presence of such doublets in the sEMG signal has been conjectured to reveal coordination

of muscle masses at a distance to achieve a higher hierarchy level movement. The return time

statistic of the doublets developed here adds some quantitative insights to this observation, with

Weibull to normal mixture distribution a possible indication of a quadriplegic subject recovering

some motor control.

Furthermore, from this rhythmic and highly synchronized firing pattern, the neuronal con-

nection structure learning is contemplated. Whereas cardiology applications, while plausible,

remain to be assessed by including electrocardiogram monitoring to our protocol while record-

ing sEMG activity simultaneously.

Finally, from a theoretical viewpoint, this research is related to the statistic of return time

of a dynamical system to some subset of its state space. The more recent Generalized Extreme

Value (GEV) theory, which proceeds from the statistic of the extreme value of an observable

(e.g., a sEMG signal) rather than the return time of such events, could offer an alternative way

to look at the same phenomenon.

7 Appendix
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TABLE 1

Distribution Fit Analysis: Enhanced-Matched Doublets
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