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. Our model-based reinforcement learning (RL) algorithm
reduces the sample complexity for time-dependent noisy
gquantum gate control tasks by at least an order of
maghnitude over model-free RL.

2. The model is a ditferentiable ordinary differential equation
(ODE) [1] within our Learnable Hamiltonian Model-Based
Soft-Actor Critic [2, 3] (LH-MBSAC) algorithm.

3. We encode a partially characterised Hamiltonian in the
model and only learn the time-independent term.

4. The learned model can be leveraged to further optimize
RL controllers using GRAPE [4].

5. LH-MBSAC is a step towards bridging the gap between
theoretical and experimental quantum control by reducing
the experimental resource requirements for RL control.

Quantum Control Problem

We use the master equation [5] to model the noisy gate
control problem. Control functions u(t) are piecewise
constant in time in the propagator superoperator E,

- i
E(u,,) = ——AtG(t;, u(t
() = Lo (gt
for m fixed timesteps of size At =T'/N where T is a final time
with maximum number of timesteps N; G is the open/closed

system dynamics’ generator. The control problem is
Fidelity 7<[0,1]

u = arg max Ir [(I)(E(um))T(I)(Etarget)]

m
U =(uUg,..., U EX,; MmN

where ®(E) is the Choi form [6] of E estimated using ancilla
assisted process tomography [7] using O(3%) binomial
observables for an L-qubit system. The Hamiltonian is
parametrised in the Pauli basis with learnable coefficients (.
We also assume the control Hamiltonians (H,) to be known.

— Z CZPZ + Hc(“(t)> t)

E(t,u(t)) == (1)

(2)

He(ul(t),t (3)

The control problem in Eqg. (2) can be formulated as a Markov
Decision Problem (MDP) by sequentially constructing the
control amplitudes as actions, using the propagator as the
state with the reward being the fidelity

ay = Uj, (4a)
k .
)
S = ZII exp (—ﬁAtG(tg, ug)> , (4b)
I = F(E(uk)a Etarget)- (4c)

The model M, is a differentiable ODE whose generator is
interpretable and has the form given by H, in Eq. (3). It is
used to make propagator predictions and is trained using
MDP data D collected from the controllable system
(environment) £ by minimizing

LmodeI(D) — Z (Mg (Slm k) — Sk+1)2- (5)
D
Observables
OZ' = Tr PZ(I)

Control
actions

(a) Model-based RL (b) Policy function 7;(ay | s;)

(a) In model-based RL, an agent wy interacts with the controllable system
(environment) to collect data s;., s;..1, a;, r;. In model-free fashion. These
data are utilised to train the model M,(si, a;) until a quality measure
plateaus, indicating training completion. Lastly, synthetic data are
generated through a b-step rollout with 7, interacting with the M, b times
to train wy. (b) The policy function gets the propagator in ® form as input
and outputs a distribution of next-step actions.
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Sample complexity improvement: Fidelity 7 of a

Hadamard gate for (a) a single-qubit nitrogen vacancy (NV)
center; a CNOT gate for (b) a two-qubit NV center Hyy and
(c) a two- qublt Transmon
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Leveraging the learned model: (a) A non-linear relationship
between unitary model prediction error and model error ¢
shown for the two-qubit transmon. (b) 0 =4 07 No problem:
ODE trajectories are close but not identical. (¢) Despite (b),
using GRAPE with M, significantly improves F compared to
a random baseline.

(a) unitary error vs 6 (b) 6=0.91509 (c) controllers=100
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On open systems and finding short time pulses: (a)
Sample complexity for low/high decoherence regimes.
Learning decoherence + M, or just M, yield equivalent
performances. (b) Optimal short pulses by truncating RL
pulse parameters with the Pareto optimal frontier highlighted
in blue.
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