
PROC. IEEE INFOCOM, 2011 1

Opportunistic Scheduling with Worst Case Delay
Guarantees in Single and Multi-Hop Networks

Michael J. Neely

Abstract— We first consider a multi-user, single-hop wireless
network with arbitrarily varying (and possibly non-ergodic)
arrivals and channels. We design an opportunistic scheduling
algorithm that guarantees all sessions have a bounded worst
case delay. The algorithm has no knowledge of the future, but
yields throughput-utility that is close to (or better than) that of
a T -slot lookahead policy that makes “ideal” decisions based on
perfect knowledge up to T slots into the future. We then extend
the algorithm to treat worst case delay guarantees in multi-hop
networks. Our analysis uses a sample-path version of Lyapunov
optimization together with a novel virtual queue structure.

Index Terms— Queueing analysis, optimization, flow control,
wireless networks

I. INTRODUCTION

This paper seeks to develop scheduling algorithms for
wireless networks that: (i) provide efficient throughput-utility,
(ii) are robust to general time-varying conditions, and (iii)
guarantee bounded worst-case delay. While utility maximiza-
tion is well studied for both static and stochastic networks, ex-
isting solutions make restrictive assumptions on the underlying
stochastic processes and/or provide either no delay guarantees,
or only weak guarantees on average delay. It is important
to provide stronger delay guarantees to network users. This
is particularly challenging for networks with unpredictable
(possibly non-ergodic) traffic and channels. We overcome this
challenge by integrating sample-path analysis and a novel
virtual queue structure into the existing Lyapunov optimization
framework for stochastic network optimization.

The theory of Lyapunov optimization yields algorithms for
single-hop and multi-hop networks that provide throughput-
utility within O(ε) of optimal (for any desired ε > 0), with
an O(1/ε) bound on average queue backlog [1]. However,
these prior algorithms may yield unbounded worst-case de-
lays, and can only provide bounds on overall average delay
if traffic flows are “long-lived” and ergodic. This is done
via Little’s Theorem, which gives an average delay bound
simply by dividing the average backlog bound by the total
traffic rate λtot. This does not give bounds on the delays
of individual sessions. Further, if some sessions are “short-
lived” and consist only of a few packets, these packets may
experience infinite delay due to the lack of “backpressure.”
Our recent work [2] considers delay-based rules for stochastic
network optimization, and these do provide worst case delay
guarantees. However, the work [2] assumes that packet arrivals

Michael J. Neely is with the Electrical Engineering department at the
University of Southern California, Los Angeles, CA.

This material is supported in part under one or more of the following
grants: DARPA IT-MANET W911NF-07-0028, NSF CAREER CCF-0747525,
and continuing through participation in the Network Science Collaborative
Technology Alliance sponsored by the U.S. Army Research Laboratory.

of each user are independent and i.i.d. over slots, with known
arrival rates λm for each user m. The analysis in [2] does not
immediately generalize to non-i.i.d. situations or to multi-hop
networks.

Related work on utility optimization for static networks can
be found in [3][4][5][6], which solve for utility-optimal flows
over the network. These do not consider queueing aspects
or delays associated with randomly arriving traffic or time-
varying channel conditions. Opportunistic scheduling rules for
“infinitely backlogged” sources with time-varying and ergodic
channels are considered in [7][8][9], but these do not con-
sider queueing or delay. Lyapunov optimization approaches,
as described in the preceding paragraph, are developed in
[1][10][11][12], and are based on earlier works on Lyapunov
drift for stability in [13][14][15][16][17]. Lyapunov optimiza-
tion with finite buffers is treated in [12][18]. A Lyapunov
optimization algorithm with a hop-count based queueing struc-
ture is used in [19] to provide a worst-case hop count to the
destination, although this does not guarantee bounded delay.
Network scheduling in a “fluid-flow” context, again mainly
addressing ergodic stability without direct treatment of delay,
is treated in [20][21][22][23]. Delay in small (single-queue)
networks is treated with stochastic analysis in [24][25][26] and
for systems with known future sample-paths in [27][28][29].

The next section describes a simple one-hop network model
and presents the dynamic algorithm. Section III extends to
multi-hop networks.

II. FORMULATION FOR ONE-HOP NETWORKS

Consider a network of M queues. The network operates
in discrete time with unit timeslots t ∈ {0, 1, 2, . . .}. Let
Q(t) = (Q1(t), . . . , QM (t)) represent the queue backlog in
each queue on slot t. Depending on the context, the backlog
can either take integer units of packets or real units of bits. Let
A(t) = (A1(t), . . . , AM (t)) be the vector of new arrivals to
each queue. Every slot, a network scheduler determines how
much of the newly arriving data to admit, how much existing
data in the queue to serve, and how much to drop. The queue
dynamics for queues m ∈ {1, . . . ,M} are given by:

Qm(t+ 1) = max[Qm(t)− µm(t)−Dm(t), 0] +Rm(t) (1)

where µm(t) is the amount of type-m data offered service on
slot t (also called the service rate for slot t, in data units per
slot), Dm(t) is the amount that can be dropped on slot t, and
Rm(t) is the amount admitted.

The admission decisions Rm(t) are made every slot subject
to the constraint 0 ≤ Rm(t) ≤ Am(t), and any non-admitted
data is treated as if it is dropped. The service rate vector
µ(t) = (µ1(t), . . . , µM (t)) is determined by the current chan-
nel condition S(t) and the current resource allocation decision



PROC. IEEE INFOCOM, 2011 2

α(t). As in [1], the channel condition S(t) can be a multi-
dimensional quantity that specifies channel information for
each of the M queues. The resource allocation decision α(t)
can be a multi-dimensional decision that represents service
and modulation choices for each queue m, and is made based
on knowledge of the current S(t). Specifically, the network
controller observes the current S(t) and chooses α(t) within
some abstract set AS(t) that specifies the decision options. The
rates are then given by functions µ̂m(α, S) as follows:

µm(t) = µ̂m(α(t), S(t)) ∀m ∈ {1, . . . ,M}

We assume a maximum transmission rate µmaxm , regardless of
α(t), S(t), so that:

0 ≤ µ̂m(α(t), S(t)) ≤ µmaxm

Packet drop decisions Dm(t) are made every slot subject to
the constraints:

0 ≤ Dm(t) ≤ Dmax
m

where for each m ∈ {1, . . . ,M}, Dmax
m is a finite value that

specifies the maximum amount of type-m data we are allowed
to drop on one slot. We assume the channel state process
S(t) and the arrival vector A(t) have arbitrary sample paths.
However, we assume arrivals have a finite maximum, so that
Am(t) ≤ Amaxm for all t and all m ∈ {1, . . . ,M}.

While the dynamic algorithm that we develop will base
decisions on queue backlogs, it is useful to allow a general
decision for α(t) and Dm(t) to be decoupled from queue
backlogs. Thus, we define µ̃m(t) as the actual amount of type-
m data served on slot t, defined by:

µ̃m(t)M= min[Qm(t), µm(t)]

Similarly, let D̃m(t) be the actual amount of type-m data
dropped on slot t. The data is served (and dropped) in First-
In-First-Out order. Any remaining data that is not served on
slot t is subject to being dropped, with D̃m(t) defined by:

D̃m(t)M= min[Qm(t)− µ̃m(t), Dm(t)] (2)

Clearly µ̃m(t) ≤ µm(t) and D̃m(t) ≤ Dm(t) for all m and t.

A. Discussion of Packet Drops

Here we distinguish between the packet drops Am(t) −
Rm(t) due to transport layer admission decisions, and the
packet drops Dm(t) due to network layer queueing decisions.
This distinction will be useful for distributed implementation
of our multi-hop protocols in Section III. For both single and
multi-hop networks, we strive to keep the rate at which the
network layer drops data close to zero (only dropping when
a delay constraint is violated). Thus, the bulk of packet drops
take place at the transport layer, which acts to shape incoming
traffic so that it is supportable on the network.

A complete network protocol requires an additional mech-
anism for retransmitting dropped packets. One simple mecha-
nism is to simply include packet drops into the future packet
arrivals. However, this creates an arrival process Am(t) that
depends on the past control decisions. While we show that
our analysis holds for arbitrary sample paths for arrivals,

including those that are influenced by past control decisions,
our comparison against a “genie aided” policy is the most
meaningful if we assume the arrival process Am(t) is not
influenced by past decisions. Without this assumption, all of
our results still hold, but we emphasize that the “genie-aided”
T -slot lookahead problem to be defined in (10)-(14) defines
utility util∗k(T ) in terms of the actual future arrivals A(τ)
experienced for τ ∈ {kT, . . . , kT + T − 1}, not in terms of
the alternative values the arrivals might take if we were to
choose different control actions.

B. Worst-Case Delay Via Persistent-Service Queues
The particular throughput-utility we consider is defined in

the next subsection. Here, we develop a novel virtual queue,
called an ε-persistent service queue, that can ensure bounded
worst case delay for general types of utility functions. To this
end, for each user m ∈ {1, . . . ,M} define a virtual queue
Zm(t) with initial backlog Zm(0) = 0, and with queue update:

Zm(t+ 1) = max[Zm(t) + 1{Qm(t)>0}(εm − µm(t))
−Dm(t)− 1{Qm(t)=0}µ

max
m , 0] (3)

where εm > 0 are pre-specified constants, and 1{Qm(t)>0} is
an indicator function that is 1 if Qm(t) > 0, and 0 else. When
Qm(t) > 0, the virtual queue Zm(t) has the same departure
process µm(t) + Dm(t) as Qm(t), but has a constant arrival
of size εm. Any algorithm that maintains bounded Zm(t) and
Qm(t) values also ensures persistent service with bounded
worst-case delay, as shown in the next lemma.

Lemma 1: (Worst-Case Delay) Suppose an algorithm is
used that ensures the following for all slots t ∈ {0, 1, 2, . . .}:

Qm(t) ≤ Qmaxm , Zm(t) ≤ Zmaxm

where Qmaxm and Zmaxm are finite upper bounds on actual
and virtual queue backlog. Then, assuming FIFO service, the
worst-case delay of non-dropped data in queue m is bounded
by the constant Wmax

m defined below:

Wmax
m

M= d(Qmaxm + Zmaxm )/εme (4)

where dxe denotes the smallest integer that is greater than or
equal to x. That is, all data that enters queue m is either served
within Wmax

m slots, or dropped.
Proof: Fix any slot t ≥ 0, and let Am(t) represent the data

that arrives on this slot. From (1), the earliest it can depart the
queue is slot t+ 1. We show that all of this data departs (by
being either served or dropped) on or before time t+Wmax

m .
Suppose this is not true. We shall reach a contradiction. It
must be that Qm(τ) > 0 for all τ ∈ {t + 1, . . . , t + Wmax

m }
(else, we would clear the data by t+Wmax

m ). It follows from
(3) that for all τ ∈ {t+ 1, . . . , t+Wmax

m } we have:

Zm(τ + 1) = max[Zm(τ) + εm − µm(τ)−Dm(τ), 0]

and hence for all τ ∈ {t+ 1, . . . , t+Wmax
m }:

Zm(τ + 1) ≥ Zm(τ) + εm − µm(τ)−Dm(τ)

Summing the above over τ ∈ {t+ 1, . . . , t+Wmax
m } yields:

Zm(t+Wmax
m + 1)− Zm(t+ 1)

≥ εmWmax
m −

∑t+Wmax
m

τ=t+1 [µm(τ) +Dm(τ)]



PROC. IEEE INFOCOM, 2011 3

Rearranging terms in the above inequality and using the fact
that Zm(t+Wmax

m + 1) ≤ Zmaxm and Zm(t+ 1) ≥ 0 yields:

εmW
max
m − Zmaxm ≤

∑t+Wmax
m

τ=t+1 [µm(τ) +Dm(τ)] (5)

Because service is FIFO, the data Am(t) that arrives on slot t is
placed at the end of the queue on slot t+1 (see queue dynamics
(1)), and this data is fully cleared only when all of the backlog
Qm(t + 1) has departed. That is, the last of the Am(t) data
departs on the slot t+ T , where T > 0 is the smallest integer
for which

∑t+T
τ=t+1[µm(τ) + Dm(τ)] ≥ Qm(t + 1). Because

we have assumed that not all of the Am(t) data departs by
time t+Wmax

m , we must have:∑t+Wmax
m

τ=t+1 [µm(τ) +Dm(τ)] < Qm(t+ 1) ≤ Qmaxm (6)

Combining (6) and (5) yields:

εmW
max
m − Zmaxm < Qmaxm

Therefore:
Wmax
m < (Qmaxm + Zmaxm )/εm

This contradicts the definition of Wmax
m given in (4).

Our approach now is to design a utility-efficient algorithm
that maintains finite Qmaxm and Zmaxm for all users m.

C. Utility Functions and Intuition from Ergodic Systems

As a measure of throughput-utility, for each user m ∈
{1, . . . ,M} define gm(r) as a continuous, concave, and non-
decreasing function over the interval 0 ≤ r ≤ Amaxm . Assume
that each utility function gm(r) has a finite maximum slope of
νm (being the right-derivative of gm(r) at r = 0). An example
utility function with maximum slope νm is given by:

gm(r)M=νmθ log(1 + r/θ)

where θ > 0 is any real number and log(·) denotes the natural
logarithm.

For intuition, suppose (temporarily) that we have an ergodic
setting, and we use control algorithms for which all time
averages exist. Define rm as the time average value of Rm(t)
and as t → ∞. Similarly define dm as the time average
of drops Dm(t) at queue m, and µm as the time average
transmission rate µm(t) at node m. Note that in a system with
stable queues, the value rm − dm represents the throughput
of the system. Then one may seek to design a scheduling and
packet dropping algorithm that solves the following:

Maximize:
∑M
m=1 gm(rm − dm)

Subject to: rm ≤ µm + dm ∀m ∈ {1, . . . ,M}

It is not difficult to show that an optimal solution of the above
problem can be found with dm = 0 for all m. That is because
any data that was dropped at the network layer could just
as easily have been dropped during the admission decisions.1

1This observation is particularly important in the multi-hop setting, where
it is preferable to drop data at the transport layer rather than suffering the
inefficiencies of transmitting data in the network layer only to drop it before
it reaches the destination.

Further, it is easy to show that for any value β ≥ 1, the above
problem is equivalent to the following:

Maximize:
∑M
m=1[gm(rm)− βνmdm] (7)

Subject to: rm ≤ µm + dm ∀m ∈ {1, . . . ,M} (8)

This equivalence is because the value βνm, being the slope
of the cost function for packet drops dm, is greater than or
equal to the maximum slope νm of the utility function gm(r).
Therefore, admitting an extra unit of data (which improves
the gm(rm) utility) and then dropping it later (which counts
in the βνmdm cost) is no better than not admitting the extra
unit in the first place. The above transformed problem has
admission variables rm and drop variables dm that appear
separably in the utility function, which will be useful in
extended formulations for multi-hop networks.

We can solve problems of the type (7)-(8) using stochastic
network optimization theory [1][30], and the solutions would
never drop in-network data (so that dm = 0). In particular,
such algorithms would stabilize all queues (with finite average
backlog) while getting a utility that can be pushed arbitrarily
close to the optimal utility of (7)-(8). However, such an
approach cannot guarantee finite worst-case delay. We shall
design an algorithm that uses in-network packet drops to
ensure finite worst-case delay. Further, in ergodic settings, our
new algorithm can guarantee an overall utility that is close to
the optimal utility of the problem (7)-(8), augmented with the
following additional constraints:

µm + dm ≥ εm ∀m ∈ {1, . . . ,M} (9)

for some values εm > 0.
In general, the optimal utility for the problem (7)-(9) is less

than or equal to the optimal utility for the problem (7)-(8).
However, if an optimal solution to (7)-(8) can be found that
uses rates roptm that satisfy roptm ≥ εm for all m, then the
additional constraints (9) are also satisfied by this solution so
that these constraints do not reduce utility. This is typical when
the εm values are small enough so that the optimal flow rates
roptm are all at least εm. Of course, in general situations the
additional constraints (9) may reduce utility, but by no more
than an amount O(ε), where εM= maxm∈{1,...,M} εm.

D. The T -Slot Lookahead Utility for General Sample Paths

While the algorithm of this paper achieves the performance
described in the previous subsection in the special case of
ergodic settings (such as when the arrival vector A(t) and the
network channels S(t) are i.i.d. over slots), we are interested
in the more complex case of general sample paths (possibly
those from non-ergodic processes). Thus, we cannot assume
the network reaches an “equilibrium” with well defined time
averages. We thus evaluate our algorithm against a T -slot
lookahead metric.

For a given S(t) on slot t, define the set B(S(t))
as the convex hull of all rate vectors µ̂(α, S(t)) =
(µ̂1(α, S(t)), . . . , µ̂M (α, S(t))) that can be achieved by re-
source allocation decisions α ∈ AS(t):

B(S(t))M=Conv{µ = µ̂(α, S(t))|α ∈ AS(t)}



PROC. IEEE INFOCOM, 2011 4

Now fix integers T > 0 and K > 0, and consider the
first KT slots τ ∈ {0, 1, . . . ,KT − 1}. Decompose this
horizon into K successive frames of size T . For each frame
k ∈ {0, 1, . . . ,K − 1}, consider the following optimization
problem, which chooses constants dm and values µ(τ), Rm(τ)
over the frame τ ∈ {kT, . . . , kT + T − 1} based on full
knowledge of the futureA(τ) and S(τ) values over this frame:

Maximize:
M∑
m=1

[
gm

(
1
T

kT+T−1∑
τ=kT

Rm(τ)

)
− βνmdm

]
(10)

Subject to:∑kT+T−1
τ=kT [Rm(τ)− µm(τ)− dm] ≤ 0 ∀m (11)

1
T

∑kT+T−1
τ=kT [µm(τ) + dm] ≥ εm ∀m (12)

0 ≤ dm ≤ Dmax
m , 0 ≤ Rm(τ) ≤ Am(τ) ∀m, τ (13)

µ(τ) = (µ1(τ), . . . , µM (τ)) ∈ B(S(τ)) ∀τ (14)

The above problem is an analogue of the problem (7)-(9) (note
that (10), (11), (12) are analogues of (7), (8), (9), respectively).
We assume throughout that 0 ≤ εm ≤ Dmax

m for all m, in
which case it is easy to show that the constraints (11)-(14)
are always achievable by the trivial strategy with dm = εm,
Rm(τ) = 0 for all τ . Define util∗k(T ) as the supremum utility
value of (10) in the above problem for frame k, and d∗m, µ∗(τ),
R∗m(τ) as the corresponding decisions that achieve this optimal
value.2 The util∗k(T ) value represents the optimum sum utility
over frame k (using a frame size T ) that can be achieved under
the assumption that the sum arrivals over the frame are less
than or equal to the sum departures, and that the empirical
departure rate over the frame for each queue m is at least εm.
The µ∗(τ) and d∗m values cannot be used in practice because
they would require full knowledge of the future for all slots
in the frame. Further, µ∗(τ) is allowed to take values in the
extended set B(S(τ)), being the convex hull of the set of actual
transmission rates available on slot τ .

We shall design an algorithm that does not know the future,
and that does not use the T parameter, but that achieves
bounded worst case delay with an empirical average utility
over the first KT slots (for all positive integers K and T ) that
is close to (or greater than) the value:

1
K

∑K−1
k=0 util∗k(T )

The above value represents the average of the optimal utilities
over each frame. While this does not necessarily represent the
optimal utility that can be achieved over the full KT slots, it
is still a meaningful value for comparison because it involves
ideal decisions that have knowledge of the future up to T slots.
Further, it can be shown that in ergodic settings:

limT→∞

[
limK→∞

1
K

∑K−1
k=0 util∗k(T )

]
= utilopt

where utilopt is the optimal infinite horizon utility that can
be achieved over all algorithms that stabilize the queues and
provide a long-term µm(t) + Dm(t) rate greater than εm.
The intuition for this is that in ergodic settings with T very

2For simplicity, we assume the supremum utility util∗k(T ) for the problem
(10)-(14) can be achieved. Else, we can recover the same results by taking a
limit over decisions that approach util∗k(T ).

large, the fraction of time different events occur over the frame
approaches the ergodic distribution, so that util∗k(T ) is close
to utilopt on every frame.

E. Lyapunov Optimization and the Dynamic Algorithm

For each m ∈ {1, . . . ,M}, define an auxiliary variable
γm(t) and a flow state queue Ym(t), being a virtual queue
with dynamics as follows:

Ym(t+ 1) = max[Ym(t)−Rm(t) + γm(t), 0] (15)

The auxiliary variable γm(t) is chosen every slot in the
interval [0, Amaxm ] in order to stabilize all queues while striving
to maximize

∑
m[gm(γm) − βνmdm]. The intuition is that

stabilizing the Ym(t) queue ensures the time average of Rm(t)
is at least as large as the time average of γm(t), and so the
throughput-utility will also be large.

To this end, define Θ(t)M=[Q(t),Z(t),Y (t)] as a collective
vector of all Qm(t), Zm(t), and Ym(t) queues. Define the
Lyapunov function L(Θ(t)) as follows:

L(Θ(t))M= 1
2

∑M
m=1[Qm(t)2 + Zm(t)2 + Ym(t)2]

Define ∆T (Θ(t))M=L(Θ(t + T )) − L(Θ(t)) as the T -step
sample path Lyapunov drift. We have the following result
for T = 1, being a bound on the 1-slot “drift-plus-penalty”
value used in Lyapunov optimization [1][30]. The “penalty”
−
∑M
m=1[gm(γm(t))− βνmDm(t)] is multiplied by a param-

eter V > 0 that will affect a performance-delay tradeoff.
Lemma 2: (1-Slot Drift) For all t, all Θ(t), and any

scheduling decisions made on slot t, we have:

∆1(Θ(t))− V
∑M
m=1[gm(γm(t))− βνmDm(t)] ≤
B −

∑M
m=1Zm(t)1{Qm(t)=0}µ

max
m

−V
∑M
m=1[gm(γm(t))− βνmDm(t)]

+
∑M
m=1Qm(t)[Rm(t)− µ̂m(α(t), S(t))−Dm(t)]

+
∑M
m=1Zm(t)1{Qm(t)>0}[εm − µ̂m(α(t), S(t))]

−
∑M
m=1Zm(t)Dm(t) +

∑M
m=1Ym(t)[γm(t)−Rm(t)] (16)

where the constant B is defined:

B M= 1
2

∑M
m=1[(µmaxm +Dmax

m )2 + 2(Amaxm )2]

+ 1
2

∑M
m=1 max[ε2m, (µ

max
m +Dmax

m )2] (17)
Proof: See Appendix A.
The following algorithm makes α(t), Rm(t), Dm(t), γm(t)

decisions every slot t to minimize the right-hand-side of the
above drift-plus-penalty expression. Every slot t, observe S(t)
and the current queue states Θ(t) = [Q(t),Z(t),Y (t)]. Then:
• (Transmission) Choose α(t) ∈ AS(t) to maximize the

following expression:∑M
m=1[Qm(t) + Zm(t)1{Qm(t)>0}]µ̂m(α(t), S(t)) (18)

• (Admission) Choose Rm(t) by:

Rm(t) =
{
Am(t) if Qm(t) ≤ Ym(t)
0 otherwise (19)

• (Dropping) For each m ∈ {1, . . . ,M}, choose:

Dm(t) =
{
Dmax
m if Qm(t) + Zm(t) > V βνm

0 else (20)



PROC. IEEE INFOCOM, 2011 5

• (Auxiliary Variables) Choose γm(t) to solve:

Maximize: V gm(γm(t))− Ym(t)γm(t) (21)
Subject to: 0 ≤ γm(t) ≤ Amaxm (22)

• (Queue Updates) Update queues Qm(t), Zm(t), Ym(t)
according to (1), (3), (15) (using Dm(t), µm(t), γm(t),
Rm(t) obtained above for the updates).

While Dm(t), µm(t) are used for the queue updates (not
the D̃m(t) and µ̃m(t) values), there may be cases when
Dm(t) + µm(t) > Qm(t), so the same queue updates can
be implemented by either serving as much data as possible
on slot t and then dropping the rest, or dropping as much as
possible and then serving the rest.3 Both decision rules result
in the same queue sample paths, and so our analytical bounds
apply to both. However, it is clearly better to serve and then
drop the remaining, so that the actual amount dropped from
the physical queue is D̃m(t) given in (2).

F. Bounded Queues

We now show the above algorithm ensures queues are
bounded by constants Y maxm , Qmaxm , Zmaxm given by:

Y maxm
M= V νm +Amaxm (23)

Qmaxm
M= V νm + 2Amaxm (24)

Zmaxm
M= V βνm + εm (25)

Lemma 3: (Bounded Queues) Assume the decisions Rm(t),
Dm(t), γm(t), and queue updates are done according to the
above dynamic algorithm, but the α(t) decisions use any
algorithm (possibly different than the ones that maximize
(18)). Assume 0 ≤ εm ≤ Dmax

m for all m ∈ {1, . . . ,M}.
Then for all slots t ≥ 0 and all m ∈ {1, . . . ,M} we have:

Ym(t) ≤ Y maxm , Qm(t) ≤ Qmaxm , Zm(t) ≤ Zmaxm

provided that these inequalities are satisfied at time t = 0.
Proof: (Lemma 3) We first prove that Ym(t) ≤ Y maxm for

all t. Suppose this is true for some time t. We show it also
holds for t + 1. If Ym(t) ≤ V νm, then Ym(t + 1) ≤ V νm +
Amaxm

M=Y maxm , because it can increase by at most Amaxm on
any slot (see dynamics (15)). Now consider the opposite case
where Ym(t) > V νm. Because νm is the maximum derivative
of the gm(r) function, we have:

gm(γ) ≤ gm(0) + νmγ for 0 ≤ γ ≤ Amaxm

with equality if γ ≤ 0. Therefore, for all γm(t) in the interval
0 ≤ γm(t) ≤ Amaxm we have:

V gm(γm(t))− Ym(t)γm(t)
≤ V gm(0) + V νmγm(t)− Ym(t)γm(t)
= V gm(0) + γm(t)[V νm − Ym(t)] ≤ V gm(0)

with equality holding only if γm(t) = 0 (because the term
[V νm − Ym(t)] is negative). It follows in this case that the
auxiliary variable decision rule (21)-(22) chooses γm(t) =
0 whenever Ym(t) > V νm, and so the Ym(t) queue cannot
increase on the next slot (see dynamics (15)). Thus, Ym(t +

3These cases become increasingly rare as V is increased.

1) ≤ Ym(t) ≤ Y maxm , proving that the Y maxm bound again
holds. This proves Ym(t) ≤ Y maxm for all t.

We now prove that Qm(t) ≤ Qmaxm for all t. Assume this is
true for a particular slot t. We prove it also holds for slot t+1.
If Qm(t) ≤ Y maxm , then Qm(t+ 1) ≤ Y maxm +Amaxm

M=Qmaxm

(because it can increase by at most Amaxm on one slot).
Consider now the opposite case when Qm(t) > Y maxm . We
thus have Qm(t) > Y maxm , and the admission decision (19)
will choose Rm(t) = 0. Thus, the queue cannot increase and
we have Qm(t + 1) ≤ Qm(t) ≤ Qmaxm . This proves the
Qmaxm bound. The proof of the Zmaxm bound is similar: If
Zm(t) ≤ V βνm, then Zm(t+1) ≤ V βνm+ εm

M=Zmaxm . Else,
the dropping rule (20) will choose Dm(t) = Dmax

m , so that
the queue cannot increase on the next slot.

G. Algorithm Performance

The following theorem assumes that 0 ≤ εm ≤ Dmax
m for

all m, and that Qm(0) = Zm(0) = Ym(0) = 0 for all m.
Theorem 1: Under the above assumptions, if the above

dynamic algorithm is used every slot t with a fixed parameter
V > 0, then:

(a) Worst case queue backlog is bounded by Qmaxm , and
worst case delay is bounded by Wmax

m , where:

Wmax
m

M=d(Qmaxm + Zmaxm )/εme

where Qmaxm and Zmaxm are defined in (24) and (25). Note that
Qmaxm ≤ O(V ) and Wmax

m ≤ O(V ), so that worst case queue
backlog and delay grow linearly in the V parameter.

(b) For any positive integers K > 0, T > 0, the throughput-
utility over the first KT slots satisfies:∑M

m=1[gm(rm(KT ))− βνmdm(KT )] ≥
1
K

∑K−1
k=0 util∗k(T )− BT

V −
1
KT

∑M
m=1 νmY

max
m

where the constant B is defined in (17), util∗k(T ) is the optimal
utility associated with the T -slot lookahead problem (10)-(14)
for frame size T and frame k, Y maxm is defined in (23), and
rm(KT ), dm(KT ) are defined:

rm(KT )M=
1
KT

KT−1∑
τ=0

Rm(τ) , dm(KT )M=
1
KT

KT−1∑
τ=0

Dm(τ)

(c) If the combined process [A(t), S(t)] is i.i.d. over slots
then with probability 1:

lim inft→∞
∑M
m=1[gm(rm(t))− βνmdm(t)] ≥ util∗ −B/V

where B is defined in (17), and util∗ is the infinite horizon
optimal utility for problem (7)-(9).

Note that the utility bound in part (b) can be simplified if
we take a limit as K →∞:

lim infK→∞
∑M
m=1[gm(rm(KT ))− βνmdm(KT )] ≥

lim infK→∞ 1
K

∑K−1
k=0 util∗k(T )− BT

V

This demonstrates that the limiting achieved utility is no less
than O(1/V ) distance below the target utility. Thus, the V
parameter ensures this distance can be made arbitrarily small,
at the expense of an O(V ) tradeoff in worst case queue
backlog and delay. The utility bounds above can be viewed as



PROC. IEEE INFOCOM, 2011 6

a class of bounds that hold for all T > 0. If the T parameter
is increased, util∗k(T ) typically increases, at the expense of
requiring a larger V parameter to make BT/V small.

H. Proof of Theorem 1

The queue bounds in part (a) follow from Lemma 3, and
the worst case delay Wmax

m follows immediately from these
bounds together with Lemma 1. To prove part (b), we use the
following lemma.

Lemma 4: (T -slot Drift) Under the above dynamic algo-
rithm, for all t, all Θ(t), and for any integer T > 0 we have:

∆T (Θ(t))− V
t+T−1∑
τ=t

M∑
m=1

[gm(γm(τ))− βνmDm(τ)] ≤

BT 2 − V T
M∑
m=1

[gm(γ∗m)− βνmd∗m]

+
M∑
m=1

Qm(t)
t+T−1∑
τ=t

[R∗m(τ)− µ∗m(τ)− d∗m]

+
M∑
m=1

Zm(t)
t+T−1∑
τ=t

[εm − µ∗m(τ)− d∗m]

+
M∑
m=1

Ym(t)
t+T−1∑
τ=t

[γ∗m −R∗m(τ)]

where B is defined in (17) and γ∗m, d∗m, R∗m(τ), µ∗(τ) are
any values that satisfy 0 ≤ γ∗m ≤ Amaxm , 0 ≤ d∗m ≤ Dmax

m ,
0 ≤ R∗m(τ) ≤ Am(τ), and µ∗(τ) ∈ B(S(τ)).

Proof: Omitted for brevity.
Now consider slot t = kT , and define d∗m, R∗m(τ), µ∗(τ)

(for τ ∈ {kT, . . . , (k + 1)T − 1}) as the decisions that solve
the T -slot lookahead problem (10)-(14) over frame k. Define
γ∗m

M= 1
T

∑kT+T−1
τ=kT R∗m(τ). Plugging this into the right-hand-

side of the drift bound in Lemma 4 yields:

∆T (Θ(kT ))− V
kT+T−1∑
τ=kT

M∑
m=1

[gm(γm(τ))− βνmDm(τ)] ≤

BT 2 − V Tutil∗k

Summing the above over k ∈ {0, . . . ,K − 1} yields:

L(Θ(KT ))− L(Θ(0))

−V
∑KT−1
τ=0

∑M
m=1[gm(γm(τ))− βνmDm(τ)] ≤

BKT 2 − V T
∑K−1
k=0 util∗k

Rearranging terms and using the fact that L(Θ(KT )) ≥ 0 and
L(Θ(0)) = 0 yields:

1
KT

∑KT−1
τ=0

∑M
m=1 gm(γm(τ))−

∑M
m=1 βνmdm(KT )

≥ 1
K

∑K−1
k=0 util∗k −BT/V

Using Jensen’s inequality in the left-hand-side for the concave
function gm(·) yields:∑M

m=1[gm(γm(KT ))− βνmdm(KT )] ≥
1
K

∑K−1
k=0 util∗k −BT/V (26)

where γm(KT ) is the time average of γm(τ) over the first
KT slots. However, from (15) we have for all τ :

Ym(τ + 1) ≥ Ym(τ)−Rm(τ) + γm(τ)

Summing over τ ∈ {0, . . . ,KT − 1} and dividing by KT
yields:

Ym(KT )− Ym(0)
KT

≥ − 1
KT

KT∑
τ=0

Rm(τ) +
1
KT

KT∑
τ=0

γm(τ)

= −rm(KT ) + γm(KT )

Using the fact that Ym(0) = 0 and Ym(KT ) ≤ Y maxm yields:

rm(KT ) ≥ γm(KT )− Y maxm /(KT )

Using the fact that gm(γ) is non-decreasing with largest
derivative νm, from the above inequality we obtain:

gm(rm(KT )) ≥ gm(γm(KT ))− νmY maxm /(KT )

Using the above in (26) proves part (b) of Theorem 1. Part (c)
omitted for brevity.

III. MULTI-HOP NETWORKS

Consider now a multi-hop network with N nodes. As
before, there are M traffic sessions with random arrivals
(A1(t), . . . , AM (t)). Each session m has a particular source
node source(m) and destination node dest(m). Let Q(m)

n (t)
represent the current amount of type-m data in node n. Let
µ

(m)
ab (t) represent the amount of type-m data that can be

delivered over the link from node a to node b on slot t, and
let D(m)

a (t) represent the amount of type m-data that can be
dropped from node a on slot t. Note that Q(m)

n (t) = 0 for all
t if n = dest(m), because once data reaches its destination
it is removed from the network. The queueing dynamics are
given for all sessions m and all nodes n 6= dest(m) by:

Q(m)
n (t+ 1) ≤ max[Q(m)

n (t)−
N∑
b=1

µ
(m)
nb (t)−D(m)

n (t), 0]

+
N∑
a=1

µ(m)
an (t) + 1(m)

n Rm(t) (27)

where 1(m)
n is an indicator function that is 1 if n = source(m),

and 0 else. The above is an inequality because the actual
amount of endogenous arrivals

∑N
a=1 µ̃

(m)
an (t) may be less than

or equal to
∑N
a=1 µ

(m)
an (t).

Let L(m) be the set of all acceptable directed links that
can be used by data of type m. We assume this set limits
the hop-count of all session-m paths to the destination by
some maximum number of hops H(m),max. If we can limit
the delay at each node by some value W (m),max, then the
total end-to-end delay of all non-dropped data of type-m is at
most H(m),maxW (m),max.

The rates µ(m)
ab (t) are chosen as non-negative values every

slot t subject to the following constraints:∑M
m=1 µ

(m)
ab (t) ≤ µ̂ab(α(t), S(t))

where α(t) ∈ AS(t). The S(t) value again represents channel
conditions on each link for slot t, and can depend on the



PROC. IEEE INFOCOM, 2011 7

mobility of the network. We assume the sum transmission rates
into and out of a node n on any slot are bounded by finite
constants µmax,outn , and µmax,inn . The D

(m)
n (t) decisions at

each node are chosen subject to:

0 ≤ D(m)
n (t) ≤ D(m),max

n

for some finite constants D(m),max
n .

A. Virtual Queues for Multi-Hop

Let Z(m)
n (t) be an ε-persistent service virtual queue for type-

m data at node n, with dynamics (compare with (3)):

Z(m)
n (t+ 1) =

max[Z(m)
n (t) + 1{Q(m)

n (t)>0}(ε−
∑N
b=1µ

(m)
nb (t))

−D(m)
n (t)− 1{Qm(t)=0}µ

max,out
n , 0] (28)

for some value ε > 0 (for simplicity, here we consider the
same ε used at each node).

As before, for each source m we use auxiliary variables
γm(t), chosen in the interval 0 ≤ γm(t) ≤ Amaxm , and use the
same flow state queue Ym(t) given in (15).

B. Multi-Hop Drift

Define Θ(t)M=[(Q(m)
n (t)), (Z(m)

n (t)), (Ym(t))] as the collec-
tion of all virtual and actual queues, and define the Lyapunov
function:

L(Θ(t))M=
1
2

∑
n,m

[Q(m)
n (t)2 + Z(m)

n (t)2] +
1
2

M∑
m=1

Ym(t)2

Analogous to Lemma 2, the 1-slot drift-plus-penalty can be
shown to satisfy:

∆1(Θ(t))− V
M∑
m=1

gm(γm(t)) + V
∑
n,m

βνmD
(m)
n (t) ≤

C −
∑
n,m

Z(m)
n (t)1{Q(m)

n (t)=0}µ
max,out
n

−V
M∑
m=1

gm(γm(t)) + V
∑
n,m

βνmD
(m)
n (t)

+
∑
n,m

Q(m)
n (t)

[
1(m)
n Rm(t) +

N∑
a=1

µ(m)
an (t)

]

−
∑
n,m

Q(m)
n (t)[

N∑
b=1

µ
(m)
nb (t) +D(m)

n (t)]

+
∑
n,m

Z(m)
n (t)1{Q(m)

n (t)>0}[ε−
N∑
b=1

µ
(m)
nb (t)]

−
∑
n,m

Z(m)
n (t)D(m)

n (t)

+
M∑
m=1

Ym(t)[γm(t)−Rm(t)]

where C is a finite constant that depends on N , M , ε, Amaxm ,
D

(m),max
n , and the µmax,inn and µmax,outn constants.

The following algorithm is designed to make decisions that
minimize the right-hand-side in the above drift bound: Every
slot t, observe the current S(t) and the current queue backlogs
(Q(m)

n (t)), (Z(m)
n (t)), (Ym(t)), and make decisions as follows:

• (Resource Allocation) Choose α(t) ∈ AS(t) in an effort
to maximize the following expression:4∑N

a=1

∑N
b=1 Jab(t)µ̂ab(α(t), S(t)) (29)

where Jab(t) is a differential backlog metric defined as
follows:

J
(m)
ab (t) M= [Q(m)

a (t) + Z(m)
a (t)1{Q(m)

a (t)>0}

−Q(m)
b (t)]1(m)

ab

Jab(t) M= max
m∈{1,...,M}

max[0, J (m)
ab (t)]

where 1(m)
ab is an indicator function that is 1 if link (a, b)

can be used by data of type m, that is if (a, b) ∈ L(m),
and is 0 else.

• (Routing) Define m∗ab(t)
M= arg max{m|(a,b)∈L(m)} J

(m)
ab (t).

Choose (µ(m)
ab (t)) for each link (a, b) as follows:

µ
(m)
ab (t) =


µ̂ab(α(t), S(t)) if m = m∗ab(t)

and J (m)
ab (t) ≥ 0

0 otherwise

• (Dropping) For each node n and data type m, choose
D

(m)
n (t) by:

D(m)
n (t)

=
{
D

(m),max
n if Z(m)

n (t) +Q
(m)
n (t) > V βνm

0 otherwise
(30)

• (Admission) For each session m: If Q(m)
source(m)(t) ≤

Ym(t), then choose Rm(t) = Am(t). Else, choose
Rm(t) = 0.

• (Auxiliary Variables) For each session m, choose γm(t)
according to the following optimization:

Maximize: V gm(γm(t))− Ym(t)γm(t)
Subject to: 0 ≤ γm(t) ≤ Amaxm

• (Queue Updates) Update queues via (27), (28), (15),
using D(m)

n (t) in these updates.
Note that the auxiliary variable and admission decisions

γm(t), Rm(t) are distributed over each source, and the packet
drops D

(m)
n (t) are distributed over each node. The main

difficulty is the max-weight transmission scheduling (29), and
Theorem 2 considers constant factor approximations of this.

C. The Multi-Hop T -Slot Lookahead Problem

Define D as the set of all (n,m) such that type m data
can be in node n, so that Q(m)

n (t) = 0 for all t whenever
(n,m) /∈ D. Fix integers K > 0 and T > 0, and again
consider the first KT slots decomposed into K frames of size
T . For k ∈ {0, . . . ,K−1}, the value util∗k(T, ε) is defined as

4This resource allocation maximization can be difficult in networks with
interference, and later we consider constant-factor approximations.



PROC. IEEE INFOCOM, 2011 8

the supremum utility associated with the following problem
for frame k:

Max:
M∑
m=1

gm

(
1
T

kT+T−1∑
τ=kT

Rm(τ)

)
− V

∑
n,m

βνmd
(m)
n

Subject to:
kT+T−1∑
τ=kT

[1(m)
n Rm(τ) +

N∑
a=1

µ(m)
an (τ)]

−
kT+T−1∑
τ=kT

[
N∑
b=1

µ
(m)
nb (τ) + d(m)

n ] ≤ 0 ∀(n,m) ∈ D

kT+T−1∑
τ=kT

[
N∑
b=1

µ
(m)
nb (τ) + d(m)

n ] ≥ ε ∀(n,m) ∈ D

0 ≤ d(m)
n ≤ D(m),max

n ∀n,m, τ
µ

(m)
ab (τ) = 0 if (a, b) /∈ L(m) ∀(a, b),m, τ

0 ≤ µ(m)
ab (τ) ,

M∑
m=1

µ
(m)
ab (τ) ≤ µab(τ) ∀(a, b),m, τ

µ(τ)M=(µab(τ)) ∈ B(S(τ)) ∀τ

where B(S(τ)) is the convex hull of all values
(µ̂ab(α, S(τ)))Na,b=1 that can be achieved over decisions
α ∈ S(τ).

Assuming that ε ≤ D(m),max
n , it is easy to show the above

constraints are always feasible (consider the trivial strategy
µ

(m)
ab (τ) = Rm(τ) = 0, d(m)

n = ε).

D. Bounded Queues

Recall that 1(m)
n is an indicator that is 1 if node n is the

source of flow m traffic, and 0 else. We assume that:

D
(m),max
n ≥ max[ε, 1(m)

n Amaxm + µmax,inn ] (31)

Lemma 5: Assume that (31) holds. Then under the above
algorithm for multi-hop routing, dropping, auxiliary variable
allocation, and queue updates (possibly using a choice of α(t)
other than the max-weight decision of (29)), we have that all
queues are bounded for all t ≥ 0 as follows:

Q(m)
n (t) ≤ Q(m),max

n , Z(m)
n (t) ≤ Z(m),max

n , Ym(t) ≤ Y maxm

provided that these inequalities hold at t = 0. The queue
bounds are given by:

Q(m),max
n

M= V βνm + µmax,inn + 1(m)
n Amaxm (32)

Z(m),max
n

M= V βνm + ε (33)
Y maxm

M= V νm +Amaxm (34)

Thus, the worst-case delay of type-m data in a node n is given
by an O(V ) constant W (m),max

n , specifically defined by:

W (m),max
n

M=d(Q(m),max
n + Z(m),max

n )/εe (35)
Proof: The proof that Ym(t) ≤ Y maxm for all t is the same as

that given in Lemma 3. To prove the Q(m)
n (t) bound, suppose

that Q(m)
n (t) ≤ Q

(m),max
n at some slot t. We show it also

holds for slot t + 1. If Q(m)
n (t) ≤ V βνm, then Q

(m)
n (t +

1) ≤ V βνm+µmax,inn +1(m)
n Amaxm

M=Q
(m),max
n . Else, we have

Q
(m)
n (t) > V βνm, and so the dropping algorithm (30) yields

D
(m)
n (t) = D

(m),max
n . By (31), D(m),max

n is greater than or
equal to the maximum new arrivals of type m on slot t, and
so we again have Q(m)

n (t+ 1) ≤ Q(m),max. The proof of the
Z

(m),max
n bound is similar and omitted. The worst-case delay

result (35) then follows by Lemma 1.

E. Multi-Hop Utility Performance

It is important to note that the queue backlog and delay
bounds (32)-(35) hold for any resource allocation decisions
α(t). To analyze utility, assume the above dynamic algorithm
is used, with the exception that the resource allocation can
come within a factor θ of the max-weight decision (29) every
slot (where 0 < θ ≤ 1), called θ-max-weight. The following
theorem has a proof that is similar to the 1-hop case:

Theorem 2: Assume that (31) holds, that all virtual and
actual queues are initially empty, and that the above dynamic
algorithm (with θ-max-weight) is used. Assume that for all
frames k ∈ {0, 1, . . . ,K − 1}, the constraints in the multi-
hop T -slot lookahead problem are feasible when the fourth
constraint involving ε is changed to ε′ = ε/θ (this feasibility
holds whenever ε′ ≤ D

(m),max
n for all n,m). Then for all

integers K > 0, T > 0, the throughput-utility over the first
KT slots satisfies:∑M

m=1 gm(rm(KT ))−
∑
n,m βνmd

(m)

n (kT ) ≥
1
K

∑K=1
k=0

∑M
m=1 gm(θr∗m(k, T, ε/θ))

−θ
∑
n,m βνmd

(m)∗
n (k, T, ε/θ)

−CTV −
1
KT

∑M
m=1 νmY

max
m

where rm(KT ), d
(m)

n (kT ) are time averages of Rm(t) and
D

(m)
n (t) over the first KT slots, the constant C is independent

of T and V , and where r∗m(k, T, ε/θ), d(m)∗
n (k, T, ε/θ) are

optimal values associated with the T -slot lookahead problem
for frame k, frame size T , and parameter ε′ = ε/θ.

We note that if θ = 1 (so pure max-weight is used), then
the first two terms on the right-hand-side above are equal to:

1
K

∑K−1
k=0 util∗k(T, ε)

The above theorem shows that, as K → ∞, the achieved
throughput-utility is within O(1/V ) of the θ-scaled target.

We recall that if the allowed routing paths L(m) have
at most H(m),max hops, then the worst case delay at each
node translates into an end-to-end worst case delay of
H(m),maxW (m),max. One can likely avoid specifying hop-
count-limited paths by combining the sample-path and ε-
persistent queue techniques developed here with the hop-count
based queue architecture in [19].

IV. CONCLUSIONS

We have used a new ε-persistent virtual queue technique
together with a sample path analysis to develop utility-
efficient scheduling algorithms that provide worst-case delay
guarantees. Our algorithms yield, for arbitrary sample paths,
throughput-utility that is within O(1/V ) of the target, which
can be made arbitrarily small with a worst-case delay tradeoff



PROC. IEEE INFOCOM, 2011 9

that is O(V ). These techniques can also be used in other
scheduling contexts where worst-case delay is important.

V. APPENDIX A — PROOF OF LEMMA 2

We use the fact that (max[Q − b, 0] + a)2 ≤ Q2 + a2 +
b2 + 2Q(a − b) for any Q ≥ 0, b ≥ 0, a ≥ 0. Squaring
the update for Qm(t) in (1) and using Rm(t)2 ≤ (Amaxm )2,
(µm(t) +Dm(t))2 ≤ (µmaxm +Dmax

m )2 gives:

Qm(t+ 1)2 −Qm(t)2 ≤ (Amaxm )2 + (µmaxm +Dmax
m )2

+2Qm(t)(Rm(t)− µm(t)−Dm(t))

Squaring the update for Ym(t) in (15), using the fact that
max[x, 0]2 ≤ x2 and (Rm(t)− γm(t))2 ≤ (Amaxm )2 gives:

Ym(t+ 1)2 − Ym(t)2 ≤ (Amaxm )2 + 2Ym(t)(γm(t)−Rm(t))

For simplicity of notation, define Im(t)M=1{Qm(t)>0} and
Jm(t)M=1{Qm(t)=0}. Squaring the update for Zm(t) in (3),
using the fact that max[x, 0]2 ≤ x2, gives:

Zm(t+ 1)2 ≤ Zm(t)2

+[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ]2

+2Zm(t)[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ] (36)

We now have the following observation:

[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ]2 ≤
max[ε2m, (µ

max
m +Dmax

m )2] (37)

Inequality (37) holds by the following argument: If Im(t) = 1,
then Jm(t) = 0, and we have:

[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ]2 =
(εm − µm(t)−Dm(t))2 ≤
max[ε2m, (µ

max
m +Dmax

m )2]

In the opposite case when Im(t) = 0, then Jm(t) = 1 and:

[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ]2

≤ (Dm(t) + µmaxm )2

≤ max[ε2m, (µ
max
m +Dmax

m )2]

Thus, in all cases, (37) holds.
Substituting (37) into (36) yields:

Zm(t+ 1)2 − Zm(t)2 ≤ max[ε2m, (µ
max
m +Dmax

m )2]
+2Zm(t)[Im(t)(εm − µm(t))−Dm(t)− Jm(t)µmaxm ]

Summing the squared differences in the queues over all m and
dividing by 2 yields the result of Lemma 2.

REFERENCES

[1] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[2] M. J. Neely. Delay-based network utility maximization. Proc. IEEE
INFOCOM, March 2010.

[3] F.P. Kelly, A.Maulloo, and D. Tan. Rate control for communication
networks: Shadow prices, proportional fairness, and stability. Journ. of
the Operational Res. Society, vol. 49, no. 3, pp. 237-252, March 1998.

[4] S. H. Low and D. E. Lapsley. Optimization flow control, i: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
vol. 7 no. 6, pp. 861-875, Dec. 1999.

[5] M. Chiang. Balancing transport and physical layer in wireless multihop
networks: Jointly optimal congestion control and power control. IEEE
J. on Selected Areas in Comm., vol. 23, no. 1, pp. 104-116, Jan. 2005.

[6] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle. Layering
as optimization decomposition: A mathematical theory of network
architectures. Proceedings of the IEEE, vol. 95, no. 1, Jan. 2007.

[7] X. Liu, E. K. P. Chong, and N. B. Shroff. A framework for opportunistic
scheduling in wireless networks. Computer Networks, vol. 41, no. 4, pp.
451-474, March 2003.

[8] R. Agrawal and V. Subramanian. Optimality of certain channel aware
scheduling policies. Proc. 40th Annual Allerton Conference on Com-
munication , Control, and Computing, Monticello, IL, Oct. 2002.

[9] H. Kushner and P. Whiting. Asymptotic properties of proportional-
fair sharing algorithms. Proc. of 40th Annual Allerton Conf. on
Communication, Control, and Computing, 2002.

[10] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[11] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proc. IEEE INFOCOM, March
2005.

[12] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[13] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transacations on Automatic Control,
vol. 37, no. 12, pp. 1936-1948, Dec. 1992.

[14] L. Tassiulas and A. Ephremides. Dynamic server allocation to parallel
queues with randomly varying connectivity. IEEE Transactions on
Information Theory, vol. 39, no. 2, pp. 466-478, March 1993.

[15] E. Leonardi, M. Mellia, F. Neri, and M. Ajmone Marsan. Bounds on
average delays and queue size averages and variances in input-queued
cell-based switches. Proc. IEEE INFOCOM, 2001.

[16] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achiev-
ing 100% throughput in an input-queued switch. IEEE Transactions on
Communications, vol. 47, no. 8, August 1999.

[17] P. R. Kumar and S. P. Meyn. Stability of queueing networks and
scheduling policies. IEEE Trans. on Automatic Control, vol.40,.n.2,
pp.251-260, Feb. 1995.

[18] L. B. Le, E. Modiano, and N. B. Shroff. Optimal control of wireless
networks with finite buffers. Proc. IEEE INFOCOM, 2010.

[19] L. Ying, S. Shakkottai, and A. Reddy. On combining shortest-path and
back-pressure routing over multihop wireless networks. Proc. IEEE
INFOCOM, 2009.

[20] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks
using queue-length-based scheduling and congestion control. Proc. IEEE
INFOCOM, March 2005.

[21] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[22] X. Lin and N. B. Shroff. The impact of imperfect scheduling on cross-
layer rate control in wireless networks. Proc. IEEE INFOCOM, 2005.

[23] X. Lin and N. B. Shroff. Joint rate control and scheduling in multihop
wireless networks. Proc. of 43rd IEEE Conf. on Decision and Control,
Paradise Island, Bahamas, Dec. 2004.

[24] B. Sadiq, S. Baek, and Gustavo de Veciana. Delay-optimal opportunistic
scheduling and approximations: the log rule. Proc. IEEE INFOCOM,
April 2009.

[25] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling
in processor sharing systems. Proc. IEEE INFOCOM, Rio de Janiero,
Brazil, April 2009.

[26] A. Fu, E. Modiano, and J. Tsitsiklis. Optimal energy allocation for
delay-constrained data transmission over a time-varying channel. Proc.
IEEE INFOCOM, 2003.

[27] E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal. Energy-efficient
packet transmission over a wireless link. IEEE/ACM Trans. Networking,
vol. 10, no. 4, pp. 487-499, Aug. 2002.

[28] M. Zafer and E. Modiano. A calculus approach to minimum energy
transmission policies with quality of service guarantees. Proc. IEEE
INFOCOM, March 2005.

[29] W. Chen, M. J. Neely, and U. Mitra. Energy-efficient transmissions with
individual packet delay constraints. IEEE Transactions on Information
Theory, vol. 54, no. 5, pp. 2090-2109, May 2008.

[30] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.


