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WiFlix: Adaptive Video Streaming in Massive
MU-MIMO Wireless Networks

D. Bethanabhotla, G. Caire and M. J. Neely

Abstract—We consider the problem of simultaneous on-
demand streaming of stored video to multiple users in a multi-
cell wireless network where multiple unicast streaming sessions
are run in parallel and share the same frequency band. Each
streaming session is formed by the sequential transmission of
video ‘“chunks”, such that each chunk arrives into the cor-
responding user playback buffer within its playback deadline.
We formulate the problem as a Network Utility Maximization
(NUM) where the objective is to fairly maximize users’ video
streaming Quality of Experience (QoE) and then derive an
iterative control policy using Lyapunov Optimization, which
solves the NUM problem up to any level of accuracy and
yields an online protocol with control actions at every iteration
decomposing into two layers interconnected by the users’ request
queues : i) a video streaming adaptation layer reminiscent of
Dynamic Adaptive Streaming over HTTP (DASH), implemented
at each user node; ii) a transmission scheduling layer where
a max-weight scheduler is implemented at each base station.
The proposed chunk request scheme is a pull strategy where
every user opportunistically requests video chunks from the
neighboring base stations and dynamically adapts the quality of
its requests based on the current size of the request queue. For the
transmission scheduling component, we first describe the general
max-weight scheduler and then particularize it to a wireless
network where the base stations have Multiuser Multiple-Input
Multiple-Output (MU-MIMO) beamforming capabilities. We ex-
ploit the channel hardening effect of large-dimensional MIMO
channels (massive MIMO) and devise a low complexity user
selection scheme to solve the underlying combinatorial problem
of selecting user subsets for downlink beamforming, which can be
easily implemented and run independently at each base station.
Further, through simulations, we show that deploying MU-MIMO
significantly improves video streaming performance and also that
the proposed cross-layer approach is able to serve users more
fairly than a baseline scheme representative of current systems
running independently designed protocol layers.

Index Terms—Adaptive Video Streaming, DASH, Massive
MIMO, Scheduling, Network Utility Maximization, Lyapunov
Optimization.

I. INTRODUCTION

Demand for video content over wireless networks has grown
dramatically in recent years and it is predicted to account for
75% of the total mobile data traffic by 2019 [1]. This is mainly
due to on-demand video streaming, enabled by multimedia
devices such as tablets and smartphones. In addition, recent
measurement studies [2] reveal that, in 2013, around 26.9% of
video streaming sessions on the Internet experienced playback
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interruption due to re-buffering, 43.3% were impacted by low
resolution, and 4.8% failed to start altogether. At the applica-
tion layer, Dynamic Adaptive Streaming over HTTP (DASH)
[3], [4]' has become a de-facto industry standard approach to
handle video streaming over wireless networks. In DASH, each
user (client) monitors the available capacity during a video
streaming session and chooses adaptively and dynamically
the most appropriate video quality level correspondingly. The
video files are divided into “chunks”, which are downloaded
by sequential HTTP requests. Different quality levels can
be obtained either by storing multiple versions of the same
video encoded at different bit-rates, or by using scalable video
coding and sending an adaptive number of refinement layers
[5].

In this way, DASH attempts to maintain a reasonable
quality of experience (QoE) even under changing network
conditions. However, operating at the application layer only is
not sufficient to achieve a fully satisfactory performance. For
instance, popular video platforms such as Youtube and Netflix,
which employ DASH at the application layer, have realized
this fact and recently released Video Quality Reports [6], [7]
where they compare and contrast different network service
providers (ISP) in a given geographical area and rank/label
them as either Lower Definition (LD) or Standard Definition
(SD) or High Definition (HD) based on the quality of video
streaming activity in their network over a certain time frame
in order to inform users that the choice of ISP can affect video
streaming QoE.

A. Motivation and related work

In order to cope with this problem, a cross layer optimiza-
tion approach has been proposed in several works (e.g., see
[8]-[14]). In these works, the video streaming QoE is defined
in terms of performance metrics such as video quality, proba-
bility of stall events (i.e., when the playback buffer is empty
and video playback stops), pre-buffering time, and re-buffering
time. However, the joint optimization of these metrics by
directly controlling the dynamics of the playback buffers of all
the users in the network requires solving a Markov Decision
Problem (MDP) which is typically quite difficult and incurs
the well-known curse of dimensionality. For instance, [9] con-
siders adaptive video transmission in a much simpler setting of
a point-to-point wireless link and formulates the problem as an

I'This includes industry products such as Microsoft Smooth Streaming and
Apple HTTP Live Streaming, which qualitatively work in the way assumed
in our paper, up to minor variations which are irrelevant for the present
theoretical treatment.
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MDP which is then solved using the value iteration algorithm.
However, even in such a simple point-to-point scenario, the
value iteration policy requires extensive computation to be
done offline and stored in a lookup table which is then
used for the actual transmission. On the other hand, the
work [13] takes a cross-layer approach and considers video
delivery in the general case of a multiuser wireless network
where users are served by wireless helper nodes.> In order
to obtain a tractable formulation for the multiuser network,
[13] adopts a “divide and conquer” approach where first the
problem of maximizing a function of the time-averaged video
qualities, subject to queue stability is solved, and then the
delay jitter is taken care of by appropriately dimensioning the
pre-buffering and re-buffering times, exploiting the fact that
the playback buffer can absorb the delay fluctuations around
the (bounded) mean. However, in [13] a “push” scheduling
policy is considered, for which video chunks can be served
out of order and may result in data loss in the presence of
intermittent connectivity and/or mobility. In this paper, we
fix this problem and introduce a new “pull” strategy, that is
robust to fast topology variations. Our scheme allows each user
to opportunistically pull data always in the correct sequential
order from neighboring helper nodes. This results in smoother
and more reliable performance. Another shortcoming of [13]
is that it considers only helpers operating according to OFDM
(Orthogonal Frequency Division Multiplexing) /TDMA (Time
Division Multiple Access), i.e., serving at most one user per
transmission resource (referred to as physical layer (PHY)
frame hereafter). As a matter of fact, the current wireless
technology trend is rapidly evolving towards multiuser MIMO
(MU-MIMO) schemes ( e.g., see [15]-[18]) where multiple
users can be served on the same PHY frame by spatial
multiplexing. The current work therefore allows for general
wireless channel models, including MU-MIMO as a special
case.

B. Contributions

Motivated by the above considerations, this paper proposes
WiFlix, a system for efficient delivery of video content over a
wireless network formed by a number of densely deployed
wireless helper nodes serving multiple wireless users over
a given geographic coverage area and on the same shared
channel bandwidth. WiFlix addresses the problem of dynamic
adaptive video streaming in a wireless network by jointly
optimizing the video quality adaptation at the DASH layer
(application layer) and the transmission scheduling of users at
the PHY/MAC layer. This is obtained through a cross layer
approach where the appropriate queue sizes maintained at the
users act as a bridge between the layers. In particular, the novel
contributions of this paper are as follows:

1) We introduce the notion of a request queue. This is a vir-
tual queue, maintained by each user, that serves to sequentially
request video chunks from helper nodes, such that the choice

2Qur treatment applies, at a very high level, to any infrastructure-based
wireless network such as conventional cellular, small cells, WLAN, and
heterogeneous compositions thereof (e.g., a cellular network with wifi off-
load). Therefore, throughout this paper, we refer to infrastructure nodes simply
as “helpers”.

of the helper node and the quality at which each video chunk is
requested can be adaptively adjusted. Each user, upon deciding
the quality of the chunk, requests the bits corresponding to that
chunk and places them in the request queue. Note that this does
not mean the user has already downloaded the chunk, but the
chunk bits are “virtually” placed in the request queue and will
be taken out when the chunk is effectively delivered to the
user. In this way, the user maintains in the request queue all
the chunk bits that have been requested but not downloaded
and adaptively adjusts the quality of future chunk requests
based on its size. In addition, the user broadcasts this size to
the helpers in its current vicinity and “pulls” bits from them
in the right order necessary for video playback starting at the
Head Of Line (HOL) of the request queue. Even if a mobile
user gets out of range of a helper while downloading the HOL
bits, it can still re-request those bits from the new helper in
its current vicinity. In this way, the user always downloads
chunks in the playback order and does not skip any of them.
This improves significantly upon the “push” scheme proposed
in [13] where the chunks could be downloaded out of order
due to different transmission queue delays at different helper
nodes, or skipped if a user moves out of a helper’s coverage
after placing a request.

2) We systematically obtain our cross-layer policy as the
dynamic solution of a Network Utility Maximization (NUM)
problem, where the network utility function is given in terms
of the users’ time-averaged video quality, and the maximiza-
tion constraints are given by imposing stability of each request
queue. The stability constraint implies that every requested
chunk will be eventually delivered, while delivery in the
right sequential order is guaranteed by the request queue
mechanism described above. The proposed policy decomposes
naturally into two interconnected layers: i) a video streaming
adaptation layer reminiscent of DASH, implemented at each
user node, and involving the adaptive video quality selection
and placement of the video chunk requests into the request
queue; ii) a transmission scheduling layer where a max-weight
scheduler is implemented at the helpers. These two layers
are interconnected by the users’ request queues, which form
the weights for the max-weight scheduler. Although queue
stability guarantees that all requested chunks are eventually
delivered, such delivery may still occur, occasionally, after
the corresponding playback deadline. In this case, we are in
the presence of a stall event. In order to control the stall
event probability and make it sufficiently small, we follow the
same divide and conquer approach of [13], and adaptively set
the pre-buffering/re-buffering time by monitoring the chunk
delivery delay in a sliding window. This approach has the
advantage of yielding very good performances also in terms
of stall event probability, while allowing for the elegant and
mathematically tractable NUM framework in terms of the
video quality maximization.

3) We particularize the max-weight transmission policy to
a network of helpers with MU-MIMO capabilities, where the
scheduling actions consist of choosing the subset of users
for MU-MIMO beamforming at each helper. By exploiting
the “channel hardening” effect of large-dimensional MIMO
channels (massive MIMO) [19]-[21], we reduce the combi-
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natorial weighted sum rate maximization over the multiuser
multicell network (which would involve an exponentially com-
plex exhaustive user selection, or some polynomial complexity
heuristic greedy user selection at each helper) to a simple
subset selection problem which is optimally solved by a low
complexity algorithm. The algorithm can be implemented
independently at the MAC layer of each helper. The only
information that needs to be exchanged between the layers
is the length of the users’ request queues, which can be easily
gathered as “protocol information” via the uplink, together
with the chunk requests.

4) We show through simulation in a realistic network topol-
ogy and using actual encoded video data that the proposed
system is very effective in improving the average video quality
and reducing the percentage of time spent in buffering mode.

II. SYSTEM MODEL

We consider a wireless network with multiple users and
multiple helper stations sharing the same bandwidth. The
network is defined by a bipartite graph G = (U, H, E), where
U denotes the set of users, H denotes the set of helpers, and
£ contains edges for all pairs (h,u) such that helper h can
transmit information to user u. We denote by N'(u) C H the
neighborhood of user u, i.e., N'(u) = {h € H : (h,u) € £}.
Similarly, N'(h) = {u € U : (h,u) € &}. Each user
u € U requests a video file f, which is formed by a
sequence of chunks. Each chunk corresponds to a group of
pictures (GOP) that are encoded and decoded as stand-alone
units [5]. Chunks have a fixed playback duration, given by
Tyop = (# frames per GOP)/n, where 7 is the frame rate, ex-
pressed in frames per second. The streaming process consists
of transferring chunks from the helpers to the requesting users
such that the playback buffer at each user contains the required
chunks at the beginning of each chunk playback deadline.
The playback starts after a short pre-buffering time, during
which the playback buffer is filled by a determined amount of
ordered chunks. The details related to pre-buffering and chunk
playback deadlines are discussed in Section VI.

Each file f is encoded at a finite number of different
quality/compression levels m € {1,...,N;} [4]. Due to
the variable bit rate (VBR) nature of video coding [22], the
quality-rate profile of a given file f may vary from chunk to
chunk. In particular, we let D (m,i) and Bj(m,i) denote
the video quality measure (e.g., see [23]) and the size (in
number of bits) of the i-th chunk in file f at quality level
m, respectively.

A. Time-scales

It is important to note that the time scale at which chunks are
requested and the time scale at which PHY layer transmissions
are scheduled differ by 1—3 orders of magnitude. For instance,
in current video streaming technology [3], the typical video
chunk spans a duration of 0.5—2 seconds while the duration of
a PHY frame is of the order of milliseconds (for example, with
a PHY frame duration of 10 ms (as in the LTE 4G standard
[24]) and assuming Tgo, = 0.5s, a video chunk spans n =

Togo=s = 50 PHY frames). In the following, we consider

dynamic scheduling policies that operate at the PHY frame
time scale, i.e., they provide a scheduling/resource allocation
decision at each PHY frame time ¢ € Z. However, new chunks
are requested at multiples of the chunk time, i.e., at times
t = in for ¢ € Z and n denoting the number of PHY frames
per chunk time, assumed here to be an integer for simplicity.
In the rest of the paper, we will use consistently the following
notation: index ¢ denotes the PHY frame transmission slots,
and the index ¢ denotes video chunks.

B. Request Queue Dynamics

At the beginning of the ¢-th chunk time, each user u € U re-
quests a particular quality mode for the ¢-th chunk of its video
stream. That is, on each slot ¢ € {0, n,2n,3n, ...}, each user
u € U specifies the quality mode m,(t) € {1,2,..., Ny}
for its next video chunk. This decision specifies the quality
Dy, (my(t),t) and the amount of bits By, (m,(t),t) associ-
ated with the chunk requested at slot t. As these decisions are
made only at times ¢ that are multiples of n, it is convenient
to define:

Dy, (my(t),t) :=0 and By, (my(t),t) :=0
for t ¢ {0,n,2n,...}. (D

On the other hand, at time slots that are integer multiples of
n, i.e., t = in, we have:

Dy, (my(t),t) = l:)f“ (my(in),4) and
By, (mu(t),t) = By, (mu(in), i). 2

The bits By, (m,(t),t) are called the requested bits of
user u at slot ¢, and are placed in a request queue Q(t).

The request queue evolves over the transmission slots ¢ €
{0,1,2,...} as:

Qu(t + 1) = max{Qu(t) — pu(t)+By, (my(t),1),0}
Yueld, (3)

where i, (t) is the amount of bits downloaded by user u
on slot t. Note that the request queue in (3) can decrease
every transmission slot ¢ as new bits are downloaded, but can
only increase on slots ¢ = in, i.e., on integer multiples of n.
Intuitively, @, (¢) consists of bits associated with all chunks
that have been requested by user u but not yet fully received.

The quantity f,(t) indicates the instantaneous aggregate
downloading rate of user w on slot ¢, expressed in bits per
slot. This is given by

pa(t) = D pinu(t)1na(t) 4

heN (u)

where 1p,(t) is an indicator function, equal to 1 if helper h
has the video file requested by user u and zero otherwise,
and pp,(t) is the rate served by helper h to user u on slot
t. The matrix [up,,(t)] of transmission rates is selected within
a set of feasible transmission rate matrices for slot ¢. The set
of all rate matrices supported by the network at a given slot
time ¢ is referred to as the feasible instantaneous rate region
at time t, and depends on the network topology and channel
state (e.g., on the fading channels realization). Specifically,
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let w(t) represent the topology state on slot ¢, being a vector
of parameters that affect transmission, such as current device
locations and/or channel conditions. Assume w(t) takes values
in an abstract set (), possibly being an infinite set. For each
w € , define R(w) to be the feasible rate region of the
network for state w. Then, the feasible instantaneous rate
region is R(w(t)). For example, the set R(w) may include
the constraint that each user can receive a positive rate from
at most one helper and/or constrain helpers to restrict trans-
missions to at most S users, where S denotes the maximum
number of downlink data streams (spatial multiplexing gain)
that the helper station can handle (see [25] for a discussion
of various wireless multiple access scenarios and interference
models that fit this general framework). The set R(w) can
also handle models that allow simultaneous download from
multiple helpers (for instance, in a cellular CDMA system with
macro diversity), or information-theoretic capacity regions of
various network topology models, inclusive of broadcast and
interference constraints (e.g., [26]). We also mention here
that this framework can also handle non-wireless scenarios.
For example, it can constrain [up,(t)] to be permutation
matrices associated with packet switch constraints. However,
as explained in Section I, it is desirable for current and future
systems to take advantage of massive MU-MIMO capabilities
at the helpers. Section V specifies R(w) for the relevant
wireless scenario with helpers employing massive MU-MIMO,
which is the primary focus of this paper. The simulation results
in Section VII are carried out under the specific wireless model
defined in Section V.

Remark 1: Each user u maintains Q,(t) and updates
it according to (3) every transmission slot t. A small amount
of bookkeeping is also required by the user to associate the
bits Q.,(t) with their appropriate chunks. Specifically, each
user maintains a list of chunks it has requested but not yet
fully received, along with the quality modes it requested for
each chunk. It can receive new bits on slot t only from a
helper that has its requested file, and only if Q,(t) > 0.
In order to download these bits, the user fetches them (or
“pulls” them) from the selected helper. In practice this can
be implemented by an HTTP request pointing at a specific
block of data corresponding to the desired quality level of the
current video chunk, resulting in a DASH-like approach.

III. PROBLEM FORMULATION AND STREAMING POLICY

When optimizing the users’ video QoE we have to take into
account that users compete for the same shared transmission
resource (the network wireless spectrum and the helpers spatial
downlink data streams) and, given the fact that the users are
placed in arbitrary positions with respect to the helpers, their
attainable service rates may be quite different. Hence, some
fairness criterion must be enforced. In addition, we need to
carefully define the notion of QoE, since the adaptive nature of
the streaming process involves a possibly time-varying quality
level across the streaming sessions.

As already mentioned briefly before, we remark once again
that, in order to obtain a tractable formulation, we adopt the
divide and conquer approach pioneered in [13]:

1) We first formulate the NUM problem (5), where the
network utility function is a concave and component wise
non-decreasing function of the time averaged users’ requested
video quality and the maximization is subject to the stability
of all the request queues in the system.

2) We then solve the NUM problem using the Lyapunov Op-
timization framework and obtain the drift-plus-penalty (DPP)
policy which adapts to arbitrarily changing network conditions
and in fact is optimal (with respect to the NUM problem) under
non-stationary and non-ergodic evolution of the underlying
network state process.

3) Since all the request queues in the system are ensured to
be stable, the requested video chunks are eventually delivered.
However, in order to ensure that all the video chunks are
delivered within their playback deadline, it suffices for every
user to choose a pre-buffering time which exceeds the largest
delay with which a chunk is delivered. In particular, when
the maximum delay of each request queue in the system
admits a deterministic upper bound, setting the pre-buffering
time larger than such a bound makes the playback buffer
under rate zero. However, for a system with arbitrary (non-
stationary, non-ergodic) evolution of the underlying network
state process (for e.g., arbitrary user mobility and arbitrary per-
chunk fluctuations of video coding rate due to VBR coding),
such deterministic upper bounds on the maximum delay may
not exist or are too loose to be useful in practice. Hence,
in Section VI, we propose a method to locally estimate the
delays with which video chunks are delivered, such that each
user can calculate its pre-buffering and re-buffering times to
be larger than the locally estimated maximum delay. Through
simulations in Section VII, we demonstrate the effectiveness
of the combination of the DPP policy and the adaptive pre-
buffering scheme.

In the rest of this section, we focus on the NUM
problem formulation and its solution through the DPP ap-
proach. Throughout this work, we use the following no-
tation for the time average quantity of interest: we let
Dy = limy oo + VU E[Dy, (my(7),7)] denote the time
average of the expected quality of user w, and @, :=
limt%m%Zi;loE[Qu ()] to be the time average of the
expected length of the request queue at user u, assuming
that these limits exist. More in general, we use the overline
notation to indicate limiting time-averages.®> Let ¢, () be a
concave, continuous, and non-decreasing function defining
network utility vs. video quality for user u € /. The NUM
problem that we wish to solve is given by:

maximize Z bu(Dy) (5a)
ueU

subject to Q, < ooV u el (5b)
[nu(t)] € R(w(t)) V' ¢ (5¢)
my(t) € {1,2,...,Ng,} Yueld, Vt, (5d)

where requirement of finite (), corresponds to the strong
stability condition for all the queues [27].

3The existence of these limits is assumed temporarily for ease of exposition
of the optimization problem (5) but is not required for the derivation of the
scheduling policy and for the proof of Theorem 1.
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By appropriately choosing the functions ¢, (-), we can
impose some desired notion of fairness. For example, a general
class of concave functions suitable for this purpose is given
by the a-fairness network utility, defined by [28]

a=1

_ [ logx
¢u(x)—{ ””11__; a>0, a#l ©

In this case, it is well-known that o = 0 yields the maxi-
mization of the sum quality (no fairness), a — oo yields the
maximization of the worst-case quality (max-min fairness) and
« = 1 yields the maximization of the geometric mean quality
(proportional fairness).

In order to solve problem (5) using the stochastic optimiza-
tion theory developed in [27], it is convenient to transform it
into an equivalent problem that involves the maximization of
a single time average. This transformation is achieved through
the use of auxiliary variables ~,(¢) and the corresponding
virtual queues ©,,(¢) with buffer evolution:

Ou(t+1) = max {0, (t) + vu(t) — Dy, (my(t),t),0}. (7)

Consider the transformed problem:

maximize Z Gu(Va) (8a)
ueld

subject to Q, < ooV u el (8b)
Y. <D,Vu elU (8c)
DM <y () <KDYy € U, Vit (8d)
[nu(t)] € R(w(t)) V' t (8e)
my(t) € {1,2,...,Np }Yuecl, Vi, (8f)

where D™ and D™ are uniform lower and upper bounds
on the quality function Dy, (-,t). Notice that constraints (8c)
correspond to stability of the virtual queues ©,,, since 7,, and
D,, are the time-averaged arrival rate and the time-averaged
service rate for the virtual queue given in (7). We have:
Lemma 1: Problems (5) and (8) are equivalent.

Proof: The proof is well-known (see [13], [27] for in-

stance) and is omitted due to space constraints. [ |

A. The Drift-Plus-Penalty Expression

Let Q(¢) denote the column vector containing the backlogs
of queues Q. (t) V u € U, let O(¢) denote the column vector
for the virtual queues ©,,(t) ¥V u € U, ~(t) denote the column
vector with elements 7, (t) V u € U, B(t) denote the column
vector with elements By, (m,(t),t) V v € U, D(t) denote
the column vector with elements Dy, (m,(t),t) V u € U and
w(t) denote the column vector with elements (1, (t) V u € U as

>
defined in (4). Let G(¢) = [QT(t), @T(t)} be the composite
vector of queue backlogs and define the quadratic Lyapunov
function L(G(t)) = 1GT(¢)G(t). Intuitively, taking actions
to push L(G(t)) down tends to maintain stability of all queues.
Define A(G(t)) as the one-slot drift of the Lyapunov function

at slot ¢ :
A(G(t) £ L(G(t +1)) — L(G(t)) 9)

The DPP algorithm is designed to observe the queues, the
current By, (-,t), Dy, (-,t) for all users v and w(t) on each

slot ¢, and to then choose quality mode m,,(t) for all users
u, matrix of transmitted bits (pp.(t)) € R(w(t)) and ~,(t)
subject to D™ <, (t) < D™ to minimize a bound on the
following drift-plus-penalty expression:

AGEH) -V Y 6u(ru(t)

ueU

(10)

where V' is a non-negative weight that affects a performance
bound. Intuitively, the value of V affects the extent to which
the control actions on slot ¢ emphasize utility maximization in
comparison to drift minimization.

Lemma 2: Under any control algorithm, the drift-plus-
penalty expression satisfies:

AGH) =V Y du(ru(t)

ueU

SK=V Y dulru®) + (B() — u(t)" Q)

ueU

+(v() D) O@). a1

where K is a uniform upper bound on the term

(12)

under the realistic assumption that the chunk sizes, the trans-
mission rates and the video quality are bounded.

Proof: Expanding the quadratic Lyapunov function, we
have

L(G(t +1) = L(G()

= 2@+ 1Q+1) - QT()Q)

+ % (@T(t +1)O(t+1) - @T(t)Q(t)>

|(max{Q(t) — u(t) + B(1),0}) (max{Q(t) — p(t)
+B(1),0}) - Q"(1)Q()]

[(max{©(t) +7(t) - D(t), 0})" (max{O(t)

+4(t) - D), 0}) - ©T (e (1),

1
2

+

N | —

(13)

where we have used the queue evolution equations (3) and
(7) and “max” is applied componentwise.

Using the fact that for any non-negative scalar quantities
©,~v and D we have the inequalities

(max{© +v—D,0})? < (@4~ —D)?

= 0>+ (y—D)*+20(y - D),
(14)
we have
L(G(t+1)) - L(G(1)
< 5 (B() — p(0) (B() — (1) + (B(#) — (1) Q)
+5 (1(0) = D) (1) = D) + (4() - D(r)) ©(1)

15)
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Under the realistic assumption that the chunk sizes, the
transmission rates and the video quality measures are bounded
above by some constants, independent of ¢, the term

LB - )" B@) - u)

2
+ (v(t) = D) (v(t) - D())]

is bounded above by a constant K. Using this fact and adding
the penalty term —V )" . éu(74(t)) on both sides of the
inequality (15) yields the result. ]

The DPP policy described below acquires informa-
tion about the queue states G(t), the rate-quality profile
(By,(-,t), Dy, (-, t)) for all users u and the channel state w(t)
at every slot ¢, and chooses control actions m,(t), [tr(t)] €
R(w(t)) and 7, (t), subject to DN < ~, () < DX jp
order to minimize the last three terms on the right hand side
of the inequality (11).

The non-constant part in the right hand side of (11) can be
re-written as:

(16)

[BT(#)Q(t) -DT)O#)] — [V D dul(ru(t) =7 (1)O(1)

uel
— 1" (1)Q().

The resulting control actions are given by the minimization,
at transmission slot ¢, of the expression in (17). Notice that
the first term of (17) depends only on m,,(t) ¥V u € U, the
second term of (17) depends only on ~(¢) and the third term
of (17) depends only on (t). Thus, the overall minimization
decomposes into three separate sub-problems, yielding the
layered scheme given below.

a7

B. The Drift-Plus-Penalty Policy

We address the minimization of (17) focusing separately on
its (separable) components.

1) Control actions at the user nodes (pull congestion con-
trol): The first term in (17) is given by

Z {Qu(t)Bfu (mu(t)at) - eu(t)Dfu, (mu(t)at)} .

ueU

(18)

The minimization variables m,, (t) appear in separate terms of
the sum and hence can be optimized separately over each user
u € U. Thus, each user observes the queues @, (t), ©,(t) and
is aware of the the rate-quality profile (By, (-,t), Dy, (-, %)) on
slot ¢ (video metadata), so that it can choose the quality level
of the requested chunk at every video chunk slot ¢, i.e., at
transmission slots ¢ € {in : i € Z} as:

my(t) = argmin {Q,(t) By, (m,t) — ©,(t)Dy, (m,t)

cme{l,...,Ng}}. (19

As defined in (1), for all transmission slots ¢ which are
not integer multiples of n, there is no chunk requested and
therefore By, (m,,(t),t) and Dy, (m,(t),t) are equal to 0. The
second term in (17), after a change of sign, is given by

S {Vou () — (0O (1)}

ueU

(20)

Again, this is maximized by maximizing separately each
term, yielding the simple one-dimensional maximization (e.g.,
solvable by line-search):

Yu(t) = argmax { Vo (y) — O, (t)y : 7 € [Dn, D)}
2D

We refer to the policy (19) and (21) as pull congestion
control since each user u selects the quality level at which
this chunk is requested by taking into account the state of
its request queue .. It chooses an appropriate video quality
level that balances the desire for high quality (reflected by
the term —©,(t)Dy, (m,t) in (19)) and the desire for low
request queue lengths (reflected by the term Q. (¢)By, (m,t)
in (19)) and then opportunistically pulls the chunk at that
video quality level from the helpers in its current vicinity.
This policy is reminiscent of the current DASH technology
[5], where the client (user) progressively fetches a video file by
downloading successive chunks, and makes adaptive decisions
on the source encoding quality based on its current knowledge
of the congestion of the underlying server-client connection.
Notice also that, in order to compute (19) and (21), each user
needs to know only local information formed by the locally
maintained request queue backlog @, (t) and by the locally
computed virtual queue backlog ©,,(¢).

2) Control actions at the helper nodes (transmission
scheduling): At transmission slot ¢, the network controller
observes the queues @, (t) of all users u and the topology
state w(t), and chooses the feasible instantaneous rate matrix
[tru(t)] € R(w(t)) to maximize the weighted sum rate of the
transmission rates achievable in transmission slot ¢. Namely,
the network of helpers must solve the Max-Weighted Sum
Rate (MWSR) problem:

maximize Z Z Qu(t) pohu(t)
heH uweN (h)

subject to [ppu(t)] € R(w(t)) (22)

where R(w(t)) is the feasible instantaneous rate region of the
network at slot . It is immediate to see that, after a change
of sign, the maximization of the third term in (17) yields the
problem (22).

Remark 2: In summary, the implementation of the DPP
policy decomposes into the pull congestion control decisions
at the users and the transmission scheduling decisions at the
helpers. The pull congestion control decisions (19) and (21)
are implemented independently at each user u using only the
local knowledge of the queue lengths Q,,(t) and O, (t). Thus,
each user u can implement (19) and (21) without having to
learn such information over-the-air from other nodes in the
network. On the other hand, in order to implement the general
MWSR transmission scheduling decision (22), the network of
helpers need to know the request queues Q. (t) of the users
and the feasible instantaneous rate region of the network
R(w(t)). Under certain system assumptions, the solution to
the general MWSR problem lends itself to a simple distributed
implementation where each helper h makes its own scheduling
decisions using the knowledge of the Q,(t)’s for the subset
of neighboring users v € N(h). This information can be
learnt over-the-air at the cost of a small protocol overhead.
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Notice that such overhead is nothing more than a rate priority
request in the form of a recursively computed rate weight,
as currently implemented in Proportional Fairness scheduling
[29]. Therefore, it is expected that the implementation of
the proposed DPP is not significantly more complicated than
current DASH on top of standard PHY resource allocation
schemes. When particularizing the general DPP policy to the
massive MIMO multicell network of Section V, we will see
that the proposed Wiflix falls in this fortunate class of systems
(see also Remark 4).

IV. POLICY PERFORMANCE

As outlined in Section II, VBR video yields time-varying
quality and rate functions Dy(m,t) and Bjf(m,t), which
depend on the individual video file. Furthermore, arbitrary
user motion yields slower time variations of the pathloss
coefficients at the same time-scale of the video streaming
session. As a result, any stationarity or ergodicity assumption
about the topology state w(t), the rate function Bf(m,t) and
quality function D¢(m,t) is unlikely to hold in most practi-
cally relevant settings. Therefore, we consider the optimality
of the DPP policy for an arbitrary sample path of the topology
state w(t), the quality function D(m,t) and the rate function
Bj(m,t). Following in the footsteps of [27], [30], we compare
the network utility achieved by our DPP policy with that
achieved by an optimal oracle policy with T-slot lookahead,
i.e., knowledge of the future sample path over an interval
of length T slots. Time is split into frames of duration T’
slots and we consider F' such frames. For an arbitrary sample
path of w(t), Dy(m,t) and B¢(m,t), we consider the static
optimization problem over the j-th frame

1 (+1)T-1
maximize Z bu 7 Z Dy, (my (1),7) (23)
uweU T=3T
1 (G+1)T-1
subject to T T;T [Bfu (My(7),7) = pu (7)] <0
Yueld, 24)

[ (T)] € R(w(7))

V7 oe {JT,...,(j+1)T -1}, 25
mu(7) € {1,2,...,Ns, } Vuel,

V7 oe [T,...,(j+1)T —1}, (26)

and denote by gb;.’pt the maximum of the network utility
function for frame j, achieved over all policies which have
future knowledge of the sample path over the j-th frame
subject to the constraints (24)-(26). We have the following
result:

Theorem 1: The DPP scheduling policy achieves per-
sample path network utility

> ¢u (D)

ueU

1= 1
> lim — E opt _ —
> Flgn 2 ?; 0] < > 27

with bounded queue backlogs satisfying

FT—-1
Jim % > (Z Qu(m)+ @u(r)> <O(V) (28
=0 ueld ueU

where O(1/V) indicates a term that vanishes as 1/V and
O(V) indicates a term that grows linearly with V, as the policy
control parameter V' grows large.

Proof: See Appendix A. [ ]

An immediate corollary of Theorem 1 is:

Corollary 1: For the system defined in Section II, when the
evolution of the topology state w(t), the rate function B (m, t)
and the quality function Dy(m,t) is stationary and ergodic,
then

(29)

> éu(Du) > ¢ =0 (é) :

ueU

where ¢°P! is the optimal value of the NUM problem (5) in
the stationary ergodic case, and

D> Qu+ > 8. <o)

uel ueU

(30)

In particular, if the network state is i.i.d., the bounding term
in (29) is explicitly given by O(1/V) = £, and the bounding
term in (30) is explicitly given by m, where
¢min = ZuEU (bu(-DqILnin)v (bmax = Zugu d)u(DZlaX)’ e>0
is the slack variable corresponding to the constraint (24), and
the constant /C is defined in (11).

Proof: See Appendix A. [ ]

V. WIRELESS SYSTEM MODEL WITH MASSIVE
MU-MIMO HELPERS

In this section, we first specify the region of instantaneous
service rates R(w(t)) for the specific PHY layer model
comprising of massive MU-MIMO at each helper. We then
specialize the weighted sum-rate maximization problem (22)
to this system. By exploiting the channel-hardening effect
of high dimensional MIMO channels, we observe that the
MWSR problem is optimally solved by a low complexity
greedy algorithm which can be implemented in a distributed
manner with each helper independently choosing user subsets
for MU-MIMO beamforming.

A. Helpers with Massive MU-MIMO

For simplicity of exposition, we present the system under
the assumptions that the user fading channel vectors are
formed by i.i.d. (across time-frequency slots) zero-mean unit-
variance complex circularly symmetric coefficients, which are
perfectly known at the helper transmitters. In the spirit of
massive MIMO [19], we consider per-base station MU-MIMO
precoding, i.e., we do not allow base station cooperation.
Therefore, the inter-cell interference at each user receiver is
treated as additive noise. Extensions and alternative (more
realistic) PHY models are briefly discussed in Remark 3 at
the end of this section. Each helper h, equipped with a large
number of antennas M, implements MU-MIMO to serve the
users A'(h) in its vicinity. As a result, helper h can serve
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simultaneously, in the spatial domain, any subset of size
not larger than min{M,|N(h)|} of the users in N (h). We
further assume that each helper performs Linear Zero-Forcing
Beamforming (LZFBF) to the set of selected users (referred
to in the following as “active users”).

The wireless channel is modeled by the well-known and
widely accepted OFDM block-fading model, where at each
transmission slot ¢, the channel corresponding to the helper-
user link (h,u) in &, on the OFDM subcarrier v = 1,...,V
is given by

Yu(t; V) Jhu(t hu (t; V)Vt v)xp(t; v)
+ Z V(O &, (6 V) Vi (6 0) X (5 1)
h'#£h
+ zu(t; V), 3D

where &, (t;v) is the M x 1 column vector of channel
coefficients from the antenna array of helper h to the receiving
antenna of user u, g, (t) is the large-scale distance dependent
pathloss from helper / to user u (independent of the subcarrier
index v since the pahtloss is frequency-flat), Vi (¢;v) is the
downlink precoding matrix of helper h, and xp(¢;v) is the
corresponding vector of transmitted complex symbols. Also,
2, (t; ) denotes the additive Gaussian noise at the u-th user
receiver. Notice that (31) takes fully into account the inter-cell
interference of the signals sent by other helpers h’' # h, on
the link from helper h to user u.

We use Sp(t) to denote the subset of users scheduled for
transmission by helper A in slot ¢. Collecting the channel vec-
tors &, 1, (t;v) for u € Sp(t) as the columns of a M x |Sp(t)]
channel matrix = (¢t;v), the LZFBF precoding matrix of
dimension M x |Si(t)| is given by the column-normalized
pseudo-inverse

V(t;v) = En(t;0)(ER (G 0)EL () TIAY2 (5y) (32)

where A(t;v) is a diagonal matrix with u-th diagonal element
given by
1

(=) |

([-]uw denotes the u-th diagonal element of the matrix argu-
ment). Using the fact that Z} (t; )V}, (t;v) = AV2(t;v), the
resulting downlink channel to user u € Sp,(t) becomes

+ > VoanaO& (V) Vi (tv)x ()

h'#h
+ 2, (t; V).

Au(t;v) =

(33)

uw

(34)

Our goal here is to obtain an accurate yet simple character-
ization of the feasible instantaneous rate region R(w(t)) for
the channel model (34), where the network state is defined
by the pathloss coefficients (reflecting the network topology),
i.e., w(t) = [gnu(t)]. To this purpose, we shall exploit some
standard results in large random matrix theory (see [17], [31]-
[34]), consider achievable rates under Gaussian random coding
and worst-case uncorrelated additive noise plus interference

[35], and a simple application of Jensen’s inequality. By divid-
ing the channel coefficient by v/M and scaling up the helpers’
transmit power by M we obtain an equivalent channel model,
for which the following deterministic approximation holds: as
M and |S,(t)| become large with fixed ratio “S“( <1, itis
well-known that

Aultiv) ~ (1 - SOt 1)

where the approximation error A, (t;v) —

(35)

(1 _ |Sh(12|—1)
is asymptotically Gaussian with a variance that vanishes as
O(1/M?) [31], [32]. By treating the inter-cell interference
as (uncorrelated) additive noise, and assuming a very large
number of time-frequency symbols per slot, it is immediate to
show that the following rate is achievable:

Ry (t) =

v _ MP,
3 Zlog 1+ Rt ) 1) s,y MP,,
Vi3 L3 gnra(0)1€ha (6 ) Vi (8 ) 115
h'#h
(36)

Now, using the deterministic approximation (35), replacing the
arithmetic mean over the subcarrier index with an ensemble
average over the fading statistics, and using Jensen’s inequal-
ity, we find the desired approximate achievable rate expression
as

Rhu %
M—|SiB+1
EX0]
ghu( )Ph )
(37)
L 5 gnra ()€ (6 0) Vi (1) |2 30
h'#h
M —|S,(t)|+1
2 log (“ s~
Ghu(t)Pr
(38)
L+ 5 gnraOB[€R (6 0) Vi (8 ) 2] 5t
h'#h
—log | 14 21 PHOLE e (39)

14+ > gwu(t)Py |’
h'#h

(see also [34] for a similar argument). In (38) we used
the fact that, by construction of the normalization of the
LZFBF precoder in (32), we have E[||¢5, ., (t; ) Vi (t;1)]12] =
LBV (60) Vi (60)]) = S (8)]/M.

For the sake of notational simplicity, we define the rate (raw)
vectors ¢, (Sp(t),t) € R‘f‘ with components

0 if u ¢ Sp(t)
chu(Sh(t),t) = { SRu(t) ifue 5;(15)

where Ry, (t) is given by (38) and s denotes the number of
time-frequency symbols per slot. Notice that for each helper
h and each set of scheduled users Sy, (t) € N(h) the vector

(40)
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cn(Sh(t),t) yields the number of information bits that the
users u € Sp,(t) can successfully decode from helper h during
slot ¢. Hence, the desired concise expression of R(w(t)) is
given as follows:

Proposition 1: Feasible instantaneous rate region: For
every t, the region of instantaneous feasible rates R(w(t))
is formed by all |H| x |U| rate matrices [ty (t)] whose h-th
row is ¢, (Sk(t),t), for some Sy, (t) € N(h), for all h € H.
(]

We assume that the receiver at every user is “smart” in
the sense that it can decode multiple streams in the same
transmission slot, i.e., user u, in transmission slot ¢, can receive
Hu(t) = D henr(u) Mhu(t) information bits by simultaneously
downloading jip,,(t) bits from helpers h € N (u). Notice
that each stream is achievable (in an information theoretic
sense), by treating the other streams as Gaussian noise, i.e., we
do not make use of multiuser detection schemes (e.g., based
on successive interference cancellation) at the user receivers.
Therefore, our rate expressions are representative of what can
be achieved with today’s user device technology.

For the sake of comparison, in the simulation results of
Section VII we also consider a dumb receiver heuristic where
each user u decodes only the strongest data stream and
therefore downloads only maxj,ear(u) tinu (t) information bits.
While the dumb receiver heuristic is a degradation of the
optimal solution involving advanced receivers, the simulation
results in Section VII show that this degradation is almost
negligible. This also implicitly indicates that, in most relevant
practical topologies and pathloss scenarios, it is unlikely that
the same user is scheduled by more than one helper in the
same transmission slot, i.e., S (t) NSy (t) is empty with high
probability for h # h'.

Remark 3: Although here we have chosen, for the sake
of clarity, to consider the somehow simplistic case of i.i.d.
zero-mean channel vectors and perfect channel state infor-
mation, we hasten to say that introducing deterministic ap-
proximations of the user instantaneous rates in more involved
and realistic cases including base-station antenna correla-
tion [36]-[40], and/or pilot-based channel state information,
typically obtained through uplink pilots and TDD reciprocity
[19]-[21], [41] and including the effect of pilot contamina-
tion, is just a matter of a simple exercise. However, since
the focus of this paper is the cross-layer optimization of
video-streaming over a multicell multiuser wireless network
employing (massive) MU-MIMO, but not to give a tutorial
presentation of well-known rate deterministic approximations,
which are already provided elsewhere, we have chosen to stay
with the simple model defined above. In fact, while the feasible
instantaneous rate region takes on the same form given in
Proposition 1, the expression of the instantaneous feasible
rates may be significantly more complicated. As a simple
example, note that if one wishes to take into account the uplink
pilot overhead, the number of symbols per slot s introduced
before should be changed into s —|Sp,(t)|, since on each slot
the users u € Sy (t) must transmit mutually orthogonal uplink
pilots, requiring |Sy,(t)| symbols per slot [19].

B. Transmission Scheduling with Massive MU-MIMO Helpers

We now particularize the problem (22) to the specific
wireless system with massive MU-MIMO helpers. Since the
rate vectors at each helper (i.e., the rows ¢, (Si(t),t)) can be
chosen independently at each helper, (22) decouples into sep-
arate maximizations for each helper h given by the following
discrete optimization problem:

maximize Z Q. () i (t)
weN (h)
SUbjeCt to {;U’hu(t)}ueN(h) € {Ch(8h7t) :Sp C N(h)}
(4D

This corresponds to maximizing, at each helper h, the
weighted sum rate over the discrete set of vectors {cp,(Sp, 1) :
S, C N(h)} with an exponential number 2VU)!I — 1 of
choices for the active user subset. The key observation that
allows to eliminate this exponential complexity is that when
helper h schedules the subset Sj of users for MU-MIMO
beamforming, the rate of each user v € S;, depends only on
the cardinality |Sp,| but not on the identity of the members of
the subset Sp. This is an important consequence of the mas-
sive MIMO “deterministic”’ rate behavior, due to the channel
hardening in the presence of a large number of antennas. As
a consequence, for a fixed subset size S, the subset U/*(S,t)
of users maximizing the weighted sum rate can be obtained
by sorting the users in A'(h) according to the weighted rate
M—S+1 Ppgnu(t)

Qu(t) log 1+ S + (1+Zh/¢h thu,gh,"u,(t))
greedily the best S users. Thus, we have

and choosing

Uy (S,t) =
argmax-S {Qu(t) log <1 + M+S+1 X
Prgnu(t) .
1+ > Prugnal) | " SN, @)

h'#h

where argmax-S denotes the operation of choosing the first .S

elements of a set of real numbers sorted in decreasing order.
This sort & greedy selection procedure is repeated for every

subset size yielding all the subsets {U/*(S,t) ‘SAL(lh )l Then,

from these subsets, the subset &/* () which has the maximum

weighted sum rate is picked as

Uy (t) =
M-S+1
WBlog [1+ —2 "=
argmax Z Qu(t) og( + 5 X
u€U; (S,t)
Phgnu(t)
D UR (S, )V S (43)
L4+ > Puugnu(t) #(51)
h'#h
yielding the optimal solution to (41).
A typical sorting  algorithm  has  complexity

O (IN'(h)|log(|N'(h)])) and since the sorting procedure is
repeated for every subset size, the algorithm has complexity
O (IN(h)|*log(IN'(h)]) which improves upon existing user
scheduling algorithms [42] for the MIMO broadcast channel.
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Remark 4: Notice that for a practical implementation
of the transmission scheduling algorithm, each helper h first
needs to learn locally the request queue lengths @, of the
users in its neighborhood N'(h). Then, it has to greedily
pick the user subset Uy (t) according to (43) and again learn
the small scale fading channel vectors &, of the users in
U (t) for LZFBF pre-coding through some form of channel
state feedback from the users. Furthermore, the pip,,(t) video-
encoded bits transmitted by helper h to user u should corre-
spond to the chunks at the head of line of the request queue
Q. encoded at the quality level chosen by user u in a previous
video chunk slot based on the pull scheme (19). Thus, each
user u must also broadcast the metadata (chunk number and
quality level) of the chunks at the head of line along with .,
to the helpers in N (u).

VI. PRE-BUFFERING AND RE-BUFFERING CHUNKS

As described in Section II, the playback process consumes
chunks at a fixed playback rate 1/T,,, (one chunk per video
chunk slot ¢), while the number of chunks received per
video chunk slot is a random variable due to the fact that
w(t) is a random process and the transmission resources are
dynamically allocated by the DPP scheduling policy. In order
to prevent stall events, each user w should choose its pre-
buffering time 7, to be larger than the maximum delay with
which a chunk is delivered to it. However, such maximum
delay is neither deterministic nor known a priori. Moreover,
even in special cases where the maximum delay of each
request queue in the system admits a deterministic bound
(e.g., see [25]), such a bound may be loose and setting the
pre-buffering time to be larger than that bound might be
simply unacceptable in a practical system implementation.
Therefore, in this section, following our previous work in [13],
we propose a simple method where each user u adaptively
determines the pre-buffering time 7, on the basis of estimates
of local delays obtained by monitoring the delivery times in a
sliding window spanning a fixed number of video chunk slots.
The key difference with respect to [13] is that the present
scheme is much simpler, since the proposed pull congestion
control ensures that chunks are received in the right playback
order.

An example of the playback buffer dynamics is illustrated in
Table I and Fig. 1. The table indicates the chunk numbers and
their respective arrival times. The blue curve in Fig. 1 shows
the time evolution of the number of chunks downloaded in
the playback buffer. The green curve indicates the evolution
with time of the number of chunks consumed by playback.
The playback consumption starts after an initial pre-buffering
delay T, = d, as indicated in the figure. At any video chunk
slot ¢, the chunk requested at i —d is expected to be available in
the playback buffer. However, if the chunk is delivered with a
delay greater than d, the two curves meet and a buffer underrun
event occurs. In order to prevent these events, each user u
should choose its pre-buffering time 73, to be larger than the
maximum delay.

More formally, the goal here is to determine the delay 77,
after which user w should start playback, with respect to the

time at which the first chunk is requested (beginning of the
streaming session). We define the size of the playback buffer
W, (i) as the number of chunks available in the buffer at video
chunk slot ¢ but not yet played out. Without loss of generality,
assume that the streaming session starts at ¢ = 1. Then, ¥,,(4)
evolves at the video timescale over video chunk slots 7 €
{1,2,3,...} as:

U, (i) = max {W, (i — 1) — 1{i > T,,},0} + a;.  (44)

where 1{K} denotes the indicator function of a condition or
event K and q;, is the number of chunks which are completely
downloaded in the transmission slots between ¢t = (i — 1)n
and ¢t = in. Note that the playback buffer is updated every
video chunk slot 7, i.e., at the time scale of seconds. Thus,
if the download of a chunk is completed between ¢t = (i —
1)n and ¢t = in, from the playback buffer’s perspective, the
chunk is considered to have arrived at the end of the i-th
video chunk slot, i.e., at ¢ = in. Let A, denote the video
chunk slot in which chunk k arrives at the user and let W,
denote the delay (measured in video chunk slots) with which
chunk £ is delivered. Note that the longest period during which
U, (@) is not incremented is given by the maximum delay to
deliver chunks. Thus, each user u needs to adaptively estimate
Wy, in order to choose T,. In the proposed method, at each
video chunk slot ¢ = 1,2, ..., user u calculates the maximum
observed delay F; in a sliding window of size A, by letting:

Ei=max{W; : i —A+1< A <i}. (45)

Finally, user w starts its playback when U, crosses the level
pE;, ie, T, = min{i : U,(i) > pE;} where p is an
algorithm control parameter. If a stall event occurs at video
chunk slot 7', i.e., ¥; = 0 for ¢ > T, the algorithm enters a re-
buffering phase in which the same algorithm presented above
is employed again to determine the new instant 7'+ 7;, + 1 at
which playback is restarted. With slight abuse of notation, we
re-use T, to denote the re-buffering delay although it is re-
estimated using the sliding window method at each new stall
event.

VII. NUMERICAL EXPERIMENT

Our simulations are based on a network topology formed
by a 80mx80m region with 5 helpers (indicated by o’s) as
shown in Fig. 2. The users (indicated by #’s) are generated
according to a non-homogeneous Poisson point process with
higher density in a central region of size %mx %m, as shown
in Fig. 2.

Each helper has M antennas and serves user sets of size upto
S, with transmission power of 35dBm. The pathloss from a
helper to a user is given by ﬁ with d representing the
helper-user distance (assuming a torus wrap-around model to
avoid boundary effects). We assume a PHY fame duration of
10 ms and a total system bandwidth of 18 Mhz as specified in
the LTE 4G standard. With one OFDM resource block (7 x 12
channel symbols) spanning 0.5 ms in time and 180 Khz in
bandwidth (corresponding to 12 adjacent subcarriers each with
15 KHz bandwidth), each transmission slot spans s = 84 x

100 x 20 channel symbols.
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TABLE I: Arrival times of chunks

Chunk number | 1 | 2 | 3 | 4 5 6 7 8 9 10 | 11 | 12 | 13
Arrival time 3141691011 |12 ] 13|16 | 17 | 19 | 20 | 21
== no. of chunks downloaded in the playback buffer
7 == no.of chunks consumed by playback
T d
e SR = w6

§ 7
video chunk slot (i)

Fig. 1: Evolution of number of ordered and consumed chunks
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Fig. 2: Simulation setup

We assume that all the users request chunks successively
from VBR-encoded video sequences. Each video file is a long
sequence of chunks, each of duration 0.5 seconds and with a
frame rate 30 frames per second. We consider a specific video
sequence formed by 800 chunks, constructed using several
standard video clips from the database in [43]. The chunks
are encoded into different quality modes with the quality index
measured using the Structural SIMilarity (SSIM) index defined
in [44]. The chunks from 1 to 200 are encoded into 8 quality
modes with an average bitrate of 631 kbps. Chunks 201 to 400
are encoded in 4 quality modes at an average bitrate of 3908
kbps. Similarly, chunks 401 — 600 and 601 — 800 are encoded
into 4 and 8 quality modes with average bitrates of 6679 kbps
and 556 kbps respectively. In the simulation, each user starts its
streaming session of 1000 chunks from some arbitrary position
in this reference video sequence and successively requests
1000 chunks by cycling through the sequence.

We choose the utility function ®,(-) = log(-) V u € U
to impose proportional fairness. We set the pre-buffering
algorithm control parameter (described in Section VI) p = 3.
We simulate our algorithm for the layout shown in Fig. 2 (with
around 500 users generated according to a non-homogenous
Poisson point process as explained above). At ¢ = 1, all the
users simultaneously start streaming 1000 chunks.

We studied the performance of our algorithm with M =
40 antennas and maximum active user subset size S = 10
for different values of the policy control parameter V' and

observed that both the QoE metrics average video quality and
the % of time spent in buffering mode are satisfactory for the
choice of V' = 2 x 1014, We use that value for the rest of the
simulations in this section.

We now study the performance loss experienced under
the dumb receiver heuristic where the receiver at every user
u decodes only the strongest signal and downloads only
maxpe () Mhu(t) in contrast to the macro diversity advanced
receiver which can decode multiple signals simultaneously
and download all the 3 () au(t) bits. Using M = 40
and S = 10, we simulate our algorithm and plot the CDF’s
over the user population of a) the average video quality b)
the average delay in the reception of video chunks measured
in video chunk slots and c¢) the % of playback time spent in
buffering mode in Figs. 3a, 3b and 3c respectively. We observe
that the performance loss in using a dumb receiver is fairly
negligible and therefore use a dumb receiver for the rest of
the simulations in this section.

We next study the QoE improvement when MU-MIMO
is deployed at the helpers in place of legacy single-user
MIMO (SU-MIMO) systems. We plot the CDF over the user
population of the same video streaming QoE metrics as in
the previous figures for three different cases 1) MU-MIMO
with M 40 antennas and maximum active user subset
size S = 10; 2) MU-MIMO with M = 20 antennas and
maximum active user subset size S = 5; 3) SU-MIMO
with M 10 antennas. From Figs. 4a, 4c and 4b, we
can observe that there is significant improvement of video
streaming performance in terms of the average video quality,
the average delay (or alternately the percentage of time spent
in buffering mode) when MU-MIMO is employed at the PHY
layer in comparison to SU-MIMO. This clearly indicates that
upgrading current SU-MIMO systems to massive MU-MIMO
is a promising approach to meet the increasing demands for
HD video streaming.

Finally, we study the benefits of using a cross layer ap-
proach in comparison to a baseline scheme representative of
legacy wireless systems. We perform this comparison for the
case where every helper employs SU-MIMO with M = 10
antennas. For the baseline scheme, every user first fixes its
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Fig. 5: Performance comparison of a cross-layer

association with the unique helper that provides the maximum
received signal strength (RSSI) Prgp, and then uses the
same control decision (19) to choose the quality levels for
the chunks that arrive into the request queue every video
chunk slot. Furthermore, we assume that the helpers locally
employ Proportional Fairness scheduling [29], which under
the massive MIMO deterministic rate approximation reduces
to equal air-time scheduling. In brief, each helper h schedules
the users associated with it through the max-RSSI scheme in a
round-robin fashion across the transmission slots independent
of the request queue lengths at the users. This baseline

—baseline
cross layer

fraction of users with avg. delay < x
&
T

0 100 200 300 400 500 600
average delay measured in no. of video chunk slots(x)

approach with a baseline scheme.

scheme is representative of current practical systems where
the decisions across different layers are independent and there
is no interaction between the upper and lower layers. We plot
the CDFs over the user population of the average video quality
and the average delay in the reception of chunks in Figs. 5a
and 5b respectively. We can observe that the cross layer
scheme treats the users in a fair manner while the baseline
scheme favors some users at the expense of other users in the
system. Since the topology in Fig. 2 has a central region with
higher user density (hotspot) and the user-helper association
is max-RSSI based in the baseline scheme, most of the users
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in the hotspot get associated to the helper in the center of
the topology. As a consequence, this helper get overloaded
with many users associated to it. Moreover, since the helper
employs the round-robin scheduling policy in the baseline
scheme, each user in the hotspot gets scheduled only on a
small fraction of transmission slots resulting in poor video
quality and delay performance. However, the users which are
outside the hotspot get associated to the lightly loaded helpers
and therefore experience better video streaming QoE. This
explains the skewed nature of the distributions in Figs. 5a and
5b corresponding to the baseline scheme.

On the other hand, with the cross-layer scheme, the user-
helper association is dynamic and it changes during the course
of control policy depending on the transmission scheduling
decisions which in turn depend on the achievable rates of the
users and their dynamically changing request queue lengths.
Such dynamic user-helper association implicitly balances the
load across all the helpers in the system leading to fairness in
QoE performance across the user population.

VIII. CONCLUSIONS

In this work we propose WiFlix, a system for efficient
streaming of video content in a network of helpers capable of
implementing the advanced physical layer technique massive
MU-MIMO. We formulate a NUM problem to maximize the
video streaming QoE of the users in the network and solve it
using the Lyapunov Optimization technique to derive a control
policy which decomposes into congestion control decisions at
the users and transmission scheduling decisions at the helpers.
We devise a low complexity greedy user selection scheme
to solve optimally the combinatorial problem of scheduling
users for multiuser beamforming. The transmission scheduling
decisions consist of each base station choosing the subset of
users for MU-MIMO beamforming. By exploiting the channel
hardening effect of high dimensional MIMO channels, we
reduce the combinatorial weighted sum rate maximization
over the multiuser multicell network (which would involve
an exponentially complex exhaustive user selection, or some
polynomial complexity heuristic greedy user selection at each
base station) to a simple subset selection problem which is op-
timally solved by a low complexity algorithm. The algorithm is
amenable to easy implementation with local, independent user
scheduling decisions at the helpers. Similarly, the congestion
control decisions can be implemented independently at the
users with each user opportunistically pulling chunks from its
neighboring helpers and adapting the quality of the chunk re-
quests in response to changing network conditions reflected by
changing request queue sizes. Possible future considerations
include implementing and testing WiFlix in practice.

APPENDIX A
PROOF OF THEOREM 1 AND OF COROLLARY 1

As in Section III, we consider the following problem,
equivalent to (23) — (26), which involves a sum of time-
averages instead of functions of time averages and introduces

the auxiliary variables 7, (t):

(G+1)T—1
maximize Z Z ¢ (Yu(T)) (46a)
T=3T uweU
(G+1)T-1
subject to T ZT [Bf, (my(7),7) —pu (T)] SOV ueU
T=j
(46b)
] GHOT-1
T [yu (1) = Dy, (mu(7), 7)] SOV ucld

(46¢)

Vrel{jT,...,(j+1)T -1}
(46d)
[tna(T)] € R(w(7)) V7€ {§T,....(j+ )T -1}
(46e)
my(7) € {1,2,...,Ny, } Vuel,
Vre{iT,...,j+1)T -1}
(46f)

The update equations for the request queues @, V v € U
and the virtual queues ©, V u € U are given inT 3)
and in (7), respectively. Let G(7) = [QT(T),@T(T)} be
the combined queue backlogs column vector, and define the
quadratic Lyapunov function L(G(7) = §GT(7)G(7). Fix a
particular slot 7 in the j-th frame. We first consider the one-
slot drift of L(G(7)). From (15), we know that

(47)
where /C is a uniform bound on the term
5 (B~ w)T BE) — u(r))
+((7) =D (v(1) ~D(r)] @8

, which exists under the realistic assumption that the chunk
sizes, the transmission rates and the video quality measures
are upper bounded by some constants, independent of 7. We
choose /C such that

K>2k'k (49)

where k is a vector whose components are all equal to the
same number « and this number is a uniform upper bound on
the maximum possible magnitude of drift in any of the queues
(both the request queues @), and the virtual queues ©,,) in one
slot. With the additional penalty term —V 3 ./ éu(7u(T))
added on both sides of (47), we have the following DPP
inequality:
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L(G(T+1)) - —V Y dululr)
uel
<K+ (B(r) = (1)) Q(r) + (v(r) = D(7))" ()
~V Y dulu(r) (50)
ueU

Let the DPP policy which minimizes the right hand side
of the drift-plus penalty 1nequa11ty (50) comprise of the con-
trol actions {m.,(7)} J_JTTT "'Vou el {r )}(J_JTT)T !
and {(uhu(r))}(f;]l% . Since the DPP policy minimizes
the expression on the RHS of (50), any other policy com-
prising of the control actions {mZ(T)}(TJ;rle)Tfl YV ou €

. j+1)T— X j+1)T— .
Us {y* (D)2 and {(u, ()T would give a
larger value of the expression. We therefore have

L(G(r+1)) - ~V Y dulyulr))
ueU
<K+ (B (r) = p(r)" Q(7) + (v*(r) = D*(r))" ©(7)
VY 0ui () 5D
ucU

Further, we note that the maximum change in the queue
length vectors @, (7) and ©,(7) from one slot to the next is

bounded by k. Thus, we have for all 7 € {§7,...,(j+1)T —
1}
|Qu(T) = Qu(UT)| < (1 —jT)k Yuel (52)
|9.(7) —0,(T)| < (r—jT)k Yuel (53)
Substituting the above inequalities in (51), we have
L(G(r+1)) - VY buln(r)
ueU
<K+ (B (1) - p' (1) (QUT) + (r — §T)K)
+ (v () = D* (7)) (O(T) + (r — jT)k)
—VY bulri(n) (54)
ueU
Then, summing (54) over 7 € {jT,...,(j +1)T — 1}, we
obtain the T-slot Lyapunov drift over the j-th frame:
JT+T—1
LG+ 1)T) = LGUT) =V > > dulu(r)
T=jT ueU
JT+T—1 L
<kt (X0 @0 - w) aun
JT+T—1 AT
(T EO-w e -m)
JT+T—1 T
(20 @ -pre) e
JT+T—1 . R
(oo -D o) -im) w
JT+T—1
O DN PN CH (55)

Using the inequalities B*(7) — p*(7) < 2k, ~*(7) —
D*(7) < 2k in (55), we have
JT+T-1
LG((j+1)T) = LIGUT) =V D > duln(r)
=T ueU

R T

<kt (X0 @0 - W) un
+2 ( iij;_l (r— jT)) k'K

N ( T () - D*(T))>T O(T)

T=3T
4o ( jT—&TT—l (r jT)) T
T=3T
JT+T—1
S0 DU SYNCHE) (56
uel

Using Tk < K, ZiijTT_l(T —iT) = T(TT_”, we get

JT+T—-1
LG+ 1)T) = LGUT) =V > Y dulyu(r)
=T uwel

.
QUT)

JT+T—1

<k (B () (r) )

T=3T
iT+T—1 T
(20 @ -pre) e
SL0 DEINED SENCHE) 57
ueU

We now consider the policy comprising of the control
actions {m (7 )}(J+1 PNV w e U (v (VT and

{(u, (7 ))}(J_JFJIT , and satisfying the following constraints:*

1 (G+1)T-1

T > [By (mu(r),7) = (7)] < —eVueld (58)
T=3T

1 (G+1)T-1

T [va (1) = D}, (mu(7),7)] < —eVueld (59)
T=3T

where € > 0 is arbitrary. We plug in the inequalities (58),
(59) in (57) and obtain

It is easy to see that such policy is guaranteed to exist provided that we
allow, without loss of generality, for a virtual video layer of zero quality and
zero rate, and in the assumption that, at any slot ¢, each user u has at least one
link (h,u) € € with h € N(u) N H(fu) with peak rate lower bounded by
some strictly positive number C\yip,. This prevents the case where a user gets
zero rate for a whole frame of length 7'. This assumption is not restrictive
in practice since a user experiencing unacceptably poor link quality to all the
helpers for a long time interval would be disconnected from the network and
its streaming session halted.
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jT+T—-1
LG((+DD) = LGET) =V Y " dulu(r)
=T ueU
<KT? = eIy Qu(jT) — eIy 0,(T)
uel ueU
JT+T—1
_ o > bulyi(r (60)

ucU
Also, considering the fact that for any vector v =
(Y1, +>Mu) we have

Z ¢u(Dumm) = ¢1nin S Z (ybu("}/u)

ucl ueU
S 6 (D),

S ¢max = (61)
ueU

we can write:
L(G((j +1)T)) — L(G(5T))
< ICTQ + VT(¢max - ¢min)

ueU

— €T Qu(iT)

ueU
(62)

Once again using (52), (53), we have:

L(G((j +1)T)) — L(G(JT))
JT+T-1

D Qun)

T=3T weld

< ]CTZ + VT(¢max - (bmin) — €

JT+T-1

© D D0

T=3T uweld

)+ ewlU|T(T —1)  (63)

Summing the above over the frames j € {0, ...,

L(G((FT)) — L(G(0))

F—1} yields

FT-1

3 Quln)

=0 uweld

< ICTZF + VFT(¢max - d)min) — €

FT-1

Y Yo

7=0 uweld

)+ eslU|FT(T — 1) (64)

Rearranging and neglecting appropriate terms, we get

FT—1

Z > Qu(r)

=0 uweld
KT  V(¢pmax —
KT Ve

€ €

FT-1

72 > eulr

=0 weld
¢min) L(G(O))
+ el'T

+ KUN(T - 1)
(65)

Taking limits as F' — oo
| Fr1
s (T

7=0 ueUd
KT v max ~ i
< = 4 (¢a—
€ €

+> @u(T)>

ueUd

(bmm )

RU(T = 1) (66)

such that (28) is proved.

We now consider the policy comprising of the decisions
which achieves the optimal solution gb;pt to the problem (46a)

— (46e). Using (46b) and (46¢) in (57), we have

JT+T—-1
LG((5+1)T)) - L(G VYD du(u()
=T uweU
< KT +KT(T — 1) = VT¢
(67)
Summing this over j € {0,...,F — 1}, yields
FT-1
L(G((FT)) - VYD dulyuln)
7=0 weld
F-1
<KT°F-VT Y ¢ (68)
§=0

Dividing both sides by VFT and using the fact that
L(G((FT)) >0, we get
FT—1 -

1 # ICT L(G(0))
jp— ¢u '-Yu pt - ~- .
FT 7'220 uezu ;0 VTFEF

(69)

At this point, using Jensen’s inequality, the fact that ¢,(-)
is continuous and non-decreasing for all v € U, and the
fact that the strong stability of the queues (66) implies that
limp_ oo ﬁ 27:0_1 O,(7) < 0o ¥V u € U, which in turns
implies that 7, < D, ¥ u € U, we arrive at

F-1
> (D) 2 Jim 13- 67 -
§=0

ueU

> lim
Fooo I

(70)

such that (27) is proved.

Thus, the utility under the DPP policy is within O(1/V") of
the time average of the qﬁj-pt utility values that can be achieved
only if knowledge of the future states up to a look-ahead of
blocks of T slots. If T' is increased, then the value of ¢>°pt for
every frame j improves since we allow a larger look- ahead.
However, from (70), we can see that if 7" is increased, then V'
can also be increased in order to maintain the same distance
from optimality. This yields a corresponding O(V') increase
in the queues backlog.

For the case where the rate function By(m,t), the quality
function Dy (m,t) and the topology state w(t)is stationary and
ergodic, the time average in the left hand side of (66) and in
the right hand side of (70) become ensemble averages because
of ergodicity. Thus, we obtain (29) and (30). Furthermore, if
the network state is i.i.d., we can take 7" = 1 in the above
derivation, obtaining the bounds given in Corollary 1.
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