User Tools

Site Tools


secure_state-estimation_and_control_for_dynamical_systems_under_adversarial_attacks

Secure state-estimation and control for dynamical systems under adversarial attacks

Abstract:
Control systems work silently in the background to support much of the critical infrastructure we have grown used to. Water distribution networks, sewer networks, gas and oil networks, and the power grid are just a few examples of critical infrastructure that rely on control systems for its normal operation. These systems are becoming increasingly networked both for distributed control and sensing, as well as for remote monitoring and reconfiguration. Unfortunately, once these systems become connected to the internet they become vulnerable to attacks that, although launched in the cyber domain, have for objective the manipulation of the physical domain. In this talk I will discuss the problem of state-estimation and control for linear dynamical systems when some of the sensor measurements are subject to an adversarial attack. I will show that a separation result holds so that controlling physical systems under active adversaries can be reduced to a state-estimation problem under active adversaries. I will characterize the maximal number of attacked sensors under which state estimation is possible and propose computationally feasible estimation algorithms. For this, I will use ideas from compressed sensing and error correction over the reals while exploiting the dynamical nature of the problem. Time permitting, I will also report on more recent results using satisfiability module theory solvers.

Bio:
Paulo Tabuada was born in Lisbon, Portugal, one year after the Carnation Revolution. He received his “Licenciatura” degree in Aerospace Engineering from Instituto Superior Tecnico, Lisbon, Portugal in 1998 and his Ph.D. degree in Electrical and Computer Engineering in 2002 from the Institute for Systems and Robotics, a private research institute associated with Instituto Superior Tecnico. Between January 2002 and July 2003 he was a postdoctoral researcher at the University of Pennsylvania. After spending three years at the University of Notre Dame, as an Assistant Professor, he joined the Electrical Engineering Department at the University of California, Los Angeles, where he established and directs the Cyber-Physical Systems Laboratory.

Paulo Tabuada's contributions to cyber-physical systems have been recognized by multiple awards including the NSF CAREER award in 2005, the Donald P. Eckman award in 2009 and the George S. Axelby award in 2011. In 2009 he co-chaired the International Conference Hybrid Systems: Computation and Control (HSCC'09), in 2012 he was program co-chair for the 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems (NecSys'12), and he is program co-chair for the 2015 IFAC Conference on Analysis and Design of Hybrid Systems. He also served on the editorial board of the IEEE Embedded Systems Letters and the IEEE Transactions on Automatic Control. His latest book, on verification and control of hybrid systems, was published by Springer in 2009.

Host:
Prof. Ashutosh Nayyar

secure_state-estimation_and_control_for_dynamical_systems_under_adversarial_attacks.txt · Last modified: 2016/09/01 19:15 (external edit)