
Empirical Evaluation of the Heat-Diffusion Collection
Protocol for Wireless Sensor Networks

Pradipta Ghosha,∗, He Renb, Reza Banirazia, Bhaskar Krishnamacharia,
Edmond Jonckheerea

aMing Hsieh Department of Electrical Engineering, University of Southern California, Los
Angeles, California, USA

bElectrical Engineering, Stanford University, Stanford, California, USA

Abstract

Heat-Diffusion (HD) routing is our recently-developed queue-aware routing pol-

icy for multi-hop wireless networks inspired by Thermodynamics. In the prior

theoretical studies, we have shown that HD routing guarantees throughput op-

timality, minimizes a quadratic routing cost, minimizes queue congestion on

the network, and provides a trade-off between routing cost and queueing delay

that is Pareto-Optimal. While striking, these guarantees are based on idealized

assumptions (including global synchronization, centralized control, and infinite

buffers) and heretofore have only been evaluated through simplified numerical

simulations. We present here the first practical decentralized Heat-Diffusion

Collection Protocol (HDCP) for wireless sensor networks and detail its imple-

mentation on Contiki OS. We present a thorough evaluation of HDCP based on

real testbed experiments, including a comparative analysis of its performance

with respect to the state of the art Collection Tree Protocol (CTP) and Back-

pressure Collection Protocol (BCP) for wireless sensor networks. We find that

HDCP has a significantly higher throughput region and greater resilience to

interference compared to CTP. However, we also find that the best performance

of HDCP is comparable to the best performance of BCP, due to the similarity

∗Corresponding author
Email addresses: pradiptg@usc.edu (Pradipta Ghosh), rhilogin@gmail.com (He Ren),

banirazi@gmail.com (Reza Banirazi), bkrishna@usc.edu (Bhaskar Krishnamachari),
jonckhee@usc.edu (Edmond Jonckheere)

Preprint submitted to Elsevier September 13, 2016

ar
X

iv
:1

60
9.

03
28

9v
1

 [
cs

.N
I]

 1
2

Se
p

20
16

in their neighbor rankings, which we verify through a Kendall’s-Tau test.

1. Introduction

Low power wireless sensor networks tend to be used for low-data rate ap-

plications. However, their scaling in terms of network size as well as operation

under low duty cycles is often limited due to bandwidth constraints. Routing

algorithms that can utilize the full bandwidth capacity of the network are there-

fore very important and continue to be a subject of research and development.

In network theory, the ability to fully utilize the available bandwidth in a

network is tied to the notion of throughput optimality. An algorithm is said to

be throughput optimal if it has the ability to maintain stable queues at any set

of arrival rates that could possibly be stabilized by at least one algorithm. The

Back-Pressure (BP) routing algorithm [1] was the first queue-aware routing pro-

tocol to offer in theory a throughput optimality guarantee under general channel

state and traffic conditions. It has been translated to practice in the form of

the Backpressure Collection Protocol [2] for wireless sensor networks, which

was shown to provide improved capacity and robustness to channel dynamics

compared to the state of the art queue-unaware tree-based routing protocols.

The Heat Diffusion (HD) algorithm [3] is our recently proposed alternate

queue-aware throughput optimal routing policy for wireless networks. It is de-

rived from a combinatorial analog of the classical Heat Diffusion equation in

Thermodynamics (where queue size is analogous to temperature, and packet

flow to heat flow) that takes into account wireless interference constraints. More-

over, in [4] we have shown that as the underlying mathematical formalism is

also essentially the same as current flows in resistive circuits, link penalties cor-

responding to resistances can be incorporated into HD routing in a way that

allows for minimizing a specific form of average routing cost referred to as the

Dirichlet routing cost. The Dirichlet routing cost is defined as the product of

a link’s cost and square of the respective link’s flow rate. Moreover, the HD

algorithm also minimizes the overall queue congestion of the network among

2

the class of throughput optimal algorithms that make decision based on only

current queue occupancies and channel statistics. The HD routing algorithm

guarantees to operate on the Pareto boundary if both routing costs and queue

occupancies are considered in the objective function.

Thus, in theory, the HD routing algorithm goes beyond just throughput op-

timality guarantees to provide additional significant improvements in average

queue sizes (delay) and average routing costs (such as ETX) compared to tradi-

tional Backpressure routing. However, to date, this HD algorithm has remained

a theoretical, idealized construct that requires a centralized implementation

based on a complete knowledge of a network and a NP-hard scheduling proce-

dure at each time, and assumes that buffer sizes are unbounded at all nodes.

What has been missing in the literature is a practical implementation of the

HD policy that is distributed and works with finite buffer lengths, and whose

performance is studied comprehensively on a real wireless testbed. We seek to

address this gap.

1.1. Our Contribution

Our contribution in this paper is multi-fold. First, we present the first-

ever decentralized version of the Heat-Diffusion algorithm and detail a Contiki

OS [5] based practical protocol implementation for data collection in wireless

sensor networks: the Heat Diffusion Collection Protocol (HDCP).

Second, we propose practically-motivated enhancements of the original

Heat Diffusion algorithm in our HDCP protocol implementation, including mod-

ifications to the link weight calculations, and a link switching scheme to diversify

the link usage.

Third, we propose and evaluate a new method of dynamic ETX calculation

suitable for any dynamic routing algorithm, including the previously proposed

Backpressure Collection Protocol (BCP) [2] as well as HDCP.

Fourth, we present and analyze the data collected from an extensive set of

practical experiments conducted with HDCP utilizing forty five nodes on a real

wireless sensor network testbed. Based on these data, we discuss the variation

3

in the performance of HDCP under different parameters.

Fifth, we compare HDCP with a Contiki-OS implementation of the Back-

pressure Collection Protocol (BCP) [2] as well as the well known Collection Tree

Protocol (CTP) [6]. We show that on the real testbed, HDCP offers significant

improvements in performance over CTP in terms of throughput as well as re-

silience to external interference. We also show that the performance of HDCP is

similar to BCP, and through evaluation of a Kendall’s Tau similarity measure,

show that this is due to similar rankings among the neighbors.

Finally, we also verify that HDCP performs well with a low power commu-

nication stack (CX-MAC, a version of X-MAC[7] that is provided in Contiki,

with 5% duty cycle).

2. Related Work

Besides the original Backpressure routing algorithm, other throughput op-

timal policies [8, 9, 10] have also been proposed in the existing network theory

literature. The HD algorithm also provides the same throughput optimality

guarantee in theory. However, what motivated us to implement HD were the

striking additional expected performance capabilities (based on our theoretical

results)— that it also offers a Pareto-optimal trade-off between routing cost and

queue congestion.

There have also been several reductions of Backpressure routing to practice

in the form of distributed protocols, pragmatically implemented and empirically

evaluated for different types of wireless networks [2, 11, 12]. Most relevant to

the present work is the Backpressure Collection Protocol (BCP) developed by

Moeller et al., the first ever implementation of dynamic queue-aware routing in

wireless sensor networks [2]. Our present work is informed by the BCP approach

to implement Backpressure routing in a distributed manner and we also directly

compare the performance of the new HDCP protocol with BCP.

Besides BCP, there are a number of other prior works on routing and collec-

tion protocols for wireless sensor networks, including the Collection Tree Proto-

col (CTP) [6], Glossy [13], Dozer [14], Low-power Wireless Bus [15], ORW [16]

4

and Oppcast [17]. We provide a side by side comparison of HDCP with the

well-known CTP and BCP protocols. We believe this provides a meaningful

comparison with a state of the art minimum cost quasi-static routing protocol

as well as a state of the art queue and cost-aware dynamic routing protocol.

In recent years there has been a significant focus in developing networking

protocols that are IP-friendly, such as RPL [18]. While the present paper does

not focus on providing an IP-compliant version of HD, there is prior work on

extending BCP to handle IP packets [19] and we believe that a similar approach

could be adopted to enable IP operation for HDCP in the future.

In our prior works, we have presented the idealized Heat Diffusion routing

algorithm [3, 4]. All of these are network theory papers that spell out a cen-

tralized algorithm, assume global synchronization, assume that at each time

step a NP-hard Maximum Weight Independent Set problem can be solved, and

that all queues are of unlimited size, and under these assumptions prove various

properties of the HD algorithm. The only evaluations presented in these works

are idealized MATLAB simulations. This work is clearly inspired by and built

up on our earlier works on HD routing, but is the first to develop and implement

it as a realistic distributed protocol (HDCP) and evaluate it on a real testbed.

3. Preliminaries and Background

The general idea behind dynamic queue-aware routing algorithms such as

the Backpressure [1] and the Heat Diffusion [3] is that they do not require

any explicit path computation. Instead, the next-hop for each packet depends

on queue-differential weights that are functions of the local queue occupancy

information and link state information at each node. Next, we briefly discuss the

Backpressure routing algorithm, first proposed by Tassiulas and Ephremides [1],

and extended by Neely et al. [20, 21] and then give more concrete details on the

Heat Diffusion routing algorithm proposed by Banirazi et al [3].

3.1. Backpressure Routing

The original Backpressure (BP) routing algorithm [1] consists of three major

steps: BP weighing, BP scheduling and BP forwarding. The BP algorithm

5

uses the information about estimated channel capacities µij(n) and the queue

backlogs qi(n) to make the routing decisions at each time slot n. This follows

a brief description of the BP routing steps including the penalty optimization

extension introduced by Neely et al..

3.1.1. BP Weighing

For each link ij in the network, find the queue differential, qij(n) = qi(n)−

qj(n). Next, assign some weights to the links based on the queue differential as

follows.

wij(n) = µij(n)qij(n) (1)

In the original BP, only the queue stabilities are considered. To incorporate

the routing cost into the BP, the drift-plus-penalty approach [20, 21] was pro-

posed, which we refer to as the V-parameter BP algorithm. In this approach,

a route usage cost is added as a negative penalty in the weight calculation as

follows.

wij(n) = µij(n)(qij(n)− V.θij) (2)

where V ∈ [0,∞) determines the importance of the link penalty and θij is the

link penalty which depends on the link utility or cost function along with some

penalty functions.

3.1.2. BP Scheduling

Find or choose a scheduling vector π ∈ Π that maximizes the sum of the

weights of the activated links. In other words, choose a scheduling vector π such

that

φ(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (3)

In case of ties, the scheduling vector is chosen randomly from the solution set.

3.1.3. BP Forwarding

Based on the scheduling vector from step(2), if a link is active at time-slot

n i.e., πij(n) = 1, and if the link weight wij(n) > 0, then transmit packets on

6

that link at full capacity µij(n). Null packets are sent if a node doesn’t have

enough packets to send.

3.2. Heat Diffusion Routing

Heat Diffusion (HD) [3] routing has been derived from the combinatorial

analogue of classical Heat-Diffusion equation in Thermodynamics. Similar to

the BP routing, in the HD routing, the nodes make routing decisions to put fij

packets over a link in a discrete time, based on queue differentials qij(n), link

capacities µij(n), and channel cost factor ρij(n).

The optimization goal of the HD algorithm for a wireless network in theory

can be described as follows [3, 4]:

Minimize: (1− β)Q+ βR

Subject to: (1) Throughput optimality.

(2) Network constraints.

(4)

where R =
∑
ij∈E ρij(fij)

2 is the Dirichlet average routing cost, and Q =∑
i∈V qi is the average network queue size, and β ∈ [0, 1] is the control parameter

to determine the trade-off between these two optimization goals. Throughput

optimality for a routing algorithm refers to its ability to maintain all queues to

be stable for all sets of arrival rates for which it is possible by an omniscient

router to maintain stable queues. Network constraints include constraints on

link rates as well as interference constraints.

The HD routing algorithm also has three steps, nonetheless, the details of

these steps are significantly different from the BP routing algorithm. The steps

can be described as follows.

3.2.1. HD Weighing

Calculate the number of packets the link will transmit if it is activated

at time-slot n. In the original literature, this quantity is denotes by f̂ij(n),

calculated as follows.

f̂ij(n) = min{φij(n)qij(n)+, µij(n)}

φij(n) = (1− β) + β/ρij(n)
(5)

7

where the Lagrange parameter β is defined in Eqn (4) Now, the link weights

are calculated as follows.

wij(n) = 2φij(n)qij(n)f̂ij(n)− f̂ij(n)2 (6)

3.2.2. HD Scheduling

Similar to BP routing, find a scheduling vector π ∈ Π such that

φ(n) = arg max
π∈Π

∑
ij∈E

πijwij(n) (7)

and the ties are broken randomly.

3.2.3. HD Forwarding

At this step, send f̂ij(n) number of packets over the link ij if πij(n) = 1 and

wij(n) > 0. However f̂ij(n) may be a fractional number. Therefore the actual

number of packets transmitted is

fij(n) =

df̂ij(n)e if πij(n) = 1

0 otherwise

(8)

Note that, unlike BP routing, the node sends fij(n) number of packets rather

than transmitting at the full capacity, µij(n).

3.3. The Backpressure Collection Protocol

Backpressure Collection Protocol (BCP) [2] is a distributed dynamic routing

protocol which practically implements the idealized V-parameter BP algorithm

without need for global max weight scheduling. In this protocol the link penalty

θij(n) in Eqn (2) is replaced by ETXij(n), which is the ETX estimate for link

ij at time-slot n. Therefore, the modified weighing function is as follows.

wij(n) = µij(n)(qij(n)− V.ETXij(n)) (9)

In this distributed protocol, each node calculates the weight for each of its

outgoing links locally and chooses the neighbor with the maximum positive

8

weight, if any, to forward the next packet. It is shown in [2] that a last-in-first-

out (LIFO) queue implementation of BCP is better than first-in-first-out (FIFO)

in terms of delay performance. Also, floating or virtual queues are implemented

to deal with the problem of limited buffer size.

4. The Heat Diffusion Collection Protocol

The original HD algorithm is a centralized protocol where at each time slot

the optimum non-interfering schedule must be computed. In our distributed

implementation of the Heat Diffusion Collection Protocol (HDCP), every node

decides the next hop locally, greedily based on the weight calculations. Moreover,

the ρij(n) in Eqn (5) is replaced by ETXij(n) which is the estimated ETX of

the link ij at time-slot n. Thus, the modified equations to calculate the link

weights are as follows.

f̂ij(n) = min{φij(n)qij(n)+, µij(n)}

φij(n) = (1− β) + β/ETXij(n)
(10)

wij(n) = 2{(1− β) + β/ETXij(n)}qij(n)f̂ij(n)− f̂ij(n)2 (11)

Now, each node calculates the weight for each of its outgoing links and

chooses the link with the maximum positive weight. Unlike the centralized

algorithm’s NP-hard maximum weight independent set time scheduling to avoid

interference, in our distributed protocol, any packet collisions that may occur

are fixed by a random retransmission.

4.1. Updating Weights

In order to calculate the weights, the distributed HDCP protocol requires

some techniques to ensure that each node have a updated information about

the queue sizes of its neighboring nodes, without affecting the performance of

the routing task.

9

In our distributed implementation of HDCP, we employ two techniques to

do that. First, during a long period of inactivity, each node periodically broad-

casts a beacon with its current queue status similar to common wireless access

point. If a neighboring node receives this broadcast, it will update its locally

stored queue differential information. Second, when a node sends a data packet,

it includes its current queue state in that packet’s header. Due to the nature of

wireless links, every packet is received by all the neighboring nodes (we assume

that no advanced MAC protocol is employed that schedules nodes to commu-

nicate in pairs at different times). Once a data packet is received by a node,

it sniffs the header of the packet to extract the queue information and updates

the local queue information data-base, even if the respective node is not the

destination of the packet.

4.2. Queue Implementation

Similar to BCP, practical implementation of the HDCP can have a FIFO

queue or a LIFO queue implementation. Based on the observation in [2] that

LIFO queue implementation has a significantly better performance in terms

of end-to-end delay (which we also observed empirically), we present only the

LIFO queue implementation of the HDCP protocol in this paper. We also adopt

the virtual “floating” queue approach proposed in [2] to prevent packet buffer

overflows due to the steady state queue gradient.

5. Implementation Details

In the practical implementation of HDCP, a number of parameters need

to be set properly, such as β, maximum queue size, and maximum number of

retransmissions. In this section, we discuss the choices of parameters and the

reason behind them in details. First of all, we set the value of µij(n) in Eqn. (5)

to be 1 as a node cannot send more than one packet simultaneously. Next, we

discuss the choice of β in details.

10

5.1. The β parameter

The most important parameter in HDCP is the parameter β. In theory,

for different choices of β, we should get different performance for HDCP as the

optimization goal changes for different values of β. If we choose β = 0, Eqn. (11)

will be simplified to:

f̂ij(n) = min{qij(n)+, 1}

wij(n) = 2qij(n)f̂ij(n)− f̂ij(n)2
(12)

Now, for qij(n) > 0, f̂ij(n) = 1 as the queue differential can take only integer

values. Therefore, Eqn (12) can be rewritten as follows:

wij(n) =

2qij(n)− 1 if qij(n) > 0

0 Otherwise

(13)

Therefore, in this the optimization goal becomes similar to the goal in the

original “pure” BP routing (by Tassiulas and Ephremides [1]) and it doesn’t

include the minimization of ETX. Also, as the link weights solely depend on

the queue differentials, the delay performance should be better provided that

the links are all very good. On the contrary, since this protocol doesn’t try to

minimize the ETX, it can choose a bad link if the queue gradient on that link is

the largest. As a consequence, the average number of retransmissions faced by

a packet also increases which is directly translated to larger end to end delay.

Therefore, if the overall path costs in terms of ETX is the dominant factor in

the end to end delay calculation, HDCP with β = 0 may perform poorly in

practice.

On the other hand, if β = 1, Eqn. (11) will be as follows:

f̂ij(n) = min{ qij(n)+

ETXij(n)
, 1}

wij(n) = 2
qij(n)

ETXij(n)
f̂ij(n)− f̂ij(n)2

(14)

11

Similar to the previous case, we can simplify (14) as follows:

wij(n) =

2
(

qij(n)

ETXij(n)

)
− 1 if

qij(n)

ETXij(n)
≥ 1(

qij(n)

ETXij(n)

)2

if 0 <
qij(n)

ETXij(n)
< 1

0 Otherwise

(15)

In this case the optimization goal is mainly the reduction of overall path costs

in terms of ETX. Thus the overall ETX for a path should be improved for

this case. However, this might result in a slight increase in hop counts if the

links are very lossy. The first and last cases in Eqn. (15) correctly fulfill our

routing requirement. But the second case causes inefficiency in the real testbed

experiments. In such cases, even if the ETX cost is very high for a link and

the queue differential is as low as 1, a node will try to send the packet to that

link according to the original HD rule. Moreover, in practical experiments,

the probability of falling under such a situation is very high. Thus, it will

negatively effect the overall performance of the HDCP and needs to be avoided.

Furthermore, provided that we have avoided any such situations, for a good link

that have ETX = 1, even a queue differential of 1 will result in a positive weight

thereby causing the protocol to forward the packet. This results in a absence

of a steady state queue gradient on such links. This can potentially increase

the number of hops traversed by the packets and also affect the goodput. In

order to avoid both of these situations, we replace the ρij(n) in Eqn (5) by

V × ETXij(n) which modifies Eqn. (11) as follows:

wij(n) = 2{(1− β) +
β

V × ETXij(n)
}qij(n)fij(n)− fij(n)2

(16)

where, fij(n) = df̂ij(n)e. By setting V ≥ 2, we make it certain that there

exists a steady state queue gradient towards the sink. Therefore, a node will

consider a link only if qij(n) is greater than ETXij(n). Thus, for a link with

very high ETX, the queue differential have to be higher in order to consider that

link. Furthermore, this strategy also satisfies the Backpressure criterion as for

qij(n) < 0 =⇒ wij(n) < 0. In Section 6.3, we present a practical experiment

12

based analysis of the performance improvement as a result of this change in

weight calculation.

5.2. Retransmission

Retransmission is very crucial for the performance of any wireless network.

For effective retransmission, the parameters such as retransmission timeout and

maximum number of retransmissions have to be properly chosen. Retransmis-

sion is also directly related to the acknowledgement mechanism and the choice

of ARQ. Since the choice of ARQ affects the HDCP, the BCP and the CTP algo-

rithm equally, in this paper we have implemented a simple Stop and Wait ARQ

mechanism where a node can send only one packet at a time and wait for its ac-

knowledgment before moving to the next packet. If the acknowledgement is not

received within a certain time, commonly referred as retransmission timeout,

the node retransmits the same packet. Now the value of this retransmission

timeout directly affects the goodput of the system and needs to be properly

chosen. Note that, the ARQ mechanism is employed on top of the existing

hardware level acknowledgement mechanism that tries a maximum of 3 times

to properly transfer the packet to the next hop in case of unicast transmissions

(e.g., software acknowledgements). We do not remove the hardware level ac-

knowledgement (One key feature of the CTP algorithm) for a fair comparison

as well as to avoid the unreliability issues in pure software acknowledgements.

In our experiment, the transmission and propagation time for a packet are

in the order of tens of milliseconds. It would then perhaps be expected that

the best setting for the retransmission should be on the order of around 10ms

or so. Nevertheless, we empirically found that it is best to set the timeout for

retransmitting a lost packet to be chosen randomly between 10 to 200 ms. We

believe that this large range is needed because of the channel coherence time in

our testbed which is located in a busy office building environment. For instance,

in [22], it is indicated that the coherence time for IEEE 802.15.4 radios can be

about 175ms. Retransmitting a lost packet quicker than the coherence time

runs a higher risk of seeing another packet loss. Furthermore, we use CSMA as

13

the channel access protocol, which also introduces some delay.

The maximum number of retransmission attempts is set to 5 based on

the original BCP code, which we empirically observed to perform well on our

testbed. After five retransmission attempts, if a packet is not acknowledged,

the node will drop it and move to the next packet.

5.3. Retry

Whenever a node generates or receives a packet, it tries to send it immedi-

ately (after about 4-5 ms) if no other packet is being transmitted or waiting in

the queue. However, when the node wants to transmit the packet, there might

not be any suitable neighbor (in terms of having a positive weight) to forward

the packet. In that case, the node needs to decide how much time should it wait

before retrying. We refer to this wait time as the Retry time. One viable option

is to constantly keep trying which is not efficient in terms of energy consump-

tion due to radio wake times. Also once this situation happens, it might take a

while to have a good neighbor. In this work, we set the retry time to be chosen

randomly between 50ms to 100ms. The intuition behind choosing this value is

again the transmission time for a packet being in the order of tens of millisec-

onds. Based on our experiment, we have also observed that the typical packet

transfer time (the time duration between the transmission and reception of a

packet) is ∼ 10ms. Therefore, by choosing a value between 50ms and 100ms, we

give the neighboring nodes enough time to potentially transfer several packets

which is likely to be enough to create a positive weight.

5.4. Link Metric Estimation

One of our contributions in this paper is to propose a new method of ETX

calculation for implementations of dynamic routing. Initially, we opted to follow

the ETX calculation technique from original BCP paper [2]. In that implemen-

tation the estimation of ETXij for link ij is performed in a online manner

where the metric is updated by taking exponential weighted moving average of

the number of retransmission attempts of the most recently transmitted packet.

This is a very effective way of ETX estimation for routing protocols that doesn’t

14

switch next hop during retransmission i.e., use the same link ij for all the re-

transmission attempts. However, for Backpressure-based dynamic routing pro-

tocols, the next hop calculation is performed before each retransmission, for

path diversity. In such cases, we have to be very careful in calculating moving

average since the same link may not be used for all the retransmissions. There-

fore, if we just attempt to update the ETX for the most recently used link with

the total number of retransmission attempts, we found that it could potentially

result in an erroneous ETX estimation. To avoid this flaw, we can keep track of

all the links used as well as the number of tries on that link and update either

only the last used link or all the links after a successful packet transmission or

a packet drop.

As an alternative, we propose a 2-state discrete time Markov Chain based

ETX estimation. In this method, we assume that each channel can be either

good (‘1’) or bad (‘0’) at certain point of time. With each state, we associate

two transition probabilities: good to good (p11), good to bad (p10), bad to good

(p01) and bad to bad (p00). Now the ETXij can be calculated as 1
p01 when the

last state observed was a 0, and as 1
p11 when the last state was 1.

We maintain four counters associated with each routing table entry to keep

track of different state transitions, denoted count00, count01, count10 and count11.

We also add a Boolean variable to keep track of the last state of the link i.e., if

the value is true, the last known state was good. We initialize the count01 and

count11 to be 1 and the others to be 0. Now every time a packet is transmitted

(or retransmitted), the algorithm waits for a certain period of time to receive

the acknowledgement(ACK). If received, the state of the channel is set to be

good (‘1’) otherwise it is set to be bad (‘0’), and then based on the last state, the

respective counter is increased by one. The counters may be reset after reaching

a maximum value, to keep the ETX estimates fresh. In our experiments, we

have not done this as it did not appear to affect the performance.

Now, based on the counters, the ETX is calculated (it can be shown that

this corresponds to a maximum likelihood estimate of the underlying Markov

15

Chain parameters) as follows:

ETXij =

count00+count01

count01
if last State = 0

count10+count11
count11

if last State = 1

(17)

All the results presented in this paper are based on this new, more justifiable

method of ETX calculation, which we apply to both BCP and HDCP for a fair

comparison.

5.5. Queue Buffer

In practical low power low memory devices, the possible queue buffer alloca-

tions are severely restricted. We fixed the maximum queue size to be 25 as this

is the highest possible number of queue buffer that our device can accommodate

alongside other required memories. Along with this buffer, there also exists a

small memory allocated to store only the recent packet for the retransmission

purpose.

5.6. Beacon Timer

Beaconing is a very important part of the practical implementation of both

HDCP and BCP. When a node has nothing to send for long time, beacons are

sent periodically, so that the neighboring nodes can keep their Backpressure

database updated. Also beaconing is mandatory for a sink node since it has

nothing to send. Therefore we implement two different beaconing rates in our

system. The first type of beaconing is for source nodes and the period for that

is around 5 seconds. The second type of beacons, which we refer to as the fast

beacons, are used by the sink nodes and the period for that beacon is around 2

seconds. These values are chosen based on the original BCP code.

5.7. Inbound Packet Filtering

Inbound packet filtering is very important to improve the performance of

both HDCP and BCP in the presence of retransmissions. If no filtering is used,

a node might receive multiple copies of the same packet due to retransmissions.

Therefore the node might have multiple copies of the same packet stored in the

16

buffer simultaneously, which is not efficient. To avoid this kind of situations, we

implement a inbound packet filter to drop any duplicate packets after sending

proper acknowledgements. In our implementation, each node maintains a his-

tory of 25 most recent packets received by the node. We choose this number to

match the queue buffer size. Every time a node receives a packet, it checks the

history, performs necessary action such as packet drop or store, and updates the

history.

Further, to prevent packet looping, we implement a TTL counter which

decrements at each hop. In our experiments, sources set the initial TTL for

each packet conservatively to 10 (the maximum hop distance from any node to

the sink in our testbed is only 3).

5.8. Link Switching

In this paper, we propose an enhancement of HDCP by introducing link

switching. The main concept of link switching is to maintain a ordered set of

best (in terms of the weights) K neighbors (K can be any positive integer) at each

node. When a packet is sent, it is first send to the first neighbor on this list. If

transmission fails, the retransmission attempt is made immediately to the next

neighbor in the list and so on. If the list is exhausted during retransmissions, the

process restarts again from the first neighbor in the list. A node should fulfill

some selection criterion to be included in the list such as the link weight should

be within some threshold of the best link. In our experiments, we set a threshold

on the ETX and weight i.e., if a positively weighted link’s ETX is no worse than

the best link’s ETX + 1, we add that link to the list. In section 6.3, we present a

practical experiment based analysis of the performance improvement as a result

of this change. However we introduce this switching in HDCP only because we

empirically found that it doesn’t help to improve the performance of BCP.

5.9. End to End Delay Calculations

For calculating end to end delay of each packet, we maintain a separate

field called HDCPDelay in the HDCP header, initialized with a value of 0. At

the source node, the packet is timestamped at the generation (Say Asource)

17

and just before departure (Say Dsource), and the value HDCPDelay field is

set to be (Dsource − Asource). Similarly, we time-stamp the packet at each

intermediate node, Ik: upon arrival (AIk) and just before departure (DIk);

and add the time difference with the value of HDCPDelay, i.e., HDCPDelay =

HDCPDelay+(DIk−AIk). Thus the value of the field HDCPDelay upon arrival

on the sink denotes the end to end delay suffered by that packet. For illustration,

assume that the travel path of a packet is source → I1 → · · · → IM → sink,

AI1 , · · · , AIM are the arrival times of the packet at the intermediate nodes, and

DI1 , · · · , DIM are the respective departure times. Then the end to end delay is∑i=M
i=1 |DIi−AIi |+|DSource−Asource|. Note that, we do not add the propagation

delays as the value of propagation delays are negligible in our testbed setup.

6. Real Testbed Experiment Results and Analysis

In this section we evaluate a number of HDCP variants and also compare

them with LIFO BCP with virtual queue implementation and CTP.

6.1. Experimental Setup

To analyze the performance of HDCP in a real sensor network and compare

it with BCP and CTP, we have implemented the HDCP and the BCP algo-

rithm both on Contiki OS and used the CTP implementation available with

the Contiki OS. We perform a set of evaluation experiments on an indoor wire-

less network testbed called Tutornet [23] with forty five IEEE 802.15.4-base

Tmote-sky nodes distributed over a floor with roughly 80, 000 sq.ft of area.

This testbed is also available for administered public use for approved research

purposes including benchmarking protocols. The network topology is presented

in Figure 1 where the marked node is the sink and the rest of the nodes are the

source nodes and the furthest node is three hops away from the sink. We use

the channel number 26 with Tmote sky power level 31 for this purpose. The

number of neighbors to each node varies from 19 to 35 with an average of 29.

Nonetheless, typically only about 7-8 of the neighbors are connected via good

links (ETX ≈ 1). Thus the topology is very diverse with a considerable number

18

of different paths between any two nodes in the network. On the negative side,

a considerable amount of interference exists among the nodes, which limits the

bandwidth. The data packets in our experiments are all 26 Bytes in size.

Figure 1: Real Experiment Testbed Topology

All the experiments are performed on weekdays during daytime with lots

of moving people and physical objects around. Each experiment is performed

for 35 min: the network settles down during the first 5 min and the data is

collected during the next 30 min. Each experiment is repeated at least 10 times

to improve the confidence levels. Note that, we discuss the experimental setup

for low power stack in section 6.6.

We evaluate HDCP’s performance in terms of different values of β and dif-

ferent packet generation rates. We select the value of V to be 2 for both BCP

and HDCP which has been empirically determined to be an efficient operating

point for BCP in the original BCP paper (which we could also verify in our own

experiments).

6.2. Variation of the β Parameter

We perform a set of practical experiments on the testbed with different

values of β and packet generation rates of 1 packet per 4 seconds per source

(i.e., 0.25 PPS) as well as 1 packet per 2 seconds (0.5PPS). The difference in

performance is not prominent between the two source rates, thus we present the

results only for the higher rate of 0.5 PPS in this section to keep the length of

19

the manuscript reasonable as well as to avoid presenting redundant information.

The goodput of each source node is defined to be the number of packets

received by the sink from it over a one second interval. For visual clarity, all

the plots presented in this section are sorted in terms of the goodputs of the

individual nodes for the experiment with β = 0. The end to end delay calcula-

tion for each packet is performed by adding up all the queuing and processing

delays in all intermediate nodes, as discussed in Section 5.9. This ignores the

propagation times, which in any case are negligible compared to the processing

delays.

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

Node ID

P
a
c
k
e
ts

/s
e
c

Goodput to Sink

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

(a)

2

4

6

8

Node ID

A
ve

ra
g

e
 E

T
X

 p
e

r
p

a
ck

e
t

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

0 5 10 15 20 25 30 35 40 45

1

2

3

4

Node ID

A
ve

ra
g

e
 H

o
p

 C
o

u
n

t

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

(b)

Figure 2: Performance Plots of HDCP Implementation for 0.5 PPS with Dif-
ferent Values of β: (a) Average Goodput to Sink (b) Average ETX per Packet
(Top) and Average Hop Count (Bottom)

First, we analyze the goodput characteristics of HDCP for different choices

of β. In Figure 2a, we compare the goodputs of each of the forty four nodes for

six different choices of β. This figure clearly shows that the goodput for β = 1

and 0.8 are significantly better than the other choices of β. It also demonstrates

that β = 0 results in a gradual decrease in the goodput to sink where only

few nodes are able to reach the maximum possible rate. This figure also shows

that the choice of β ∈ {0, 0.2, 0.4, 0.6} does not significantly affect the goodput

performance. Based on these observations, we hypothesize that the goodput

20

performance of the network is mostly dependent on the ETX of the path and

therefore for higher β values the goodput performance metrics are better. Fig-

ure 2b, which shows that the average path costs for β ∈ {0.8, 1} in terms of

ETX for individual sources are significantly less than the average path costs for

other choices of β, validates this hypothesis. In Figure 2b, we also analyze the

average hop counts observed by the packets. It shows a similar pattern as the

path costs since total ETX of the path is proportional to the number of hops

traversed by the packet.

In Figure 3a (Bottom), we analyze the variation in the average end-to-end

delay suffered by the packets generated from individual nodes for different val-

ues of β. It shows that the average delay performance for β = 1 is the best

among different choices of β while any other choice of β results in a worse delay

performance. Similar statistics are seen in Figure 3a (Top) in terms of the av-

erage queue sizes for individual nodes. This figure demonstrates that for β = 1

the average queue-sizes are almost three to four times smaller than that of the

average queue sizes for β ∈ {0, 0.2, 0.4, 0.6}. We also plot the delay cdf in Fig-

ure 3b for the packets generated from mote 38 in the testbed which is the mote

farthest from the sink. It also shows that β = 1 is best in terms of end-to-end

delay.

Summarizing all these results, we can say that HDCP performs really well if

the value of β is close to 1. For lower values of β, we find the performance does

not differ by too much from the performance when β = 0 (the reason for this is

further discussed in section 7.1). Therefore, we only consider HDCP with β = 1

and β = 0 (the latter as a baseline scheme, which does not take into account

ETX) for the rest of the paper.

6.3. Modified HDCP vs Unmodified HDCP

In this section, we present a comparison of an HDCP implementation based

on the original weighing model suggested by the theory with our HDCP imple-

mentation where the link weight model is modified as in (16) as well as with

our proposed link switching approach. For this purpose, we perform a set of

21

5

10

15

20

Node ID

A
vg

. Q
ue

ue
 s

iz
e

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

0 5 10 15 20 25 30 35 40 45

5

10

15

20

Node ID

A
vg

. D
el

ay
 (

in
 s

)

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay in seconds (X)

F
[X

]

Delay CDF for Node 38

beta=0

beta=0.2

beta=0.4

beta=0.6

beta=0.8

beta=1

(b)

Figure 3: Performance Plots of HDCP Implementation for 0.5 PPS with Differ-
ent Values of β: (a) (Bottom) Average End-to-End Delay, (Top) Average Queue
Occupancy for Each Node (b) End-to-End Delay CDF Plot for Mote 38

experiments with both versions of HDCP for a fixed value of β = 1 and fixed

packet generation rate of 0.25 PPS i.e., 1 packet per 4 seconds. Note that for

visual clarity all the plots presented in this section are sorted in terms of the

goodputs for unmodified HDCP implementation.

In Figure 4a, we demonstrate that without the modifications we have pro-

posed, the goodput performance of HDCP suffers significantly. This is mostly

due to the selection of links with higher ETX as well as lack of proper queue

gradient towards the sink, as discussed in Section 5.1. This is further verified by

the Figure 4b which clearly show that the average path costs in terms of ETX

for unmodified HDCP are very high compared to our HDCP implementation.

Next, we compare the performance of unmodified and modified HDCP in

terms of average end to end delay as well as average queue occupancy of indi-

vidual nodes in Figures 5. It shows that the delay performance of unmodified

HDCP is worse than modified HDCP for half of the nodes while it is better for

the rest half of the nodes. Thus, on average, the modification doesn’t attribute

to any delay improvement. On the other hand, it is also clear from the figure

that there exists a steady queue gradient in modified HDCP in contrary to the

case of unmodified HDCP, where most of the nodes have queue occupancy of 1

22

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25

0.3

Node ID

A
v
e

ra
g

e
 G

o
o

d
p

u
t

to
 S

in
k
 (

in
 P

P
S

)

Unmodified HDCP

Modified HDCP

(a)

0

1

2

3

4

5

6

7

8

9

10

Node ID

A
ve

ra
g

e
 E

T
X

 /
 P

a
ck

e
t

Unmodified HDCP

Modified HDCP

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

5

6

7

8

9

10

11

Node ID

A
ve

ra
g

e
 H

o
p

 C
o

u
n

t
/

P
a

ck
e

t

Unmodified HDCP

Modified HDCP

(b)

Figure 4: Performance Comparison between Modified and Unmodified HDCP
Implementation with β = 1 for 0.25 PPS: (a) Average Goodput (b) Average
ETX per Packet (Top) and Average Hop Count (Bottom)

0

1

2

3

4

5

Node ID

A
ve

ra
g

e
 D

e
la

y
/

P
a

ck
e

t
(i
n

 s
)

Unmodified HDCP

Modified HDCP

0 5 10 15 20 25 30 35 40 45

1

2

3

4

5

6

Node ID

A
vg

 Q
u

e
u

e
 s

iz
e

Unmodified HDCP

Modified HDCP

Figure 5: Average End-to-End Delay (Top) and Average Queue Occupancy
(Bottom) Comparison between Modified HDCP and Unmodified HDCP with
β = 1 for Each Node for 0.25 PPS

thereby lacking a proper queue gradient towards sink. This also validates our

justification for the modification of weights in HDCP as indicated in Section 5.1.

Thus, overall we improve the performance of HDCP by slightly compromising

the average queue sizes.

23

6.4. Performance Comparison with BCP and CTP for Fixed Packet Generation
Rate

In this section, we compare the performance of HDCP with the performance

of the BCP protocol and the CTP protocol for the fixed packet generation rate

of 0.5 PPS i.e., 1 packet per 2 seconds. Note that for simplicity of presentation,

all the plots presented in this section are sorted in terms of the goodputs for

the BCP algorithm.

In Figure 6a, we plot the goodputs for CTP, BCP and HDCP with β =

0 and 1, respectively. We observe that HDCP with β = 1 outperforms the

CTP algorithm in terms of goodput while CTP outperforms HDCP for β = 0.

However, BCP and HDCP with β = 1 performs almost identically. For β = 0,

the weights of the links are fully determined by the queue differentials and it

doesn’t depend on ETX at all, resulting in bad performance. For CTP, a node

relies on a single periodically calculated path to sink and doesn’t take advantage

of multiple available paths to sink thereby compromising the goodput for high

packet generation rate such as 0.5 PPS. On the other hand, BCP and HDCP

with β = 1 focus on reducing the total ETX cost of a source to sink path while

not being restricted to a single pre-calculated path. Thus, the BCP and the

HDCP algorithm with β = 1 both appear to be able to take advantage of the

multiple paths available to the sink in order to cope with high packet generation

rate thereby improving the throughput region.

Similar to the goodput analysis, we present the average hop count and aver-

age ETX of the entire path observed by the packets generated from individual

sources in Figure 6b. It shows that, again, HDCP with β = 1 and BCP both

slightly outperform CTP on average, whereas HDCP with β = 0 performs the

worst. This is also justified based on our discussion presented in the previous

section. The performance of HDCP with β = 1 and the performance of BCP

are again almost same. Based on these results, we hypothesize that the

similarity between BCP and HDCP with β = 1 is due to similarity

in their neighbor rankings, despite differences in the structure of the

weight expression. This is further explored in section 7.

24

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

Node ID

A
v
e

ra
g

e
 G

o
o

d
p

u
t

to
 S

in
k
 (

in
 P

P
S

)

BCP

CTP

HDCP β=0.0

HDCP β=1.0

(a)

2

4

6

8

Node ID

A
v
e

ra
g

e
 E

T
X

 /
 P

a
c
k
e

t

BCP

CTP

HDCP β=0.0

HDCP β=1.0

0 5 10 15 20 25 30 35 40 45

1

2

3

4

Node ID

A
v
e

ra
g

e
 H

o
p

 C
o

u
n

t
/

P
a

c
k
e

t

BCP

CTP

HDCP β=0.0

HDCP β=1.0

(b)

Figure 6: Comparison Plots between HDCP, BCP and CTP for 0.5 PPS: (a)
Average Goodput to Sink (b) Average ETX (Top), Average Hop Count to Sink
(Bottom)

We also compare the delay performance and queue occupancy of HDCP with

BCP and CTP in Figure 7. Figure 7 shows that the delay performance of HDCP

for β = 1 is significantly better than HDCP with β = 0. However, based on the

figure, the delay performance for BCP is almost same as HDCP with β = 1 while

both of them outperforms CTP. The similarity between BCP and HDCP with

β = 1 is justified based on the previous results. In Figure 7, we also demonstrate

that the average queue occupancy of HDCP with β = 1 is significantly low

compared to BCP and HDCP with β = 0. The queue occupancy of CTP

seems to be the lowest for some nodes, however, we believe this is misleading

as CTP experiences the most packet drops among the various protocols at this

offered load. The packet drops in CTP occur partly due to retransmission

packet drops caused by higher intra-network interference (reflected in the higher

ETX and higher delay values), and partly due to some other parameters in its

implementation such as forwarding packet lifetime and an in-built congestion

control. However, for any higher packet generation rate, we observe that the

queue occupancy for CTP increases rapidly (resulting in even more losses) as

does its delay.

25

2

4

6

8

10

12

14

16

18

Node ID

A
vg

.
D

e
la

y
/

P
a

ck
e

t
(i
n

 s
)

BCP

CTP

HDCP β=0.0

HDCP β=1.0

0 5 10 15 20 25 30 35 40 45

2

4

6

8

10

12

14

16

18

Node ID

A
vg

.
Q

u
e

u
e

 s
iz

e

BCP

CTP

HDCP β=0.0

HDCP β=1.0

Figure 7: Average End-to-End Delay (Top) and Average Queue Occupancy
Comparison (Bottom) among HDCP, BCP and CTP for Each Node for 0.5
PPS

6.5. Varying Packet Generation Rate

In this section, we present and analyze the effects of the packet genera-

tion/source rates on the performance of HDCP and compare it with the per-

formance of the BCP and CTP algorithms. We performed a set of experiments

with six different packets generation rates: 1/12 PPS (i.e., 1 packet per 12 sec-

ond), 1/8 PPS, 1/4 PPS, 1/2 PPS, 4/5 PPS and 1 PPS. In Figure 8 we present

the goodput variation due to the change in packet generation rate for HDCP

with β = 0 and 1 as well as the goodput variations of the BCP and the CTP al-

gorithm. It is clear from Figure 8 that for lower packet generation/source rates,

HDCP performs almost similar to the BCP and CTP algorithm in terms of

goodput to sink. But, as we increase the offered load, HDCP and BCP grad-

ually outperform the CTP algorithm. In our experiment, HDCP outperforms

CTP in terms of goodput for packet generation rate higher than 1 packet per

4 seconds. From the figure, we can estimate that the full throughput region

(the maximum offered load at which the protocol is able to match the ideal

curve) for HDCP is about 60 to 100% higher than that for CTP in this partic-

ular testbed and topology (of course the relative performance improvement is

certainly likely to depend on the network topology.) Another thing to notice

that, the average goodput for β = 1 is always higher than β = 0 which agrees

26

with our earlier findings and arguments concerning the inefficiencies introduced

by ignoring the ETX costs of links. Yet again, the performance of BCP closely

follows the performance of HDCP with β = 1 which is, again, due to similarity

in their neighbor rankings in terms of the weights. This is further explained in

section 7.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offered Load in PPS

A
v
e
ra

g
e
 G

o
o
d
p
u
t
/
N

o
d
e
 i
n
 P

P
S

Ideal

BCP

CTP

HDCP β=0.0

HDCP β=1.0

Figure 8: Variation of Goodput for Varying Offered Load

Next, we investigate the effects of increasing packet generation rates on the

average path costs in terms of ETX and the average number of hops traversed by

the packets. We plot the average ETX and average hop counts due to different

source rates for HDCP, BCP and CTP in Figure 9a. It is observable from the

figure that for any packet generation rate overall path cost for HDCP with

β = 1 is comparable to BCP while CTP outperforms both for packet generation

rate lower than 0.25PPS and converges with them for higher rates. Moreover,

the average path cost for HDCP with β = 0 is higher than β = 1 which is

justified by our discussion in the previous section. Similar statistics is available

from the plot of average numbers of hops encountered by each packet due to

its direct relation with the overall path ETX. The similarity between HDCP

with β = 1 and BCP is, again, justified based on our earlier discussions. The

apparent ‘good’ performance of CTP is due to its increasing incapability of

sending packets with long path costs to the sink as it encounters congestion

drops.

Lastly, we analyze the effect of packet generation rate on the average delay in

27

Figure 9b. Although CTP and BCP outperforms HDCP for source rates lower

than 0.25PPS by a small margin, this figure demonstrate the superiority of the

HDCP for β = 1 in overall delay performance as it continue to guarantee lower

delay for higher packet generation rates. Another interesting fact to notice is

that for BCP and HDCP, the delay gradually increases with packet generation

rate whereas the delay for CTP increases rapidly with packet generation rate.

This is likely because BCP and HDCP can take advantage of multiple paths

to sink whereas the CTP relies on only one path. Therefore, CTP reaches

congestion earlier than BCP and HDCP, which results in the rapid increase in

delay. Again, the similarity between BCP and HDCP with β = 1 is due to

similarity in the neighbor ranking in terms of the weights.

To summarize, our experiments lead us to conclude that optimized combi-

nations of queue-awareness and ETX (implemented in BCP and HDCP with

β = 1) provide the best choice for routing, better than routing based on ETX

alone (CTP), which in turn, performs better than queue-aware routing alone

(HDCP with β = 0).

1

2

3

4

5

6

7

Offered Load in PPS

A
ve

ra
g

e
 E

T
X

 /
 N

o
d

e

BCP

CTP

HDCP β=0.0

HDCP β=1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

Offered Load in PPS

A
ve

ra
g

e
 H

o
p

 C
o

u
n

t
/

N
o

d
e

BCP

CTP

HDCP β=0.0

HDCP β=1.0

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Offered Load in PPS

A
v
e
ra

g
e
 d

e
la

y
 p

e
r

n
o
d
e
 i
n
 s

e
c
o
n
d
s

BCP

CTP

HDCP β=0.0

HDCP β=1.0

(b)

Figure 9: (a) Variation of Average Path Cost in Terms of ETX (Top) and
Average Hop Count (Bottom) for Varying Offered Load (b) Variation of Average
End to End Delay for Varying Offered Load

28

0.005

0.01

0.015

0.02

0.025

A
v
e
ra

g
e
 G

o
o
d
p
u
t
/
P

a
c
k
e
t
(i
n
 P

P
S

)

BCP

CTP

HDCP β=0.0

HDCP β=1.0

0 5 10 15 20 25 30 35

2

4

6

8

Node ID

A
v
e
ra

g
e
 E

T
X

 /
 P

a
c
k
e
t

BCP

CTP

HDCP β=0.0

HDCP β=1.0

Figure 10: Performance Comparison of HDCP with BCP and CTP for a Low
Power Communication Stack: (Top) Goodput to Sink, (Bottom) Average ETX
Path Costs to Sink

6.6. Low Power Communication Stack Based Experiments

In order to verify the performance of HDCP on a low power communication

stack, we performed a set of experiments with 35 sources and a sink (first 36

nodes of the testbed). For these experiments, we used CX-MAC protocol, a ver-

sion of X-MAC[7] that is provided in Contiki, with duty cycle of 5% for HDCP,

BCP and CTP. However, the choice of CX-MAC protocol over the other proto-

cols is just a matter of the availability of Contiki implementation. Furthermore,

since we are using a duty cycle, we also need to cut-back our source rates to a

very low rate. For the presented set of experiments, we used a packet genera-

tion rate of 1 packet per 60 seconds (i.e., 1/60 PPS). We present the results in

Figure 10. This figure shows that the HDCP protocol with β = 1 performs well

in a low power communication stack, at a very low duty cycle setting where

even CTP shows some deterioration in fairness of goodput. However, in this

setting the performance with the baseline of β = 0 is much worse, leading us

to conclude that it is a very poor setting indeed. Now, in order to estimate the

actual energy consumptions, we record the different energy consumption com-

ponents using the Contiki PowerTrace tool (in terms of the percentage of time

29

spent in different radio phases: Transmit, Listen/receive). Based on our traces,

in HDCP with 5% duty cycle, the radio of each node is on for 5.92% of the

total execution time, out of which the node is transmitting and receiving ap-

proximately 0.65% and 5.27% of the total execution time, respectively. Now to

get the actual energy consumption, one can use the current and voltage ratings

from the specifications of the devices used. For example, in Tmote-sky the rated

voltage of operation is approx 3.3V and the average current consumptions are

17.4mA and 19.7mA for radio transmission and radio reception, respectively.

This results in approximately 113.78mJ energy consumption in each Tmote-Sky

for the experiment period of 30 minutes.

6.7. External Interference

In this section, we evaluate the performance of the HDCP protocol with

the optimized β = 1 in the presence of external interference and compare it

with both BCP and CTP. This is necessary because the 802.15.4 radios share

frequency band with WiFi, Bluetooth, and other Zigbee radios and as a result

their performance often suffers from severe interference. To emulate such sce-

narios, we performed a set of experiments with forty sources and a single sink

(Node 1) while four nodes are used as interference sources on channel 26. The

interfering nodes are inactive for the first five minutes of the experiment, peri-

odically transmit for next fifteen minutes and become inactive again for the last

five minutes of the experiment. During the on period, each of the interfering

nodes transmits 110 Byte packets at a rate of 100PPS for 15 seconds and then

does not transmit anything for the next 15 seconds, and so on. Furthermore,

we reduced the power level of all 41 nodes from level 31 to level 15 whereas

the interfering nodes were kept at level 31, in order to intensify the effect of

interference. The outcome of this set of experiments is presented in Figure 11a

that plots the delivery percentage of the packets over a series of 30 seconds

time window for HDCP with β = 1, BCP and CTP. It demonstrates that while

CTP performance significantly suffers from the interference, the HDCP protocol

maintains its good packet delivery ratio, similar to BCP.

30

The above mentioned settings is used to stay consistent with the interfer-

ence settings presented in the original BCP paper[2]. However, it is well known

that the simple Gilbert-Eliot model used for ETX estimation might work per-

fectly with some specific synthetic interference models and might fail in realistic

interference scenarios. In order to explore the performance of the HDCP algo-

rithm, in presence of real interference, we perform a set of experiments with 44

source nodes and 1 sink node, running on channel 13 of the 802.15.4 standard

which is known to be one of the most interfered channels. We also compare the

performance of HDCP based on the Gilbert-Eliot (GE) ETX model with the

performance of BCP with the GE model as well as with HDCP based on the

ETX model used in the original BCP paper[2]. For this set of experiments, we do

not use the link switching method as we empirically found that interference itself

causes sufficient link switching, thereby, adding extra link switching negatively

affects performance. The results presented in Figure 11b clearly demonstrate

that even in the presence of constant real interference, the HDCP algorithm

with Gilbert-Eliot ETX model performs comparable to the BCP algorithm and

the HDCP algorithm with the basic ETX model presented in [2], while outper-

forms the CTP algorithm. Furthermore, both Figures 11a and 11b show that

the BCP and the HDCP algorithm can achieve approx 85% delivery ratio in

presence of interfernce while the CTP achieves approx 70%.

7. Similarity Analysis Between HDCP and BCP

In this section, we analyze the BCP and the HDCP algorithm to identify the

reasons behind the similarity in their performance. The performance of both the

BCP and the HDCP depend on the rankings of the neighbors (based on the link

weighing functions) of a node, which in turn translates to selection of routing

paths to sink. From theoretical standpoint, the performance of HDCP and BCP

will be different in a network if their respective rankings of the neighbors under

same queue occupancy conditions are different. Conversely, we hypothesize

that the similar rankings of neighbors for both the HDCP and the

BCP protocol will result in similar performance.

31

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

e
li
v
e
ry

%

BCP

CTP

HDCP β=1.0

(a)

0 200 400 600 800 1000 1200 1400 1600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

li
v
e

r
y
%

BCP

CTP

HDCP β=1.0 with weighted ETX calculation

HDCP β=1.0 with GE model based ETX calculation

(b)

Figure 11: Thirty Second Windowed Average Sourced Packet Delivery Ratio
for: (a) Synthetically Generated Interfering 802.15.4 Channel 26 Traffic (b)
Real Interference Scenario on 802.15.4 Channel 13

In order to analyze the scenarios that will result in different or similar rank-

ings of neighbors for HDCP and BCP, we compare the simplified weighing func-

tions of BCP and HDCP with β = 1, which can be written as follows:

wbcpij (n) = qij(n)− 2.ETXij(n)

whdcpij (n) =
qij(n)− ETXij(n)

ETXij(n)

(18)

provided that V = 2 and
qij(n)

2ETXij(n)
≥ 1, i.e., the links have non zero weights

according to both BCP and HDCP weighing schemes. First of all, we try to

identify the range of the possible network configurations that will result in dif-

ferent rankings for HDCP and BCP. For this purpose, we analyze a toy topology

illustrated in Figure 12. Assume that the ETX31 and ETX32 are 1 and e ≥ 1,

respectively. Now, the weights of the respective links according to BCP will be:

wBCP31 = q31 − 2, wBCP32 = q32 − 2e (19)

Similarly, the weights for the links according to the HDCP rule for β = 1 will

be (provided that q31 ≥ 2 and q32 ≥ 2e):

wHDCP31 = q31 − 1, wHDCP32 =
q32

e
− 1 (20)

32

Now,

wBCP31 > wBCP32 if e > (q32 − q31)/2 + 1

wHDCP31 > wHDCP32 if e >
q32

q31

(21)

Thus, if q32
q31

< e < (q32 − q31)/2 + 1 the rankings of the outgoing links of

node 3 are different, while the rankings are the same for all other values of

e. As an example, say, q31 = 4 and q32 = 6, then only for 3/2 < e < 2, the

rankings are different. However, according to Eqn. (18) as well as Eqn. (21),

for ETX = 1 both schemes will put similar weights on the links but with

different negative offsets (2 for BCP and 1 for HDCP). Thus, the steady state

performance will be same for both but with slightly lesser queue sizes in HDCP,

which is also verified by our experiments. To verify whether the presence of

too many perfect links is one of the reason behind the similar performance of

HDCP and BCP, we plot the CDF of the ETX traces collected from all the

nodes during a real collection experiment, in Figure 13a. In Figure 13b, we plot

the CDF of the average link costs (average ETX per link) of the shortest paths

between every possible pairs of nodes in the testbed. Figure 13a illustrates

that a significant number (≈ 40%) of links are perfect links (ETX ≈ 1) while

Figure 13b implies that approximate 40% of the shortest paths consists of only

perfect links (ETX ≈ 1). Furthermore, approximate 60% of the shortest paths

in the network between any possible node pair consists of links with average

ETX of 1.25, as shown in Figure 13b. All these statistics suggest similarity in

the rankings of neighbors as well as similarity in performance for the BCP and

the HDCP algorithms. In summary, since we do not observe much of a difference

in the performance of the HDCP and the BCP algorithms, we conjecture that

in our experiment setup, the probabilities for different rankings of the neighbors

(more specifically, top 2 neighbors) are very low.

Next, in order to verify whether similarity in neighbors’ ranking will re-

sult in similar performance, we perform a theoretical analysis of the steady

state queue gradients for both HDCP and BCP. The steady state queue sizes

depends on the smallest cost path to the sink. Say, for a node i, there ex-

33

1

Sink (0) 3

2

q10, ETX10 q31, ETX31

q20, ETX20 q32, ETX32

Figure 12: A Simple Topology For Ranking Similarity Analysis Between HDCP
and BCP

2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ETX

F
(
E

T
X

)

Empirical CDF

(a)

1 1.25 1.5 1.75 2 2.25 2.5

Shortest Path ETX per Hop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(E

T
X

)

Empirical CDF

(b)

Figure 13: (a) Empirical CDF of the Link ETX Values for Our Testbed (b)
Empirical CDF of the Average ETX per Link for the Shortest Paths Between
Any Pair of Nodes

ists k ∈ {1, 2, · · · ,K} possible paths and each path consists of one or more

links lk. Then the steady state queue size for node i in BCP will be wbcpi =

mink∈{1,2,··· ,K}

[∑lk
j=1 2 ∗ ETXk,j

]
, while in HDCP the steady state queue size

will be whdcpi = mink∈{1,2,··· ,K}

[∑lk
j=1ETXk,j

]
, where ETXk,j represents the

ETX of the jth link of the kth path from node i to the sink. Thus, we can

say that the steady state path to sink for each node in HDCP is same as the

BCP. Now, if the packet generation rate is low, every packet will always follow

the steady state gradient and, thereby, follow the same path leading to similar

performance. Now, if the packet generation rate is high, in worst case we will

have a batch arrival of packets at some node, say i. Let us assume that when

node i disseminate the batch arrival packets, all the neighboring nodes of i are

34

unchanged, i.e., no packet arrival (except from the node i) or departure takes

place. In this situation, node i will keep on transmitting to the neighbor that

is part of the best path to sink, until a point when the weight for the respective

link becomes worse than the 2nd best link. In the following, we analyze at what

point, i.e., after how many packet transmissions, node i will switch to the second

best link.

• BCP: Node i prefers a neighbor node m over another neighbor node n,

iff:

qi − qm − 2× etxim > qi − qn − 2× etxin (22)

where qi, qm, qn represent the queue sizes at node i, m, and n, respectively

and etxim, etxin represents the etx of the links im and in, respectively.

Now, say after x number of transmissions, the 2nd link is considered.

=⇒ (qi − x)− (qm + x)− 2× etxim = (qi − x)− qn − 2× etxin

=⇒ x = qn − qm + 2× (etxin − etxim)
(23)

Now, WLOG assume that the node m is part of the best path to the

sink from node i, while node n is part of the second best path. Then,

etxim ≈ etxin =⇒ x ≈ qn − qm. If etxim < etxin, x = qn − qm +

2 × (etxin − etxim) > qn − qm. On the other hand if etxim > etxin

implies (qm < qn) for feasibility of the rankings in focus, which implies

x = qn − qm − 2× (etxim − etxin) ≤ (qn − qm).

• HDCP: Node i prefers a neighbor node m over another neighbor node n,

iff:
qi − qm
etxim

>
qi − qn
etxin

(24)

where qi, qm, qn represent the queue sizes at node i, m, and n, respectively

and etxim, etxin represents the etx of the links im and in, respectively.

35

Now, say after x number of transmissions, the 2nd link is considered.

=⇒ (qi − x)− (qm + x)

etxim
=

(qi − x)− qn
etxin

=⇒ x(2− etxim
etxin

) = qi × (1− etxim
etxin

)− qm + qn ×
etxim
etxin

=⇒ x = qi ×
(1− etxim

etxin
)

(2− etxim

etxin
)
− qm ×

(1− etxim

etxin
)

(2− etxim

etxin
)
− qm ×

(etxim

etxin
)

(2− etxim

etxin
)

+ qn ×
etxim

etxin

(2− etxim

etxin
)

=⇒ x =
1

2
× (1− z)× (qi − qm) + z× (qn − qm) where z =

etxim

etxin

(2− etxim

etxin
)

(25)

Now, WLOG assume that the node m is part of the best path to the

sink while node n is the second best path. Similar to BCP, etxim ≈

etxin =⇒ x ≈ qn − qm. It also suggest that in HDCP, the number of

transmissions before switching depends on a weighted sum of the queue

differential of the best link (qi − qm) and the queue differential of the 2nd

best and the best neighbor (qn − qm), where the weights depend on the

ratio (etxim

etxin
). If etxim < etxin, 0.5 ≤ z ≤ 1 that implies more weight on

(qn−qm) thereby increasing the chances of switching as qi ≥ max{qm, qn}

which also implies x ≥ 1+z
2 (qn − qm) ≥ (qn − qm). On the other hand,

etxim > etxin =⇒ (qm < qn) for feasibility of the rankings in focus and

z > 1 that suggests x = z× (qn − qm)− z−1
2 × (qi − qm) ≤ 1+z

2 (qn − qm).

The above analysis suggests that if the outgoing best and 2nd best link of a

node have similar etx, both BCP and HDCP will switch after exactly same

number of transmissions, under same queue conditions. Even in other cases

for any particular network, the switching patterns are similar and just switches

after slightly different number of transmissions, which is a function of (qn −

qm). Therefore, the observed performance of BCP and HDCP will be similar.

However, this analysis is pertinent to the fact that both HDCP and BCP have

same rankings of the neighbors (atleast best two neighbors) which validates our

hypothesis.

36

Based on the theoretical analysis, we conjecture that the similarity of perfor-

mance between HDCP and BCP in our testbed experiments is due to similarity

of rankings of the neighbors in most of the nodes. To verify this conjecture, we

perform a Kendall Tau test of the ranking data collected from our real experi-

ment setup, as follows.

7.1. Kendall’s Tau Test

In the previous sections, we observed that the optimized versions of BCP

and HDCP with β = 1 are very similar to each other in performance. We

hypothesized that this may be due to similarity in the neighbor rankings for

the two protocols. In order to verify our hypothesis, we collected a set of

routing table snapshots from three representative nodes, located at a one hop,

two and three hop distance from the sink, respectively, during a real collection

experiment. These snapshots contain the information about their neighbors

such as backpressure and ETX information from real experiment. Based on

those snapshot values, we calculated the Kendall’s Tau distance between the

neighbor rankings generated by the weight calculation in BCP on one hand,

and the neighbor rankings generated by the weight calculation in HDCP for

different values of β on the other, for all neighbors that have a positive weight

in at least one of the two protocols under comparison. Kendall’s Tau distance

between two rankings indicates the fraction of pairs that are ordered the same

in the two rankings. If it is 0, then the two rankings are identical. Higher values

indicate more different rankings.

We present the results in Figure 14. It clearly shows that while there is a

lack of correlation for lower values of β, for β → 1 there is a strong correlation

between HDCP and BCP. This verifies our hypothesis and justifies the results

shown in this paper.

Another noticeable fact is that for β ∈ [0, 0.6] the Kendall Tau distance with

respect to BCP remains almost the same. We performed additional Kendall’s

Tau correlation analysis between neighbor rankings of HDCP for every possible

pair of β ∈ {0, 0.2, 0.4, 0.6} and the average distance for each case was found

37

to be less than 0.1. This is the reason behind the similarity in performance of

HDCP with β ∈ {0, 0.2, 0.4, 0.6}.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β

A
v
e

ra
g

e
 K

e
n

d
a

ll
 T

a
u

 D
is

ta
n

c
e

node40

node20

node36

Figure 14: Variation of Kendall’s Tau Distance between HDCP and BCP Neigh-
bor Rankings for Different Values of β

8. Conclusion

We have proposed and implemented a new collection protocol for wireless

sensor networks called HDCP that is the first practical realization of a theo-

retical algorithm inspired by Thermodynamics. We have evaluated HDCP on

a real 45-node wireless sensor network testbed. We have compared the perfor-

mance of HDCP with two well-known protocols CTP and BCP on this testbed.

Based on the results, we can conclude that HDCP with an optimized parameter

setting of β = 1 performs as well as BCP and outperforms CTP with respect to

throughput performance, interference resilience, and low power operation, while

all three generally offer about the same end-to-end delay on average in the full

throughput region.

The equivalent performance of HDCP to the previously published BCP is a

somewhat surprising finding of this study. From a mathematical perspective,

this is not obvious as they employ quite different equations for the weight calcu-

lations and indeed in our prior theoretical works Heat Diffusion has been found

to perform better than Backpressure scheduling in some respects. But as we

38

have shown, nevertheless, the two protocol implementations provide very simi-

lar neighbor rankings in a real network. We believe our finding also lends some

support to the notion that it may not be possible to get any higher performance

in practice with a dynamic routing protocol that takes into account both queue

states and link quality.

The relative performance of BCP and HDCP in the presence of node mobility

is of interest to evaluate in future work, as are extensions of HDCP that can

work with IP packets. We would also like to understand how to optimize the

various link transmission attempt timers from a more theoretically-informed

perspective.

References

[1] Leandros Tassiulas and Anthony Ephremides. Stability properties of con-

strained queueing systems and scheduling policies for maximum through-

put in multihop radio networks. IEEE Transactions on Automatic Control,

37(12):1936–1948, 1992.

[2] Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, and Om-

prakash Gnawali. Routing without routes: The backpressure collection

protocol. In Proceedings of the IEEE IPSN 2010.

[3] Reza Banirazi, Edmond Jonckheere, and Bhaskar Krishnamachari. Heat-

diffusion: Pareto optimal dynamic routing for time-varying wireless net-

works. In Proceedings of the IEEE INFOCOM 2014.

[4] Reza Banirazi, Edmond Jonckheere, and Bhaskar Krishnamachari. Dirich-

let’s principle on multiclass multihop wireless networks: minimum cost

routing subject to stability. In Proceedings of the ACM MSWiM 2014.

[5] Adam Dunkels, Oliver Schmidt, Niclas Finne, Joakim Eriksson, Fredrik

Österlind, Nicolas Tsiftes, and Mathilde Durvy. The contiki os: The oper-

ating system for the internet of things, 2011.

39

[6] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and

Philip Levis. Collection tree protocol. In Proceedings of the ACM ENSS

2009.

[7] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-mac:

a short preamble mac protocol for duty-cycled wireless sensor networks. In

Proceedings of the ACM SenSys 2006.

[8] JG Dai and Wuqin Lin. Asymptotic optimality of maximum pressure poli-

cies in stochastic processing networks. The Annals of Applied Probability,

18(6):2239–2299, 2008.

[9] Devavrat Shah and Damon Wischik. Optimal scheduling algorithms for

input-queued switches. In Proceeding of IEEE INFOCOM 2006.

[10] Mohammad Naghshvar, Hairuo Zhuang, and Tara Javidi. A general class of

throughput optimal routing policies in multi-hop wireless networks. IEEE

Transactions on Information Theory, 58(4):2175–2193, 2012.

[11] Jose Nunez-Martinez, Josep Mangues-Bafalluy, and Marc Portoles-

Comeras. Studying practical any-to-any backpressure routing in wi-fi mesh

networks from a lyapunov optimization perspective.

[12] Majed Alresaini, Maheswaran Sathiamoorthy, Bhaskar Krishnamachari,

and Michael J Neely. Backpressure with adaptive redundancy (bwar). In

Proceedings of the IEEE INFOCOM 2012.

[13] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Effi-

cient network flooding and time synchronization with glossy. In Proceedings

of the IEEE IPSN 2011.

[14] Nicolas Burri, Pascal Von Rickenbach, and Roger Wattenhofer. Dozer:

ultra-low power data gathering in sensor networks. In Proceedings of the

IEEE IPSN 2007.

40

[15] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele.

Low-power wireless bus. In Proceedings of the ACM SenSys 2012.

[16] Olaf Landsiedel, Euhanna Ghadimi, Simon Duquennoy, and Mikael Johans-

son. Low power, low delay: opportunistic routing meets duty cycling. In

Proceedings of the IEEE IPSN 2012.

[17] Mobashir Mohammad, XiangFa Guo, and Mun Choon Chan. Oppcast:

Exploiting spatial and channel diversity for robust data collection in urban

environments. In Proceedings of the IEEE IPSN 2016.

[18] T. Winter, P. Thubert, and RPL Author Team. Rpl: Ipv6 routing protocol

for low-power and lossy networks, ietf rfc 6550. March 2012.

[19] Srikanth Nori, Suvil Deora, and Bhaskar Krishnamachari. Backip: Back-

pressure routing in ipv6-based wireless sensor networks. usc ceng technical

report ceng-2014-01.

[20] Leonidas Georgiadis, Michael J Neely, and Leandros Tassiulas. Resource

allocation and cross-layer control in wireless networks. Now Publishers Inc,

2006.

[21] Michael J Neely. Stochastic network optimization with application to com-

munication and queueing systems. Synthesis Lectures on Communication

Networks, 3(1):1–211, 2010.

[22] Shahin Farahani. ZigBee wireless networks and transceivers. Newnes, 2011.

[23] Tutornet. http://anrg.usc.edu/www/tutornet/.

41

	1 Introduction
	1.1 Our Contribution

	2 Related Work
	3 Preliminaries and Background
	3.1 Backpressure Routing
	3.1.1 BP Weighing
	3.1.2 BP Scheduling
	3.1.3 BP Forwarding

	3.2 Heat Diffusion Routing
	3.2.1 HD Weighing
	3.2.2 HD Scheduling
	3.2.3 HD Forwarding

	3.3 The Backpressure Collection Protocol

	4 The Heat Diffusion Collection Protocol
	4.1 Updating Weights
	4.2 Queue Implementation

	5 Implementation Details
	5.1 The parameter
	5.2 Retransmission
	5.3 Retry
	5.4 Link Metric Estimation
	5.5 Queue Buffer
	5.6 Beacon Timer
	5.7 Inbound Packet Filtering
	5.8 Link Switching
	5.9 End to End Delay Calculations

	6 Real Testbed Experiment Results and Analysis
	6.1 Experimental Setup
	6.2 Variation of the Parameter
	6.3 Modified HDCP vs Unmodified HDCP
	6.4 Performance Comparison with BCP and CTP for Fixed Packet Generation Rate
	6.5 Varying Packet Generation Rate
	6.6 Low Power Communication Stack Based Experiments
	6.7 External Interference

	7 Similarity Analysis Between HDCP and BCP
	7.1 Kendall's Tau Test

	8 Conclusion

