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Abstract

These notes give details on the probability concepts of “infinitely often” and “with probability 1.” This is useful
for understanding the Borel-Cantelli lemma and the strong law of large numbers.

I. SEQUENCES OF EVENTS

A. Probability experiment

A probability experiment has
1) A sample space S.
2) A sigma algebra of events F .
3) A probability measure P : F → R.
The sample space S is assumed to be a nonempty set. It can be finite or infinite and can consist of different types

of objects, such as numbers, vectors, colors, sets, and so on. Elements of the sample space are called outcomes.
The sigma algebra F is a set of subsets of S that satisfies structural properties specified in the next subsection.
The subsets in F are called events and are precisely those subsets of S for which we define probabilities. The
probability measure P : F → R defines a probability P [A] to each event A ∈ F . The probability measure must
satisfy the three axioms of probability (specified, for example, in the Leon-Garcia text).

In particular, every element ω ∈ S is an outcome. It is not necessarily true that every subset A ⊆ S is an event.
Rather, if A ⊆ S then
• If A ∈ F then the set A is an event and has probability P [A].
• If A /∈ F then the set A is not an event and P [A] does not exist.

A subset A ⊆ S that is an event is often called a measurable set. A subset A ⊆ S that is not an event is often
called a non-measurable set.

B. Sigma algebra

Let S be a nonempty set. A set F of subsets of S is called a sigma algebra on S if
1) φ ∈ F (where φ is the empty set).
2) If A ∈ F then Ac ∈ F (where Ac is the complement of A).
3) If {Ai}∞i=1 is a countably infinite sequence of sets such that Ai ∈ F for all i ∈ {1, 2, 3, . . .}, then ∪∞i=1Ai ∈ F .
Since we define a subset of S to be an event if and only if it is in F , and since we define a probability P [A] if

and only if set A is an event, the above definition implies that: The empty set φ is an event and so P [φ] is defined
(it is easy to prove that P [φ] = 0 from the axioms of probability); If A is an event then Ac is an event and so both
P [A] and P [Ac] are defined (it is easy to show that P [A] +P [Ac] = 1 from the axioms of probability); If {Ai}∞i=1

is a sequence of events then ∪∞i=1Ai is also an event and so P [∪∞i=1Ai] is defined. From the definition of a sigma
algebra F , it can be shown that if {Ai}∞i=1 is a countably infinite sequence of sets in F then ∩∞i=1Ai is also in F
(just use DeMorgan’s law).

https://viterbi-web.usc.edu/~mjneely/Borel-Cantelli-LLN.pdf
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C. Interpretation

It is common to talk about events as being either “true” or “false.” However, if an event is just a subset of S,
what does it mean to say that an event can be “true”?

We can imagine that a probability experiment “randomly” produces a single outcome ω ∈ S. Using this
imagination, we can say that an event A is “true” (or that event A “occurs”) if the randomly produced outcome ω
is an element of A. An event A is “false” if the randomly produced outcome ω satisfies ω /∈ A. The probability
that the randomly produced outcome is an element of A is equal to P [A]. This probability is defined for all A ∈ F .

D. Limiting events

Let {An}∞n=1 be an infinite sequence of subsets of S. Let A be another subset of S.
Definition 1: We say that An ↘ A if:
• An ⊇ An+1 for all n ∈ {1, 2, 3, . . .}.
• ∩∞n=1An = A
Definition 2: We say that An ↗ A if:
• An ⊆ An+1 for all n ∈ {1, 2, 3, . . .}.
• ∪∞n=1An = A
Theorem 1: (Continuity of probability) Let {An}∞n=1 be a sequence of events. Let A be a subset of S.
a) If An ↘ A then A is an event and P [An]↘ P [A].
b) If An ↗ A then A is an event and P [An]↗ P [A].
Proof: To prove (a), suppose that An ↘ A. Then A = ∩∞n=1An and so A must be an event (it is the countable

intersection of events). Further, for all positive integers n we have An ⊇ An+1 ⊇ A and so

P [An] ≥ P [An+1] ≥ P [A] ∀n ∈ {1, 2, 3, . . .}

It follows that {P [An]}∞n=1 is a sequence of nonincreasing real numbers that are lower bounded by P [A], and so
limn→∞ P [An] must exist and must be greater than or equal to P [A]. The fact that this limit is exactly P [A] is
proven in the Leon-Garcia book (using Axiom 3 of probability). The proof of part (b) is similar.

E. Infinitely often and finitely often

Let {An}∞n=1 be an infinite sequence of events. We say that events in the sequence occur “infinitely often”
if An holds true for an infinite number of indices n ∈ {1, 2, 3, . . .}. We say that events in the sequence occur
“finitely often” if they do not occur infinitely often, that is, if An holds true for at most finitely many indices
n ∈ {1, 2, 3, . . .}. We formally define the set of all outcomes ω for which an infinite number of the events is true,
and for which at most finitely many events are true, as follows:

{An i.o.} = ∩∞m=1 ∪∞n=m An (1)

{An f.o.} = {An i.o.}c

= ∪∞m=1 ∩∞n=m Ac
n (2)

where the final equality holds by DeMorgan’s law.
The right-hand-side of (1) can be read as follows: For all positive integers m, there exists a positive integer

n ≥ m such that An is true. Some thought will convince you that this holds if and only if an infinite number of
the events are true (see also the following lemma). The right-hand-side of (2) can be read as follows: There is a
positive integer m such that An is false for all integers n ≥ m. Some thought will convince you that this holds if
and only if an at most finite number of the events occur.

A breakdown of the above paragraph is shown below:

{An i.o.} = ∩∞m=1︸ ︷︷ ︸
(∀m≥1)

∪∞n=mAn︸ ︷︷ ︸
(∃n ≥ m such that An occurs)
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{An f.o.} = ∪∞m=1︸ ︷︷ ︸
(∃m≥1)

∩∞n=mA
c
n︸ ︷︷ ︸

(∀n ≥ m An fails to occur)

Here we are using the notation:
• “∀m ≥ 1” means “for all m ≥ 1.”
• “∃n ≥ m” means “there exists an n that is greater than or equal to m.”
Lemma 1: We have

{An i.o} = {ω ∈ S : ω ∈ An for an infinite number of indices n ∈ {1, 2, 3, . . .}}
{An f.o.} = {ω ∈ S : ω ∈ An for at most finitely many indices n ∈ {1, 2, 3, . . .}}

Proof: The first equality can be shown by considering two cases (left as an exercise): Fix ω ∈ S.
1) Suppose ω ∈ An for an infinite number of indices n. Show that ∪∞n=mAn must be true for all m ∈ {1, 2, 3, . . .}.
2) Suppose ω ∈ An for only finitely many indices n. Show that ∪∞n=mAn must be false for some m ∈ {1, 2, 3, . . .}.

The second equality can be obtained from the first equality by taking complements.
Note that (1) defines {An i.o} as a countable intersection of a countable union of events, and so {An i.o.}

must itself be an event. That is
{An i.o} ∈ F

Therefore its complement {An f.o.} is also an event. As events, they must have probabilities.
Lemma 2: For any sequence of events {An}∞n=1 we have:

∪∞n=m An ↘ {An i.o} (3)

∩∞n=m Ac
n ↗ {An f.o.} (4)

and so

lim
m→∞

P [∪∞n=mAn] = P [An i.o.]

lim
m→∞

P [∩∞n=mA
c
n] = P [An f.o.]

Proof: Exercise.
Corollary 1: For any sequence of events {An}∞n=1 we have:

lim sup
n→∞

P [An] ≤ P [An i.o.]

lim inf
n→∞

P [Ac
n] ≥ P [An f.o.]

Proof: We have for all positive integers n

P [Am] ≤ P [∪∞n=mAn]

Taking the lim sup of both sides as m→∞ and using Lemma 2 gives the result. Similarly, for all positive integers
n we have

P [Ac
m] ≥ P [∩∞n=mA

c
n]

Taking the lim inf of both sides gives the result.
The above corollary implies the following general facts:
• If P [An] ≥ ε for infinitely many indices n ∈ {1, 2, 3, . . .} then P [An i.o.] ≥ ε.
• If P [Ac

n] ≤ ε for infinitely many indices n ∈ {1, 2, 3, . . .} then P [An f.o.] ≤ ε.
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F. Preliminaries for Borel-Cantelli lemma

We need two facts about real numbers:
1) log(1 + x) ≤ x for all x ∈ (−1,∞).
2) If {xi}∞i=1 is a sequence of non-negative real numbers such that

∑∞
i=1 xi <∞, then limn→∞

∑∞
i=n xi = 0.

The second fact is proven as follows: For all positive integers n we have:
∞∑
i=1

xi =

n−1∑
i=1

xi +

∞∑
i=n

xi

Taking a limit as n→∞ gives:
∞∑
i=1

xi =

∞∑
i=1

xi + lim
n→∞

∞∑
i=n

xi (5)

Now, the equation ∞ = ∞ + y is true for all y ∈ R (we cannot cancel ∞ from both sides to conclude y = 0).
However, if

∑∞
i=1 xi <∞, we cancel it from both sides of (5) to conclude:

0 = lim
n→∞

∞∑
i=n

xi

G. Borel-Cantelli lemma

Lemma 3: (Borel-Cantelli) Let {An}∞n=1 be an infinite sequence of events.
a) If

∑∞
n=1 P [An] <∞, then P [An f.o.] = 1.

b) If
∑∞

n=1 P [An] =∞ and if the events are mutually independent, then P [An i.o.] = 1.
Proof: (Part (a)) Suppose

∑∞
n=1 P [An] <∞. For all positive integers m:

{An i.o.} ⊆ ∪∞n=mAn

Thus:

P [An i.o.] ≤ P [∪∞n=mAn] ≤
∞∑

n=m

P [An]

where the final inequality is the union bound. Taking a limit as m→∞ gives:

P [An i.o.] ≤ lim
m→∞

∞∑
n=m

P [An] = 0 (6)

where the final limit holds because
∑∞

n=1 P [An] <∞ (recall fact 2 in the previous subsection). Hence P [An i.o.] =
0 and so P [An f.o.] = 1.

Proof: (Part (b)) Suppose
∑∞

n=1 P [An] =∞ and that the events are mutually independent. Fix m as a postive
integer. By mutual independence we have:

P [∩∞n=mA
c
n] =

∞∏
m=n

P [Ac
n] =

∞∏
n=m

(1− P [An])

Taking the log of both sides and using the fact that log(1 + x) ≤ x gives:

log(P [∩∞n=mA
c
n]) =

∞∑
n=m

log(1− P [An]) ≤ −
∞∑

n=m

P [An] = −∞

Thus, P [∩∞n=mA
c
n] = 0. This holds for all m. Thus:

0 = P [∩∞n=mA
c
n]↗ P [An f.o.]

So P [An f.o.] = 0. Hence, P [An i.o.] = 1.
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Notice that
∑∞

n=1 P [An] represents the expected number of events that occur. Indeed, one can define indicator
functions for each n ∈ {1, 2, 3, . . .} by

In =

{
1 if event An occurs
0 otherwise

The number of events that occur is then N =
∑∞

n=1 In. Here, we are treating N as an extended random variable
that is allowed to take values in the set {0, 1, 2, . . .} ∪ {∞}. It can be shown that the expectation of a countably
infinite sum of nonnegative random variables is equal to the sum of the expectations. Hence:

E [N ] =

∞∑
n=1

E [In] =

∞∑
n=1

P [An]

H. Coin flipping example

Suppose we flip a sequence of coins. Let An be the event that coin flip n produces “heads.” Suppose that:

P [An] = 1/n ∀n ∈ {1, 2, 3, . . .}

Then:
• We know

∑∞
n=1 P [An] =

∑∞
n=1 1/n =∞. Thus, if the coin flips are mutually independent, the Borel-Cantelli

lemma ensures that, with probability 1, there will be an infinite number of heads. This may be surprising
because the probability of heads shrinks down to 0. However, the probabilities do not shrink rapidly enough
for their sum to be finite.

• Consider the sparsely sampled subsequence of events, sampled at indices that are perfect squares:

{An2}∞n=1 = {A1, A4, A9, A16, ...}

We know
∑∞

n=1 P [An2 ] =
∑∞

n=1 1/n
2 <∞. Thus, the Borel-Cantelli lemma ensures that, with probability 1,

only a finite number of perfect square indices produce heads. This holds regardless of whether or not the flips
are mutually independent. Indeed, the probabilities P [An2 ] shrink rapidly enough for their sum to be finite.

II. RANDOM VARIABLES CONVERGING TO A LIMIT

Let S be a sample space and let X : S → R be a random variable. For each n ∈ {1, 2, 3, . . .} let Xn : S → R
be additional random variables. Recall that the single outcome ω ∈ S determines the value of all random variables

X(ω), X1(ω), X2(ω), ...

Define the A as the (possibly empty) set of all outcomes ω ∈ S for which limn→∞Xn(ω) = X(ω):

A = {ω ∈ S : lim
n→∞

Xn(ω) = X(ω)}

Is A an event, that is, is A ∈ F? Yes. This is shown in the next subsection where A is written in terms of countable
unions and intersections of events.

A. The event {limn→∞Xn = X}
For simplicity of notation we can write

A =
{
lim
n→∞

Xn = X
}

with the understanding that A ⊆ S. By the definition of a limit we have that ω ∈ A if and only if for all ε > 0,
there exists a positive integer m such that |Xn(ω)−X(ω)| < ε for all n ≥ m. Of course, for every ε > 0 we can
find a positive integer k such that 1/k ≤ ε. Therefore we can use the following equivalent but more convenient
definition of a limit:
• ω ∈ A if and only if for all positive integers k there is a positive integer m such that |Xn(ω)−X(ω)| < 1/k

for all n ≥ m.
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From this definition we immediately obtain:{
lim
n→∞

Xn = X
}
= ∩∞k=1 ∪∞m=1 ∩∞n=m{|Xn −X| < 1/k} (7)

Indeed, the right-hand-side of the above equality can be read: For all positive integers k, there exists a positive
integer m such that |Xn −X| < 1/k for all n ≥ m. A breakdown of this sentence is below:{

lim
n→∞

Xn = X
}
= ∩∞k=1︸ ︷︷ ︸

(∀k≥1)

∪∞m=1︸ ︷︷ ︸
(∃m≥1)

∩∞n=m{|Xn −X| < 1/k}︸ ︷︷ ︸
(∀n ≥ m we have |Xn −X| < 1/k)

Since Xn and X are random variables, it can be shown that for all ε > 0 we have

{ω ∈ S : |Xn(ω)−X(ω)| < ε} ∈ F

Thus, the right-hand-side of (7) is a countable intersection of a countable union of a countable intersection of
events, and so it is indeed an event: {

lim
n→∞

Xn = X
}
∈ F

For each ε > 0 define
B(ε) = ∪∞m=1 ∩∞n=m {|Xn −X| < ε}

It follows by definition of “finitely often” in (2) that

B(ε) = {|Xn −X| ≥ ε f.o.} (8)

Thus, from (7), {
lim
n→∞

Xn = X
}
= ∩∞k=1B(1/k) (9)

= ∩∞k=1{|Xn −X| ≥ 1/k f.o.}

B. Probabilities from limits

Fix ε > 0. It is worth mentioning that, by definition of an increasing sequence of events in Section I-D we have

∩∞n=m{|Xn −X| < ε} ↗ ∪∞m=1 ∩∞n=m {|Xn −X| < ε}

The event on the right-hand-side is, by definition of “finitely often” in (2), the event that {|Xn −X| ≥ ε} finitely
often. Thus

∩∞n=m{|Xn −X| < ε} ↗ {|Xn −X| ≥ ε f.o.}

and so
lim
n→∞

P [∩∞n=m|Xn −X| < ε] = P [{|Xn −X| ≥ ε} f.o.] (10)

and hence, by taking the limit of the complement events

lim
n→∞

P [∪∞n=m|Xn −X| ≥ ε] = P [{|Xn −X| ≥ ε} i.o.] (11)
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C. Convergence almost surely

We say that Xn → X almost surely (also called “with probability 1”) if

P
[
lim
n→∞

Xn = X
]
= 1

That is, if
P
[
ω ∈ S : lim

n→∞
Xn(ω) = X(ω)

]
= 1

Lemma 4: Let X and {Xn}∞n=1 be random variables. Then Xn → X almost surely if and only if for all ε > 0
we have

P [{|Xn −X| ≥ ε} f.o.] = 1
Proof: Define B(ε) as in (8). Suppose P [limn→∞Xn = X] = 1. By (9) it holds that

P [∩∞k=1B(1/k)] = 1

Since B(1/m) ⊇ ∩∞k=1B(1/k) for all positive integers m, it holds that

P [B(1/m)] ≥ P [∩∞k=1B(1/k)] = 1

and so P [B(1/m)] = 1 for all positive integers m. It follows that P [B(ε)] = 1 for all ε > 0.
Now suppose P [B(ε)] = 1 for all ε > 0. Then P [B(1/k)] = 1 for all positive integers k and so

P [∩∞k=1B(1/k)] = 1

since the intersection of a countable number of probability-1 events is again a probability-1 event. It holds by (9)
that P [limn→∞Xn = X] = 1.

Lemma 5: Let X and {Xn}∞n=1 be random variables. Then Xn → X almost surely if and only if

lim
m→∞

P [∪∞n=m{|Xn −X| ≥ ε}] = 0 ∀ε > 0 (12)
Proof: Suppose Xn → X almost surely. By the previous lemma we have for all ε > 0 that

P [{|Xn −X| ≥ ε} f.o.] = 1

and so
P [{|Xn −X| ≥ ε} i.o.] = 0

Substituting the above equality into (11) yields (12).
Now suppose (12) holds. By (11) this implies that for all ε > 0

P [{|Xn −X| ≥ ε} i.o.] = 0

and so
P [{|Xn −X| ≥ ε} f.o.] = 1

which implies Xn → X almost surely (by the previous lemma).

D. Different types of convergence

Definition 3: Xn → X in mean square if:

lim
n→∞

E
[
(Xn −X)2

]
= 0

Definition 4: Xn → X in probability if for all ε > 0:

lim
n→∞

P [|Xn −X| ≥ ε] = 0

Definition 5: Xn → X almost surely (also called with probability 1) if P [limn→∞Xn = X] = 1. Equivalently
(by Lemma 5), Xn → X almost surely if for all ε > 0 we have

lim
n→∞

P [∪∞i=n|Xi −X| ≥ ε] = 0
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Notice that convergence almost surely implies convergence in probability. That is because

{|Xn −X| ≥ ε} ⊆ ∪∞i=n{|Xn −X| ≥ ε}

and so
P [|Xn −X| ≥ ε] ≤ P [∪∞i=n{|Xn −X| ≥ ε}]

and if the right-hand-side goes to zero as n → ∞, the left-hand-side must also. It can also be shown (via the
Markov inequality) that mean square convergence implies convergence in probability. If the random variables Xn

are deterministically bounded, say, always taking values in [−M,M ] for some positive integer M , then it can be
shown that convergence in probability is equivalent to convergence in mean square.

There are examples where bounded random variables converge in probability, but not with probability 1 (try
constructing such an example using the coin flips of Section I-H). There are also examples where (unbounded)
random variables converge with probability 1, but not in mean square.

III. LAW OF LARGE NUMBERS

A. Markov and Chebyshev inequalities

Recall that:
Lemma 6: (Markov inequality) If X is a non-negative random variable then for all ε > 0:

P [X ≥ ε] ≤ E [X]

ε
Lemma 7: (Chebyshev inequality) If X is a random variable (possibly negative) with mean m and variance σ2,

then:
P [|X −m| ≥ ε] ≤ V ar(X)

ε2
The Chebyshev inequality can be proven from the Markov inequality by defining the non-negative random variable

Y = (X −m)2 and noting that {|X −m| ≥ ε} = {(X −m)2 ≥ ε2}.

B. Law of large numbers

Let {Xn}∞n=1 be a sequence of pairwise uncorrelated random variables with identical means and bounded
variances:

E [Xn] = m ∀n ∈ {1, 2, 3, . . .} (13)

V ar(Xn) ≤ c ∀n ∈ {1, 2, 3, . . .} (14)

Cov(Xi, Xj) = 0 ∀i 6= j (15)

The values m and c are assumed to be finite. The random variables can have different distributions. A special case
is when the random variables are independent and identically distributed (i.i.d.), in which case they all have the
same (finite) variance σ2.

For positive integers n, define Mn as the average over the first n random variables:

Mn =
1

n

n∑
i=1

Xi

Notice that:
E [Mn] = m , V ar(Mn) ≤

c

n
∀n ∈ {1, 2, 3, . . .}

The fact that the mean is always m and the variance shrinks to 0 suggests that the random variables Mn are
converging to the mean m. In what sense does this convergence hold? The variance condition directly implies that
the random variables Xn converge to m in the mean square sense. The Chebyshev inequality can be used to further
show that convergence in probability holds. The strong law of large numbers makes the much deeper claim that
convergence in fact holds with probability 1.

Theorem 2: (Law of large numbers with finite variance) Suppose {Xi}∞i=1 are pairwise uncorrelated with identical
means and bounded variances, so that (13)-(15) hold. In particular, suppose E [Xi] = m for all i ∈ {1, 2, 3, . . .}.
Define Mn = 1

n

∑n
i=1Xi. Then:
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a) Mn → m in mean square.
b) Mn → m in probability.
c) Mn → m almost surely (that is, with probability 1).
Proof: See next subsection.
Theorem 3: (Law of large numbers with infinite variance) Suppose {Xi}∞i=1 are i.i.d. with finite mean m and

with possibly infinite variance. Define Mn = 1
n

∑n
i=1Xi. Then Mn → m almost surely (i.e., with probability 1).

Proof: See [1].
The statement in Theorem 2 part (b) is referred to as the “weak law of large numbers.” It is included for

pedagogical reasons: Its proof is very simple and gives intuition behind the deeper proof for the strong law. The
statement in Theorem 2 part (c) is a version of the “strong law of large numbers.” This statement is more general
than most statements of the strong law of large numbers because it allows the random variables to have different
distributions and only requires them to be pairwise uncorrelated (rather than mutually independent). However, it
does require all variances to be bounded. The usual statement of the strong law of large numbers is given in
Theorem 3: This statement requires the random variables to be independent and identically distributed (i.i.d.), still
requires them to have a finite mean, but allows for a possibly infinite variance.1

C. Proof of Theorem 2

Proof: (Theorem 2 part (a)) Since E [Mn] = m for all n ∈ {1, 2, 3, . . .}, we have

E
[
(Mn −m)2

]
= V ar(Mn) ≤

c

n
→ 0

and so Mn → m in mean square.
Proof: (Theorem 2 part (b)) Fix ε > 0. By the Chebyshev inequality:

P [|Mn −m| ≥ ε] ≤
V ar(Mn)

ε2
≤ c

nε2
→ 0

and so Mn → m in probability.

Proof: (Theorem 2 part (c)) We first show that Mn2 → m almost surely, that is, we have convergence almost
surely over the sparse subsequence where indices are perfect squares: {M1,M4,M9,M16, . . .}. Fix ε > 0. We have
by the Chebyshev inequality:

P [|Mn2 −m| ≥ ε] ≤ V ar(Mn2)

ε2
≤ c

n2ε2

Since
∑∞

n=1
1
n2 <∞ we obtain

∞∑
n=1

P [|Mn2 −m| ≥ ε] <∞

and so the Borel-Cantelli theorem implies

P [{|Mn2 −m| ≥ ε} f.o.] = 1

This holds for all ε > 0 and so Lemma 4 implies Mn2 → m almost surely.
It remains to show Mn → m almost surely (so that the same convergence holds over all indices n, not just

indices that are perfect squares). For each n ∈ {1, 2, 3, . . .} define k(n) as the largest integer such that k(n)2 ≤ n,
and so

k(n)2 ≤ n < (k(n) + 1)2 ∀n ∈ {1, 2, 3, ...} (16)

Then

Mn =
1

n

k(n)2∑
i=1

Xi +
1

n

n∑
i=k(n)2+1

Xi

1The i.i.d. assumption in Theorem 3 can be relaxed to “pairwise independent and identically distributed,” see [1].
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It suffices to show the following two limits hold almost surely (that is, with probability 1):

lim
n→∞

1

n

k(n)2∑
i=1

Xi = m (17)

lim
n→∞

1

n

n∑
i=k(n)2+1

Xi = 0 (18)

To prove (17) we observe

1

n

k(n)2∑
i=1

Xi =
k(n)2

n

1

k(n)2

k(n)2∑
i=1

Xi

and since k(n)2

n → 1, and 1
k(n)2

∑k(n)2

i=1 Xi → m almost surely (since we have already proven almost sure
convergence over indices that are perfect squares) we conclude that (17) holds almost surely.

To prove (18) we observe

1

n

n∑
i=k(n)2+1

Xi =
1

n

n∑
i=k(n)2+1

(Xi −m) +
1

n

n∑
i=k(n)2+1

m

=
1

n

n∑
i=k(n)2+1

(Xi −m) +m

(
n− k(n)2

n

)
and since by (16) we have

n− k(n)2

n
→ 0

it suffices to prove
1

n

n∑
i=k(n)2+1

(Xi −m)→ 0 (almost surely)

Define Vn = 1
n

∑n
i=k(n)2+1(Xi −m). Fix ε > 0. Since E [Vn] = 0 we have

P [|Vn| ≥ ε]
(a)

≤ V ar(Vn)

ε2

(b)
=

∑n
i=k(n)2+1 V ar(Xi)

n2ε2
(c)

≤ c
n− k(n)2

n2ε2
(d)

≤ c
(k(n) + 1)2 − k(n)2

k(n)4ε2

= c
2k(n) + 1

k(n)4ε2

(e)

≤ c
2k(n) + k(n)

k(n)4ε2

=
3c

k(n)3ε2

where (a) holds by the Chebyshev inequality; (b) holds because {Xi −m}∞i=1 are pairwise uncorrelated; (c) holds
because V ar(Xi) ≤ c for all i; (d) holds because n2 ≥ k(n)4 and n < (k(n) + 1)2; (e) holds because k(n) ≥ 1.
Thus ∞∑

n=1

P [|Vn| ≥ ε] ≤
3c

ε2

∞∑
n=1

1

k(n)3
<∞ (19)
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which holds because (16) implies k(n) > −1 +
√
n for all n ∈ {1, 2, 3, . . .} and so

∞∑
n=2

1

k(n)3
≤
∞∑
n=2

1

(−1 +
√
n)3

<∞

By the Borel-Cantelli theorem, (19) implies |Vn| ≥ ε finitely often (with probability 1). This holds for all ε > 0
and so Lemma 4 ensures that Vn → 0 almost surely.

D. Distinctions between the law of large numbers and the central limit theorem

Let {X1, X2, X3, ...} be i.i.d. with finite mean and variance given by E [X1] = m, V ar(X1) = σ2. Assume
σ2 > 0. Define:

Gn =
1√
nσ2

n∑
i=1

(Xi −m)

Mn =
1

n

n∑
i=1

Xi

It is important to know how to derive the following facts:

E [Gn] = 0 , V ar(Gn) = 1 ∀n ∈ {1, 2, 3, . . .}

E [Mn] = m , V ar(Mn) =
σ2

n
∀n ∈ {1, 2, 3, . . .}

Since V ar(Mn) converges to 0, it is easy to remember that Mn converges to the constant m (with probability 1).
Since V ar(Gn) = 1 for all n, it is easy to see that Gn does not converge to a constant. In fact, Gn does not
converge to a random variable either: It oscillates without converging to anything as n increases. However, the
central limit theorem says that the distribution of Gn converges to a Gaussian distribution with zero mean and unit
variance:

lim
n→∞

P [Gn ≤ x] =
∫ x

−∞

1√
2π
e−

t2

2 dt ∀x ∈ R
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