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Abstract— Negative curvature in the relatively new Ollivier-
Ricci sense of a wireless network graph is shown to be the
culprit behind large queue occupancy, large routing energy,
and restricted capacity region under any throughput optimal
protocol. This is the wireless counterpart of the congestion
phenomenon occurring in a Gromov negatively curved wired
network under least cost path routing. Significantly different
protocols call for significantly different curvature concepts to
explain the “congestion” phenomenon. The rationale for the
Ollivier-Ricci curvature is that it is defined in terms of a trans-
portation cost—formalized under the Wasserstein distance—
under a diffusion process. The Heat Diffusion protocol used
in this paper is sensitive to the queue differential, so that
interpreting packets as calories, it lends itself to a genuine
heat diffusion, yet retaining the 3-stage process of weighting-
scheduling-forwarding of Back-Pressure. The main result is
that the transportation definition of the Ollivier-Ricci curvature
allows for the direct connection—without resorting to the
Laplacian operator of heat calculus—between curvature and
queue occupancy, routing energy, and capacity region.

I. INTRODUCTION

One of the great successes of the geometric approach
to networks has been the explanation of the congestion
phenomenon as resulting from least cost path routing on a
Gromov hyperbolic graph [9]. Many of the classical graph
generators, e.g., scale-free generator, representative of real
networks have indeed been shown to have negative curvature
properties [6]. It is a basic fact of differential geometry
that on a negatively curved manifold the geodesics between
uniformly distributed pairs of points have a tendency to
pass through a “core” where the congestion is observed.
Observe that we use a manifold argument to explain a graph
phenomenon; this is an argument that has become popular
over the past 10 years and justified by the common “coarse”
geometric properties of Gromov negatively curved graphs
and hyperbolic manifolds.

In wireless networks, the link interference adds extra
difficulty relative to wireline networks. Under interference
and link capacity constraints, the throughput optimality is
crucially important in the context of limited wireless re-
sources. Then the relevant protocol to address these issues
is the Back-Pressure (BP) or a variation thereof. Different
protocols call for different curvature concepts to explain the
broader “congestion” concept of wireless networks: queue
occupancy, the routing energy, or more generally the capacity
region. The routing energy is the space-discrete version of
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the Dirichlet energy of heat diffusion on a manifold. By
the Dirichlet principle, a protocol that minimizes routing
energy would follow heat diffusion. In [1], we designed a
protocol referred to as Heat Diffusion (HD), which follows
the heat diffusion process on a graph, yet keeping weighting-
scheduling-forwarding structure of Back-Pressure.

The purpose of this paper is to identify the relevant graph
topological features that are impacting queue occupancy,
routing energy, and capacity region under heat diffusion.
As argued in the following subsection, heat diffusion is
regulated by the Ricci curvature or a coarse version thereof,
the Ollivier-Ricci curvature. As main result, we show that
the more negative the Ollivier-Ricci curvature, the higher
the queue occupancy, the smaller capacity region.

A. Ollivier-Ricci curvature and heat diffusion

Given a heat equation solution T (x, t) over a Riemannian
manifold M endowed with a heat capacity measure dC,
the heat measure dQ = TdC is the solution of a conti-
nuity equation over the space (P2(M),W2) of probability
measures defined over the Riemannian manifold M and
endowed with the 2nd Wassertein metric W2. In a bit
the same way as sectional curvature regulates the diver-
gence/convergence of the geodesics on the Riemannian man-
ifold M , the (Ollivier-)Ricci curvature (coarsely) regulates
the divergence/convergence of the heat diffusion paths in
(P2(M),W2) (see [18]). For example, if Pt is the heat
kernel over M and P ∗t the dual over P2(M), we have
W2 (P ∗t Q1, P

∗
TQ2) ≤ e−KtW2(Q1, Q2) where 0 ≤ K ≤

Ric(M). It suffices to replace manifold by graph and think
the probability measure defined on the vertices of a graph as
the packet distribution to understand the role of the Ollivier-
Ricci curvature.

Since the heat equation involves the Laplacian, one could
think of establishing the curvature-diffusion connection via
the Laplacian, as shown in Figure 1, and indeed Bauer [2]
derived some bounds on the spectrum of the graph Laplacian
in terms of the Ollivier-Ricci curvature. Another connection
is the usual “second smallest eigenvalue” of the Laplacian
related via Cheeger’s theorem to the expansion coefficient.
There is the folk statement that “high expansion coefficient”
means negative curvature; however, this statement has re-
cently been challenged by Ollivier [14] where in his Problem
T, he proposes to find

“... a family of expanders (i.e., a family of graphs
of bounded degree, spectral gap bounded away
from 0 and diameter tending to ∞) with non-
negative Ricci curvature.”
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Fig. 1. Heat diffusion versus curvature versus graph Laplacian

In the same Figure 1, “Heat Diffusion” refers to a large
body of mathematical work on how heat flows on a manifold
(even a Finsler manifold) or a graph (even a directed graph)
with its application to wireless networking inspired from
heat diffusion. Naturally this leads to defining generalized
Laplacian concepts, e.g., Laplacian on Finsler manifolds.

In the present paper, we develop the direct link between
the performance of the Heat-Diffusion protocol and the cur-
vature, as shown at the bottom of Figure 1. This connection is
important because the Heat-Diffusion protocol is throughput
optimal, so any relationship between Heat-Diffusion protocol
and curvature means a connection between capacity region
and curvature.

II. WIRELESS NETWORK THERMODYNAMICS

To formulate the Heat Diffusion (HD) policy, we associate
with each d–packet flow a corresponding flow of heat on
the network, for which node d is the only sink. In this
analogy, the quantity of d-heat Q(d)

i at node i plays the role
of the number of d–packets at the same node, where the
d–temperature at node i is denoted by T (d)

i .
The HD protocol works with the same algorithmic struc-

ture as Back-Pressure (BP) protocol, originally proposed by
Tassiulas and Ephremides in 1992. There are two fundamen-
tal highlights in the way the BP is modified to become a
genuine heat flow in the cast of HD [1].
• Contrary to BP, which transmits the maximum number

of possible packets along each activated link, i.e., filling
up the link capacity, HD limits the forwarding to be
at most equal to one-half of the queue differential.
This quality also has impact on the mitigation of queue
oscillation and packet looping.

• The weighting wij of a link, which itself directly con-
trols the scheduling, is taken quadratic rather than linear
in the queue differential as practiced in BP. In view of
this quality, the interference flow subject to the new pro-
tocol looks like, via the Dirichlet Principle, a suitably-
weighted non-interference flow in the fluid limit, and
hence a genuine heat flow. Thus the stability of the

network can be analyzed using the ubiquitous heat cal-
culus [12, Chap. 7], specialized to Finsler manifolds [5],
from which it follows that hyperbolic networks are
more difficult to stabilize. This is the natural follow
up to the authors’ long standing quest to understand the
connection between congestion and curvature in wired
networks [9]–[11], wireless networks [1], even quantum
networks [7], [8].

A. Adiabatic link diffusion

Consider the nodes i and j as heat reservoirs with heat
capacities Ci and Cj , resp., holding heat quantities Qi(n)
and Qj(n), resp., at time slot n. The two reservoirs are
connected by a conducting medium of infinitely large thermal
conductivity and vanishingly small heat capacity, the latter to
ensure that the heat exchange to uniformize the temperature
is adiabatic. Then it is easy to calculate the number of
calories transmitted from node i to node j as

fmax
ij (n) = max

{
0,

⌈
Qi(n)−Qj(n)

2

⌉}
, (1)

where dxe returns the ceiling value of x. To make a
protocol—in terms of packet rather than calorie flow—out
of this basic heat transfer fact, fmax

ij (n) must be restricted to
the link transmission rate µij(n). Furthermore, the number
of transmitted packets can be at most the number of packets
that Qi(n) holds. Putting all of these together, the protocol
can be devised as follows.

B. Thermodynamical Heat Diffusion (HD) protocol

At timeslot n, let Q(d)
i (n) denote the number of d-packets

queued at the network layer of node i, and f (d)ij (n) the actual
number of d-packets transmitted via link ij, constrained by
the link capacity µij(n). HD is designed along the same
3-stage process as BP: weighting-scheduling-forwarding.

HD Weighting: At each timeslot n and for each link (i, j),
the algorithm first finds the optimal d–packets to transmit as

Q
(d)
ij (n) = max

{
0, Q

(d)
i (n)−Q(d)

j (n)
}
, (2)

d∗ij(n) = arg max
d

Q
(d)
ij (n).

To attribute a weight to each link, the HD algorithm performs
the following:

f̂ij(n) = min
{⌈

1/2 Q
(d∗)
ij (n)

⌉
, Q

(d∗)
i (n), µij(n)

}
, (3)

wij(n) =
(
f̂ij(n)

)(
Q

(d∗)
ij (n)

)
. (4)

Note that the left most term inside the braces of (3) is
equivalent to (1) for d∗–packet. Observe that the weight (4)
in HD is quadratic in queue differential. This contrasts with
the BP policy, which relies on a linear weighting strategy.

HD Scheduling: After assigning the optimal weight (4)
to each link, the scheduling matrix S(n) is chosen in
a scheduling set S by solving a centralized optimization
problem as

S(n) = arg max
S∈S

∑
(i,j)∈E

S(i,j)wij(n)σij(n), (5)



where σij = 1/ρij denotes the link profit factor. Note that
while (5) is the same as that of BP, the solution to (5)
is different due to the difference in the weighting process.
Particular BP-HD discrepancies are:

1) Including link cost ρij(n) = 1/σij(n) in (5), the HD
algorithm gives priority to the links of lowest penalty,
when possible to keep network stable.

2) Weighting based on the actual number of transmittable
packets f̂ij(n) in (4), in lieu of µij(n) in BP, attempts
to optimize the routing performance in light and mod-
erate traffic rates. As an example, consider two links
a and b with differential queue backlogs of 1 and 3,
and link transmission rates of 10 and 3, respectively.
So the consequence of activating link a is transmission
of 1 packet, versus 3 packets for link b. Observe that
BP selects link a, while HD chooses link b.

HD Forwarding: Subsequent to the scheduling stage,
each activated link transmits f̂ij (n) number of packets in
accordance with (3). The rest of queues at node i are awaited
for the next timeslots. Despite the BP policy that forwards
the maximum possible number of d∗–packets across acti-
vated links, here packet forwarding is governed by diffusion
mechanism, which also mitigates the packet looping behavior
of BP. As an example, consider a network with only 2 packets
at node i and no new arrivals. Let bidirectional link ij be of
the highest transmission rate, and greater than 2, among all
links connected to nodes i and j. BP loops these two packets
between nodes i and j forever, while HD once transmits one
of the packets to node j and then waits for new arrivals.

C. Stability and performance of HD protocol

The dynamics of the queue length process for d-packets
at node i is described as

Q
(d)
i (n+ 1) = Q

(d)
i (n)−D(d)

i (n) + E
(d)
i (n), (6)

D
(d)
i (n) =

∑
b∈out(i)

f
(d)
ib (n), (7)

E
(d)
i (n) = A

(d)
i (n) +

∑
a∈in(i)

f
(d)
ai (n), (8)

where D
(d)
i (n) and E

(d)
i (n) represent the total number of

d-packets departed from and arrived at node i, respectively,
in the timeslot n, and out(i) and in(i) denote the sets of
outgoing and incoming neighbors of node i, respectively.

Definition 1 (Network Stability): A queue Q(d)
i (n) is sta-

ble, if lim supn→∞E{Q
(d)
i (n)} <∞. A network is stable

if all its queues are stable.
Definition 2 (Capacity Region): Given a routing policy,

its stability region is the set of all traffic rate matrices that can
be stabilized by it. Network capacity region Λ is the union of
the stability regions achieved by all possible routing policies,
including those of perfect precognition about random events.

Definition 3 (Throughput-Optimal Policy): A routing pol-
icy is throughput-maximal, if it stabilizes all admissible
traffic rate matrices λ ∈ Λ.

Proposition 1 (Throughput-Optimal Policy): Consider a
routing network with N wireless nodes. The HD routing

algorithm stabilizes the network for any traffic rate matrix
λ strictly interior to the network capacity region Λ.

Proof: For simplicity, we consider only one destination
node in the network. We further assume ρij = 1 for
all links. Consider a Lyapunov energy function V (n) =
1/2

∑
iQi(n)2 and define Lyapunov drift ∆V (n) = V (n+

1)− V (n). Some mathematical manipulation yields

∆V =
∑

i

[1

2
(E2

i +D2
i ) +Qi(Ei −Di)− EiDi

]
.

From (7) and (8) we obtain

∆V ≤ BN +
∑

i
QiAi −

∑
i
Qi
∑

a,b
(fib − fai), (9)

B =
1

2N

∑
i

[
(Amax

i +
∑

a
µmax
ai )2 + (

∑
b
µmax
ib )2

]
,

where constant µmax
ij stands for a deterministic upper bound

on µij(n). Since λ is assumed strictly interior to the capacity
region Λ, there exists a vector ε with positive entries such
that λ+ε ⊆ Λ. Therefore, there exists a randomized routing
policy which stabilizes λ based only on the current topology
state and so independent of the queue occupancies. Also for
any stabilizable traffic rate, there exists a hyper-flow in long-
term average such that

E
{∑

a,b
(f ′ib − f ′ai)

}
= λi + εi (10)

for some f ′ib and f ′ai. It is proven that the HD policy
minimizes the Lyapunov drift (9) compared to any other
policy including BP. Also observe that∑

i
Qi
∑

a,b
(fib − fai) =

∑
(i,j)

fij(Qi −Qj).

Considering these two facts, taking conditional expectation
with respect to Q(n) from (9), and using (10) yield

E {∆V |Q} ≤ BN −
∑

i
Qiεi.

Defining ‖Q‖ =
∑
iQi and δ = mini(εi) gives

E {∆V |Q} ≤ BN − δ‖Q‖. (11)

Hence, for ‖Q‖ > BN/δ, we get E{∆V |Q} < 0, and thus
the queuing system is stable.

Now assume that time is continuous and the evolution
of each queue is governed by the following differential
equation:

˙̃
Q

(d)

i = −
∑

b∈out(i)
f̃
(d)
ib +

∑
a∈in(i)

f̃
(d)
ai + λ

(d)
i , (12)

for all i, d = 1, . . . , N , where dot on the top denotes
the continuous-time derivative. The HD algorithm assigns
link rates at every instant of time as described. Then, the
following asymptotic stability result holds.

Proposition 2 (Time Average Convergence): The states of
the continuous-time system (12) asymptotically converges to
the states of a traditional heat diffusion on a directed graph
with edge weights of σij = 1/ρij , where ρij denote the
long-term averages of ρij .

Proof: We give a sketch of the proof only for one
destination node with ρij = 1. We indicate variables in the
traditional heat diffusion system with superscript ∗. Consider



a node energy function as V (i) = 1/2(Q̃i − Q̃∗i )2. Taking
derivative, and substituting from (12) yield

V̇ (i) = λi(Q̃i − Q̃∗i )− Q̃i
∑

b
f̃ib + Q̃∗i

∑
b
f̃ib

+ Q̃i
∑

a
f̃ai − Q̃∗i

∑
a
f̃ai.

Since λi is considered as the same input to both routing
network and traditional heat graph,

λi =
∑

b
σibQ̃

∗
ib −

∑
a
σaiQ̃

∗
ai,

where Q̃∗ij = max
{

0, Q̃∗i − Q̃∗j
}

. Using these equations in

V̇ (i) and summing up over all nodes,

V̇ =
∑

(i,j)

[
f̃ij(Q̃

∗
i − Q̃∗j )− f̃ij(Q̃i − Q̃j)

+ σijQ̃
∗
ij(Q̃i − Q̃j)− σijQ̃∗ij(Q̃∗i − Q̃∗j )

]
=
∑

(i,j)
(σijQ̃

∗
ij − f̃ij)

(
(Ũi − Ũ∗i )− (Ũj − Ũ∗j )

)︸ ︷︷ ︸
M

.

Manipulating (2)–(5), one can see that if M > 0, then f̃ij >
σijQ̃

∗
ij and so V̇ < 0. Also if M < 0, it can be shown that

necessarily f̃ij < σijŨ
∗
ij and so V̇ < 0. These imply that

limt→∞ V → 0, and equivalently limt→∞ Q̃i → Q̃∗i , which
concludes the proof.

III. OLLIVIER-RICCI CURVATURE

In the wake of the newly formulated concept of Ollivier-
Ricci curvature [2], [13], heat calculus was redirected to-
wards the connection between the heat kernel (related to
graph Laplacian) and the new curvature concept (see, e.g.,
[4] and the work of Gregoryan) . However, here, our interest
in the Ollivier-Ricci curvature rather stems from it very
definition in terms of a “transportation cost,” which can be
linked to queue occupancy, routing cost, even time to reach
steady-state.

Consider a weighted graph ((V, E), ρ). On this graph, for
each vertex i, we define a probability measure mi on N (i)
as follows:

mi(j) =
ρij∑

j∈N (i) ρij
, if ij ∈ E

= 0, otherwise.

In full agreement with the recent work on network traffic
versus graph curvature [9], [11], the Ollivier-Ricci curvature
is defined in terms of the transport properties of the graph:

Definition 4: The Ollivier-Ricci curvature of the graph
((V, E), ρ) endowed with the set of probability measures
{mi : i ∈ V} is defined, along the path [i, j], as

κ([i, j]) = 1− W1(mi,mj)

d(i, j)
, (13)

where W1(mi,mj) is the first Wasserstein distance between
the probability measures mi and mj defined on N (i) and
N (j), resp.,

W1(mi,mj) = inf
ξij

∑
k,`∈N (i)×N (j)

d(k, `)ξij(k, `),

where the infimum is extended over all “coupling” measures
ξij defined on N (i) × N (j) and projecting on the first
(second) factor as mi (mj), that is,

∑
`∈N (j)

ξij(k, `) = mi(k),

 ∑
k∈N (i)

ξij(k, `) = mj(`)


and d(i, j) is the usual metric emanating from the edge
weight ρ.

More intuitively, ξij(k, l) is called transference plan. It
tells us how much of the mass of k ∈ N (i) is transferred to
l ∈ N (j), but it does not tell us about the actual path that
the mass has to follow. Ollivier [13] showed that (13) ties up
with the usual Ricci curvature on manifolds and δ-hyperbolic
spaces.

The first Wasserstein distance is one class of shortest
transportation distance between two probability distributions.
For details of this concept, see [16], [17]. Note that we can
define the p-Wasserstein metric

(Wp(mi,mj))
p

= inf
ξij

∑
k,`∈N (i)×N (j)

(d(k, `))pξij(k, `).

From here on, we shall restrict the definition to edges
instead of paths. The specialization of (13) to edges is trivial
and left to the reader. The first result of the edge-specialized
concept is that W1 satisfies the triangle inequality,

W1(ij) +W1(jk) ≥W1([i, k]).

It follows that, if we take ρij = 1,

1

2
(κ(ij) + κ(jk)) ≤ κ([i, k]).

Therefore, it is enough to evaluate the curvature between
two neighboring points [13, Proposition 19] to derive lower
bounds on the Ollivier-Ricci curvature.

Bauer [2] developed a general sharp inequality for undi-
rected, weighted, connected, finite (multi)graph of N vertices
G = (V, E) as follows:

κ (ij) ≥

−

1− ρij
dx
− ρij
dj
−

∑
i1,i1∼i,i1∼j

ρi1i
di
∨ ρi1j

di


+

−

1− ρij
dx
− ρij
dj
−

∑
i1,i1∼i,i1∼j

ρi1i
di
∧ ρi1j

di


+

+
∑

i1,i1∼i,i1∼j

ρi1i
di
∧ ρi1j

di
+
ρii
di

+
ρjj
di
. (14)

In the above, a+ = max (a, 0); a
∧
b = min (a, b); a

∨
b =

max (a, b); di =
∑
j∼i ρij , ρii is the weight of self-loops;

j ∼ i denotes the existence of an edge between j and i.
The connection between the Ollivier-Ricci curvature and

the graph Laplacian is developed in [2] and not reproduced
here.



IV. OLLIVIER-RICCI CURVATURE OF STANDARD GRAPH
GENERATORS VERSUS NETWORK STABILITY: SINGLE

CLASS NETWORK AND CURVATURE LOWER BOUND

The HD protocol simulation is setup as follows:
• Graphs used. A total of 9 different graphs of the same

order (|V | = 50) are used to relate the Ollivier-Ricci
curvature and the performance of the HD protocol that
runs on the graphs. Those graphs are

– a complete graph,
– three scale-free random graphs with different

growth parameter,
– three Erdös-Rényi random graphs with different

attachment probabilities, generated by MIT Matlab
Network Analysis toolbox [3],

– two small-world random graphs generated by
Watts-Strogatz model (k-nearest neighbors connec-
tion with k = 3, 4, respectively, rewiring probabil-
ity is 0.2).

• Link capacity. For the queue occupancy and the routing
energy, the link capacity is set to infinity. For the
capacity region in the next section, the link capacity
is set to 1500 packets for every link.

• Packet arrival rate. Except for the simulation related
to the capacity region, in order to avoid random effects
and to single out the specific impact of the network
topology, the packet arrival rate is set to 1 Packet per
Timeslot (PpT) from every node to one single sink
(single-class) or to every other node (multi-class).

• Scheduling. It is known that for K-hop interference
model for K > 1, the maximum weighted matching
problem is NP-hard. For K = 1, however, the problem
is polynomial-time solvable. One algorithm one would
mention is Edmonds’ blossom algorithm. The weighting
in our simulation is provided by the quadratic weight (4)
along edges. The maximum weighted matching algo-
rithm at each timeslot is used to solve (5).

• Position of the sink. In single-class HD protocol, the
position of the sink is chosen at random. However,
different positions of the sink should result in different
simulation results. Therefore, in the next section, an
unbiased model using multi-class HD protocol is used
to rule out the effect brought by the position of the sink.

• Outline of simulation. Essentially, we link congestion
to curvature. The congestion of the network is reflected
in two measurements:

– the average queue occupancy over all nodes,
1
|V |
∑
i∈V Qi(n);

– the average routing energy over all links,
1
|E|
∑
i,j∈E

1
2 (Qi (n)−Qj (n))

2 .
Curvature is measured in two different ways:

– as the average of the lower bound on the Ollivier-
Ricci curvature over all edges;

– as the exact Ollivier-Ricci curvature averaged over
all edges (next section).

Two different setups are considered on all nine different
graph models:

Fig. 2. Single class: queue occupancy averaged over all nodes in steady
state versus lower bounds of Ollivier-Ricci curvature averaged over all links
in each of the 9 graphs. (The red line is the least square error linear
interpolation of the queue occupancy versus the curvature.)

– the single-class (5,000 timeslots in total are run);
– the multi-class (20,000 timeslots in total are run

in the next section). The multi-class has been
proved to be the superposition of single-class heat
diffusions in steady-state.

We use MATLAB R2012a to perform all the simulations.
Scheduling is based on the Blossom Algorithm; weighting
and forwarding are both based on the HD protocol. The heat
capacity is set as Ci (n) = 1, ∀i,∀n. At timeslot 0, the heat
quantity is set to 0 for every node.

A. Queue occupancy versus Ollivier-Ricci curvature

The Ollivier-Ricci curvature estimate used in the simulations
is the lower bound (14) on the curvature averaged over all
edges. The steady-state queue occupancy of the network
increases as Ollivier-Ricci curvature of the graph decreases
as shown in Figure 2, although not monotonically, yet the
slope of the interpolation line is -0.28.

B. Average routing energy versus Ollivier-Ricci curvature

The routing energy on the edge ij is defined as EK (ij) =
1
2 (Qi (n)−Qj (n))

2 for n in steady-state regime. If the
routing energy is averaged over all edges, EK =
1
|E|
∑
i,j∈E

1
2 (Qi (n)−Qj (n))

2, we have a global metric,
which should be related to the Ollivier-Ricci curvature of
the graph, as Figure 3 indeed shows. The routing energy
increases with decreasing curvature with a slope of -0.23, as
expected.

Although the Ollivier-Ricci curvature and the network
congestion are not monotonically related, they still show a
correlation. The reason of the low correlation value mainly
comes from two sources. The first is that the result of single-
class heat diffusion depends on the position of the sink,
which is chosen at random in the simulation. The second
is that the lower bound on Ollivier-Ricci curvature is still an



Fig. 3. Single class: average routing energy in steady state versus lower
bounds of Ollivier-Ricci curvature averaged over all links.

estimate. (This situation will be rectified in the next section
by computing the exact Ollivier-Ricci curvature.)

V. OLLIVIER RICCI CURVATURE OF STANDARD GRAPH
GENERATORS VERSUS NETWORK STABILITY: SINGLE &

MULTIPLE CLASS NETWORK AND EXACT CURVATURE

The results based on the lower bound can be inaccurate
in some cases. For example, for a Euclidean square lattice,
for two neighboring nodes that are not on the boundary of
the graph, the lower bound calculated by Bauer’s equation is
-1. However, the actual accurate value of the transportation
distance is 1, which results in vanishing Ollivier-Ricci curva-
ture. Thus, the actual congestion should reflect the vanishing
of the curvature.

Based on the above concern, we need to calculate the
exact Ollivier-Ricci curvature instead of a lower bound to
further develop the congestion versus curvature relationship.
One way to do the calculation is the utilization of the Earth
Mover’s Distance (EMD). EMD is a measure of the distance
between two probability distributions, usually used in image
processing [15]. It is based on the precise minimal cost
to transform one distribution into the other. For accurate
simulations, this minimal cost should be calculated by linear
programming [2] as follows:

In the set-up of the original Monge-Kantorovich problem,
let S denote the vector of supply and Si denote the amount
of supply at location i. Let D denote the vector of demand
and Dj denotes the amount of demand at location j. We
also have a cost matrix C, where Cij is the transportation
cost of moving a unit mass from supply location i to demand
location j. Let x(i, j) denotes the amount of mass transported
from i to j. In linear programming, we are minimizing the
total cost

Optimal Cost = min
x(i,j)≥0

∑
i

∑
j

x (i, j)C(i, j),

Fig. 4. Single-class: average queue occupancy in steady-state versus exact
Ollivier-Ricci curvature averaged over all links.

Fig. 5. Single-class: average routing energy in steady-state versus exact
Ollivier-Ricci curvature averaged over all links.

subject to the constraints∑
j

x (i, j)C(i, j) ≤ S(i),
∑
i

x (i, j)C(i, j) ≤ D(j).

Linear programming allows the extension of this computation
method for symmetric directed graphs to general directed
graphs.

A. Congestion of HD protocol versus exact Ollivier-Ricci
curvature with improvements

Based on the same simulation setup as in the previous
section, we now relate the congestion of single-class HD
protocol with the exact Ollivier-Ricci curvature.

From the results (Figures 4-5), we see that the correlation
between exact Ollivier-Ricci curvature and congestion is sig-
nificantly improved compared with the correlation between
lower bound of Ollivier-Ricci curvature and congestion. This
can be further improved by going to multi-class HD protocol
(Figures 6-7). The simulation setup is basically the same.



Fig. 6. Multi-class: average queue occupancy in steady-state versus exact
Ollivier-Ricci curvature averaged over all links.

Fig. 7. Multi-class: average routing energy in steady-state versus exact
Ollivier-Ricci curvature averaged over all links.

The only difference is that for each timeslot, every node
is sending 1 packet to every other node instead of only 1
specific sink.

B. Network capacity region versus Ollivier-Ricci curvature

In this simulation, every graph is subject to different arrival
rates. Previously, all nodes had an arrival rate of 1 PpT
(packet per timeslot). Here, in this simulation, the arrival
rate is uniformly increased to 2 PpT, 3 PpT, 5 PpT and 10
PpT. The change of arrival rate is applied to every node. The
link capacity is uniformly set to 1500 packet for every link.
In order to compare the capacity regions under different
arrival rates with different Ollivier-Ricci curvature, Figure 8
shows the initial curve of timeslot versus average queue
occupancy. In Figure 8, the link capacity is still infinity and
arrival rate is still 1 PpT.

From Figure 8, we can see that for graphs with different
curvatures, it takes longer time for the networks with more

Fig. 8. Evolution of average queue occupancy with time under uniform
arrival rate.

negative curvature to converge to steady-state. Also, the
steady-state queue occupancy is higher in networks with
more negative curvature, as also shown in Figure 6. However,
no matter how long it takes to converge, they still converge
within a finite amount of timeslots because the link capacity
is infinity. This is not the case for the ones with finite link
capacity.

Figure 9 show the performance with 1500 link capacity
under different arrival rates of 2 PpT, 3PpT, 5PpT, and 10
PpT respectively.

We can make several observations from the Figure 9.
1) As the arrival rate goes higher, the graph with more
negative curvature tends to lose convergence more rapidly
than those with more positive curvature.
2) Under specific arrival rate, if the graph with more positive
curvature cannot converge to steady state, then graphs with
curvature less than that graph would not converge either. This
demonstrates, although not a proof, that as the curvature of
a graph is decreasing, the capacity region is also becoming
smaller.
3) No matter what the arrival rate is, the time needed to reach
steady-state and the steady-state average queue occupancy
follow the same pattern as before, that is, they increase with
decreasing curvature.
4) For any particular graph, if the arrival rate is increased,
so will the time needed to reach steady-state.

Careful inspection of the various graphs being generated
shows that the number of edges increases with the curvature,
and trivially the capacity region increases. Simulations at
constant number of edges still show that the capacity region
increases with the curvature. However, the important feature
is that the number of edges is only one of the factors
contributing to the curvature; among other factors, one will
mention the combinatorics of the edges and the link cost
factors ρij .

VI. CONCLUSION: TOWARDS OLLIVIER-RICCI
CURVATURE CONTROL

In case the Ollivier-Ricci curvature is too negative for
acceptable queue occupancy, one could think of chang-



 

Fig. 9. Evolution of average queue occupancy with time under different arrival rates

ing the wireless parameters—within the constraints on the
resources—in such a way as to increase the curvature, hence
removing some of the overloaded queues and/or improv-
ing the capacity region. Such an approach has been very
successful in wired networks, where the link weights are
adjusted by the so-called Ricci flow to make the network
of maximum curvature, under a given network combina-
torics [10], [11]. Translated into wireless networking, this
would mean changing the link cost factors ρij , subject to
the constrained resources, so as the maximize κ. However,
in wireless networking, another variable to be manipulated is
the combinatorics of the wireless channels. While this opti-
mization is considerably more complicated than the wireline
one, it is more flexible than the wireline one and hence would
allow more curvature control authority. This is left for further
research.
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