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Abstract—The rapid deployment of Phasor Measurement Units
(PMUs) can keep the smart grid in a secure and reliable state.
The large amount of data collected from the power grid by PMUs
requires new algorithms to detect abnormal and potentially
catastrophic events. In this paper, we introduce a novel method
to assess the distance to blackout or other instability of the smart
grid. Based on the existence of long-range correlation in the PMU
data, we exhibit an increase in the frequency Hurst exponent—
quantified by Kendall’s tau rank correlation coefficient—before
the blackout. High Kendall’s tau of the frequency Hurst exponent
is here proposed as an early-warning signal for blackout.

I. INTRODUCTION

A Phasor Measurement Unit (PMU) is a device that provides
synchrophasor and system frequency estimates, as well as
other optional information such as calculated megawatts (MW)
and megavars (MVAR) [1]. The PMUs have been introduced
in the 1990s to support and overcome the drawbacks of
the conventional Supervisory Control and Data Acquisition
(SCADA) system. The drawbacks are related to the network
security issues of the SCADA systems and the asynchronous
data arrival due to the transmission delay and low sampling
rate (one sample every 2-4 seconds).

The PMUs provide secure data by having their own dedi-
cated communication network. The data is measured at high
sampling rate (30-50 samples per second). Moreover, the PMU
resolves the issue of data delay by GPS time stamping of the
data measurements.

Due to the high sampling rate of the data measured by
PMUs, extracting real-time useful information in a timely
manner could be a challenge. The detection of events in the
power grid using PMUs has been an active area of research [7],
[8], [20]. Voltage collapse and more generally power system
blackout—either accidental or malicious—are among the most
severe events that cause power loss over a wide area of the
power system. Anticipating such events is a high priority in
smart grid research.

In 2003, one of the largest blackouts in US history hit the
Northeastern and Midwestern parts of the United States, and
the Canadian province of Ontario. The blackout left 55 million
without electricity with total economic cost between $7 and
$10 billion. Two large consecutive blackouts occurred in the
Northern part of the Indian power grid on July 30, 2012 and
July 31, 2012. These two blackouts affected 300 million and
600 million, respectively. Unfortunately, the classical loading
margin [19] is static and while it has been argued that a
dynamic approach is irrelevant [4], here we show that fractal

dynamics is relevant and could provide another early warning
of blackout.

In [16], we provided an evidence to the existence of long-
range memory in the power system data collected using PMUs.
We analyzed the data of voltage magnitude (V ), frequency (f ),
and voltage phase angle (θ) collected from different locations
in the Texas Synchrophasor Network. Using the Detrended
Fluctuation Analysis (DFA) method [14], we were able to
show that the voltage magnitude, frequency, and phase angle
have scaling (Hurst) exponents higher than 0.5.

In the present paper, we first study the scaling properties
of 2079 medium voltage (12 kV) PMU data sets (100,000
samples each) collected over four months from the École Poly-
technique Fédérale de Lausanne (EPFL) campus network. We
apply the DFA method on the voltage magnitude, frequency,
and phase angle data sets to show the strong consistency of
the scaling exponents of 120V and 69 kV PMU data collected
from the Texas Synchrophasor Network [16] and the EPFL
campus network. From our earlier work [16], it appears that
scaling properties of the frequency do not depend on the
voltage.

Secondly, we introduce a new method based on the change
of fractal characteristics of the frequency data before the power
system goes to blackout. We compare the Hurst exponents of
frequency data collected from the EPFL campus network and
frequency data collected before the 2012 Indian blackout. The
increase in the Hurst exponent of the frequency time series
can be used as a new early-warning signal of the proximity of
the power system to a blackout.

The paper is organized as follows: Sec. II reviews the
related work and contrasts it with our novel contribution.
In Sec. III, we provide a description of the power system
PMU data including its fractal characteristics. In Sec. IV, we
introduce the early-warning signal and propose Kendall’s tau
of the frequency Hurst exponent as a measure of proximity to
blackout. Sec. V is the conclusion.

II. RELATED WORK AND NOVEL CONTRIBUTION

Complex systems usually have critical thresholds before
they go into sudden change from one state to another. Be-
cause of the complex structure of these systems, it is cer-
tainly not easy to build models that describe their dynamics
accurately. However, such systems show a critical slowing
down phenomenon as early-warning signal prior to the critical
transition [9]. Critical slowing down means that the system
needs more time to recover from a perturbation before critical



Fig. 1: Analysis of PMU#4 data recorded at EPFL on 01/15/2015 (8:00-8:33 AM) during normal operation. First row: raw
data recorded; second row: corresponding log-log plot of rms fluctuation function versus the box size n. First (red) column:
voltage magnitude; second (blue) column: frequency; third (green) column: phase angle

transition. The critical slowing down manifests itself as a
sudden increase in the first auto-regressive (AR(1)) coefficient
before the occurrence of the transition [12].

Critical slowing down has been used as an early-warning
signal for critical transition in climate [9], environment [6],
ecosystems [10], and power system [3]. In [3], the slowing
down has been investigated by calculating the AR(1) coef-
ficient of the frequency data collected before the Western
Interconnect Blackout in 1996. Our contribution consists in
using another frequency parameter as an indication of an
imminent blackout. Specifically, our contributions are:
• First, we show mono-fractality of the PMU data (V , f , and
θ) collected in EPFL campus during normal operation. We
run the DFA over a PMU big data set collected over four
months (January, April, June, and October) in 2015.

• Second, we introduce a new measure of the proximity to
blackout in the power system by comparing the Kendall’s
tau of the Hurst exponent of the frequency data collected
from the EPFL campus (normal condition) and before the
2012 Indian blackouts.

III. POWER SYSTEM DATA

In this section, we give descriptions of the PMU data (V ,
f , and θ) collected in the EPFL campus and review how the
Hurst exponent of these PMU data is computed.

A. Description of the PMU data

The EPFL campus network has five PMUs installed
throughout the campus to collect several data measurement
of the power system variables. These variables are voltage
magnitude (V ), frequency (f ), phase angle (θ), active power
(P ), and reactive power (Q). The PMU data measurements for
several months in 2015 are available online [15]. The PMUs
are installed at the medium voltage side with nominal voltage
12 KV and nominal frequency 50 Hz. The three time series
of voltage magnitude, frequency, phase angle measured on
1/15/2015 (8:00-8:33 AM) are shown in Figs.1 (a-c).

In our analysis, we have chosen four months (January, April,
June, and October) of 2015 to represent the different seasons
in the year. Then, we picked four time series (100,000 samples
each) per day of each of the power system variables (V , f ,
and θ). Two of the four time series were measured during
day time (8:00-10:00 AM) and the other two measured during
night time (8:00-10:00 PM). Based on the availability of data,
we will analyze 693 time series of each of voltage magnitude
(V ), frequency (f ), and phase angle (θ) with a total of 207.9
million data samples.

B. PMU data fractality

In [16], we have shown the existence of non-stationarity and
mono-fractality of the PMU data sets collected from the Texas



Synchrophasor Network. Here, we analyze a larger number of
PMU data from the EPFL campus to compare the results with
PMU data from Texas. Also, the large size of the data gives
some confidence in the calculated scaling exponents of the
data. Using the DFA method, we found the scaling exponents
of the three time series shown in Figs. 1 (a-c). The plots of
the rms fluctuation function (F (n)) versus the window size
(n) for each of the three power system variables are shown in
Figs. 1 (d-f). The scaling exponent of the voltage magnitude
(V ) in Fig. 1 (d) is 1.20. The time series of frequency (f )
is similar to Brownian noise with scaling exponent equal to
1.55, as shown in Fig.1 (e). The scaling exponent of the
phase angle time series is around 1.27 as shown in Fig. 1 (f).
The Hurst exponent histograms of the time series collected

Fig. 2: Hurst exponent histograms of EPFL PMU#4 data
during all 4 seasons (January, April, June, and October): (a)
Voltage magnitude (b) Frequency (c) Phase angle

from EPFL are shown in Figs. 2 (a-c). The Hurst exponent
histograms of the voltage magnitude, frequency, and phase
angle are shown in red, blue, and green, respectively. Each of
the Hurst exponent histograms represents the Hurst exponents
of one of the power system variables (V , f , or θ) collected
during the four months (January, April, June, or October).

The Hurst exponent histogram of voltage magnitude, shown
in Fig. 2 (a), has mean 1.23 with standard deviation 0.11.
The histogram of the frequency time series has a mean Hurst
exponent 1.51 with standard deviation 0.05. Finally, the phase

angle Hurst exponent has mean and standard deviation 1.21
and 0.08, respectively.

IV. KENDALL’S TAU AS BLACKOUT PROXIMITY MARGIN

The power blackout usually starts as instability in the volt-
age, frequency, or phase angle that leads to a major blackout.
The power system blackout is traditionally explained using
bifurcation theory [5], where the system at bifurcation point
move from the stable region to the unstable one.

Among the many intertwined phenomena that ultimately
lead to a blackout, a hitherto overlooked phenomenon is
the “anti van der Pol” behavior characterized by the overall
damping coefficient of the hidden feedback of the generator-
transmission-distribution network [18] becoming more signif-
icant as the voltage decreases [17]. To be specific, consider
a single generator with constant e.m.f. feeding a single load
via a single transmission line. This simple generator-line-
load system has a hidden feedback that has characteristic
equation [17]:

1 + ZL (VL, w − jσ)YLine (σ + jω) = 0. (1)

In the above, VL is the load voltage magnitude, YLine (σ + jω)
is the classical circuit theoretical admittance of the line and
ZL (VL, ω − jσ) is the non classical load impedance; specifi-
cally,

ZL =
1

KpV
pv−2
L (ω − jσ)pw − jKqV

qv−2
L (ω − jσ)qw

,

where Kp, Kq , pv , pw, qv , qw are numerical coefficients
copied from the Berg load model [2], which is here analytically
extended to allow for a small damping.

If ZL were a classical load, there would be no solution
to Eq. (1). However, the nonclassical impedance of the load,
which among other things depends on the voltage and en-
capsulates a load aggregation effect [18] manifesting itself
in noninteger exponents of ω, makes solutions possible [17].
Next to the normal operation solution σ(VL = 1 p.u.) = 0,
there could exist depending on the load characteristic voltage
collapsing solutions of the form σ(VL < 1 p.u.) < 0. This is
the “anti van der Pol” behavior.

Clearly a concept of “proximity margin” emerges
here: Given a normal operation parameter set
(Kp,Kq, pv, pw, qv, qw), how close it is, in `1 or other
norms, to a parameter set allowing for “bad” solutions to
Eq. (1).

This “anti van der Pol” phenomenon has, however, revealed
that a contributor to blackout is the noninteger property of the
exponents pv,w, qv,w of ω, which in turn can be reinterpreted
in the time domain as fractional derivatives, making the system
“complex” and subject to tipping point phenomena.

To test the possibility of existence of critical slowing down
phenomena in the power system, in Sec. IV-A, we investigate
the change in the AR(1) coefficient (short-range correlation)
in the frequency time series before the 2012 Indian blackout.
In Sec. IV-B, we introduce our new method to anticipate an
imminent power system blackout based on the change of the
Hurst exponent (long-range correlation) before the blackout.
Then, in Sec. IV-C, we investigate the change in AR(1)



Fig. 3: (a) Raw (blue) and Gaussian kernel smoothed (red) frequency time series before 2012 Indian blackout (b) Autocorrelation
coefficient at lag 1 of residual differences between raw and smoothed frequency time series (c) Hurst exponent of the raw
frequency time series

coefficient and Hurst exponent over large data set of frequency
time series collected from the EPFL campus during normal
conditions.

A. Kendall’s tau of AR(1)

The frequency time series, collected before the 2012 Indian
blackout, is shown in blue color in Fig. 3(a). The length
of the time series is 167,600 samples (∼56 minutes) and
it is measured at sampling rate of 50 samples/second. The
frequency time series is non-stationary [16]; therefore, we
should remove the trends in the time series before calculating
the AR(1) coefficient.

We remove the trends in the frequency time series using
Gaussian convolution kernel [22]. We first find the smoothed
function of the time series and then subtract the smoothed
function from the original time series to get the residual.
Choosing the bandwidth (∼ 2.7σ) of the Gaussian kernel cor-
rectly is a critical step to avoid underfitting (large bandwidth)
and overfitting (small bandwidth). The bandwidth that has best
smoothing for the frequency time series is 18,000 samples (6
minutes).

Using the command ksmooth in R software [21], we calcu-
lated the Gaussian kernel smoothed function of the frequency
time series before the blackout as shown in red color (over
blue frequency color) in Fig. 3(a). We have chosen the normal
kernel with 18,000 samples bandwidth.

Now, we find the change in the AR(1) in the residual time
series by calculating the AR(1) coefficient over a window
(grey shaded area) of 100,000 samples (∼33 minutes). Then,
we move the window 100 samples (2 seconds) to the right
(toward the blackout) and calculate the AR(1) coefficient over
the next window. Fig. 3(b) shows the change in the AR(1)
coefficient of the residuals time series before the blackout.
The AR(1) coefficient was calculated using ar .ols command
in R software.

The AR(1) coefficient before the blackout shows an increase
from 0.89 to 0.97. The increase starts around 33 minutes
before the blackout, which could be an early-warning for

power system blackout. The increase in the AR(1) coefficient
can be quantified using Kendall’s tau [13].

Kendall’s tau is a rank correlation coefficient that is
used to measure the ordinal association between two
quantities. Assuming that we have n pairs of x and y
((x1, y1), (x2, y2), ..., (xn, yn)). Kendall’s tau is defined as:

τ =
# of concordant pairs−# of discordant pairs

n(n− 1)/2
(2)

The pair is concordant if xi > xj & yi > yj or xi < xj &
yi < yj . On the other hand, the pair is discordant if xi > xj
& yi < yj or xi < xj & yi > yj . The range of Kendall’s tau
is between -1 and 1.

The Kendall tau of the AR(1) coefficient could go as
high as 0.92 close to a blackout. With 685 data points, the
Null Hypothesis of no trend in the AR(1) is rejected with
p = 2.2 × 10−16. The very high confidence level means that
the AR(1) increase is symptomatic of a dynamical shift in the
grid. However, the observed increase in the autocorrelation
could not be exclusively happening before the power system
blackout. Indeed, in Sec. IV-C, we will show that such high
confidence changes in the AR(1) coefficient are indeed hap-
pening over large data set of frequency time series collected
from the EPFL campus network under normal conditions.

B. Kendall’s tau of the Hurst exponent as proximity margin
to blackout

In Sec. III-B, we have shown the existence of long-range
memory in the frequency time series in the power system
by analyzing a large number of data sets collected from the
EPFL campus network. Our novel method to predict the power
system blackout will be based on the change in long-range
correlation (Hurst exponent) of frequency time series instead
of the short range correlation at lag 1.

In Fig. 3(a), we have the frequency time series before the
2012 Indian blackouts for 56 minutes. We study the change
in Hurst exponent of a moving window of length 110,000



Fig. 4: (a) Box-plots of Kendall’s tau of frequency AR(1) coefficient during January, April, June, and October (b) Histogram
of Kendall’s tau of frequency AR(1) coefficient during these four months (c) Box-plots of the Kendall’s tau of frequency Hurst
exponent during these four months (d) Histogram of Kendall’s tau of frequency Hurst exponent during these four months. Due
to blackout data scarcity, a red histogram and a test for random draws from different distributions couldn’t be obtained.

samples (∼37 minutes) and a shift of 900 samples (18 sec-
onds). We calculated the Hurst exponent of each window using
the Detrended Fluctuation Analysis (DFA) method, which is
robust against the presence of trends and non-stationarity in
the time series. Using dfa command in R software, the Hurst
exponents of the frequency before the blackout were calculated
as shown in Fig. 3(c). To calculate the Hurst exponent, we have
used 21 window sizes with range from 100 to 10,000 samples.

The Hurst exponent before the blackout increases from 1.55
to 1.72. Kendall’s tau of the Hurst exponent is 0.86. With 65
data points, the Null Hypothesis of no trend is rejected with
p = 2.2× 10−16, a very high confidence level. This increase
in the Hurst exponent before the blackout can be a sign of the
proximity of the power system to blackout.

Next, we need to show that the increase in the AR(1)
coefficient and Hurst exponent before the 2012 Indian blackout
is unique and can be used as reliable measures for the
proximity of the power system to blackout. This goal will be
achieved by calculating the change in the AR(1) coefficient
and Hurst exponent of several frequency data sets collected
from EPFL campus under normal conditions.

C. Kendall’s tau of AR(1) coefficient versus Kendall’s tau of
the Hurst exponent under normal conditions

In this section, we use the Kendall’s tau to quantify the
change in the AR(1) coefficient and Hurst exponent of 230
frequency time series (180,000 samples each). These time
series were collected during normal conditions from the EPFL

campus. Kendall’s tau close to 1 means that AR(1) coefficient
or Hurst exponent has consistently increasing trend. However,
Kendall’s tau close to -1 indicates consistently decreasing
trend. Then, we will compare the Kendall’s tau of the fre-
quency time series before blackout with the ones that are
collected during normal conditions.

The AR(1) coefficient of 230 frequency data set is calcu-
lated over 100,000 samples window with 100 samples shift
between consecutive windows. The Kendall’s tau distributions
of frequency AR(1) coefficient during each of the four months
are shown in Fig. 4(a). The histogram of Kendall’s tau of the
frequency AR(1) coefficient for all the month is shown in
Fig. 4(b). The histogram has -0.08 mean (black line) and 0.57
standard deviation (orange line) with range between -0.97 and
0.96. The histogram is very close to a uniform distribution
over the range of the Kendall’s tau from -1 to 1. Since the
Kendall’s tau of the frequency AR(1) coefficient before the
Indian blackout is 0.92 (red line) and inside the range of the
histogram of the EPFL data, there is no significant difference
between blackout and normal data.

The Hurst exponent of each frequency data set is calculated
over a 100,000 samples window with 1,000 samples shift be-
tween consecutive windows. Then, we calculate the Kendall’s
tau of the Hurst exponents for each of 230 frequency data sets.
The distributions of the Kendall’s tau of the frequency Hurst
exponent for each of the four months are shown in Fig. 4(c).
The histogram of the Kendall’s tau for all the frequency data
sets is shown in Fig. 4(d). The mean of the histogram is -



0.04 (black line) and the standard deviation is 0.39 (orange
color). It is clear that the histogram of the Kendall’s tau of
frequency Hurst exponent is centered around 0 with range
between −0.77 and 0.77. The Kendall’s tau of frequency Hurst
exponent before the Indian blackout is 0.86 (red line) and it
is outside the histogram range of the normal EPFL data. That
means there is a difference between the blackout and normal
data and hence the Kendall’s tau of frequency Hurst exponent
is a good measure of the proximity to blackout.

Fig. 5: Decision tree acting on the multi-layer decomposition
of Fig. 5 of [11] as response to increase of Hurst exponent

V. CONCLUSION

A. Summary

In this paper, we first investigated the long-range memory
in a large PMU data sets from the EPFL campus network. All
the PMU data (V , f , and θ) showed a long-range correlation
with average Hurst exponents approximately 1.23, 1.51, and
1.21, respectively. Next, we studied the existence of critical
slowing down phenomenon in the frequency time series before
the power system blackout. We provided an evidence that the
increase in the autocorrelation coefficient at lag 1 before the
blackout is not specific to blackout; however, the increase in
the Hurst exponent of the frequency, more specifically having
a high Kendall’s tau of the frequency Hurst exponent, can be
a better early-warning signal for power system blackout.

B. Future work: practical implementation in 3-level hierarchy

Should the Hurst exponent increase, the pressing question is
whether it is global (catastrophic) or area-local (manageable)
and what has caused the increase. Assuming that the area of
Hurst exponent increase and the root cause are identified, the
action would be to act as quickly as possible using FACTS,
at the primary (milli second) layer Fig. 5 of [11], consistently
with the fast sampling rate of PMUs. Should the problem not
be rectified at this layer, we would attempt to rectify it by
reactive power management at the secondary (seconds) layer.

Finally, if the problem is not yet resolved at the secondary
layer, the last attempt would be to resolve it at the tertiary
(minutes) layer, by for example islanding, or load shedding,
which unfortunately would affect some consumers. The overall
process is depicted in the tree of Fig. 5.
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