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Abstract— Voltage collapse is one of the critical phenomena
that threatens the power infrastructure. It manifests itself by
a sudden and fast collapse of the system voltage. The simplest
bus system—one generator, one line, and one load describing
function—reveals a feedback structure, which, depending on the
nature of the load, could go in a voltage collapse resembling
an “anti van der Pol” behavior. A static-dynamic compromise
for the load model is provided by an “impedance” describ-
ing function that has the advantage of being derived from
experimental data collected in a real grid environment [5].
This reveals, among other things, a noninteger exponent of the
frequency requiring a real analytic extension for the model to
be usable for a collapsing solution away from the imaginary
axis. We investigate whether the voltage collapse is possible to
occur at different loads. In the cases where the voltage collapse
is likely to occur, we study the interaction between the voltage
and frequency during the collapse.

I. INTRODUCTION

Voltage collapse is an intriguing phenomenon from a
control perspective. Even though many theoretical “routes”
to voltage collapse have already been proposed, it is not
entirely clear what is really happening in the complex, large-
scale environment of the power grid. It is our contention that
voltage collapse is not just a supply-demand imbalance, but
is rather a nonlinear phenomenon due to the complicated
characteristics of the typical “messy” loads that the gener-
ators drive. The early suspicion that load characteristic is
somehow the culprit in voltage collapse has led to deeper
research on load modeling. Load characteristics, outside the
realm of classical circuit theory because of their unusual
frequency dependence, have indeed been shown to be related
to voltage collapse, but in a context where other phenomena
(e.g., tap-changer effects) contribute to the collapse. In this
paper, we show that voltage collapse can occur—even with
an infinite bus, even with a simple one-generator, one-line,
one-load configuration—as a phenomenon emanating from
special effects in the aggregated load characteristic. Voltage
collapse here is to be understood in a strong sense; namely,
because of a hidden feedback effect, as the load voltage
decreases the damping of the oscillation increases. We call
this phenomenon, the anti-Van der Pol effect.

Voltage collapse has been studied in the literature using
different methods and using several power system mod-
els. The voltage collapse has been explained using static
and dynamic analysis. In the static analysis, investigators
introduced several measures for the voltage collapse, like
existence of power flow solution, singularity of the Jacobian
matrix [13], etc. On the other hand, the dynamic analysis
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of the voltage collapse was based on studying the dynamic
interactions between the components of the power system,
like the generator and load dynamics [?], load and tap
changer dynamics [12], etc.

It is generally believed that the dynamics of the loads is
an important factor in voltage collapse. Several models were
introduced to describe the nonlinearity and dynamics of the
load. The loads in the power system are modeled either as
static or dynamic loads. In static loads, active and reactive
powers are represented as possibly non integer powers of the
load voltage with exponents np, nq that depend on the load
type as shown in Eq. (1),

PL = KpV
pv
L , QL = KqV

qv
L , (1)

where Kp and Kq are constants. Classically, there are three
types of static loads: constant power (pv = qv = 0), constant
current (pv = qv = 1), and constant impedance (pv = qv =
2).

The static load has been used to study the voltage collapse
by looking at the feasibility of the load flow [7], the
minimum singular value of the Jacobian matrix [13], and
static bifurcations of the load flow equations [11].

The dynamic load model, which was proposed in Hill [8],
captures the transient load response to voltage step function.
The model represents the power as solution to a nonlinear
differential equation. This model has been used to study the
voltage collapse in the power system looking at the interac-
tions between the dynamics of the load and the generator or
the load and the on-load tap changer as in [12].

In this paper, we use another load model, the Berg
model [4], which in our opinion has been overlooked.
Probably its most distinguishing feature is that it was derived
in a real grid environment, which probably explains, in
addition to noninteger exponents np and nq of the load
voltage, noninteger exponents of the frequency w, as shown
in Eq. (2). Because of this frequency dependence, we re-
fer to those models as “in the static-dynamic gap.” These
models lend themselves to describing function “impedance”
models, which are easily incorporated in multivariable feed-
back diagram and amenable to robust multivariable control
techniques to reveal the possibility or the impossibility of
voltage collapse.

This paper is organized as follows. In Sec. II, the power
system model and its components are introduced. The exis-
tence of voltage collapse solution will be covered in Sec. III.
Then, the possibility of voltage collapse for different loads
will be covered in Section IV, and we have the conclusion
in Sec. V.



II. POWER SYSTEM MODEL

The power system model consists of one generator source
connected to a load (ZL) through a transmission admittance
(YLine), as shown in Fig. 1a. The circuit diagram in Fig. 1a
can be redrawn to highlight the feedback structure with the
line admittance (YLine) in the feedforward transfer function
and the load (ZL) is the feedback transfer function. This
representation will be used through the whole analysis. The
feedback model is shown in Fig. 1b.

(a) (b)

Fig. 1: Power system model: (a) Circuit diagram, (b) Feed-
back model

The generator will be modeled using a harmonic oscillator
with a resonance frequency w0 = 377rad/s. Even though
the generator model is a simplified one, it still will give us
some insight on how the voltage could collapse. A block
diagram of the generator model is shown in Figure 2.

Fig. 2: Block Diagram of the harmonic oscillator

The transmission line will be represented by an inductive
admittance (YLine), assuming the purely inductive transmis-
sion line property can be justified as an approximation, that
is, the resistance and the capacitive effects of the transmis-
sion line will be neglected. In this paper, will study different
types of loads, one by one, to show conditions under which
voltage collapse occurs. These models will be explained in
details in the next subsection.

A. Static-dynamic gap load modeling

Here, we fill the so-called “static-dynamic” gap by intro-
ducing describing function models of such usual loads as re-
duction furnace, fluorescent lamps, etc. The static model, the
(P, V ) diagram, is well known and not reviewed here. The
popular dynamical model of Hill [8] relies on a differential
equation linking the instantaneous active power consumed by
the load, the static power, and the voltage magnitude under
subharmonic transients.

On the other hand, the Berg model [4] adopted here
ignores transients, but runs at the harmonic level and is
hence amenable to robust multivariable techniques. In a
certain sense, we compromise between static and dynamic,
with a purely harmonic model analytically extendable to

TABLE I: Typical values of characteristic-load parameters

Load Type pv pw qv qw
Filament lamp 1.6 0 0 0
Fluorescent lamp 1.2 -1.0 3.0 -2.8
Heater 2.00 0 0 0
Induction motor half load (HL) 0.2 1.5 1.6 -0.3
Induction motor full load (FL) 0.1 2.8 0.6 1.8
Reduction furnace 1.9 -0.5 2.1 0
Aluminum plant 1.8 -0.3 2.2 0.6
Regulated aluminum plant 2.4 0.4 1.6 0.7

include slightly damped behavior, and amenable to large
scale analysis.

In the Berg model [4], the active power PL and the reactive
power QL consumed are noninteger exponent powers of the
load voltage amplitude VL and the frequency w as shown in
Eq. (2),

PL = KpV
pv
L wpw , QL = KqV

qv
L wqw , w > 0. (2)

In the above, Kp and Kq are constants. The exponents pv ,
pw, qv , and qw depend on the specific load. Table I shows
the exponents for different loads (from [1, Table 6.1], [4],
[5]).

The describing function of the load represents the equiv-
alent gain from the load current IL to load voltage VL,
ZL = VL

IL
. By multiplying the numerator and denominator

by VL
∗, we get

ZL =
VLVL

∗

ILVL
∗ =

V 2
L

S∗
L
. (3)

The complex power is equal to

SL = VLIL
∗ = P (VL, w) + jQ(VL, w). (4)

Substituting Eq. (4) in Eq. (3) yields

ZL =
V 2
L

P (VL, w)− jQ(VL, w)
. (5)

The describing function of different power grid loads can be
derived by substituting the expression for P , Q of Eq. (2) in
the describing function equation (5). The describing function
of the load becomes:

ZL =
1

KpV
pv−2
L wpw − jKqV

qv−2
L wqw

, (6)

The describing functions of different types of loads are
shown in Table II.

B. Berg [4] model versus Hill model [8]

The dynamical, transient-motivated model developed by
Hill [8] reads

TpṖd + Pd = Ps(VL) + kp(VL)V̇L

where Pd is the slowly time-varying active power consumed
by the load and Ps is the steady-state component of the
active power. Ps(VL) is certainly comparable with Model (1),
valid in the specific cases of the filament lamp and the
heater where the Berg modeling does not reveal frequency



TABLE II: Impedances of various loads

Load Type Describing Function

Filament lamp
1

KpV
−0.4
L

−jKqV
−2
L

Fluorescent lamp
1

KpV
−0.8
L

w−1−jKqVLw−2.8

Heater
1

Kp−jKqV
−2
L

Induction motor HL
1

KpV
−1.8
L

w1.5−jKqV
−0.4
L

w−0.3

Induction motor FL
1

KpV
−1.9
L

w2.8−jKqV
−1.4
L

w1.8

Reduction furnace
1

KpV
−0.1
L

w−0.5−jKqV
0.1
L

Aluminum plant
1

KpV
−0.2
L

w−0.3−jKqV
0.2
L

w0.6

Regulated aluminum plant
1

KpV
0.4
L

w0.4−jKqV
−0.4
L

w0.7

dependence. The major difference, however, is that Ṗd and
V̇L are the time derivatives of the active power and the
voltage magnitude, resp., so that any describing function
attempt to replace d/dt by jwsub, viz.,

Pd(jwsub, VL) =
αPs(VL) + βjwsubkp(VL)VL

1 + jwsubTp

would entail a subharmonic component wsub, while the Berg
model entail the harmonic (line frequency) w.

In a certain sense, the Berg and the Hill models comple-
ment each other, both having the similarity of a slow transient
followed by recovery to steady-state (compare Berg [4, Fig.
8] with Hill [8, Fig. 1]). The discrepancy is that the Berg
model ignores the transient but captures a noninteger power
of the frequency component in the steady-state whereas the
Hill model captures the transient but ignores the frequency-
dependence of the steady-state.

This noninteger exponent in the Berg model is probably
due to a nonlinear load aggregation effect in the grid, as the
Berg model measured the dependency of the active power
on voltage and frequency at the specific load, but in a
real Scandinavian island grid. It could be argued that such
exponents as w−2.1 in the induction motor could be the result
of experimental inaccuracies, but such exponents as w0.5 in
the reduction furnace point to an inescapable reality, which
was recently corroborated by [9] as fractional derivatives in
transformer models.

III. EXISTENCE OF A VOLTAGE COLLAPSE SOLUTION

Combining the generator model and the power system
model, we will have the feedback model that is shown in
Fig. 3. The model has a 2 × 2 feedforward transfer matrix
(G). The matrix G is an upper-triangular matrix, which has
YLine and w0

2 on the diagonal. The feedback transfer matrix
(F ) is a 2 × 2 diagonal matrix with −ZL and − 1

s2 on the
diagonal.

Fig. 3: Block diagram of the power system including the
harmonic oscillator

The output (y = [y1 y2]
t) can be written as function of

the input (u = [u1 u2]
t), as follows:

y = (I −GF )−1Gu, (7)

where

G =

(
YLine YLine
0 w0

2

)
, F =

(
−ZL 0
0 − 1

s2

)
.

It is important to note that Equation (7) should not be
interpreted as a Laplace transform equation, but as an equa-
tion where y(jw) and u(jw) are “phasors” of the harmonic
regime coswt in a sense formalized in [3]. We will further
extend jw to s = σ + jw where s is restricted to a small
strip across the imaginary axis, where the analytic extension
of the frequency response of the loads is guaranteed to exist,
as will be proved in Sec. III-A. Such an extension for stability
analysis has been validated in [2].

A. Analyticity

Voltage collapse would mean showing that a purely har-
monic solution to feedback equations under some VL would
go to a solution of the form eσt cos(wt), σ < 0, when VL
drops below some nominal voltage. There is thus a need to
validate the various describing functions for such signals,
that is, do an analytical extension to w − jσ. The nonlinear
impedance can clearly be written as ZL = RL + jXL and
it is easily seen that both RL and XL are of the form
p(VL, w)/q(VL, w); some further manipulations allow us to
rearrange terms so that both the numerator and the denomina-
tor of RL, XL involve positive (possibly noninteger) powers
of w.

Lemma 1: If p(VL, w) and q(VL, w) are real analytic in
w around w0 = 2π × 60, and if q(VL, w0) 6= 0, then
p(VL, w)/q(VL, w) is real analytic at w0.

Proof: Define the function inv(x) = 1/x. It is real
analytic at x 6= 0. Next, observe that 1/q(VL, w) = (inv ◦
q)(VL, w). Since the composition of two real analytic func-
tions is real analytic [10, Prop. 1.4.2] (a corollary of the Faà
di Bruno formula [10, Sec. 1.3]), it follows that 1/q(VL, w)
is real analytic. Finally, p(VL, w)/q(VL, w) is real analytic as
the product of two real analytic functions having nonempty
intersection of their domain of convergence [10, [Prop.
1.1.7].

It remains to show that p(VL, w) and q(VL, w) are real
analytic. Clearly, it suffices to show that wr, where r > 0



is a noninteger, possibly irrational exponent, is analytic. We
simplify the exposition by assuming that r ∈ Q+.

Lemma 2: wn/d, where n, d ∈ N is real analytic around
w 6= 0.

Proof: Define the power function powerr(x) = xr.
For n ∈ N, powern is clearly real analytic. Furthermore,
power1/d is real analytic by the real analytic inverse func-
tion theorem [10, Sec. 1.5]. Finally, observe that wn/d =
(power1/d ◦powern ◦1)(w) and the latter is real analytic by
the real analytic property of the composition of real analytic
functions.

B. Voltage collapse condition

The possibility for the power system in Fig. 1(a) to have
oscillation is determined by Eq. (7). The power system will
have a solution for the output (y) when the input (u) is equal
to zero iff the determinant of (I−GF ) is equal to zero. The
determinant of (I −GF ) can be written as

|I −GF | = (1 + ZLYLine)(1 +
w0

2

s2
). (8)

Theorem 1: Consider the feedback interconnection of
Fig. 3. Then, on the one hand, a harmonic solution cos(wt)
always exists. On the other hand, a voltage collapsing
solution eσt cos(wt) with σ < 0 exists if and only if

1 + ZL (VL, w − jσ)YLine (w − jσ) = 0,

for some σ < 0.
Proof: In the particular case of one generator, one line,

one load, the multivariable diagram of Fig. 3 yields y subject
to collapse. By having the input u equal to zero in Eq. 7,
existence of solutions is then given by det(I − GF ) = 0,
which yields (1+ZLYL)

(
1 + w0

2

s2

)
= 0. From here on, the

result should be obvious.
Assuming the load describing function is not equal to zero
at any voltage (VL) and frequency (w), the voltage collapse
condition can be rewtitten as

YL (VL, w − jσ) + YLine (w − jσ) = 0, (9)

where

YL = KpV
pv−2
L (

w − jσ
w0

)pw − jKqV
qv−2
L (

w − jσ
w0

)qw

(10)
and

YLine =
KLine

σ + jw
, (11)

where KLine is equal to Zbase
L . For simplification, we will

substitute σ+jw by s, and multiply Eq.(9) by s. The voltage
collapse condition becomes

Kp(
−j
w0

)pwV pv−2
L (s)pw+1

− jKq(
−j
w0

)qwV qv−2
L (s)qw+1 +KLine = 0.

(12)

In the simple model of Fig. 3, the absence of “back-action”
of the load to the generator results in two solutions only—
the purely harmonic one imposed by the generator and the

load-specific 1 + ZLYLine = 0 solution. This architecture
does not allow for a smooth transition from one to the other,
so that some bifurcation needs to be invoked. But, as shown
in Sec. IV, the message of this decoupled model is that the
1+ZLYLine = 0 solution reveals a behavior of the frequency
concomitant with the voltage collapse that has been thus far
derived in models where the swing equation of the generator
appears to play a role [6]. Here, such behavior is created by
the load. It thus appears that the load—properly modeled to
include the frequency dependence as in the Berg model—
might contribute much more to voltage collapse than has
been assumed thus far.

IV. THE POSSIBILITY OF VOLTAGE COLLAPSE AT
DIFFERENT LOADS

We will go over different groups of power system loads
and identify the possibility of voltage collapse in each case.
Firstly, we will go over special loads with pv = qv and
pw = qw. Then, we will use practical load models that were
derived in [5].

Once we write the load impedance as a function of voltage
and frequency, we will assume having an analytic extension
of the imaginary axis interval (j(w0−δ), j(w0+δ)) in which
Berg equations are valid to a neighboring strip comprising
this interval and intersecting the right and left-half planes.
That means that we will replace (w) by (w − jσ) in the
equations of the load impedance (ZL) and the line admittance
(YLine). Recall that the damping ratio is ζ = −σ/w.

A. Special loads with pv = qv, pw = qw

This group of loads have common voltage/frequency
exponents for the active power and the reactive power.
Even though these loads are more theoretical than realistic,
however, they can help us to derive explicit expressions for
the damping ratio (ζ) and frequency (w) as functions of
the load voltage. Such solution can give us a bound on
the voltage (pv = qv) and frequency (pw = qw) exponents
of the loads that have a potential to collapse. Also, it can
explain how other parameters, like active power coefficient
(Kp), reactive power coefficient (Kq), and transmission line
coefficient (KLine), could support/mitigate voltage collapse.

By having the coefficients of the active and reactive power
equal to each other, Eq. (12) can be rewritten as,

s = σ+jw = (
−kLine

(−jw0
)pw(Kp − jKq)

)

1
pw+1

︸ ︷︷ ︸
α

VL

2− pv
pw + 1︸ ︷︷ ︸

β . (13)

The system would go to voltage collapse if the following
two conditions are satisfied:

Condition 1: <(α) < 0 & =(α) > 0
Proof: Given that the damping ratio (ζ) and frequency w
are positive during the voltage collapse, and since VLβ is a
real-valued function, the real and imaginary components of
α should be negative and positive, resp.



Condition 2: β < 0
Proof: A necessary condition for voltage collapse is that |σ|
be inversely proportional to VL, which is satisfied when the
exponent β of VL is negative.

Our goal here is to find the ranges of voltage (pv) and
frequency (pw) exponents that satisfy both of the condi-
tions above. Using MATLAB, we found the region where
Condition 1 is satisfied. We used the following numerical
values:Kp = 1, Kq = 0.328, and KLine = 1000. Condition
1 depends only on the frequency exponent (pw) and it is
satisfied when pw > 0.202.

The second condition is satisfied if either (pv > 2 &
pw > −1) or (pv < 2 & pw < −1). In Fig. 4, we plot the
region where Condition 1 holds in red color and the region
where Condition 2 in yellow color. The intersection of these
regions (orange color) is the region that has potential for
voltage collapse.

Fig. 4: Voltage collapse region

To confirm the voltage collapse region, we plot σ and the
frequency (w) versus the load voltage (VL) at different load
characteristics (pvi,pwi) chosen from the voltage collapse
region of Fig. 4. We will sweep the voltage from 1 to 0.1.
The curves in Fig. 5 for the three loads with exponents pairs
((2.5, 1), (3, 1.5), and (3.5, 2)) are showing increase in the
damping ratio as the voltage decrease, which is a voltage
collapse scenario.

It is noteworthy that a similar pattern—abrupt decay of
voltage concomitant with frequency increase—has already
been observed in [6] using an approach that involves the
swing equation. Here, we show that a similar behavior can
be obtained from the load characteristic only.

B. Berg load models

Now, we will be more interested in applying the voltage
collapse condition to the practical loads derived in Section
II with load describing functions listed in Table II. Since
deriving an expression for the s = σ + jw solution is
not easy since the voltage collapse condition becomes more

Fig. 5: Sigma (σ) and frequency (w) for different special
loads

complicated with multiple non-integer exponents of s, we
will use the ‘fsolve’ command in MATLAB to see how the
damping ratio (ζ) and the frequency (w) depend on the load
voltage (VL). Based on the results, we can divide the loads
into two groups: stable and unstable loads.

1) Stable loads: These loads are stable because they are
not satisfying the voltage collapse condition. In case of
Filament lamp, Heater, and Aluminum plant, the solution
of the voltage collapse equation has negative frequency (w)
values, which contradicts one of the assumptions (2). The
solution of the voltage collapse equation does not exist in
case of the Fluorescent lamp and the Reduction furnace.

Induction motors (half/full load) have a solution for the
voltage collapse equation; however, the dependence of |σ|
on the load voltage (VL) is directly proportional, as shown
in Figure 6.

Fig. 6: Sigma (σ) and frequency (w) for induction motor
loads (half/full)



2) Unstable loads: Regulated Aluminum plant load shows
the possibility of having a voltage collapse as shown in
Figure 7. This load is Aluminum Plant Load with voltage
regulation that is accomplished by a transformer tap changer
to maintain constant average load current [4]. Even though
the Aluminum plant by itself is a stable load, the equivalent
load for the load and the tap changer will make the load
vulnerable to voltage collapse.

Again the behavior of Fig. 7 has also been observed
in [6] using the swing equation, while here this equation
contribution does not appear to play a role.

Fig. 7: Sigma (σ) and frequency (w) for regulated aluminum
plant

The transmission line coefficient (KLine), the active power
coefficient (Kp), and the reactive power coefficient (Kq) have
an impact on the proximity of the power system to voltage
collapse. So, we will study how changing these variables
could affect the damping ratio (ζ) at nominal load voltage
(VL = 1). The closeness of the damping ratio (ζ) to zero at
1 p.u. means that a small bifurcation could throw the voltage
along the collapse route and is an indication of higher chance
of voltage collapse.

Figs. 8-10 show the dependency of the real part σ on
transmission line coefficient, active power and reactive power
coefficients. Since the transmission line coefficient (KLine)
is equal to Zbase

LLine
and the maximum power transfer over trans-

mission line is directly proportional to 1
LLine

, the KLine is
directly proportional to maximum power transfer. So, Figure
8 indicates that reducing the transmission line capacity could
make the system closer to voltage collapse.

The impact of the active and reactive power coefficients on
the voltage collapse is shown in Figs. 9-10. The higher these
coefficients (Kp and Kq) the higher the load demand, which
could make the damping ratio (ζ) have a smaller value at 1
p.u., from where a small disturbance could take the system
to voltage collapse.

Fig. 8: The relationship between the transmission line coef-
ficient (KLine) and Sigma (σ)

Fig. 9: The relationship between the active power coefficient
(Kp) and Sigma (σ)

Fig. 10: The relationship between the reactive power coeffi-
cient (Kq) and Sigma (σ)



C. Correct initial conditions
Since the results are essentially derived from the load,

which, depending on the exponents in the model, would
take the system from some initial conditions at 1 p.u.
The correct initial conditions should be ζ(1p.u.) = 0 and
w(1p.u.) = 2π60. The curves of Fig. 7 do not quite show
the correct initial conditions; however, as shown by Fig. 8,
manipulating the transmission line coefficient can bring us
close to the correct initial condition ζ(1p.u.) = 0. The offset
of the initial conditions could be created by complicated
models extremely sensitive to exponents, themselves difficult
to identify.

However, despite this offset in initial conditions most
probably created by numerical instability, the trend is correct
as corroborated by [6].

V. CONCLUSION

We have shown a hitherto hidden route to voltage collapse.
Its main feature is that it involves only a very simple model of
the generator together with a model of the load realistically
complicated by its strange frequency dependence, indicating
that probably load characteristics have been overlooked in
the general voltage collapse issue. The culprit seems to be
more of an issue of the frequency dependence of the load
characteristics rather than its voltage dependence.

Our finding of the possibility of increasing damping
together with frequency increase/decrease as the voltage
decreases is corroborated by the independent finding of [6],
with the difference that our approach places more emphasis
on the role of the load in this voltage collapse scenario.

A. Review of main result
As far as the physically realistic frequency-dependent

loads as modeled by the Berg paradigm are concerned, they
can be classified into two groups:

• Those loads for which the damping ratio ζ decreases
as the load voltage decreases (induction motors). For
those loads, voltage is stable as, when it tends to
decrease, damping is decreasing. This is a Van der Pol-
like behavior.

• Those loads that show an increase in damping ζ with
decreasing voltage (regulated aluminum plant) together
with a frequency disruption. These are the “dangerous”
loads, prone to voltage collapse. Indeed, when the load
voltage decreases, the damping increases, accelerating
the decrease in voltage, in an “anti-Van der Pol” behav-
ior.

Next to the frequency-dependent loads, we also have the
frequency-independent loads. Those do not create voltage
collapse per the scheme unraveled here.

B. Future work

What still needs further research is the transition from
the harmonic regime (σ(1pu) = 0) to the regime analyzed
here characterized by increased damping under decreasing
load voltage. Probably some couplings in Equations (7), (8)
should give the key.

As said in Sec. II-B, the Berg model and the Hill model
complement each other, on the common foundation of a
transient followed by a recovery. It would be beneficial
to develop a combined model that would have the unique
feature of a harmonic w and a subharmonic wsub frequency
dependence.

The issue as to whether the fractional power of the fre-
quency is related to fractional derivatives, as the connection
with [9] seems to indicate, is widely open and left for further
research.
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