
Chaos, Solitons and Fractals 103 (2017) 622–631 

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals 

Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Multi-fractal geometry of finite networks of spins: Nonequilibrium 

dynamics beyond thermalization and many-body-localization 

Paul Bogdan 

a , ∗, Edmond Jonckheere 

a , Sophie Schirmer b 

a Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA 
b College of Science (Physics), Swansea University, Singleton Park, Swansea SA2 8PP, UK 

a r t i c l e i n f o 

Article history: 

Received 17 September 2016 

Revised 15 June 2017 

Accepted 7 July 2017 

Keywords: 

Quantum spin networks 

Information capacity 

Fractals 

Phase transitions 

Nanodevices 

Nano-networks 

Beyond Turing computation 

a b s t r a c t 

Quantum spin networks overcome the challenges of traditional charge-based electronics by encoding in- 

formation into spin degrees of freedom. Although beneficial for transmitting information with minimal 

losses when compared to their charge-based counterparts, the mathematical formalization of the infor- 

mation propagation in a spin(tronic) network is challenging due to its complicated scaling properties. In 

this paper, we propose a fractal geometric approach for unraveling the information-theoretic phenom- 

ena of spin chains and rings by abstracting them as weighted graphs, where the vertices correspond to 

single spin excitation states and the edges represent the information theoretic distance between pair of 

nodes. The weighted graph exhibits a complex self-similar structure. To quantify this complex behavior, 

we develop a new box-counting-inspired algorithm which assesses the mono-fractal versus multi-fractal 

properties of quantum spin networks. Mono- and multi-fractal properties are in the same spirit as, but 

different from, Eigenstate Thermalization Hypothesis (ETH) and Many-Body Localization (MBL), respec- 

tively. To demonstrate criticality in finite size systems, we define a thermodynamics inspired framework 

for describing information propagation and show evidence that some spin chains and rings exhibit an 

informational phase transition phenomenon, akin to the MBL transition. 

© 2017 Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

1.1. Motivation–spintronics networks 

Many fundamental particles such as electrons, protons and cer-

tain atomic nuclei exhibit a fundamental quantum property called

spin. Spin degrees of freedom have played an important role since

the discovery of nuclear magnetic resonance [19] and electron spin

resonance [3] , which have become essential tools for characteriz-

ing chemical structure, material properties and bio-medical imag-

ing [10,20,22] . More recently, spin degrees of freedom have been

in the spotlight again as potential carriers of quantum information,

and the foundation of quantum spintronics [2] . 

Conventional electronics, while powerful, also has drawbacks.

Electrical resistance encountered by moving electrons generates

heat, wasting energy and limiting integration densities and data

processing speeds in conventional semiconductor devices [25] .

Spintronics in its most basic form is about exploiting spin de-

grees of freedom, usually of electrons, to encode, process, store and
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0960-0779/© 2017 Published by Elsevier Ltd. This is an open access article under the CC
ransfer information. Encoding information in spin degrees of free-

om such as excitations of a spin network opens up many pos-

ibilities [15,17] , where spintronics devices offer benefits such as

enerally long coherence lifetimes of spins at low temperatures.

lthough there are many technological challenges that remain to

e solved, considerable efforts are currently under way to realize

arious types of spintronic devices [2] . 

The spintronic property that propagation happens without mat-

er or charge transport makes spintronic networks potentially at-

ractive for more efficient on-chip interconnectivity via “spin chan-

els” even for classical information processing. In this context one

f the most important questions is the capacity of a spin(tronic)

etwork for information transport or teleportation of quantum

tates between nodes in the network. The transport can happen

nder intrinsic dynamics, but in order to make the transport more

fficient, couplings in spin chains can be “engineered” to achieve,

t the limit, perfect state transfer between end points [8,9,16] . For

xample, a chain with nearest-neighbor couplings satisfying [9] 

 k,k +1 = 

1 

2 

√ 

k (N − k ) , k = 1 , . . . , N − 1 , (1)

chieves this objective [9] . Rings can be biased to “quench” the

ing to a chain to favor transfer to a particular spin [15,18] . 
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One measure introduced to capture the intrinsic ability of a

uantum network to transport information between nodes through

he propagation of excitations is Information Transfer Fidelity

ITF) [11–13,15,18] . Broadly, it is an easily computable upper bound

n the maximum achievable probability with which an excitation

an be successfully propagated from one node to another in the

etwork. 

The ITF induces a (pra)metric [15, Section 4.1] for the spin net-

ork that endows it with an information topology. This informa-

ion topology of the spin network generally differs substantially

rom the physical geometry of the network [11] . 

.2. Mono and multi-fractals in spintronics networks 

With very high order metric network graphs comes the ques-

ion of scaling of their properties. For example, a network might

e negatively curved in the very large scale sense of Gromov, but

ave different local curvature properties. Referring more specifi-

ally to spin networks, a device that has a cluster of excited spins

ight look like thermalized at a low scale, while the same clus-

er rather looks like localized at a larger scale. The present pa-

er essentially addresses such questions. The essential tool is that

f multi-fractal analysis. We show that the node-to-node interac-

ions in such “symmetric” spin networks as long chains and rings

xhibit self-similarity characterized by a narrow fractal spectrum,

ndicating mono-fractal behavior, consistent with ETH, Eigenstate

hermalization Hypothesis [27–29] . Shorter chains tend to have

roader fractal spectra. However, the multi-fractal property takes

ts full significance when the chain or the ring is manipulated—

n a way that affects symmetry or translation invariance—to favor

pecific transmissions, consistently with MBL, Multi-Body Localiza-

ion [27] . 

While the phenomena that our fractal analysis exposes bear

imilarity with ETH and MBL, they are not strictly speaking ETH

nd MBL. The chief difference can be summarized as ETH and MBL

eing equilibrium phenomena , whereas the phenomena we here ex-

ose are nonequilibrium phenomena. This comparison is made pre-

ise in Section 3.5 . 

.3. Paper outline 

The paper is organized as follows. We begin, in Section 2 , with

he information geometry embedding of quantum spin networks.

e provide the basics of the mathematical description of the Infor-

ation Transfer Fidelity between quantum spin excitation states.

uilding on this background, in Section 3 , we present the multi-

ractal characteristics of this information geometry embedding and

 greedy algorithm for investigating the multi-fractality of quan-

um spin networks, along with a novel box counting measure dif-

erent from the popular one [24] . We also compare our nonequilib-

ium approach with such equilibrium procedures as Anderson lo-

alization and strong multi-fractal Multi-Body Localization. In the

ext two Sections 4 and 5 , we detail our multi-fractal analysis

f quantum chains and quantum rings, respectively, under vari-

us network sizes and various manipulations to favor some selec-

ive transfers. In Section 6 , we attempt to define a transition from

hermalization to localization [27–29] . We conclude the paper, in

ection 7 , by discussing the deeper significance of our results, out-

ining our main findings, and indicating several future research di-

ections. 

. Information geometry embedding of spin networks 

If we encode information in the states of a quantum system

uch as a network of N coupled spin- 1 2 particles, then the trans-

er of information between quantum states is governed by the
chrödinger equation, 

 h̄ 

d 

dt 
| ψ(t) 〉 = H| ψ(t) 〉 , | �(0) 〉 = | i 〉 , ı = 

√ 

−1 (2)

r a suitable open-system generalization [6] . In the preceding, | i 〉
enotes the state where the only single excitation in the network

s on spin i . The evolution from initial state | i 〉 is characterized by

 Hamiltonian H , a Hermitian operator with eigendecomposition 

 = 

N̄ ∑ 

n =1 

λn �n , N̄ ≤ N, (3) 

here the λn ’s are the (distinct) real eigenvalues and the �n ’s are

he corresponding projectors onto the corresponding eigenspaces.

he problem of capturing the t ∗ that yields maximum fidelity

up t≥0 |〈 j| exp (−ıHt/ h̄ ) | i 〉| in the temporal evolution of a given in-

ut state | i 〉 is complicated; for this reason, we derive an easily

omputable upper bound on the probability of transfer of infor-

ation, irrespective of the time it takes, to another state | j 〉 in a

etwork governed by the Hamiltonian H , 

up 

t≥0 

|〈 j| exp (−ıHt/ h̄ ) | i 〉| 2 ≤ p max (i, j) := 

N̄ ∑ 

k =1 

|〈 j| �k | i 〉| 2 . (4)

onditions for attainability of the bound in homogeneous chains

nd rings are derived in [11] and [15] , respectively. 

Taking the logarithm of the transition probability, we can define

n Information Transfer Fidelity (ITF) “distance”

 (i, j ) = − log p max (i, j) . (5)

ote that p max (i, i ) = 1 for any state | i 〉 as 
∑ N̄ 

k =1 �k is a reso-

ution of the identity, and also that p max (i, j) = p max ( j, i ) . Hence

(i, i ) = 0 and d(i, j) = d( j, i ) ≥ 0 , so that d ( · , · ) is a symmetric

rametric [1, p. 23] . Although this prametric need not be separat-

ng [1, p. 23] , that is, d (i, j ) = 0 need not imply i = j as it hap-

ens for anti-podal points of N even spin rings, the latter is easily

xed by identifying those d (i, j ) = 0 points. After this identifica-

ion, the resulting semi-metric in general does not satisfy the tri-

ngle inequality, but for certain types of homogeneous networks it

as been shown to induce a proper metric [12,15] . For the purposes

f our analysis here a semi-metric (which by definition satisfies all

xioms except the triangle inequality) is sufficient. To make the ex-

osition more crisp, we will from here on, with a slight abuse of

anguage, refer to d ( · , · ) as determined by Eq. (5) as a distance. 

In what follows, we set forth a fractal geometrical approach

o the spin network in the sense that the information interac-

ions within the spin network are represented as a weighted graph

 = (V, E ) , where the vertices represent spin excitation states and

he edges denote their information-theoretic semi-metric. 

Although our approach and the mathematical techniques em-

loyed are general and can be applied to any spin network, in this

ork we focus on simple networks such as linear arrangements

chains) or circular arrangements (rings) of spins with nearest-

eighbor interactions, for which the J -coupling matrix is either

ridiagonal (chain) or circulant (ring). For a network with uniform

oupling all non-zero entries in the J matrix are the same, and we

an choose units such that they are 1. More generally, we can al-

ays choose units such that the maximum coupling strength is 1.

f the dynamics of the network are restricted to the single exci-

ation subspace then the Hamiltonian on this subspace is deter-

ined by the J -coupling matrix; for Heisenberg coupling there are

dditional non-zero elements on the diagonal, while the diagonal

lements are zero for XX -type coupling [5] . 

.1. Extreme cases of thermalization and localization 

The ITF between nodes i and j in a network can be physically

nterpreted as follows. If we create a local excitation at node i at
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Fig. 1. (a) Realization of the ITF for a spin chain of size N = 105 . (b) Zoom-in magnification on the ITF metric graph by a factor of 2. (c) Zoom-in magnification on the ITF 

metric graph by a factor of 4. (d) Realization of the ITF for a spin chain of size N = 150 . (e) Zoom-in magnification of the ITF graph realization by a factor of 2. (f) Zoom-in 

magnification of the ITF graph realization by a factor of 4. 
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1 Throughout the explanation of the multi-fractal analysis, we use the concept of 

radius to denote all nodes which can be reached within one hop search because 

their distances (weights) to the center node under investigation is less than the 

specific radius. 
 = 0 , by flipping the i th spin in the network, then the ITF p max ( i , j )

is the maximum probability of excitation of spin j that can be ob-

served as a result for any t ≥ 0. In the special case when an excita-

tion at node i remains localized at node i , we have p max (i, j) = δi j .

More generally, if an excitation remains confined to a subset nodes,

e.g., in the case of Many Body Localization (MBL), then the maxi-

mum transition probability to all other nodes should be 0. In the

opposite case of thermalization, the initial excitation will spread

over the entire network and we expect p max ( i , j ) to be the same

for all j � = i . However, there are many cases inbetween these two

extremes, as will be shown in Section 6 . 

3. Fractal analysis 

One important characteristic exhibited by the information dis-

tance graph representation of spin networks is the self-similarity

of the node-to-node interactions. In mathematical context, the

self-similarity implies that an object (process) is exactly or ap-

proximately similar to a subcomponent under the magnification

operation (the whole resemblance in shape to subcomponents).

Fig. 1 shows a visual representation of the information distance

for spin chains of size N = 105 and N = 150 , respectively. Although

different network sizes exhibit different spatial interaction pat-

terns, the metric graph representation is not entirely irregular un-

der the magnification operation; rather it exhibits repetition and

symmetry—there are information valleys surrounded by hill tops

that seem to repeat almost identically across space, yet are not

exactly identical. From a mathematical perspective, we know that

this irregularity cannot be understood by simply defining the em-

bedding dimension as the number of variables and coordinates as

considered in [13] , but rather calls for quantifying the dimension

using multi-fractal geometry [21] . 
.1. Information distance mapping 

To investigate the multi-fractal characteristics of spin networks,

e adopt the following strategy. As shown in Fig. 2 , after the met-

ic mapping, the information metric-based graph representation

f the spin network can also be seen as a map of contour lines

isolines), where two nodes connected by an information distance

weight) less than or equal to d ( i , j ) belong to an island (bounded

y a closed contour line) encompassing all nodes within the same

 ( i , j ) distance. Second, we construct a graph-based box-covering

enormalization inspired method [21,23] , which aims at covering

he metric graph with a minimum number of boxes B k ( ε) of ra-

ius 1 ε = d (i, j ) for a predefined set of distances d ( i , j ). This proce-

ure records first the unique magnitudes of the exhibited weights

i.e., radii d ( i , j )) in the graph and for each such magnitude finds

he minimum number of boxes required to cover all nodes in

he graph. To minimize the computational (search) time for the

inimum number of boxes, we use a greedy heuristic, which for

ach magnitude of the box prunes the original weighted graph by

emoving the edges that exceed the magnitude and clusters the

odes that are connected by weighted edges smaller than the cur-

ent magnitude. The algorithm then proceeds by analyzing and

overing each cluster in descending order of their size (number

f nodes). Knowing the number of boxes required to cover the

eighted graph for each magnitude of the box allows us to in-

estigate the multi-fractality and determine (estimate) the gener-

ting function of the counting measure as a function of the box

adius. 
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Fig. 2. An arbitrary spin network with a set of heterogeneous coupling parameters can be represented using information-theoretic measures as a weighted graph. Depending 

on the time dependent probability of transfer of excitation from spin | i 〉 to | j 〉 and the information theoretic measure defined on these node-to-node interactions, some nodes 

may reside in a smaller geodesic island even though spatially they reside at a much larger physical distance. Relying on the information theoretic measure, a box counting 

inspired strategy can help to investigate the scaling behavior of the mass exponent and derive the multi fractal spectrum associated with node-to-node interactions in a spin 

network. 
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Note that nodes that appear to be close to each other in the

pin network domain representation may belong to different is-

ands of concentration as a function of the adopted metric (e.g., in-

ormation transfer distance). For instance, while nodes 1 and 2 are

djacent to each other in the original spin network (see Fig. 2 ), in

he distance-based representation they may be further apart from

ach other. Although in Fig. 2 and throughout our current anal-

sis we used only the information transfer metric defined above,

he mathematical framework can be applied to other information-

heoretic metrics and can be extended to analyze weighted graphs

hat can be generated by spin network interactions over time. 

.2. Node counting measure 

The multi-fractal analysis rests on a novel node (counting) mea-

ure defined as follows: 

[ B k (ε)] = 

N k (ε) 

N 

= p k (ε) , (6)

here ε represents the magnitude of the information distance,

 k (ε) = { � ∈ V : d(k, � ) ≤ ε} denotes a ball of radius ε centered in

ode k ∈ V and of ITF radius ε, N is the total number of nodes

n the spin network or weighted graph G, and N k ( ε) denotes the

umber of nodes inside the ball B k ( ε) of ITF radius ε. To put it in

ther words, p k ( ε) represents the probability of finding a node � in

he ball B k ( ε). Of note, this probability satisfies: 
∑ 

k [ p k (ε) q ] q =1 = 1

nd 

∑ 

k [ p k (ε) q ] q =0 = N, respectively. This counting measure bears

imilarities with and extends the multi-fractal formalism presented

n [7] such that the mass property is replaced by the counting of

odes covered by a ball of a certain radius on the graph. A simi-

ar strategy can be generalized to hypergraphs, but this is left for

uture work. 

For a multi-fractal graph structure, the node counting measure

atisfies the following relationship: 

[ B k (ε)] = c k,αk 
εαk , as ε → 0 , (7)

here αk denotes the Lipschitz–Hölder exponent and c k,αk 
is a

oefficient that depends on the box and the Lipschitz–Hölder ex-

onent αk . The Lipschitz–Hölder exponent can be defined for any

easure μ and quantifies the singularity of the measure, here the

ingularity of the informational geometry. 

The partition function can be expressed as: 

(q, ε) = 

∑ 

k 

{ μ[ B k (ε)] } q = 

∑ 

k 

{ c k,αk 
εαk } q , (8)

here q ∈ (−∞ , ∞ ) is a moment order and the summation is up-

er bounded by N representing the total number of boxes of size ε.

ote that if − log μ[ B k (ε)] can be interpreted as an energy E k , then

 ≥ 0 can be interpreted as an inverse thermal energy, β = 1 /k B T ,

here k B is the Boltzmann constant and T the absolute temper-

ture. The partition function then acquires a classical thermody-

amical interpretation 

∑ 

k e 
−βE k , from which phase transition can
lready be seen from the specific heat capacity curve of Fig. 5 (b).

ollowing this thermodynamic analogy, the free energy and the

pecific heat can be expressed as F (q, ε) = −ln [ Z(q, ε)] / ln [ ε] and

(q, ε) = −∂ 2 F (q, ε) /∂q 2 [14] , respectively. 

By performing a histogram-like analysis (i.e., sorting and count-

ng all terms corresponding to a particular Lipschitz–Hölder expo-

ent α), the partition function takes the form: 

(q, ε) = 

∑ 

α

εqα
∑ 

k ∈V α
c q 

k,α
, (9) 

here V α represents the subset of vertices characterized by a

ipschitz–Hölder exponent α. 

To manipulate the second sum, we define the multi-fractal

pectrum f ( α) to be the Hausdorff dimension of the set V α . Recall

hat the Hausdorff dimension of a set V α is the unique dimension

 H such that the Hausdorff measure in dimension d at scale ε, 

 

d H 
ε = inf 

diam (B k ) < ε
∪ k B k ⊇ V α

∑ 

k 

( diam (B k ) ) 
d H , 

s finite as ε↓ 0. We attempt to write H 

f (α) 
ε ∼ ε f (α) × n α, where n α

s the number of subsets in the covering. The finiteness of H 

f (α) 
ε as

↓ 0 implies that n α ∼ ε− f (α) ; more precisely, 

 α = number of balls of radius ε = w (α) ε− f (α) , 

ith f ( α) denoting the multi-fractal spectrum. It provides the dis-

ribution of the α’s. Taking the spectrum f ( α) to be narrowly dis-

ributed yields mono-fractality; taking it more spread yields multi-

ractality. 

Combining these derivations, the partition function becomes 

(q, ε) = 

∑ 

α

b(q, α) w (α) εqα− f (α) , (10)

here b(q, α) = n −1 
α

∑ 

k ∈V α c 
q 

k,α
is a coefficient that depends on the

umber of balls of size ε required for covering the graph embed-

ing. 

.3. Mono-fractal versus multi-fractal distribution 

The exponents of ε in Eq. (10) suggest to operate the Legendre

ransformation 

(q ) = qα − f (α) (11) 

nd look at the partition function in terms of the moment expo-

ent q , 

(q, ε) = 

∑ 

k 

{ μ[ B k (ε)] } q = g(q ) ετ (q ) , (12)

here τ ( q ) is called the mass exponent function and is used to

uantify the scaling properties of the partition function. As an al-

ernative definition of mono versus multi-fractality, if the mass ex-

onent τ ( q ) in Eq. (11) is a linear function of the q -exponent, then
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Fig. 3. (a) Generalized Hurst exponent H ( q ) as a function of q for several spin chain lengths (i.e., N = 100 , 102 , 106 , 108 , 112 , 126 , 130 , 136 , 138 , 148 , 150 ) display- 

ing a similar “sigmoidal” shape, but rich multi-fractal behavior. (b) Multi-fractal spectrum f ( α) as a function of the Lipschitz-Hölder mass exponent α for sev- 

eral spin chain lengths (i.e., N = 100 , 102 , 106 , 108 , 112 , 126 , 130 , 136 , 138 , 148 , 150 ). Although spin chains exhibit similar multi-fractal spectrum, they are character- 

ized by different dominant singularities (i.e., α at which f ( α) attains maximum varies across spin chains). (c) Specific heat C ( q ) for several lengths (i.e., N = 

100 , 102 , 106 , 108 , 112 , 126 , 130 , 136 , 138 , 148 , 150 ) of a spin chain. (d) Generalized Hurst exponent H ( q ) as a function of q for several spin chain lengths (i.e., N = 

700 , 708 , 718 , 726 , 732 , 738 , 742 , 750 , 756 , 760 , 768 , 772 , 786 , 796 ) displaying a similar “sigmoidal” shape, but rich multi-fractal behavior. (e) Multi-fractal spectrum f ( α) as 

a function of the Lipschitz-Hölder mass exponent α for several spin chain lengths (i.e., N = 700 , 708 , 718 , 726 , 732 , 738 , 742 , 750 , 756 , 760 , 768 , 772 , 786 , 796 ). (f) Specific 

heat C ( q ) for several lengths (i.e., N = 700 , 708 , 718 , 726 , 732 , 738 , 742 , 750 , 756 , 760 , 768 , 772 , 786 , 796 ) of the spin chain. Although the length of the spin chain varies sig- 

nificantly, we observe similar multi-fractal patterns and curvature in the specific heat. 
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we call the distribution of node measure μ[ B k ( ε)] to be mono-

fractal. This typically happens when f ( α) is δ-distributed. On the

other hand, if the mass exponent τ ( q ) is a nonlinear function of

the q -exponent, then we call the distribution of node measure

μ[ B k ( ε)] to be multi-fractal. 

3.4. Generalized Hurst exponent 

The generalized Hurst exponent for time-series [4] is adapted to

measures defined on graphs, with the objective of quantifying the

roughness of the communication landscape. Following that thread,

the generalized Hurst exponent H ( q ) for the measure μ defined on

the graph G is defined as ( 

1 

N 

∑ 

k 

μ[ B k (ε)] q 

) 1 /q 

= εH(q ) . 

Technically, H ( q ) provides the scaling of the q -order moments of

the probability measure μ. The key insight coming from self-

similarity of measure μ is to set Nε = constant , say, 1. Then the

above becomes ∑ 

k 

μ[ B k (ε)] q = εqH(q ) −1 . 

Comparing this with the definition of τ ( q ) provided

by (12) yields 

τ (q ) = qH(q ) − 1 . (13)

The mass exponent function τ ( q ) is also related to the generalized

dimension function D ( q ) through the following equation: τ (q ) =
(q − 1) D (q ) . 
Based on the above-mentioned arguments, a linear dependence

f the mass exponent τ ( q ) implies that the generalized Hurst ex-

onent H(q ) = H is independent of the q -dependent exponents. In

ontrast, a nonlinear dependence of the mass exponent τ ( q ) im-

lies that the generalized Hurst exponent will also exhibit a non-

inearity with varying exponents q . 

Investigation of the generalized Hurst exponent H ( q ) is moti-

ated by the need to quantify the spatial heterogeneity that may

xist in an information metric based representation. Simply speak-

ng, we aim to study how small and large fluctuations across all

ode interactions contribute to particular patterns that may ap-

ear over multiple scales and influence the dependence of H ( q ) as

 function of order q . Consequently, in our framework, the gener-

lized Hurst exponent represents a mathematical approach for in-

estigating the scaling properties and measuring the degree of het-

rogeneity of the graph motifs over multiple spatial scales. More

recisely, if the analysis of the q th-order moments of the distri-

ution of information graph motifs shows no dependence on the

eneralized Hurst exponent with the order of the moment q , then

he informational graph is considered homogeneous and mono-

ractal. In contrast, if the generalized Hurst exponent exhibits sig-

ificant variation over a wide range of q orders, then the infor-

ation graph is considered to be heterogeneous and multi-fractal.

his multi-fractal structure (of the information based embedding

f spin chains) can be understood as a divergence in terms of scal-

ng trends between the short range (small fluctuations in ITF) and

ong-range (large fluctuations) ITF magnitudes. 
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.5. Comparison with multi-fractal Anderson localization 

Fluctuations around the metal-insulator criticality in Anderson

ocalization is known to be multifractal [24] . While the fundamen-

al mathematical techniques utilized in the latter are undoubtedly

imilar to ours, here, it is applied to a situation different from,

lthough in the same spirit as, Anderson localization. First and

ost importantly, we do not deal with Anderson localization in the

ense of fast spatial decay of eigenstate components ψ � � = k away

rom site k ; we rather deal with the number of sites � within ITF

p max ≈ 1 − ε, away from k or within distance d ( k , � ) ≈ ε from k . 

To make the comparison crisp, consider the partition func-

ion shared by both approaches: Z(q ) = 

∑ 

k μ
q 

k 
, with μk = c k,αk 

εαk .

n [24, Section 3.1] , the measure μk is 
∑ 

� ∈ Box k (ε) | ψ � | 2 ∼ εαk for �

n the box centered at site k of physical size ε, while here μk is the

elative number N k (ε) /N ∼ εαk of sites � within the box of ITF size

centered at k . 

Clearly because of the discrepancy in the definition of the αk ’s,

he multifractal spectrum f ( α) of localization cannot be expected

o be the same as ours. 

More specifically, the preceding comparison reveals that we are

ot interested in the degree of localization 

∑ 

� ∈ Box k (ε) | ψ � | 2 of the

quilibrium eigenstates of the system. Rather we are interested in

ow an excitation | k 〉 localized at a single node k , which corre-

ponds to a highly non-equilibrium state , propagates through the

ystem, and its probability of ’touching’ another node � later. In the

ase of Anderson localization, a local excitation would not propa-

ate much, so at best there would be a very small probability of

ransfer to nearby nodes and none for transfer to distant nodes,

nd the ITF graph would be the disconnected union of many small

rder subgraphs of low ITF edges. 

.6. Comparison with strong multifractality MBL [26] 

There is one case where the traditional localization yields

esults close to our concept of localization. The strong multi-

ractality MBL of [26, Eq. (18)] relies on the partition function
 

� |〈 ψ k | σ N 
Z 
| ψ � 〉| 2 q and yields a spectrum f ( α) close to what has

een observed in some cases. Looking at Figs. 6 (d) and (f), it ap-

ears that rings of size N = 105 and N = 500 show a Multi-Body-

ocalization transition as the bias approaches 50. On the other

and, Fig. 5 (f) reveals that Multi-Body-Localization only occurs for

ome ring size. 

. Multi-fractal analysis of chains 

One important spin network topology is represented by spin

hains (see top left hand side of Fig. 2 ). To investigate the geomet-

ical properties of a chain of spins, we use the information-metric-

ased mapping (see Fig. 2 ) and estimate the partition function as

 function of the order q of higher order moments as described

n Eq. (12 ). The observed statistical self-similarity (see Fig. 1 ) of

he spin network translates into a power law relationship of the

artition function and allows us to estimate the generalized Hurst

xponent H ( q ) and the multi-fractal spectrum f ( α). 

Fig. 3 (a) shows the generalized Hurst exponent as a func-

ion of order q for several spin chain lengths (i.e., N =
00 , 102 , 106 , 108 , 112 , 126 , 130 , 136 , 138 , 148 , and 150). The gen-

ralized Hurst exponent H ( q ) displays a sigmoidal shape ir-

espective of the spin chain length. Similar sigmoidal shapes

re observed for numerous other spin chain lengths. Fig. 3 (d)

ummarizes the H ( q ) vs q dependency for spin chain lengths

f N = 700 , 708 , 718 , 726 , 732 , 738 , 742 , 750 , 756 , 760 , 768 , 772 , 786

nd 796. This sigmoidal pattern shows that the information metric

raph, having a heterogeneous architecture, is better characterized

y multi-fractal geometric tools. Generally speaking, this implies
hat a single fractal dimension is insufficient to model the (hetero-

eneous) interactions and information transmission / propagation

n the spin chain. 

All of chain lengths N considered above are such that all eigen-

ectors of the (single excitation subspace) Hamiltonian are com-

letely delocalized, i.e., all eigenvectors have non-zero overlap with

ll nodes. 

In addition to the sigmoidal shape, we also observe that for

ome lengths of the spin chain the generalized Hurst exponent ex-

ibits a much more complex nonlinear dependency as a function

f the q th order moment (see Fig. 5 (a) summarizing the analysis

or spin chain lengths of N = 105 , 115 , 119 , 129 , and 149). 

We also note that these particular spin chain lengths exhibit

igher generalized Hurst exponents than those in Figs. 3 (a) and

d). This suggests that some spin chains exhibit a pronounced per-

istent behavior, i.e., a long interaction is likely to favor an even

onger one, while others tend to display an anti-persistent be-

avior, interleaving short with long interactions. From a practical

erspective, it would be interesting to investigate the information

rocessing / transmission properties of these two classes of spin

hains on real devices, which may show some to be more suitable

or information transmission while others might be better suited

or robust information storage or parallel processing. 

An alternative strategy for describing the local self-similar (scal-

ng) properties of the information graph and quantify the degree

f heterogeneity is to estimate the multi-fractal spectrum. From

 mathematical perspective, the multi-fractal spectrum represents

he set of Lipschitz–Hölder exponents (fractal dimensions) and

heir likelihood of appearance as dictated by the mixture of locally

elf-similar motifs in the informational graph. Consequently, by es-

imating and analyzing the multi-fractal spectrum we can learn the

xisting dominance of some Lipschitz–Hölder exponents over oth-

rs. The Lipschitz–Hölder exponent quantifies the local singulari-

ies and locates the abrupt changes in the curvature of informa-

ion graph embedding. More precisely, the maximum of the multi-

ractal spectrum represents the dominant fractal dimension while

he width of the spectrum is a measure of the heterogeneity rich-

ess (range of fractal dimensions) and complexity. From a struc-

ural point of view, the multi-fractality implies that the informa-

ion graph consists of regions of short interactions (short infor-

ation transmission ranges) mixed / interspersed with long-range

nteractions. Figs. 3 (b) and (e) show the multi-fractal spectrum

or several spin chain lengths. We observe that even though the

eneralized Hurst exponent for all these chain lengths exhibits a

imilar sigmoidal shape, the multi-fractal spectrum displays differ-

nt and asymmetric behavior. For instance, the multi-fractal spec-

rum of the spin chain of length N = 102 is prolonged over higher

ipschitz–Hölder exponents and thus stronger singularities, while

he multi-fractal spectrum of the chain of size N = 130 is extend-

ng more towards lower Lipschitz–Hölder exponents corresponding

o lower singularities in the curvature of the informational embed-

ing. 

The existence of these singularities in the information embed-

ing suggests building on the multi-fractal analysis to develop

 thermodynamic formalism of information propagation through

he spin networks. Of note, this thermodynamic formalism is not

imed at quantifying fluctuations over time but rather the spatially

elf-similar behavior in information transfer through a spin net-

ork. To elucidate the existence of a phase transition, we investi-

ated the behavior of a thermodynamics inspired specific heat de-

ived from the estimated partition function. Figs. 3 (c) and (f) show

hat the specific heat exhibits a bell shape whose peak values oc-

ur for various orders of q . In contrast, the specific heat for spin

hains of lengths N = 105 , 115 , 119 , 129 , and 149 in Fig. 5 (b) dis-

lay a much more complex behavior that seems to be discontinu-

us in the vicinity of order q = 0 . 
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Fig. 4. Comparison between original and engineered spin chains in terms of generalized Hurst exponent H ( q ) for various chain lengths: (a) N = 105 , (b) N = 505 , (c) N = 506 , 

(d) N = 106 , (e) N = 508 , (f) N = 700 , (g) N = 545 , (h) N = 555 , and (i) N = 581 . 
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5. Multi-fractal analysis of rings 

While spin chains have been most intensively studied in re-

cent years, other arrangements such as rings also play an impor-

tant role for quantum spintronic applications as their translation

invariance properties make them potentially suitable as routers for

quantum networks. Consequently, it is important to study their in-

formation propagation characteristics. We have estimated the ITF

metric for several ring sizes (i.e., from N = 50 , . . . , 10 0 0 ), mapped

the information propagation between all distinct pair of nodes | i 〉
and | j 〉 , and applied our strategy for estimating the partition func-

tion over the metric graph. Figs. 5 (c) and (e) summarize the gener-

alized Hurst exponents as a function of the q th order moment for

several spin ring lengths. One observation we could make is that

while the generalized Hurst exponents in Fig. 5 (c) are higher and

reminiscent of a persistent dynamics, the generalized Hurst expo-

nents in Fig. 5 (e) are much smaller (a third of those in Fig. 5 (c)

and closer to 0.5) which would indicate a tendency of an anti-

persistent structure. This distinction is even more interesting as it

appears between spin rings of similar sizes. We have analyzed all

spin rings N = 50–10 0 0 and we observed similar patterns. Conse-
uently, it would be important to quantify the design implications

nd transmission properties against realistic devices. 

Another observation we could make from Figs. 5 (c) and (e) is

hat most of the spin rings display a similar sigmoidal shape ob-

erved also for some spin chains, but a few spin rings (e.g., for

 = 106 and 130) exhibit a generalized Hurst exponent that varies

ery little with order q . This can also be seen from the multi-fractal

pectrum plots in Figs. 5 (d) and (f). For spin rings of sizes N = 106

nd 130, we could conclude that are more closer to displaying a

ono-fractal behavior (due to their lower generalized Hurst expo-

ents and shrinking of their multi-fractal spectrum). 

Spin rings are of interest as they can act as quantum routers in

nternet-on-a-chip architectures. Rings can be “quenched” by ap-

lying a very strong bias (magnetic field) on one spin; this has

he effect of favoring transmissions symmetric relative to the bias

nd at the limit of infinite bias the ring is “quenched” to a chain

ith perfect information transfer fidelity between nodes next to

he quench node. Consequently, we studied the multi-fractal char-

cteristics of spin rings as a function of the magnitude of ap-

lied bias. For instance, Figs. 6 (a) and (b) summarize the gener-

lized Hurst exponent and the multi-fractal spectrum obtained for
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Fig. 5. (a) Generalized Hurst exponent H ( q ) as a function of q for spin chain lengths of N = 105 , 115 , 119 , 129 , and 149 display a highly nonlinear behavior corresponding 

to rich multi-fractality. (b) Specific heat C ( q ) for spin chain lengths of N = 105 , 115 , 119 , 129 , and 149 exhibits a rich behavior that could be correlated to either a first- or 

a second-order (informational) phase transition. (c) Generalized Hurst exponent H ( q ) as a function of q for several spin ring lengths (i.e., N = 100 , 108 , 112 , 136 , and 148) 

displaying a similar “sigmoidal” shape. (e) The generalized Hurst exponent H ( q ) as a function of q for spin ring lengths of N = 102 , 126 , 130 , 138 , and 140 display a more 

pronounced multi-fractal behavior than for sizes of N = 106 and 130. (f) Comparison in terms of multi-fractal spectrum (shape and width) between spin ring networks of 

size N = 102 , 106 , 126 , 130 , 138 , 140 and 150. Note that the red multifractal spectrum curve, bias = 106, passes through the point f (2 . 75) = 1 . 4 , a manifestation of the strong 

multifractal property f (0 ≤ α ≤ 2) = α/ 2 of [26] . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n information-metric embedding of a spin ring of size N = 102

hen the bias is applied to node 100 (the magnitude of the bias

s assumed to take integer values between 0 and 10). We observe

rom Fig. 6 (a) that with increasing bias the generalized Hurst expo-

ent is shifting towards higher values. We also notice that the in-

rease in the width of the generalized Hurst exponent is not mono-

onic with increasing bias magnitudes. This multi-fractal trend (of

igher multi-fractality for non-zero bias) is also confirmed by the

ulti-fractal spectrum plot in Fig. 6 (b). To further investigate this

ehavior, Figs. 6 (c) and (d) summarize the generalized Hurst ex-

onent and the multi-fractal spectrum of the same configuration

spin ring of size N = 102 ) for bias magnitudes of 0, 5, 10, 20,

0 and 100. We notice that with increasing bias magnitudes the

upport of the multi-fractal spectrum shifts towards left, an anti-

ersistent region. To contrast these results, Figs. 6 (e) and (f) show

he generalized Hurst exponent and the multi-fractal spectrum for

 spin ring of size N = 500 and the bias is applied at node 100. We

bserve that while the generalized Hurst exponent is significantly

ider for nonzero bias, the multi-fractal spectrum in Fig. 6 (f) dis-

lays a similar tendency of shifting towards left. We suspect that

he multi-fractality of both original and “quenched” spin rings is

ot only affected by the number-theoretic properties of the ring

ut also by the bias magnitudes. We plan to investigate these sup-

ositions both analytically and experimentally in the future. 

. From thermalization to localization 

Following the early definition of Section 2.1 , thermalization

27–29] in its limiting case could be interpreted as p max uniformly

istributed for i � = j . This implies that the αk ’s are the same across

ll sites; hence the spectrum is monofractal. 
Localization on the other hand in its early and extreme defini-

ion means p max (i, j) = δi, j . Hence d (i, j ) = 0 if i = j and d (i, j ) =
 if i � = j . In this situation, ∀ ε finite , the ε-covering of the

hole graph requires a ball around every single site, so that n α =
 (α) ε− f (α) = N. At this stage, it is essential to recall the relation-

hip Nε = 1 , in which case w (α) ε− f (α)+1 = 1 . The independence of

he latter on ε implies that f (α) = 1 , that is, a flat spectrum. We

bserve a flattening in the multi-fractal spectrum in Figs. 6 (b), (d)

nd (f) with increasing magnitude of the bias. However, the flat-

ening is not complete and we suspect that the cause of this is

elated to the finite size effects of the considered rings. 

To exemplify some of the “inbetween” cases, we should imag-

ne that the system transitions from uniformity to a more skewed

istribution measure μ. This implies that, while initially the mea-

ure μ satisfies μ = c k ε
αk = 1 , it will slightly lose mass and redis-

ribute this mass due to phase transition towards the tail becom-

ng μ = c k ε
αk = εξ1 . By the same token of a phase transition, the

verage number n α = w (α) ε− f (α) = 1 /ε will transition to a power

aw scaling of the form n α = w (α) ε− f (α) = ε−ξ2 . By corroborating

hese two facts we obtain that f (α) = αξ2 /ξ1 . The latter is a gener-

lization of the theoretical strong multi-fractality spectrum condi-

ion f (0 ≤ α ≤ 2) = α/ 2 , singled out in [26] . This heuristic deriva-

ion and resemblance with the multi-fractality spectrum condition

entioned in [26] indicates that the slope and shape of the multi-

ractal spectrum for quantum spin networks depends in a nontriv-

al way not only on the applied bias or couplings, but also on their

ize and topology. We plan to investigate these intuitions analyti-

ally and in simulation in our future work. 

Note that μ = c k ε
αk = 1 means thermalization at a low scale,

hile moving the mass towards the tail means localization at a

arger scale. Therefore, the preceding is a case of phase transi-
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Fig. 6. (a) Generalized Hurst exponent (GHE) H ( q ) as a function of q for spin ring of length N = 102 and a bias B of 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 applied to node 100. The 

GHE displays a highly nonlinear behavior for non-zero bias B which corresponds to a richer multi-fractality. (b) The multi-fractal spectrum for a ring of length N = 102 and 

a bias B of 0, 2, 3, 4, 6, 8 and 10. (c) The GHE H ( q ) as a function of q spin ring of length N = 102 and a bias B of 0, 5, 10, 20, 50, and 100. (d) The multi-fractal spectrum for 

the ring of size N = 102 and a bias B of 0, 5, 10, 20, 50 and 100. Observe that for biases 50, 100, the slope of the multifractality spectrum in roughly 1/2, in agreement with 

the condition f (0 ≤ α ≤ 2) = α/ 2 of [26] . (e) The GHE H ( q ) as a function of q for a spin ring of length N = 500 and a bias B of 0, 1, 5, 10, 50, and 100. (f) The multi-fractal 

spectrum for a spin ring of length N = 500 and a bias B of 0, 1, 5, 10, 50, and 100. This last case-study clearly shows sign of a MBL transition as the bias gets close to 50 

(blue curve); it is indeed noted that the blue fractal spectrum curve of bias 50, and to a more accurate extent the yellow curve of bias 100, have their slope roughly equal 

to 1/2 around α = 0 , in agreement with the theoretical strong multifractality spectrum condition f (0 ≤ α ≤ 2) = α/ 2 , singled out in [26] . Note that for biases from 0 to 10 

none of that behavior is observed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tion to localization, concomitant to the multi-fractal spectrum go-

ing from δ-distributed to linear in α. To some extent, this can be

visually observed for ring topologies with various bias magnitudes

in Figs. 6 (b), (d) and (f). 

7. Discussion 

It is our belief that the complex ITF behavior exhibited by spin

networks is a matter of their scaling properties. By analyzing spin

chains and rings up to size 10 0 0 we observe that they display

complex mono-fractal/multi-fractal structure depending on their

symmetry. In addition, a thermodynamics inspired framework re-

veals that several such spin chains and rings exhibit some forms

of phase transition which could prove fundamental in the design

of these future devices. 

The spin chain results suggest that information transmission in

spin networks not only exhibits complex multi-fractal behavior but

also nontrivial dependence on the size of the network. Previous

work on ITF bounds and their attainability [11,15] has shown that

the size of the network, N , and various number theoretic issues

play a role. Our multi-fractal analysis appears to corroborate the

observations made in prior studies and open the possibility to es-

tablish a connection between these fields. In addition to N , it was

shown in [11] that the ITF depends on the greatest common divisor

gcd( i , j ), where i and j are the input and output spins, respectively.

The somewhat repetitive pattern of gcd( i , j ) may be the root cause

underpinning the multi-fractality. 

In a near technological future, chains will probably have their

coupling strength engineered to favor specific transfers. It would
e interesting to compare the multi-fractal properties such as the

idth and shape of the generalized Hurst exponent of engineered

hains with those of a chain with uniform coupling. Fig. 4 shows

ome interesting trends from which we draw the following obser-

ations: 

• The engineered chains have higher multi-fractality as evidenced

by the increasing width of the generalized Hurst exponent. 

• The spin chains exhibit a dichotomous behavior in the sense

that as a result of applying an engineered strategy in some

cases it makes the generalized Hurst exponent shift above the

original one while in other cases it shifts below the original

one. 

As far as rings are concerned, for zero bias, they show a very

arrow multi-fractal spectrum, revealing that the symmetry con-

ributes to mono-fractality. However, rings can be endowed with a

on-trivial potential landscape that changes the onsite potentials,

orresponding to the diagonal elements in the Hamiltonian. As the

ias increases we observe a higher degree of multi-fractality, con-

istent with the shape of the multi-fractal spectrum of the engi-

eered spin chains. 

The ITF developed here is an upper bound that becomes rel-

vant when enough time is given for the i to j transfer to

chieve its maximum fidelity. As already emphasized in [11,15] ,

〈 j| exp (−ıHt/ h̄ ) | i 〉| exhibits a complex, somewhat repetitive time

ependence. This indicates that a spatio-temporal fractal analysis

s warranted, but this is left for further research. 

For both spin chains and rings, we find that the degree of

ulti-fractality varies with network sizes. Engineered spin chains
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isplay a more pronounced multi-fractal behavior than the original

ounterparts. Along the same lines, we observe that the degree of

ulti-fractality for spin rings is influenced by the considered bias

agnitude. 

Finally, we must recognize that there seems to be some rela-

ionship between the many-body-localization (MBL) [27–29] and

he quantum phase transition we observe in the information trans-

er capacity. As discussed in [27–29] , a quantum phase transition is

bserved as one varies the disorder strength or the energy density

etween the thermal phase and the MBL phase. In the MBL, all

he eigenstates do not obey the eigenstate thermalization hypoth-

sis (ETH) and the memory of local initial conditions can survive

n local observables for arbitrary long times. This seems to be the

ase in our analysis which encodes the interaction strength, tem-

erature, size and topology of the spin network into a informa-

ion theoretic metric (namely the information transfer fidelity) and

eighted graph mapping. We believe that the mathematical for-

alism presented in this paper with some significant extensions

an help at overcoming the finite-size scaling issues and elucidat-

ng the nature of quantum phase transition, gauging the impact of

ontrol parameters such as the interaction and disorder strength

nd temperature. This multi-fractal formalism could also suggest

ew avenues for studying the vicinity of the critical points. 
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