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Abstract—This paper considers the problem of average net-
work delay minimization on multiclass, multihop, stochastic
wireless networks subject to inter-channel interference and time-
varying topology. We present a network control policy that solves
this problem in the class of all policies whose control decision
is a function only of current queue congestion and current
channel states, including policies that have perfect knowledge of
probabilities associated with future random events. As important
features of our proposed control policy, it is throughput-optimal
in the sense that it can stabilize queues for any stabilizable
arrival rate, it is robust to varying network topology and arrival
rates, and it is implemented without requiring any knowledge of
statistics and probabilities in the system. The proposed control
policy is analyzed via the theory of stochastic discrete-time
Lyapunov drift with a significant difference that unlike prior
works that merely push down an upper-bound on the drift, our
design genuinely minimizes the drift itself.

I. INTRODUCTION

Consider a time-slotted stochastic wireless network, where
the channel conditions are time-varying according to some (un-
known) probability laws, and where simultaneous transmission
over two channels fail if they have interference. Packets of the
same size randomly arrive to any node, while destining for
different destinations and perhaps requiring multihop routing
paths. At each timeslot, a network controller observes queue
congestion and channel conditions to make a control action
that determines which set of channels should be activated and
how many packets should be transmitted over them. In this
paper, the goal of the controller is to minimize time average
total queue congestion in the network, which is proportional
to average network delay by Little’s Theorem [1].

Achieving this goal for a general case requires the Markov
structure of topology process, plus arrival and channel state
probabilities. Then in theory, the solution is obtained through
dynamic programming for each possible topology along with
solving a Markov decision problem. By even having all
of these required information, the number of queue buffers
and channel states increase exponentially with the size of
network, making dynamic programming and Markov decision
theory impractical. In fact, even for the case of a single
channel, it is difficult to implement the resulting stochastic
algorithms [2]. While having a practical solution for a general
case seems dubious, this paper solves this problem within an
important class of network controllers, without requiring any
of the above-mentioned information, and without dealing with
dynamic programing or Markov decision process.
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We consider the class of all network controllers that make
routing decision as a pure function of current queue congestion
and current channel states, including the ones with perfect
probability knowledge of arrivals and channel states. As an
important quality, this class allows us to design throughput-
optimal controllers that can stabilize all arrival rates within
the network capacity region. Two specific families of control
policies that are categorized in this class are as follows.

1) All stationary randomized algorithms that make inde-
pendent, stationary, and randomized transmission decisions
at each timeslot based only on current channel capacities,
and so independent of both queue congestion and channel
quality factors [3], [4]. While such controllers exist in theory,
they are intractable in practice as they typically require a full
knowledge of arrival statistics and channel state probabilities.
Besides this, the network controller would still need to solve a
dynamic programming problem for each topology state, where
the number of states grows exponentially with the number
of channels. Although these controllers are not practically
attractive, the fact that they exist plays a key role in the
theoretical analysis of wireless network problems [3], [4].

2) All opportunistic max-weight algorithms that do not
incorporate the Markov structure of network topology process
into their decisions. These controllers make a transmission
decision at every timeslot via locally weighing each link and
then globally scheduling a set of links with maximum sum
weight. Our proposed control policy in this paper, also the
well-known Back-Pressure (BP) algorithm [5] and almost all
of its follow-up derivations, belong to this group.

The seminal paper on congestion-aware routing control
by Tassiulas and Ephremides [5] showed that the queue-
differential, link-capacity-based BP is throughput-optimal un-
der very general conditions. We analytically prove that our
proposed control is also throughput-optimal under the same
general conditions and with the same complexity as BP, while
on top of that minimizing the time average total queue con-
gestion in the above-mentioned class of network controllers.
We refer to our proposed policy as Heat-Diffusion (HD),
emphasizing that in a simplistic metaphorical view of the
network, where queue occupancy is heat quantity and packets
are calories, the limit flow of packets towards the destination
takes the form of the flow of heat towards the sink [6], [7].

The stochastic network optimization framework for the
design and analysis of BP has proven to be a very popular
research domain, with many new theoretical results in recent
years to further enhance the original framework, where many
of them have focused on enhancing the delay performance.



Shadow queues has enabled BP to handle multicast sessions
with reduced number of actual queues that need to be main-
tained [8], [9]. A delay-based BP formulation has obtained a
significantly lower delay by using the cumulative time packet
age queue [10]. Incorporating last-input-first-output (LIFO)
service into BP has shown a better delay quality [11]. Adap-
tive redundancy has been designed to improve the low-rate
delay performance of BP in intermittently connected mobile
networks [12]. Using graph embedding, [13] combined BP
with greedy routing in hyperbolic coordinates to obtain a
throughput-delay tradeoff. The framework has also been ex-
tended to handle finite buffer sizes [14]. Other researchers have
focused on making BP scheduling more distributed so that
it can be implemented more easily [15]–[17]. More recently,
there have been several reductions of BP theory to practice,
in the form of practically implemented and experimentally
evaluated distributed protocols [18]–[20].

An infant idea of HD protocol was introduced in [6] and
then vastly revised and developed in [7] with the aim of pro-
viding the best tradeoff between average queue congestion and
average routing cost on a uniclass network. This paper extends
the result of [7] on minimizing average queue congestion to
multiclass networks through a concise, in depth analysis.

Note: The page limit does not let us include the proofs, but
all the proofs are available in the long-version paper [21].

II. PRELIMINARIES

The network is described by a simple, directed connectivity
graph with set of nodes V and directed edges E . New packets
with different destinations in a set K⊆V randomly arrive into
different nodes. Packets of the same destination form a class.
Each node i ∈ V holds a separate queue q(d)

i for each d-class
to transmit over its outgoing links. We assume that packets are
not sent to trapping nodes in the network, i.e. when a node
accepts d-class packets it means that there exists at least one
possible route from that node to the destination d. While this
assumption is not required for any of our analytical results,
having it ensures that a dynamic control policy, with no routing
path constraint, will not mistakenly send a packet to a trapping
node that prevents it from ever reaching its destination.

Contrary to wireline networks where links are independent
resources, in a wireless network two links cannot simultane-
ously transmit if they have interference. Define a schedule as a
set of links in which no two links interfere with each other, and
call it maximal if no more links can be added to that without
violating the interference constraints. Each maximal schedule
is represented as a vector, referred to as scheduling vector, in
which each entry takes the value 1 if the corresponding link
is included in the maximal schedule, and 0 otherwise. For a
given connectivity graph (V, E), we assume that each maximal
scheduling vector π takes values in a finite scheduling set Π,
which is the collection of all available maximal schedules.

Observe that the scheduling set varies according to interfer-
ence model. The results of this paper is valid for the category
of all interference models in which a node cannot transmit
packets to more than one neighbor at each timeslot, i.e. a node
may receive packets from several of its incoming links and at

the same time may transmit packets over one of its outgoing
links. To the best of our knowledge, interference constraints in
all current network layer protocols, including general K-hop
interference models, fall in this category.

A discrete-time stochastic process x(n) is called stable if

x := lim sup
τ→∞

1/τ
∑τ−1

n=0
E{x(n)} <∞ (1)

where E denotes expectation. A queuing network is stable if
all its queues are stable. An arrival rate matrix is stabilizable if
there exists a control policy to stably support it. For a control
policy, stability region is the set of all arrival rate matrices that
it can stably support. Network layer capacity region C is the
union of the stability regions achieved by all control policies
(possibly unfeasible). A control policy is throughput-optimal
if it stabilizes the entire capacity region.

A. State Space Representation of the System

Consider a multiclass queuing network (V, E ,K). For each
i ∈ V and d ∈ K, let q(d)

i (n) be the integer number of d-classes
in the node i at the slot n. For each link ij ∈ E , let µij(n)
be the link capacity at the slot n. Link capacity, which is
frequently called link transmission rate in literature, counts
the maximum number of packets the link can transmit at one
timeslot. We also define the link actual-transmission f

(d)
ij (n)

that counts the number of d-classes genuinely sent over the
link ij at the slot n. It is important to discriminate between
link actual-transmission and link capacity. In particular, while
link capacities vary by channel states, link actual-transmissions
are assigned by a network controller constrained to

0 6 f
(d)
ij (n) 6 min{q(d)

i (n), µij(n)}.
It is assumed that each packet leaves the network as soon

as reaching its destination, thus the backlog of d-classes at
the destination node d is zero for all d ∈ K. Then the state
variables of the system can be represented by the hyper-vector

oq◦(n) :=
[
q

(1)
◦ (n), . . . , q

(|K|)
◦ (n)

]>∈ R(|V|−1)|K|

q
(d)
◦ (n) :=

[
q

(d)
1 (n), . . . , q

(d)
d−1(n), q

(d)
d+1(n), . . . , q

(d)
|V|(n)

]
where q(d)

d (n) ≡ 0 is dropped from the set of state variables.
Notation 1: We use a subscript ◦ to denote a reduced vector

or matrix obtained by discarding the entries corresponding to
the destination node d. A superscript > denotes the transpose
operation. The set of real numbers is denoted with R. The
cardinality of the set V is denoted with |V|.

Let a stochastic process a(d)
i (n) represent the integer number

of exogenous d-classes arriving into the node i at the slot n.
Discarding a(d)

d (n) ≡ 0, the hyper-vector of node arrivals

oa◦(n) :=
[
a

(1)
◦ (n), . . . ,a

(|K|)
◦ (n)

]>∈ R(|V|−1)|K|

a
(d)
◦ (n) :=

[
a

(d)
1 (n), . . . , a

(d)
d−1(n), a

(d)
d+1(n), . . . , a

(d)
|V|(n)

]
.

Likewise, the hyper-vector of link actual-transmissions
ff(n) :=

[
f (1)(n), . . . ,f (|K|)(n)

]>∈ R|E||K|

f (d)(n) :=
[
f

(d)
1 (n), . . . , f

(d)
|E|(n)

]
where as before, f (d)

ij (n) is the integer number of d-classes
actually sent over the link ij at the slot n.

Notation 2: For a value x of a directed link ` from node i
to node j, we use the notation x` and xij interchangeably.



Given a directed graph (V, E), let B denote the node-edge
incidence matrix in which Bi` is 1 if node i is the tail of
directed edge `, is −1 if i is the head, and is 0 otherwise. For
a class d, let B(d)

◦ denote a reduction of B through discarding
the row corresponding to the destination node d. We refer
to B(d)

◦ as the basis incidence matrix with respect to the
node d. Extending this structure to the multiclass framework,
the generalized basis incidence matrix is built as

IB◦ := diag
( [
B(1)
◦ , . . . ,B(|K|)

◦
] )
∈ R(|V|−1)|K|×|E||K|

where diag(v) is the block diagonal matrix expansion of v.
One can then verify that IB◦f(n) is a hyper-vector in which
the entry corresponding to node i and class d becomes

(IB◦ff)
(d)
i (n) =

∑
b∈out(i)

f
(d)
ib (n)−

∑
a∈in(i)

f
(d)
ai (n)

where in(i) and out(i) respectively denote the set of incoming
and outgoing neighbors of node i.

Using these ingredients, the ff -controlled, stochastic state
dynamics of a multiclass queuing network is captured by

oq◦(n+ 1) = oq◦(n) + oa◦(n)− IB◦ff(n). (2)

Considering the difference between link capacity and link
actual-transmission explains why despite traditional notation
in literature, we do not need any (·)+ operation in (2).

Notation 3: Given x as a real number, x+ := max{0, x}.
The definition is extended entrywise to vectors and matrices.

Under the assumption of no transmission to trapping nodes,
if node i is a trapping node for class d then one may discard
q

(d)
i (n) from the set of state variables oq(n), a(d)

i (n) from the
set of node arrivals oa(n), and the row corresponding to the
node i from the basis incidence matrix B(d)

◦ . Note that in this
case, the node i supposedly receives no exogenous d-classes.
Further, it does not accept d-classes from its incoming links,
and so neither sends any d-classes on its outgoing links.

B. Characteristic of Network Capacity Region

In wireless systems, channel conditions are uncontrollable
parameters that vary in time due to environmental change and
user mobility. We assume that the sets V and E change much
slower than channel states, so that we can fix them during the
time of interest. We also assume that channel states remain
fixed during a timeslot, while may change across slots.

Let a stochastic process S(n) =
(
S1(n), · · · , S|E|(n)

)
represent channel states at the slot n, describing all uncon-
trollable conditions that affect channel capacities. We use
zero capacity to mark a temporarily unavailable channel—due
to, for example, obstacle effect. Suppose that S(n) evolves
according to an ergodic stationary process and takes values in
a finite (but arbitrarily large) set S. Then by Birkhoff’s ergodic
theorem, each state S ∈ S is of probability

s := P
{
S(n)=S

}
= lim sup

τ→∞
1/τ

∑τ−1

n=0
IS(n)=S

where
∑
S∈S s = 1, and IX is an indicator function that

takes the value 1 if the statement X is true, and 0 otherwise.
We insist that our proposed control policy does not require
the state probabilities s. However, the existence of s is
important to establish the network capacity region, and also
to characterize the stationary randomized control policies.

Now, consider a connectivity graph (V, E) together with a
channel state process S(n). For an arrival rate vector a to be
in the network capacity region C, the necessary and sufficient
condition is the existence of a set of link actual-transmissions
such that their expected time averages jointly satisfy node flow
conservation and link capacity constraints, viz.

a
(d)
i =

∑
b∈out(i)

f
(d)
ib −

∑
a∈in(i)

f
(d)
ai (3)∑

i∈V
a

(d)
i =

∑
a∈in(d)

f
(d)
ad (4)∑

d∈K
f

(d)
ij 6

∑
S∈S

s E
{
µij(n)

∣∣S(n) = S
}

(5)

where the overbar notation is as defined in (1). Equality (3)
secures flow conservation at intermediate nodes. Specifically,
the matrix form of (3) becomes a◦ = B◦f showing the
expected time average of (2) subject to queue stability, where
limn→∞ oq◦(n+1) = oq◦(n) <∞. Equality (4) guarantees that
there is no trapping node and so all d-classes arrived into the
network are ultimately collected by the destination d. The right
hand side of (5) reads µij and so the inequality guarantees the
link capacity constraint. The constraints (3)–(5) imply that the
capacity region is convex, closed, and bounded [3].

Observe that the link actual-transmissions are not fixed,
but depend on the control policy. Also observe that there
potentially exist infinite number of control policies that can
meet the constraints (3)–(5). Among them are the ones that
use the simple probability concept of randomly distributing
packets such that holding the desired time averages (3)–(5).
As mentioned in Sec. I, these stationary randomized policies
typically require expensive computation along with perfect
knowledge of arrival statistics and channel state probabilities
that are prohibitive in practice. Nevertheless, the existence of
these queue-independent routing policies is important in the
analysis of our proposes control policy.

C. Back-Pressure (BP) Algorithm

At every timeslot n, BP policy [5] at network layer ob-
serves queue backlogs q(d)

i (n) and estimates channel capacities
µij(n) to make a transmission decision as follows.

BP1) Weighing: On every directed link ij and for each class d
find q(d)

ij (n) := q
(d)
i (n)− q(d)

j (n) and select the optimal class

d∗ij(n) := arg maxd∈K q
(d)
ij (n). (6)

Then give a weight to the link using its estimated capacity as

wij(n) := µij(n) q
(d∗)
ij (n)+. (7)

BP2) Scheduling: Find the scheduling vector such that

π(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (8)

where ties are broken randomly.
BP3) Forwarding: On each activated link ij with wij(n)> 0
transmit from the class d∗ij(n) at full capacity µij(n). If there
is no enough d∗-classes at node i, transmit null packets.

III. HEAT-DIFFUSION CONTROL POLICY

To prepare a convenient way of unifying our proposed
control policy with the previous works on BP schemes, we



design HD with the same algorithmic structure, complexity,
and overhead as BP. This provides an easy way to leverage
all advanced improvements to BP (using e.g. LIFO service,
packet ages, adaptive redundancy, queue prioritization, etc.)
to further enhance HD quality. It also simplifies the approach
to practice via a smooth software transition from BP to HD.

We first introduce HD for the uniclass networks, and then
extend it to multiclass problems in two versions: (i) when an
activated link can transmit packets from only one class at each
timeslot, and (ii) when an activated link is allowed to transmit
packets from different classes at each timeslot.

A. Heat-Diffusion (HD) Algorithm on Uniclass Networks

At every timeslot n, HD routing policy at the network
layer observes queue backlogs qi(n) and estimates channel
capacities µij(n) to make a transmission decision as follows.

HDa.1) Weighing: On every directed link ij find qij(n) :=
qi(n) − qj(n) and first calculate the number of packets the
link would transmit if it were activated as

f̂ij(n) := min
{
qij(n)+, µij(n)

}
(9)

where the hat notation denotes a predicted value which would
not necessarily be realized. Then give a weight to the link
using its predicted actual-transmission as

wij(n) := 2 qij(n) f̂ij(n)−
(
f̂ij(n)

)2
. (10)

HDa.2) Scheduling: Find the scheduling vector, in the same
way as BP, using the max-weight scheduling in (8).
HDa.3) Forwarding: Transmit f̂ij(n) number of packets over
each activated link ij, leading to

fij(n) =

{
f̂ij(n) if πij(n)=1

0 otherwise.
(11)

It is critical to discriminate among link actual-transmission
fij(n), link transmission prediction f̂ij(n), and link capacity
µij(n). Table 1 compares HD and BP algorithms, emphasizing
the same structure, complexity, and overhead.

Some general notes on the HD algorithm: (i) If qij(n) 6 0,
we get f̂ij(n) = 0 due to (9), and wij(n) = 0 from (10).
Thus even if the link were scheduled, still no packet would
be transmitted over it. (ii) If qij > 0, then qij(n)+ = qij(n).
Also f̂ij(n) 6 qij(n) due to (9). Thus the link weight (10) is
always nonnegative. (iii) Since qij(n)+6 qi(n), f̂ij(n) never
exceeds the number of packets in the transmitting node.

Remark 1: While BP is driven by link capacities µij(n),
HD emphasizes actual number of transmittable packets f̂ij(n),
though through (9), it indirectly takes into account the link
capacities too. Thus HD allocates resources based only on
genuinely transmittable packets, without counting on null
packets as is practiced in BP schemes.

Remark 2: The link weight (10), which itself directly con-
trols the scheduling optimization problem, is taken quadratic
in the queue-differential qij(n), where for qij(n) 6 µij(n)
is simplified into wij(n) = qij(n)2. This contrasts with
BP weighing wij(n) = µij(n)qij(n) which is linear in qij(n).

TABLE I
COMPARING HD AND BP ROUTING POLICIES IN A UNICLASS NETWORK.

W
ei

gh
in

g f̂ij(n)
BP min

{
µij(n), qi(n)

}
HD min

{
qij(n)

+, µij(n)
}

wij(n)
BP µij(n) qij(n)

+

HD 2 qij(n) f̂ij(n)− f̂ij(n)
2

Scheduling π(n) = argmaxπ∈Π
∑

ij∈E πijwij(n)

Forwarding fij(n) =

{
f̂ij(n) if πij(n) = 1

0 otherwise

The quadratic weight is central to the HD key property (Th. 1)
which is fundamental to other HD qualities.

Remark 3: Unlike BP that forwards the highest possible
number of packets over activated links, HD controls the packet
forwarding by restricting it to the link queue differential. This
reduces queue oscillations by the decrease of unnecessary
packet forwardings across the links, which in turn can reduce
transmission cost for supporting a given traffic.

Remark 4: Like BP, also HD is based on a centralized
scheduling whose complexity is prohibitive in practice. How-
ever, much progress has recently been made to ease this
difficulty by deriving decentralized schedulers with the perfor-
mance of arbitrarily close to the centralized version [15]–[17].

B. Multiclass HD with Single Class Transmission

Now consider a multiclass network where each node may
have packets for different destinations. In the same way that
BP performs, here we assume that each link may transmit
at most one class of packets per timeslot. For this case, HD
makes a timeslot transmission decision as follows.

HDb.1) Weighing: On every directed link ij select the optimal
class, in the same way as BP, as defined in (6) and calculate
the link actual-transmission prediction as

f̂
(d∗)
ij (n) := min

{
q

(d∗)
ij (n)+, µij(n)

}
. (12)

Then endow each link with a weight as

wij(n) := 2 q
(d∗)
ij (n) f̂

(d∗)
ij (n)−

(
f̂

(d∗)
ij (n)

)2
. (13)

HDb.2) Scheduling: Find the scheduling vector using the max-
weight scheduling in (8).
HDb.3) Forwarding: Transmit f̂ (d∗)

ij (n) number of packets
from the class d∗ij(n) over each activated link ij.

Remark 5: In packet switches, the work of [22] extends
queue-based scheduling to α-weighted schedulers which use
α-exponent of queue lengths. There has been a non-proven
conjecture that in heavy traffic condition, average delay is
minimized when α→0, with a discussion of it given in [23]
along with some counterexamples. In a very special case when
all link capacities are the same, i.e. µij(n) = µ(n), and all link
queue-differentials are always less than it, i.e. qij(n) < µ(n),
HD control policy with single class transmission assumption
and α-weighted policy with α = 2 become equivalent.



C. Multiclass HD with Multiple Class Transmission

It seems obvious that network resources are squandered
by restricting the control policy to transmit only one class
of packets per link per timeslot. In other words, the larger
capacity of network would be utilized, and so the average
network delay would decrease, if each activated link were
properly filled up to its full capacity. At the same time, we will
show in Th. 3, and also by simulation, that blindly filling up
the links by simply sending the maximum number of packets
from only one selected class, which is basically practiced in
BP schemes, only depletes the network resources with even
negative impact on delay performance. Thus the important
question is how a dynamic control policy with no routing path
constraint can minimize the average network delay by utilizing
the maximum timeslot resources. We answer this question by
introducing an enhanced HD algorithm that chooses packets
from different classes to transmit over an activated link, where
the timeslot transmission decision is made as follows.

HDc.1) Weighing: On every directed link ij and for each
class d find q(d)

ij (n) := q
(d)
i (n)− q(d)

j (n) and create a set

Kij(n) ⊆ K such that q(d)
ij (n) > 0 , ∀d ∈ Kij(n).

Fix f̂
(d)
ij (n) = 0 for each d /∈ Kij(n), and find f̂

(d)
ij (n) for

every d ∈ Kij(n) by solving the optimization problem

Minimize:
∑

d∈Kij(n)

(
q

(d)
ij (n)− f̂ (d)

ij (n)
)2

Subject to:


∑
d∈Kij(n) f̂

(d)
ij (n) 6 µij(n)

0 6 f̂
(d)
ij (n) 6 q

(d)
ij (n), ∀d ∈ Kij(n).

(14)

Then give a weight to each class d ∈ Kij(n) as

w
(d)
ij (n) := 2 q

(d)
ij (n)f̂

(d)
ij (n)−

(
f̂

(d)
ij (n)

)2
(15)

and aggregate them to determine the final link weight as

wij(n) :=
∑

d∈Kij(n)
w

(d)
ij (n). (16)

HDc.2) Scheduling: Find the scheduling vector using the max-
weight scheduling (8).
HDc.3) Forwarding: Transmit f̂ (d)

ij (n) number of packets from
the class d over each activated link ij.

Problem (14) is a standard least-norm optimization with
variable bounds that can be solved in fast polynomial time
at each node, i.e. in a fully decentralized manner. A related
algorithm is developed in the following.

To simplify the notation, let us drop the overhat symbol and
the time variable (n). First observe that in the problem (14),

if
∑
d∈Kij

q
(d)
ij 6 µij then f (d)

ij = q
(d)
ij ,∀ d ∈ Kij .

Thus assume
∑
d∈Kij

q
(d)
ij > µij . This converts the first con-

straint from inequality into equality, viz.
∑
d∈Kij

f
(d)
ij = µij .

Then, in the absence of lower variable bounds and integer
constraints, the problem has a unique solution as

f
(d)
ij = q

(d)
ij +

(
µij −

∑
d∈Kij

q
(d)
ij

)/
|Kij | , ∀ d ∈ Kij

which can be confirmed using a basic Lagrange argument.

(         ,         )

(1)
ijf

q(2)
5=

(1)
ijf

Unique optimal solution in the absence of 
variable bounds and integer constraints

Two optimal solutions in the presence of 
variable bounds and integer constraints

( )n

(2)
ijf ( )n

( )n (2)
ijf+ ijμ=( )n ( )n

ij ( )n
q(2)
ij ( )nq(1)

ij ( )n
6=ijμ ( )n

q(1)
4=ij ( )n 6=ijμ ( )n

Fig. 1. Solving (14) for a two-class case when q(1)
ij (n)+q

(2)
ij (n) > µij(n).

From a geometrical standpoint, the latter represents
projection of the point ( q

(1)
ij , · · · , q

(|Kij |)
ij ) onto the

hyperplane
∑
d∈Kij

f
(d)
ij = µij . Under integer constraints,∑

d∈Kij
f

(d)
ij = µij represents an integer hypergrid where the

optimal solution(s) will be the vertex(es) of this hypergrid with
shortest Euclidean distance to the point ( q

(1)
ij , · · · , q

(|Kij |)
ij ).

Note that the solution to the integer problem is not necessarily
unique. Subjecting the solution to the lower variable bounds,
it must also meet f (d)

ij > 0, ∀ d ∈ Kij . This procedure is
displayed in Fig. 1 for a two-class case.

The following algorithm implements the above-explained
process of solving (14) when

∑
d∈Kij(n)q

(d)
ij (n) > µij(n).

S1: Let h =
(∑

d∈Kij(n)q
(d)
ij (n) − µij(n)

)/
|Kij(n)| and for

every d ∈ Kij(n) take f̂ (d)
ij (n) = q

(d)
ij (n)− h.

S2: Find d1 = arg mind∈Kij(n) f̂
(d)
ij (n) and if f̂ (d1)

ij (n) < 0,

then remove d1 from Kij(n) and go back to S1.

S3: Let r = µij(n) −
∑
d∈Kij(n)

⌊
f̂

(d)
ij (n)

⌋
. For r randomly

chosen classes in Kij(n) assign f̂ (d)
ij (n) =

⌈
f̂

(d)
ij (n)

⌉
and

for other classes in Kij(n) assign f̂ (d)
ij (n) =

⌊
f̂

(d)
ij (n)

⌋
.

Notation 4: Given x as a real number, the floor function
bxc maps x to the largest preceding integer, and the ceiling
function dxe maps x to the smallest following integer.

Note in S2 that in case of discarding d1 from Kij(n), still∑
d∈K′ij(n)q

(d)
ij (n) > µij(n) where K′ij(n) := Kij(n)− {d1}.

Strictly speaking, having f̂
(d1)
ij (n) < 0 implies

|K′ij(n)| q(d1)
ij (n) <

∑
d∈K′ij(n)q

(d)
ij (n)− µij(n).

Then as q(d1)
ij (n) > 0, the left hand side of the above inequality

is positive that leads to
∑
d∈K′ij(n)q

(d)
ij (n) > µij(n).

Observe that S1 finds the optimal solution in the absence of
variable bounds and integer constraints, S2 ensures that the so-
lution meets the variable lower bounds, and S3 determines an
integer solution by finding a vertex on the integer hypergrid—
the first constraint of (14) with equality—with the shortest
distance to the initial solution obtained by S1-S2. The term
“r randomly chosen classes” in S3 comes due to the fact that
the integer problem may have more than one solution. When
the initial solution of S1-S2 is integer, it will be the solution
to the integer problem too, and so unique. Otherwise, there



potentially exist several vertexes on the integer hypergrid with
equal distance from the non-integer initial solution and shorter
than the distance of other vertexes (see Fig. 1).

IV. THE KEY PROPERTY OF HEAT-DIFFUSION POLICY

This section formalizes the key property of HD control pol-
icy which is central to the proof of Th. 2 on HD Throughput-
Optimality and Th. 3 on HD delay minimization.

Theorem 1: At every timeslot n and subject to network
constraints, the HD control policy maximizes the functional

J(ff , n) := 2 ff(n)>IB◦
>
oq◦(n)− ff(n)>IB◦

>IB◦ff(n). (17)

Specifically, assuming that a node cannot transmit to more
than one neighbor at a timeslot, the following is true:
• On a uniclass network, the HD algorithm of Sec. III-A max-

imizes J(f , n) = 2f(n)>B◦
>q◦(n)− f(n)>B◦

>B◦f(n).
• On a multiclass network subject to transmitting from at

most one class per link per timeslot, the HD algorithm of
Sec. III-B maximizes the J(ff , n) functional of (17).

• On a multiclass network that allows transmitting from
multiple classes per link per timeslot, the HD algorithm
of Sec. III-C maximizes the J(ff , n) functional of (17).

V. HEAT-DIFFUSION THROUGHPUT OPTIMALITY

To analyze the HD stability, we exploit the theory of
Lyapunov drift for stochastic discrete-time systems. Consider
the basic quadratic Lyapunov candidate

W (n) := oq◦(n)>oq◦(n) =
∑

i∈V

∑
d∈K

q
(d)
i (n)2.

Letting the Lyapunov drift ∆W (n) := W (n+1)−W (n) and
substituting for oq◦(n+ 1) from (2) lead to

∆W (n) = 2
(
oa◦(n)− IB◦ff(n)

)>
oq◦(n) + oa◦(n)>oa◦(n)

+ ff(n)>IB◦
>IB◦ff(n)− 2 ff(n)>IB◦

>
oa◦(n).

(18)

Using the J(ff , n) expression of (17) yields

∆W (n) = 2 oa◦(n)> oq◦(n)− J(ff , n)

+ oa◦(n)>oa◦(n)− 2 ff(n)>IB◦
>
oa◦(n).

(19)

Now consider an arrival rate oa◦ being interior to the
capacity region C, i.e. there exists a vector ε with positive
entries such that oa◦ + ε ∈ C. Thus by condition (3), there
exists a hyper-flow ff ′(n) such that IB◦ff ′ = oa◦ + ε. At the
same time, Th. 1 guarantees that J(ff?, n) > J(ff ′, n) at each
slot n, where ff?(n) is the link actual-transmissions yielded by
HD at the slot n. Then the next theorem is proven by showing
that the expected value of Lyapunov drift (18) is bounded.

To simplify the proofs, throughout this paper we assume
both arrival and channel state processes are independently
and identically distributed (i.i.d.) over timeslots. However, all
the results can easily be extended to non-i.i.d. systems with
stationary ergodic processes of finite mean and variance.

Theorem 2: Suppose that arrivals and channel states are
i.i.d. over timeslots and with respect to each other. The HD
control policy is throughput-optimal in the sense that it secures
network stability for any arrival rate interior to the network
capacity region characterized by the constraints (3)–(5).

Remark 6: A common theme to all of the works on BP,
going back to the original paper [5], is that the algorithm

is derived by the greedy minimization of a bound on the
Lyapunov drift. As a result, the BP scheduling is formulated
based on link capacities, and the BP forwarding spreads the
maximum number of packets along the activated links. To the
best of our knowledge, this is the first time a network controller
genuinely minimizes the Lyapunov drift (via maximizing
the J(ff) functional), rather than merely pushing down an
upper-bound on the drift. As a result, the HD scheduling is
formulated based on link actual-transmissions, and the HD
forwarding is controlled by link queue differentials.

VI. CONGESTION MINIMIZING CONTROL POLICY

As the major result of this paper, this section shows that
HD control minimizes the average network delay in the class
of all control algorithms that act based only on current queue
congestion and current channel states. More precisely, it is
shown that in the aforementioned class of control algorithms,
HD solves the following optimization problem:

Minimize: Q :=
∑

i∈V

∑
d∈K

q
(d)
i

Subject to: Network constraints
(20)

without requiring the knowledge of topology structure, arrival
statistics, or channel state probabilities.

Remark 7: By Little’s Theorem [1], for a given arrival rate,
expected time average total queue congestion Q is proportional
to long-term average end-to-end network delay. Hence, mini-
mizing Q indeed ensures minimizing average network delay.

Prior to formulating the main result in Th. 3, we propose
the following lemma which is used in the proof. The lemma
implies that any stabilizing network control that results in a
higher average total variance of link forwardings will neces-
sarily lead to a higher average total covariance between link
forwardings and link queue differentials as well.

Lemma 1: Suppose that a general control policy stabilizes
an arrival rate vector oa◦ resulting in timeslot queue occupan-
cies oq◦(n) and link actual-transmissions ff(n). Then

2Cov{IB◦> oq◦, ff} − Var{IB◦ff}= Var{oa◦} (21)
where for two vector random variables X and Y we define
Cov{X,Y } := E{X>Y } − E{X}>E{Y } and Var{X} :=
Cov{X,X}, and where the overbar notation denotes the
lim sup expected time average as defined in (1).

Theorem 3: Suppose that arrivals and channel states are
i.i.d. over timeslots and with respect to each other, and that a
node cannot transmit to more than one neighbor at a timeslot.
Consider a class of network controllers that act based only on
current queue congestion and current channel states. Within
this class, the HD control policy solves the average network
delay minimization problem (20). Specifically, expected time
average number of waited packets is minimized by the HD
algorithm of Sec. III-A on a uniclass network, by the HD
algorithm of Sec. III-B on a multiclass network subject to
transmitting from at most one class per link per timeslot, and
by the HD algorithm of Sec. III-C on a multiclass network that
allows transmitting from multiple classes per link per timeslot.
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Fig. 2. Timeslot evolution of total number of packets in the sensor network controlled by HD compared with that by BP for λ = 1 (left) and λ = 10 (right).
The bottom panels are zoomed in the 0-2000 timeslot interval, emphasizing the transient performance of the two control policies.

VII. SIMULATION RESULTS

We consider a wireless network with 50 nodes randomly
distributed on a surface. Links are placed between every two
nodes whose proximity distance is less than a threshold, and
extra links are added to make the network connected. Links are
considered as two-way wireless channels, i.e. for any directed
link ij ∈ E there exists ji ∈ E with the same capacity. The
network runs under 1-hop interference model, i.e. links with
common node cannot transmit at the same time.

Every timeslot, the capacity of each link ij follows a Gaus-
sian distribution with the mean mij and the variance equal
to 150. To assign mij to different links, we adopt Shannon
capacity with power transmission Pij , noise intensity Nij , and
a bandwidth of 1500, viz. mij = 1500 log2(1 +Pij/Nij). We
randomly assign a noise intensity Nij ∈ [1, 5] to each link at
first and keep it fixed during the simulation.

A. Simulation Results for Uniclass Network

In this simulation we assume that each node is a sensor
that sends packets to a unique destination. For this low power
sensor network, we take Pij = 2 for all links. Exogenous
arrivals follow Poisson distribution with parameter λ, which
are i.i.d. over timeslots and with respect to each other.

Figure 2 displays timeslot evolution of total number of
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Fig. 3. Expected time average total number of packets in the sensor network
against the exogenous arrival rates changing from λ = 1 to λ = 10.

packets for two Poisson parameters λ = 1 and λ = 10.
Notice the small steady-state oscillations in HD contrary to
large variations in BP that approves the efficiency of (i) taking
link weights as quadratic in queue differential, (ii) scheduling
links based on actual transmittable packets rather than link
capacities, and (iii) restricting packet forwarding to link queue
differential rather than spreading the most possible number of
packets along the activated links. Also notice the fast transient
time in HD with about 50 timeslots for both λ = 1 and λ = 10,
compared with the slow transient time in BP with about 1200
timeslots for λ = 1 and 250 timeslots for λ = 10.

Figure 3 displays the average total queue congestion as a
function of arrival rate (Poisson parameter), comparing the
performance of HD control with that of BP control. Each circle
represents the average total number of packets in the sensor
network while λ increases from 1 to 10 in unit steps. The
average is taken on the last 40000 slots, when the system runs
for 50000 slots starting from zero initial condition. Dashed
lines display third degree polynomial interpolation.

B. Simulation Results for Multiclass Network

On the same simulation testbench, assume that every node
sends packets to every other node, forming a multiclass,
multihop wireless network. Different classes are generated at
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Fig. 4. Expected time average total number of packets in the multiclass
network against the exogenous arrival rates changing from λ = 1 to λ = 10.



0 2000 4000 6000 8000 10000
0

1

2

3

4

x 10
7

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

0 2000 4000 6000 8000 10000
0

4

8

12

16
x 10

6

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
x 10

7

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

610×

710×

710×

timeslot

timeslot

timeslot

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

T
ot

al
 q

ue
ue

 c
on

ge
st

io
n

HD control policy with multiple class transmission

BP control policy

HD control policy with multiple class transmission

HD control policy with multiple class transmission

HD control policy with 
single class transmission

HD control policy with 
single class transmission

HD control policy with 
single class transmission

BP control policy

BP control policy

Fig. 5. Timeslot evolution of total number of packets in the multiclass
network for λ = 1 (top), λ = 5 (middle) and λ = 10 (bottom).

each node following Poisson random variables with parameter
λ, where all of them are i.i.d. over timeslots and with respect
to each other. To support this traffic, we assume that each node
can expend 30 units of transmission power per timeslot, which
under 1-hop interference model leads to Pij = 30.

Time average performances of the three control policies are
compared in Fig. 4 for λ growing from 1 to 10 in unit steps.
The average is taken on the last 40000 slots, when the system
runs for 50000 slots starting from zero initial condition, and
the dashed lines display third degree polynomial interpolation.
For λ = 1, average total number of packets under the HD
algorithm of Sec. III-C is only 220K packets, compared with
15400K packets under the BP algorithm, and 9380K packets
under the HD algorithm of Sec. III-B. This difference in
performance gets even larger by the growth of λ.

Figure 5 displays timeslot evolution of total number of pack-
ets for three arrival rates of λ = 1, λ = 5 and λ = 10 packets
per timeslot. Like the uniclass case, the HD with multiple class
transmission shows a remarkably better performance in terms
of both steady-state oscillations and transient time.

VIII. CONCLUSION

For stochastic multiclass wireless networks with channel in-
terference and time-varying topology, we developed a dynamic
routing control that requires no knowledge of statistics and
probabilities in the system. It is throughput-optimal and mini-
mizes average network delay within the class of all routing al-
gorithms that perform based only on current queue congestion
and current channel states. This important class includes all
opportunistic max-weight schedulers that do not incorporate
the Markov structure of topology process into their decisions,
among which is Back-Pressure and most of its derivations. It
also includes all stationary randomized algorithms that make
a routing decision as a pure (possibly randomized) function
only of current channel states, typically requiring the perfect
knowledge of arrival and channel probabilities.

REFERENCES

[1] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, 1992.
[2] R. Berry and R. Gallager, “Communication over fading channels with

delay constraints,” Tr. Info. Theo., 48:1135–1149, 2002.
[3] L. Georgiadis, M. Neely, and R. Tassiulas, “Resource allocation and

cross-layer control in wireless networks,” Found. Tren. Net., 2006.
[4] M. Neely, Stochastic Network Optimization with Application to Com-

munication and Queueing Systems. Morgan & Claypool, 2010.
[5] L. Tassiulas and A. Ephremides, “Stability properties of constrained

queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” Tr. Autom. Cont., 37:1936–1949, 1992.

[6] R. Banirazi, E. Jonckheere, and B. Krishnamachari, “Heat diffusion
algorithm for resource allocation and routing in multihop wireless
networks,” in Globecom, 2012.

[7] R. Banirazi, E. Jonckheere, and B. Krishnamachari, “Heat-diffusion:
Pareto optimal dynamic routing for time-varying wireless networks,”
in INFOCOM, 2014.

[8] L. Bui, R. Srikant, and A. Stolyar, “Optimal resource allocation for
multicast flows in multihop wireless networks,” Perf. Eval. Rev., 2007.

[9] L. Bui, R. Srikant, and A. Stolyar, “A novel architecture for delay
reduction in back-pressure scheduling algorithm,” Tr. Net., 19:1597–
1609, 2011.

[10] B. Ji, C. Joo, and N. Shroff, “Delay-based back-pressure scheduling in
multi-hop wireless networks,” in INFOCOM, 2011.

[11] L. Huang, S. Moeller, M. Neely, and B. Krishnamachari, “Lifo-back-
pressure achieves near optimal utility-delay tradeoff,” Tr. Net., 21:831–
844, 2013.

[12] M. Alresaini, M. Sathiamoorthy, B. Krishnamachari, and M. Neely,
“Backpressure with adaptive redundancy (bwar),” in INFOCOM, 2012.

[13] E. Stai, J. Baras, and S. Papavassiliou, “Throughput-delay tradeoff
in wireless multi-hop networks via greedy hyperbolic embedding,” in
MTNS, 2012.

[14] D. Xue, R. Murawski, and E. Ekici, “Distributed utility-optimal schedul-
ing with finite buffers,” in WiOpt, 2012.

[15] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed schedul-
ing algorithms for wireless networks,” in INFOCOM, 2007.

[16] L. Bui, S. Sanghavi, and R. Srikant, “Distributed link scheduling with
constant overhead,” Tr. Net., 17:1467–1480, 2009.

[17] L. Jiang and J. Walrand, “Approaching throughput-optimality in dis-
tributed csma scheduling algorithms with collisions,” Tr. Net., 19:816–
829, 2011.

[18] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Back-pressure routing
and rate control for icns,” in Mobicom, 2010.

[19] J. Martinez and J. Bafalluy, “Design, implementation, tracing of dynamic
backpressure routing for ns-3,” in SIMUTools, 2011.

[20] S. Moeller, A. Sridharan, and O. G. B. Krishnamachari, “Routing
without routes: the backpressure collection protocol,” in IPSN, 2010.

[21] R. Banirazi, E. Jonckheere, and B. Krishnamachar, “Minimum delay
in class of throughput-optimal control policies on wireless networks.”
Available at http://eudoxus2.usc.edu, USC, 2014.

[22] D. Shah and D. Wischik, “Optimal scheduling algorithms for input-
queued switches,” in INFOCOM, 2006.

[23] A. Gupta, L. Xiaojun, and R. Srikant, “Low-complexity distributed
scheduling algorithms for wireless networks,” 17:1846–1859, 2009.


