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TL;DR

1. Our model-based reinforcement learning (RL) algorithm
reduces the sample complexity for time-dependent noisy
quantum gate control tasks by at least an order of
magnitude over model-free RL.

2. The model is a differentiable ordinary differential equation
(ODE) [1] within our Learnable Hamiltonian Model-Based
Soft-Actor Critic [2, 3] (LH-MBSAC) algorithm.

3. We encode a partially characterised Hamiltonian in the
model and only learn the time-independent term.

4. The learned model can be leveraged to further optimize
RL controllers using GRAPE [4].

5. LH-MBSAC is a step towards bridging the gap between
theoretical and experimental quantum control by reducing
the experimental resource requirements for RL control.

Quantum Control Problem

We use the master equation [5] to model the noisy gate
control problem. Control functions u(t) are piecewise
constant in time in the propagator superoperator E,

E(t,u(t)) := E(um) =

m∏
l=1

exp

(
− i

ℏ
∆tG(tl,u(tl))

)
(1)

for m fixed timesteps of size ∆t = T/N where T is a final time
with maximum number of timesteps N ; G is the open/closed
system dynamics’ generator. The control problem is

u∗
m = argmax

um=[u1,...,um]∈X,m≤N

Fidelity F∈[0,1]︷ ︸︸ ︷
Tr

[
Φ(E(um))

†Φ(Etarget)
]

(2)

where Φ(E) is the Choi form [6] of E estimated using ancilla
assisted process tomography [7] using O(3L) binomial
observables for an L-qubit system. The Hamiltonian is
parametrised in the Pauli basis with learnable coefficients ζζζ.
We also assume the control Hamiltonians (Hc) to be known.

Hζζζ(u(t), t) =
n2∑
l=1

ζlPl +Hc(u(t), t) (3)

Model-based Reinforcement Learning

The control problem in Eq. (2) can be formulated as a Markov
Decision Problem (MDP) by sequentially constructing the
control amplitudes as actions, using the propagator as the
state with the reward being the fidelity F :

ak = uk, (4a)

sk =
k∏
l=1

exp

(
− i

ℏ
∆tG(tl, ul)

)
, (4b)

rk = F(E(uk),Etarget). (4c)

The model Mζζζ is a differentiable ODE whose generator is
interpretable and has the form given by Hζζζ in Eq. (3). It is
used to make propagator predictions and is trained using
MDP data D collected from the controllable system
(environment) E by minimizing

Lmodel(D) =
∑
D

(Mζζζ (sk, k) − sk+1)
2. (5)

model-free RL
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(a) Model-based RL
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(b) Policy function πθ(ak | sk)
(a) In model-based RL, an agent πθ interacts with the controllable system
(environment) to collect data sk, sk+1, ak, rk in model-free fashion. These
data are utilised to train the model Mζζζ(sk, ak) until a quality measure
plateaus, indicating training completion. Lastly, synthetic data are
generated through a b-step rollout with πθ interacting with the Mζζζ b times
to train πθ. (b) The policy function gets the propagator in Φ form as input
and outputs a distribution of next-step actions.

References

[1] RTQ Chen et al. Neural ordinary differential equations. In NeurIPS, volume 31, 2018.
[2] T Haarnoja et al. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In Int. Conf. Machine Learning, pages

1861–1870. PMLR, 2018.
[3] M Janner et al. When to trust your model: Model-based policy optimization, 2019. arXiv:1906.08253.
[4] N Khaneja et al. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magnetic Resonance,

172(2):296–305, 2005.
[5] HP Breuer et al. The theory of open quantum systems. Oxford University Press, 2002.
[6] MD Choi. Completely positive linear maps on complex matrices. Linear algebra and its applications, 10(3):285–290, 1975.
[7] JB Altepeter et al. Ancilla-assisted quantum process tomography. Phys. Rev. Lett., 90:193601, May 2003.

Results

Sample complexity improvement: Fidelity F of a
Hadamard gate for (a) a single-qubit nitrogen vacancy (NV)
center; a CNOT gate for (b) a two-qubit NV center HNV and
(c) a two-qubit Transmon H

(2)
tra as a function of E calls.

Leveraging the learned model: (a) A non-linear relationship
between unitary model prediction error and model error δ
shown for the two-qubit transmon. (b) δ ̸= 0? No problem:
ODE trajectories are close but not identical. (c) Despite (b),
using GRAPE with Mζζζ significantly improves F compared to
a random baseline.

On open systems and finding short time pulses: (a)
Sample complexity for low/high decoherence regimes.
Learning decoherence + Mζζζ or just Mζζζ yield equivalent
performances. (b) Optimal short pulses by truncating RL
pulse parameters with the Pareto optimal frontier highlighted
in blue.
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