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Abstract—Novel dynamics are emerging in the power system
due to the new Smart Grid (SG) environment. The high sampling
rate of the Phasor Measurement Units (PMUs) enables them to
capture the dynamic fluctuations in the power system measure-
ments. Understanding the statistical and dynamic characteristics
of the PMU data requires advanced data analytics techniques
capable of performing accurate modeling of the power system
variables (voltage, frequency, phase angle, and rate of change
of frequency (ROCOF)). In this paper, we provide evidence of
the non-stationarity and fractality of PMU data collected from
Europe. We adopt the Autoregressive Fractionally Integrated
Moving Average (ARFIMA) models with non-integer differencing
parameter to model the short-range and long-range correla-
tions in the PMU data. Furthermore, the goodness-of-fit of the
ARFIMA model is confirmed by analyzing the correlation and
independence of the model residuals. Anomaly detection is among
the promising applications of the PMU ARFIMA models. It is
shown that the 2012 Indian blackout is accompanied by a change
point in the differencing parameter opening the road to event
(anomaly) detection by ARFIMA monitoring.

Index Terms—PMU Data, Long-Range Memory, ARFIMA
Models, Anomaly Detection, Fractional Dynamics, Smart Grid

I. INTRODUCTION

THE SG is a modernized grid that overcomes the chal-
lenges and issues in the conventional power grid. Sev-

eral challenges have arisen from the higher penetration of
renewable energy resources and the increasing number of
electric vehicles. Therefore, wide-area monitoring, protection,
and control systems will have an important role in the future
SG by developing a reliable, secure, and efficient operation.

Wide-area monitoring systems collect real-time measure-
ments from all over the power grid via advanced sensing
devices, such as PMUs. That enables more accurate monitoring
of the grid state in real time. The PMU data is collected at
higher sampling rate, 30-120 samples/s, which exposes the fast
dynamic events and the contingencies in the power grid.

Understanding the statistical characteristics of PMU data
is of great importance due to several applications in power
system studies. The authors of [1] show the existence of
self-organized criticality in blackout data. In [2], the authors
show that the autocorrelation and variance of frequency time
series increase as the power system approaches instability.
The authors of [3] provide evidence for an increase in the
Hurst exponent of real frequency data collected from the
Indian grid before approaching the 2012 blackout [4]. This
increase could provide early-warning of catastrophic events
in the power system. A deeper aim of the present paper is to
provide stronger theoretical relevance of the Hurst exponent
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phenomena by corroborating them with data-driven models of
the PMU time series, with the objective of transforming the
promising observations of [3][5] to detection of anomalies with
controllable false alarm rates in an autonomous SG.

In [6], we have shown that the PMU data (voltage mag-
nitude, frequency, and phase angle) is not random and pos-
sesses long-range memory with scaling exponent (α?) higher
than the one of short-memory data (α? = 0.5). The long-
range dependence in the PMU data was evaluated using
Detrended Fluctuation Analysis (DFA) [7] by calculating the
scaling exponents of several data sets from the synchrophasor
network in Texas. Modeling of long-memory data requires
ARFIMA models [8] that can capture both the short- and long-
range memories. Furthermore, the ARFIMA modeling of the
power loads was suggested in [9], consistently with the multi-
fractality of such signals.

In [10], we investigated the fractality of PMU data by
calculating the three fractal parameters: scaling exponent (α?),
power exponent (β), and differencing parameter (d). The
calculated differencing parameters from large data set of PMU
data had non-integer mean values, so the ARFIMA model
was adopted as the best model describing the short and long
memories. The selection of the best model was based on two
information criteria: Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC).

In this paper, we extend our work on the ARFIMA mod-
eling [10] by first providing more accurate identification and
estimation of the PMU ARFIMA models, subject to a precise
significance level. In the identification phase, we estimate
the differencing parameter and the autoregressive and moving
average coefficients. Then, in the estimation phase, we use
these values as initial guess for the Whittle estimator to find
the parameters of the best ARFIMA model. Secondly, we
show that ARFIMA models are well suited for PMU data
by showing that their α-stable residuals are uncorrelated and
independent. At the end, we derive the ARFIMA models of the
Indian frequency toward the 2012 blackout. Our results show
an increase in the differencing parameter that could provide
an early warning to the proximity to a blackout.

The paper is organized as follows: we study the stationarity
and fractality of PMU data in Sec. II and Sec. III, respectively.
In Sec. IV, we find the best ARFIMA models to fit the PMU
data. Analyzing the residuals of the ARFIMA models is car-
ried out in Sec. V. In Sec. VI, we exploit the ARFIMA models
to anticipate power blackouts. Sec. VII is the conclusion.

II. STATIONARITY OF PMU DATA

The new SG deployment, its renewable energy generation
and smart loads, are accompanied by novel stochastic and
dynamic behaviors. The resulting dynamics of the power



Figure 1. PMU data collected from the EPFL campus grid in 2014: (a) Voltage magnitude (b) Frequency (c) Angle (d) ROCOF

system lead to fluctuations in the PMU data under both normal
and emergency conditions. Evidently, the PMUs are capable
of capturing the fast dynamic states in the power grid. The
stationarity of the data should be rigorously determined in
advance of modeling the PMU data as some statistical methods
are not suitable for non-stationary data.

In this section, we first provide a description of the PMU
data and the power grid from which the data was collected.
Then, we evaluate the data stationarity using the unit root tests.

A. Overview of PMU Data

Typical PMUs provide measurements for the following
variables in the power system: voltage (V ), current (I), fre-
quency (f ), ROCOF, active power (P ), and reactive power
(Q). The measured voltages and currents are represented using
the phasor format, which consists of magnitude and phase
angle. In this paper, we use data collected from the Ecole
Polytechnique Fédérale de Lausanne (EPFL) campus grid
as part of their real-time state estimation project [11]. The
rated voltage magnitude (line-line) and frequency of the EPFL
campus grid are 20 kV and 50 Hz, respectively. Several PMUs
were installed throughout the campus grid to collect the data
at sampling rate of 50 samples/s. We focus our analysis on a
large data set of voltage magnitude (V ), frequency (f ), phase
angle (θ), and ROCOF. The data set consists of 160,000 time
series, each having 1,000 sample points, of the four variables
collected from the campus grid in 2014 [12]. In Figs. 1 (a)-(d),
we show 1000-sample time series of voltage magnitude (red),
frequency (blue), phase angle (green), and ROCOF (magenta).

B. Stationarity

In PMU data, we can have a glimpse at the stationarity or
the lack thereof by calculating their autocorrelation functions
(ACFs). As shown in Figs. 2 (a)-(d), the ACFs of the voltage,
frequency, and angle show a slow hyperbolic decay compared
to the exponentially decaying one for the ROCOF. The slow
decay of the ACF could be a sign of lack of stationarity.

More formally, we test the stationarity of PMU mea-
surements using the Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root tests.
Such tests can classify a time series as either stationary or
not, based on the existence of unit root in the autoregressive
polynomial of the time series.

1) ADF test: The ADF test classifies the time series as
stationary or not using hypothesis testing. The null hypothesis
(H0) is that the time series is non-stationary and a unit root
exists. The alternative hypothesis (H1) is that the time series
is stationary.

We conduct the ADF test on 160,000 time series, each
having 1,000 sample points, of PMU data (V , f , θ, and
ROCOF). Using the command “adf.test” in R software [13],
we calculated the p-value for each time series to determine
its stationarity. The percentages of time series with p-values
above 0.01 (accept the null hypothesis) and time series with
p-values below or equal to 0.01 (reject the null hypothesis)
are shown in Table I.

The first column (p-value> 0.01) under the ADF test
shows that we cannot reject the null hypothesis for the
voltage (81.33%), frequency (96.86%), and angle (45.88%)
time series. Not rejecting the null hypothesis in the ADF test
indicates existence of a unit root and non-stationarity of these
time series. However, we can reject the null hypothesis for all
the ROCOF time series with p-values below or equal to 0.01.
That indicates the stationarity of the ROCOF time series.

2) KPSS test: In contrast to the ADF test, the KPSS test
considers that the null hypothesis (H0) represents the absence
of a unit root and the alternative hypothesis (H1) represents
the presence of a unit root.

Similarly, we applied the KPSS test on 160,000 time series,
each having 1,000 sample points, of PMU data. We used the
command “KPSS.test” in R software to determine the sta-
tionarity by calculating the p-values. The percentages of time
series with p-values above 0.01 (accept the null hypothesis
(H0)) and time series with p-values below or equal to 0.01
(reject the null hypothesis (H0)) are shown in Table I.

The second column (p-value≤ 0.01) under the KPSS test
shows that the PMU data (V , f , and θ) are non-stationary.
The percentages of non-stationary PMU data (V , f , and θ) are
93.62%, 99.70%, and 78.63%, respectively. On the other hand,
the ROCOF time series are mostly stationary (p-value> 0.01)
with a percentage of 91.18%.
Table I. Percentages of stationary (2nd and 3rd columns) and
non-stationary (1st and 4th columns) time series

PMU ADF KPSS
data p > 0.01 p ≤ 0.01 p > 0.01 p ≤ 0.01

V oltage 81.33% 18.67% 6.38% 93.62%

Frequency 96.86% 3.14% 0.30% 99.70%

Angle 45.88% 54.12% 21.37% 78.63%

ROCOF 0% 100% 91.18% 8.82%

III. FRACTALITY OF PMU DATA

Fractal time series have the unique characteristics of ex-
hibiting a slow (non-exponential) decay of the ACF, heavy-
tailed probability density function (PDF), and power spectral
density function in the form 1/fβ . The slow decay of the
ACF indicates a long-range memory (dependence) in the time



Figure 2. ACFs of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle (d) ROCOF

series, characterized by persistent correlation between the time
series samples as the lag increases.

In PMU data, the measurement errors are local in time
and intermittent whereas the grid dynamics have long-range
characteristics at multiple time scales. The existence of long-
range correlations originates from the dynamic interactions
between the different elements in the power system. The
increasing penetration of renewable energy sources reduces
the overall inertia and negatively influences the dynamics of
the power grid. Therefore, severe frequency deviations and
slower recovery times are expected in low-inertia grids. We
believe that the persistent frequency deviations contribute to
the long-range correlations.

The modeling of long-range correlated data differs from the
short-range correlated data. Given that the short- versus long-
range correlation might not be clear, it is crucial to quantify
the fractality of PMU data via several statistical methods.
We use these methods to calculate three fractal parameters:
scaling exponent (α?), differencing parameter (d), and power
exponent (β). The relationships among these parameters for
non-stationary time series are shown in Eq. (1),

d = α? − 0.5 = β/2. (1)

In the bulk of this section, we estimate the three parameters
of the PMU data using three corroborating methods: (1) DFA
method [7], (2) Geweke and Porter-Hudak (GPH) method [14],
and (3) Power Spectral Density (PSD) method [15].

Table II. The means and standard deviations of the scaling
exponents (α?), the differencing parameters (d), and the power
exponents (β)

Parameter V oltage Frequency Angle ROCOF

α? 1.18 ± 0.18 1.58 ± 0.21 1 ± 0.27 0.41 ± 0.13

d 0.86 ± 0.17 1 ± 0.14 0.63 ± 0.26 0.03 ± 0.19

β 1.75 ± 0.29 1.9 ± 0.21 1.44 ± 0.37 −0.11±0.24

A. DFA method

Scaling (Hurst) exponent is a measure of long-range mem-
ory in the time series. It is related to the rate of decay of the
ACF. It has been shown that ACF does not provide an accurate
estimation of long-range memory, especially in short-length
and non-stationary time series [16].

The DFA was developed as a reliable tool to quantify the
correlations in non-stationary time series. The DFA measures
the average variance of detrended signal over different window
sizes. The slope of the linear regression line in double-
logarithmic coordinates represents the scaling exponent of the

time series. The method was first introduced in 1994 [7] to
study the long-range dependence of DNA nucleotides.

We applied the DFA method on the PMU data (V , f , θ,
and ROCOF) to calculate the scaling exponent, as shown in
Table II. The voltage magnitude, frequency, phase angle, and
ROCOF time series have average scaling exponents of 1.18,
1.58, 1, and 0.41, respectively.

For a non-stationary time series, the scaling exponent (α?)
falls between 1 and 2. The time series has a long-range
correlation not following the power law if it has scaling
exponent higher than 1. Based on the results in Table II, most
of the voltage and frequency time series are non-stationary
and long-range correlated with scaling exponents higher than
1 (α? ≥ 1). Furthermore, the angle time series have scaling
exponents distributed between 0.5 and 1.5. That means also
the angle time series have long-range correlation, but it could
be either stationary (α? < 1) or non-stationary (α? > 1).
Finally, the ROCOF time series are stationary (α? < 1) and
short-range correlated with scaling exponents very close to the
white noise (α? = 0.5).

B. GPH method

The ARIMA models can be generalized to ARFIMA models
by allowing the differencing parameter (d) to be non-integer.
The ARFIMA models are able to model the short-range and
long-range correlations in the time series. By comparing the
long-correlated time series to the ARFIMA model, we can
derive a relationship between the scaling exponent (α?) of the
time series and the differencing parameter (d) in the ARFIMA.

The GPH method [14] is a semi-parametric method to
estimate the differencing parameter (d). The method does not
assume any knowledge of the short-range memory component
in the non-stationary time series. It estimates the differencing
parameter using linear regression of the log periodogram. The
periodogram of any time series, m(n), with N samples is
defined as

IN (ωk) =
1

2πN

∣∣∣∣ N−1∑
n=0

m(n)e−iωkn

∣∣∣∣
2

, (2)

where ωk represents the kth Fourier frequency, 2πk/N .
On the other hand, the spectral density of any weakly-
stationary time series, m(n), with long-range memory is
f(λ) = | 2 sin(λ/2) |−2df∗(λ).
f∗(λ) is the spectral density of the short-range memory

component of the time series, m(n). λ is the frequency. By
comparing the logarithm of the periodogram and the logarithm
of the spectral density at low frequencies, the estimation of the



differencing parameter (d̂) is performed by linear regression
of log(IN ) on −2 log |2 sin(λ/2)| at low frequencies. We
calculate the differencing parameter of PMU data using the
command “fdGPH” from the package “fracdiff” in R software.

As shown in Table II, the differencing parameters of the
PMU data have mean values between 0.5 and 1, except the
ROCOF that has an average differencing parameter approxi-
mately equal to 0. Using Eq. (1), the results in Table II confirm
that the PMU data (V , f , and θ) are non-stationarity (d > 0.5)
and long-range correlated (d > 0). On the other hand, the
ROCOF time series are stationary (d < 0.5) and short-range
correlated (d = 0) with differencing parameters distributed
around 0.

C. PSD method

The PSD of any signal quantifies the power at different
frequency components in the signal. The uncorrelated time
series or white noise has equal power at all frequencies
with power exponent (β) of 0. On the other hand, the long-
correlated time series has linear PSD on the log-log scale with
non-zero power exponent (β).

The PSD method [15] estimates the PSD exponent of non-
stationary time series after some modifications to improve the
accuracy of the PSD estimation. These modifications include
detrending the data using bridge detrending and estimating the
power exponent after excluding the high frequency component
of the PSD. Using the R code in [17], we estimate the power
exponent (β) of PMU data, as shown in Table II.

The power exponents of the PMU data (V , f , and θ) are
between 1 and 2. It is clear from the power exponent values
that the signals are not random (β = 0) and possess long-range
memory. These exponents show that the PSD of the PMU data
falls between pink noise (β = 1) and brown noise (β = 2).
The ROCOF time series have an average power exponent of
−0.11 that is similar to the white noise (β = 0). Based on the
fractal parameters, we conclude that most of the ROCOF time
series are stationary and short-range correlated.

The stationarity and short-range correlation in the ROCOF
data could be a result of calculating the ROCOF data samples
locally in time compared to the other PMU signals. That can
justify the ROCOF missing the long-range dependence in their
models. Since the best statistical model of the ROCOF is the
Autoregressive Moving Average (ARMA) model (d = 0), we
focus on the ARFIMA models of the other PMU data variables
(V , f , and θ) for the rest of the paper.

IV. ARFIMA MODELS OF PMU DATA

We aim in this section to find the best models that fit
the PMU data. The selected models should be capable of
handling the non-stationarity and fractality of PMU data, as
shown in Sec. II and Sec. III, respectively. It is known that the
classical models (Autoregressive (AR), Moving-average (MA),
ARMA, ARIMA) are suitable for modeling stationary and
non-stationary short-range correlated time series. Therefore,
we adopt the so-called fractional ARIMA or ARFIMA models
for PMU data as they are capable of capturing the non-
stationarity and long-range memory properties.

ARFIMA was introduced by Granger and Joyeux in
1980 [8]. This model is a generalization of the ARIMA model
(d is integer) developed by Box and Jenkins [18] in the
sense that the differencing parameter (d) could have fractional
(non-integer) values. The ARFIMA models are capable of
characterizing the long-range memory in the data by applying
the fractional differencing on the time series.

A. ARFIMA Modeling

Let Xt be a zero-mean time series with long-range memory.
The ARFIMA(p, d, q) model of Xt is defined in Eq. (3),

Φp(B)∆dXt = Θq(B)εt. (3)

B is the backshift operator and d is the differencing
parameter. Φp(B) is the p−order autoregressive polynomial
(1−φ1B− ...−φpBp). Θq(B) is the q−order moving average
polynomial (1 + θ1B + ...+ θqB

q).
The innovations or residuals, εt, are i.i.d random variables.

They are uncorrelated with zero mean. The ARFIMA model
is well defined for α-stable innovations (0 < α < 2) with
infinite variance [19] and Gaussian innovations (α = 2) with
finite variance [8][20].

The term ∆d is the fractional difference operator, (1−B)
d,

with non-integer differencing parameter (d). The fractional dif-
ferencing can be defined as an infinite “binomial” expansion,

∆d = (1−B)d =

∞∑
k=0

Γ(d+ 1)

Γ(k + 1)Γ(d− k + 1)
(−B)

k
, (4)

where Γ(·) is the Gamma function (
∞∫
0

sz−1e−sds).

Assuming that the polynomials, Φ(z) and Θ(z), have no
common roots and the autoregressive polynomial, Φ(z), does
not have roots in the closed unit disk, the ARFIMA model can
be solved for the time series (Xt) as

Xt = Φ−1(B)Θ(B)(1−B)
−d
εt =

∞∑
k=0

ukεt−k, (5)

where the coefficients, uk’s, are resulting from the power
series expansion of Φ−1(z)Θ(z)(1− z)−d. In [19], it has been
shown that the series of the ARFIMA model with α-stable
innovations, as shown in Eq. (5), converges almost surely when

−∞ < d < 1− 1

α
. (6)

That means the ARFIMA model with α-stable innovations
(0 < α ≤ 2) is defined for d < 1− 1/α.

B. Model Identification

Throughout this section, we perform the identification of
the ARFIMA models on the three time series shown in
Figs. 1 (a)-(c) as a representative sample of the PMU data.
Since ARFIMA modeling is defined for stationary time series
(−0.5 < d < 0.5), we should first differentiate the PMU



Figure 3. First-differenced time series (Yt) of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 4. Fractionally-differenced time series (Zt) of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

time series (Xt) to remove any non-stationarity. The first-
differenced time series will be confirmed to be a stationary
time series,

Yt = Xt −Xt−1 = (1−B)Xt. (7)

After the first differencing, the three resulting time series
of PMU data are shown in Figs. 3 (a)-(c). Now, applying the
ADF and KPSS tests on the three first-differenced time series
confirms the stationarity of these series. At significance level
of 0.01, the p-values of the two tests after differencing are
shown in the legends of Figs. 3 (a)-(c).

Then, the ARFIMA modeling of the PMU data will be
carried out on the first-differenced time series. The ARFIMA
model of the time series (Yt) becomes

Φ(B)(1−B)
d∗
Yt = Θ(B)εt, (8)

where d∗ = d− 1 and the time series (Yt) is stationary.
As expanded upon in this paper, the difficulty is to compute

the d∗ parameter. Once the latter is computed, the ARFIMA
reduces to the classical Box-Jenkins ARMA modeling of
Zt = (1−B)

d∗
Yt. So, the fractional differencing of the time

series (Yt) generates a time series (Zt) possessing short-range
memory.

Using Eq. (4), we fractionally differentiate the three first-
differenced time series (Yt’s) of PMU data. The fractional
differencing is applied on each differenced time series based
on its own differencing parameter (d∗). The three fractionally
differenced time series (Zt’s) are shown in Figs. 4 (a)-(c). The
differencing parameters before and after fractional differencing
are shown in the legends of Fig. 3 and Fig. 4. It is clear that
the fractionally differenced time series (Zt’s) have short-range
memory with differencing parameters very close to 0.

Therefore, the three time series (Zt’s) of PMU data can now
be modeled using the ARMA model,

Φ(B)Zt = Θ(B)εt. (9)

Finally, we fit the time series, Zt, using ARMA models with
several combinations of autoregressive and moving average
polynomials. We cover all the combinations of p and q between
0 and 5, like (0, d, 0), (1, d, 0), (0, d, 1), ...(5, d, 5). Then, we
use the two information criteria (AIC and BIC) to compare the
different models and choose the best fit. We did not consider p
and q higher than 5 because both criteria have higher penalty
term for larger number of coefficients.

The best ARMA models of the voltage, frequency, and
phase angle are ARMA(0, 1), ARMA(0, 2), and ARMA(1, 2),
respectively. The differencing parameter (d∗ + 1) and the
ARMA model parameters constitute initial estimation of the
ARFIMA model. The first estimations of the ARFIMA models
for the three time series of PMU data are shown in Table III.

Table III. Initial estimation of the ARFIMA models

Data Model (Φ1,Φ2) (Θ1,Θ2)

Voltage ARFIMA (0, 0.81, 1) ( − , − ) (+0.55, − )

Frequency ARFIMA (0, 0.89, 2) ( − , − ) (−0.38,−0.17)

Angle ARFIMA (1, 0.70, 2) (+0.61, − ) (−0.68,+0.20)

The various steps and algorithm, as shown in Algorithm 1,
for the identification of the ARFIMA model of a time series
(Xt) are summarized below:
(1) Test the stationarity of the time series (Xt) via the ADF

and KPSS tests. If the time series (Xt) is stationary, we
can skip step (2) and go directly to step (3). In this case,
the time series (Yt) is equal to the time series (Xt).

(2) Differentiate the time series (Xt) to generate the station-
ary time series (Yt = Xt −Xt−1).

(3) Estimate the differencing parameter (d∗) of the series (Yt)
in the ARFIMA model (Φ(B)(1−B)

d∗
Yt = Θ(B)εt).



Algorithm 1: Identification of the ARFIMA models
Input: Xt

Output: model, d, aic, bic
1 set aic =∞, bic =∞;
2 get PADF and PKPSS of Xt; // as shown in Sec.IIB

3 if PADF ≤ 0.01 and PKPSS ≥ 0.01 then
4 Yt ← Xt;

5 else
6 Yt ← Xt −Xt−1;

7 get d∗ from Yt; // as explained in Sec.III

8 d← d∗ + 1;
9 Zt ← (1−B)d

∗
Yt;

10 for p = 0 to 5 do
11 for q = 0 to 5 do
12 modeltemp ← fit (Zt, ARMA(p, q));
13 aictemp ← AIC (model);
14 bictemp ← BIC (model);
15 if aictemp < aic and bictemp < bic then
16 model← modeltemp;
17 aic← aictemp;
18 bic← bictemp;

(4) Apply the fractional differencing on the time series (Yt)
to generate the time series (Zt = (1−B)d

∗
Yt) with short-

range memory only. The time series (Zt) can be modeled
via ARMA models (Φ(B)Zt = Θ(B)εt).

(5) Estimate the order and parameters of the best ARMA
model based on AIC and BIC criteria.

C. Model Estimation
The estimation of the ARFIMA parameters can be con-

ducted using several estimation techniques in either the time
domain or the frequency domain [21]. One of the reliable
estimators of Gaussian and stable ARFIMA models is Whittle
approximate maximum likelihood estimation (MLE) [22][23].
The Whittle estimation of the ARFIMA parameters can be
achieved by minimizing

Q(ζ̂) =

m∑
j=1

I(λj)

f(λj , ζ̂)
, (10)

where I(λj) is the spectral density function of the time
series. The f(λj , ζ̂) function is the spectral density function
of the model at frequency (λj). The λj’s are the Fourier
frequencies, 2πj/m. ζ̂ is the vector of unknown parameters
(d∗, φ1, ..., φp, θ1, ..., θq).

We start with the parameters of the ARFIMA models in
Table III as initial values for the Whittle estimator. The best
ARFIMA models of the three PMU time series based on the
Whittle estimation are shown in Table IV.

Table IV. Best ARFIMA models of the three time series

Data ARFIMA Model

Voltage (1 −B)0.80Vt = (1 + 0.56B)εt

Frequency (1 −B)0.92Ft = (1 − 0.40B − 0.17B2)εt

Angle (1 − 0.61B)(1 −B)0.70Tt = (1−0.68B+0.20B2)εt

V. RESIDUALS OF ARFIMA MODEL

Evaluating the goodness-of-fit of the PMU ARFIMA models
requires analyzing the residuals (ε̂t) of these models. Toward
that end, we first fit the distribution of the residuals to α-stable
distribution and calculate its parameters. This is a very crucial
step to be performed because the ARFIMA model is well-
defined only for α-stable innovations (residuals), including the
Gaussian case (α = 2). Moreover, a good ARFIMA model of
the data should result in uncorrelated and independent residu-
als to ensure all the information in the data is represented. We
use Ljung-Box test to check the independence of the residuals.

A. Residuals of the ARFIMA Model

The residuals (ε̂t) or innovations of the ARFIMA model
can be estimated using

ε̂t = Φ(B)∆dΘ−1(B)Xt. (11)

We calculate the residuals of the ARFIMA models of volt-
age (ARFIMA(0, d, 1)), frequency (ARFIMA(0, d, 2)), and
phase angle (ARFIMA(1, d, 2)). The resulting residuals of the
three models of PMU data are shown in Figs. 5 (a)-(c). Because
d > 1−1/α, expressing Xt as a series in ε̂t−j would result in
lack of almost sure absolute convergence [19, Sec. 7.13]. To
go around this difficulty, we utilize Eq. (8) to express Yt as a
series in εt−j . Now the relevant differencing parameter is d∗,
and since d∗ < 1 − 1/α, the representation of Yt as a series
in εt−j now converges absolutely almost surely.

It is worth fitting the residuals of the PMU ARFIMA models
to α-stable distribution and calculating its parameters (α, β, γ,
and δ) [19]. The histograms of the ARFIMA model residuals
and their best α-stable fit based on Koutrouvelis regression
method [24] are shown in Figs. 6 (a)-(c). To test the normality
of the model residuals, we generate the quantile-quantile (Q-
Q) plots for the residuals of the ARFIMA models, as shown
in Figs. 7 (a)-(c).

The residuals of the voltage ARFIMA model follow a Gaus-
sian distribution (α ≈ 2.0). For the voltage time series, the
ARFIMA model is defined because its differencing parameter,
dv
∗ = −0.2, is less than 0.5.
The residuals of the ARFIMA models of the frequency and

angle time series follow α-stable distribution with α equals to
1.80 and 1.48, respectively. The differencing parameter (df ∗)
of the frequency time series is equal to −0.08 and smaller than
1−(1.8)−1. Also, the differencing parameter (dt∗) of the angle
time series is equal to −0.3 and smaller than 1 − (1.48)−1.
Satisfying the condition in Eq. (6) validates the models of Yt.

The ARFIMA model of the voltage, ∆d Vt =
Φ−1(B)Θ(B)εt, is driven by the residual noise (εt),
and the question arises as to what the residual noise really
is, physically rather than statistically speaking. The linearized
fluctuating power flow equations on the other hand yield
the Vt fluctuation as a function of the fluctuation of the
power injected. In view of the stochastic modeling of the
fluctuating power of wind farms [25], it is fair to conjecture
that near wind farm, where penetration of the renewables
is observed, Φ−1(B)Θ(B)εt may contain the colored noise



Figure 5. Residuals of ARFIMA models of PMU data: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 6. Sample density functions of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 7. Q-Q plots of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

fluctuating power generated by wind farms. The observed
near Gauss property of the residuals, hence the power
fluctuations, corroborates the observation made in [25] that
such fluctuations at the output of a wind farm are Gaussian.

B. Correlation of the ARFIMA Residuals

Any significant dependence in the residuals of a fitted model
can be diagnosed by calculating the ACF of the residuals. So,
we calculate the autocorrelations (r̂k) of the residuals (ε̂t) at
different lags (k) using the formula,

r̂k =

∑n
t=k+1 ε̂tε̂t−k∑n

t=1 ε̂
2
t

. (12)

The ACFs of the residuals from the three ARFIMA models
of the PMU data are shown in Figs. 8 (a)-(c). Inspecting
graphically the first 50 autocorrelation lags shows that most
of the autocorrelations are within the 95% confidence band
(±1.96/

√
n), except a small number of outliers. So, we can

conclude that we have independent and uncorrelated residuals.
A more formal way of analyzing the dependence in the

residuals is through the Ljung-Box test [26]. The test was
introduced by Ljung and Box in 1978 as a modified version
of the Box and Pierce test [27]. The test provides joint instead
of individual testing of the adequacy of the fitted model. The
Ljung and Box test is based on the statistic,

Q(r̂) = n(n+ 2)

m∑
k=1

(n− k)−1r̂2k, (13)

where n is the size of the residuals series and m is
the number of lags. The statistic Q(r̂) would asymptotically
follow a Chi-squared (χ2) distribution with m−(p+q) degrees
of freedom under the assumption that the residuals (r̂k) are
normally distributed. The test tends to be more strict in case
of non-Gaussian and heavy tailed distributions.

The null hypothesis (H0) is that residuals are independent
and there is no lack of fit. On the other hand, the alternative
hypothesis (H1) indicates dependence among residuals and
a lack of fit. We can reject the null hypothesis of the test
at h degrees of freedom, and significance level, 0.05, if
Q(r̂) > χ2

0.95,h, where χ2
0.95,h is the 0.95-quantile of the

χ2-distribution at h degrees of freedom. The p-value of the
Ljung-Box test represents the probability of having Q higher
than the calculated, Q(r̂), in the corresponding χ2-distribution.
At significance level of 0.05, we reject the null hypothesis (H0)
if the p-value < 0.05 and we fail to reject the null hypothesis
(H0) if the p-value > 0.05.

As shown in Figs. 9 (a)-(c), the p-values of the residuals of
the three ARFIMA models are higher than the significance
level of 0.05 (dotted line), so we cannot reject the Null
hypothesis (H0). That means we do not have evidence that the
residuals of the selected ARFIMA models are autocorrelated.

VI. ANOMALY DETECTION VIA ARFIMA MODELS

Anomalies in PMU data could be related to data quality
issues or physical events. Several data mining and machine
learning algorithms have been proposed to detect and classify



Figure 8. ACFs of the residuals of the ARFIMA models: (a) Voltage magnitude (b) Frequency (c) Angle

Figure 9. P -values of Ljung-Box statistic of the ARFIMA residuals: (a) Voltage magnitude (b) Frequency (c) Angle

these anomalies, such as ensemble learning [28], convolutional
neural network [29], principal component analysis [30]. These
algorithms have been proven to detect anomalies at different
response times and accuracy rates.

In this section, we propose a novel method capable of
detecting the hidden changes in the power grid before crit-
ical transitions, like power blackouts. Using the 2012 Indian
blackout, we show that these changes can be detected in the
system frequency several minutes ahead of the blackout.

A. Effect of Data Quality Issues on ARFIMA Modeling

Here, we discuss the impact of real-world data quality issues
(data corrupted by noise, packet drop, bad data) on the fractal
characteristics of PMU data. As any small deviation in the
estimated differencing parameter results in inaccurate data
models, we devote this section to study the effect of these
issues on the estimated differencing parameter.

1) Fractal behavior of data with induced noise: The PMU
data contains measurement errors and noise induced by the
PMU device or the communication channel. It has been shown
that the measurement errors in PMU data behave like a
gaussian white noise (d = 0) [31]. We aim to examine the
effect of the white noise on the differencing parameters of
PMU data for different signal-to-noise ratios (SNRs).

At each SNR, we calculate the differencing parameters of
100 PMU time series (induced by noise) for each variable (V ,
f , and θ). Then, we plot the distribution of the relative errors
in the differencing parameter versus the corresponding SNR,
as shown in Fig. 10 (a). In [31], the authors show that the SNR
of different PMU variables from field data is approximately
45 dB. Based on our results, at a SNR of 45 dB, the means of
the relative errors for the voltage, frequency, and phase angle
are 0.12%, 0.11%, and 0.15%, respectively. It is clear that the
white noise has a minimal effect on the estimated differencing
parameters for SNR≥ 20 dB.

2) Fractal behavior after data loss: As part of the wide
area monitoring system in the SG, some PMU data loss as
a result of packet drop and loss (User Datagram Protocol

(UDP) protocol) or congestion followed by retransmission
and delay (Transmission Control Protocol/Internet Protocol
(TCPIP) protocol) can be expected.

We evaluate the effect of different percentages of missing
data samples on the differencing parameters of PMU data. At
each percentage, we calculate the differencing parameters of
100 PMU time series for each variable (V , f , and θ). Then, we
plot the distribution of the relative errors in the differencing
parameter versus the corresponding missing data percentage,
as shown in Fig. 10 (b). Practically, the average percentage of
missing samples in PMU data is between 5 − 10% [32]. At
a percentage of 10%, the means of the relative errors for the
voltage, frequency, and phase angle are 5.47%, 4.82%, and
9.45%, respectively. It seems that the relative errors increase
gradually as the data loss percentage increases. Up to a data
loss percentage of 50%, the median relative error in the
differencing parameter is approximately 12%.

3) Fractal behavior of bad data: The distinction between
a disturbance and bad data is of great importance to help in
making informed decisions. In Table II, we have calculated the
fractal parameters for a large set of PMU data collected under
normal operating conditions. The statistics of these parameters
could provide thresholds for the expected fractal behavior of
the PMU signals. Any persistent deviation from these limits
should be labeled as a potential bad data. On the other hand,
an abrupt change in the fractal behavior could provide an early
warning for a major transition.

Under the assumption of Gaussian bad data, we distribute
the bad data samples randomly in the PMU time series. For
different percentages of bad data samples, we calculate the
differencing parameters of 100 PMU time series for each
variable (V , f , and θ). Then, we plot the distribution of
the relative errors in the differencing parameter versus the
corresponding bad data percentage, as shown in Fig. 10 (c).
The expected percentage of bad PMU data samples in real
power grid is below 4% [33]. At a percentage of 4%, the
means of the relative errors for the voltage, frequency, and
phase angle are 5.38%, 5.89%, and 6.31%, respectively.



Figure 10. Relative error in the differencing parameters due to: (a) Induced noise (b) Missing data (c) Bad data

B. Detection of the 2012 Indian Blackout

In complex systems, the critical slowing down [2] is one of
the most important indicators to the proximity to a critical
transition. The critical slowing down could lead to certain
changes in the characteristics of system fluctuations, including
increased lag-1 autocorrelation (φ1) [34] and increased scaling
exponent (α?) [3]. To verify the existence of the critical
slowing down in the power grid, we can monitor the changes
in the ARFIMA parameters (d and φ1) of the data.

One of the largest power blackouts in the history is the 2012
Indian blackout [35]. The blackout had two events occurring
over two consecutive days and affected more than 600 millions
people. The recorded data of the system frequency is shown
in Fig. 11 (a). Our proposed early warning proceeds from
the derivation of accurate ARFIMA models of the frequency
signal toward the Indian blackout. In ARFIMA modeling, the
Whittle approximate MLE has been proven to outperform
other estimation methods in terms of bias and errors [36].

As shown in Fig. 11 (a), we estimate the ARFIMA models
of the system frequency inside 16.67-minute sliding window
with 1-minute shift toward the 2012 Indian blackout. The
ARFIMA parameters (d and φ1) inside the sliding window
are shown in Figs. 11 (b)-(c). By examining the plots of the
differencing and lag-1 autoregressive parameters, we notice an
increase in their values toward the blackout with the increase
more noticeable on the differencing parameter. The increase is
starting around 11-12 minutes before the blackout. The mean
of the differencing parameter is shifting from 1.02 to 1.23, and
the mean of the lag-1 autoregressive parameter is shifting from
0.2 to 0.31. This increase could provide an early warning of
the proximity to a major transition or blackout. The increase
in the ARFIMA parameters (d and φ1) of the frequency could
be a sign of a critical slowing down in the power grid.

Currently, the PMUs play a critical role in the power grid
operation. Extracting the useful information embedded in the
massive amount of PMU data is a challenge, especially in
real-time applications. Therefore, our statistical models serve
as anomaly detection tool that can identify these anomalies
and warn the operators to take the proper actions.

VII. CONCLUSION

The starting point of this paper has been evidence of non-
stationarity in PMU data using unit root tests, ADF and KPSS.
We then followed up with different methods (DFA, GPH, and

PSD) that capitalize on non-stationarity to compute the fractal
parameters, showing existence of long-range memory in the
PMU data. The estimated fractal parameters (α?, d, and β)
showed consistency among the three methods. Since most of
the PMU data have long-range memory, we have used the
ARFIMA models to reproduce the PMU data, and its parame-
ters were estimated using the Whittle estimator. The goodness-
of-fit was analyzed through testing the autocorrelation and
independence in the model residuals.

Practical grid applications already emerge, and will be
subjects of further investigations–most importantly, change
point detection of ARFIMA parameters to detect abnormal
events with the specific property that the detection delay is
minimized given an upper bound on the false alarm rate. Last
but not least, ARFIMA models of the voltage (V) and the angle
(θ) are data driven substitutes for the power flow equations in
a symbiotic approach that remains to be developed.
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