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Universal Scheduling for Networks with Arbitrary
Traffic, Channels, and Mobility

Michael J. Neely

Abstract— We extend stochastic network optimization theory
to treat networks with arbitrary sample paths for arrivals,
channels, and mobility. The network can experience unexpected
link or node failures, traffic bursts, and topology changes, and
there are no probabilistic assumptions describing these time
varying events. Performance of our scheduling algorithm is
compared against an ideal T -slot lookahead policy that can
make optimal decisions based on knowledge up to T -slots into
the future. We develop a simple non-anticipating algorithm that
provides network throughput-utility that is arbitrarily close to (or
better than) that of the T -slot lookahead policy, with a tradeoff
in the worst case queue backlog kept at any queue. The same
policy offers even stronger performance, closely matching that of
an ideal infinite lookahead policy, when ergodic assumptions are
imposed. Our analysis uses a sample path version of Lyapunov
drift and provides a methodology for optimizing time averages
in general time-varying optimization problems.

Index Terms— Queueing analysis, opportunistic scheduling,
internet, routing, flow control, wireless networks, optimization

I. INTRODUCTION

Networks experience unexpected events. Consider the net-
work of Fig. 1 and focus on the session that sends a stream of
packets from node A to node D. Suppose that several paths
are used, but due to congestion on other links, the primary
path that can deliver the most data is the path A,B,C,D.
However, suppose that there is a failure at node B in the
middle of the session. An algorithm with perfect knowledge of
the future would take advantage of the path A,B,C,D while
it is available, and would switch to alternate paths before the
failure occurs. The algorithm would also be able to predict
the traffic load on different links at different times, and would
optimally route in anticipation of these events.

The above example holds if the network of Fig. 1 is a
wireline network, a wireless network, or a mixture of wired
and wireless connections. As another example, suppose the
network contains an additional mobile wireless node E, and
that the following unexpected event occurs: Node E moves
into close proximity to node A, allowing a large number of
packets to be sent to it. It then moves into close proximity to
node D, providing an opportunity to transmit packets to this
destination node. If this event could be anticipated, we could
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Fig. 1. A primary path from A to D, with alternative paths shown in the
event of a failure at node B.

take advantage of it and improve the short term throughput by
routing many packets over the relay E.

These examples illustrate different types of unexpected
events that can be exploited to improve performance. There are
of course even more complex sequences of arrival, channel,
and mobility events that, if known in advance, could be
exploited to yield improved performance. However, because
realistic networks do not have knowledge of the future, it is
not clear if these events can be practically used. Surprisingly,
this paper shows that it is possible to reap the benefits of these
time varying events without any knowledge of the future. We
show that a simple non-anticipating policy can closely track
the performance of an ideal T -slot lookahead policy that has
perfect knowledge of the future up to T slots. Proximity to
the performance of the T -slot lookahead policy comes with a
tradeoff in the worst case backlog stored in any queue of the
network, which also affects a tradeoff in network delay.

Specifically, we treat networks with slotted time with nor-
malized slots t ∈ {0, 1, 2, . . .}. We measure network utility
over an interval of timeslots according to a concave function of
the time average throughput vector achieved over that interval.
We show that for any positive integer frame size T , and
any interval that consists of R frames of T slots, the utility
achieved over the interval is greater than or equal to the utility
achieved by using the T -slot lookahead policy over each of
the R frames, minus a “fudge factor” that has the form:

fudge factor =
B1T

V
+
B2V

RT

where B1 and B2 are constants, and V is a positive parameter
that can be chosen as desired to make B1T/V arbitrarily small,
with a tradeoff in worst case queue backlog that is O(V ). This
shows that we reap almost the same benefits of knowing the
future up to T slots if we choose V suitably large and if
we wait for the completion of R frames of size T , where R
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is sufficiently large to make B2V/(RT ) small. Remarkably,
the constants B1 and B2 can be explicitly computed in
advance, without any assumptions on the underlying stochastic
processes that describe the time varying events. Further, in the
case when the utility function is linear, we have B2 = 0.

This establishes a universal scheduling paradigm that shows
a single network algorithm can provide strong mathematical
guarantees for any network and for any time varying sample
paths. The algorithm that we use is not new: It is a modified
version of the backpressure based “drift-plus-penalty” algo-
rithms that we previously developed and used in different
contexts in our prior work [1][2][3][4]. These algorithms
were originally developed for the case when new arrivals and
new channel states are independent and identically distributed
(i.i.d.) over slots, and were analyzed using a Lyapunov drift
defined as an expectation over the underlying probability
distribution. Extended non-i.i.d. models are treated for stability
in [5][4][6], for joint stability and utility optimization in [7][8],
and in a fluid limit sense in [9]. The works [10][4][11]
address “instantaneous capacity regions” and “instantaneous
traffic rates” for non-ergodic situations. However, the prior
non-ergodic analysis [10][4][11] still assumes an underlying
probability model, and makes assumptions about traffic rates
and network capacity with respect to this model.

The analysis in this paper is new and uses a sample path ver-
sion of Lyapunov drift, without any probabilistic assumptions.
This allows treatment of realistic channels and traffic traces.
Because arbitrary sample paths may not have well defined
time averages, typical equilibrium notions of network capacity
and optimal time average utility cannot be used. We thus
use a new metric that measures performance with respect to
ideal T -slot lookahead policies. This is a possible framework
for treating the open questions identified in [12] concerning
non-equilibrium network theory. Further, our results provide
universal techniques for optimizing time averages that are
useful for other types of time-varying systems.

A. Comparison to Related Work

We note that universal algorithms are important in other
fields. For example, the universal Lempel-Ziv data compres-
sion algorithm operates on arbitrary files [13], and universal
stock portfolio allocation algorithms hold for arbitrary price
sample paths [14][15][16][17][18]. Prior work in the area
of competitive ratio analysis considers network scheduling
problems with arbitrary sample paths in a different context
[19][20][21][22]. Work in [20] considers a large class of
admission control problems for networks with random arrivals
that earn revenue if accepted. An algorithm is developed that
yields revenue that differs by a factor of Θ(log(N)) from
that of an ideal algorithm with perfect knowledge of the
future, where N is the number of network nodes. Further,
this asymptotic ratio is shown to be optimal, in the sense
that there is always a worst case sequence of packet arrivals
that can reduce revenue by this amount. Related Θ(log(N))
competitive ratio results are developed for energy optimization
in [21] and for wireless admission control in [22]. The works
[19][20][21][22] do not consider networks with time varying

channels or mobility, and do not treat (or exploit) network
queueing. An adversarial queueing theory example in [23]
shows that, if channels are time varying, the competitive ratio
can be much worse than logarithmic, even for a simple packet-
based network with a single link.

Our work treats the difficult case of multi-hop networks with
arbitrary traffic, time varying channels, and mobility. However,
rather than pursuing a competitive ratio analysis, we measure
performance against a T -slot lookahead metric. We develop
an algorithm that closely tracks the performance of an ideal
T -slot lookahead policy, for any arbitrary (but finite) T . This
does not imply that the algorithm has an optimal competitive
ratio of 1, because the utility of a T -slot lookahead policy for
finite T may not be as good as the performance of an infinite
lookahead policy. However, it turns out that our policy indeed
approaches an optimal competitive ratio of 1 (measured with
respect to an infinite lookahead policy) under the special case
when the time varying events are ergodic.

II. NETWORK MODEL

Consider a network with N nodes that operates in slot-
ted time. There are M sessions, and we let A(t) =
(A1(t), . . . , AM (t)) be the vector of data that exogenously
arrives to the transport layer for each session on slot t
(measured either in integer units of packets or real units of
bits). We assume that arrivals are bounded by constants Amaxm :

0 ≤ Am(t) ≤ Amaxm ∀t

A network where all sources always have data to send can be
modeled as one with Am(t) = Amaxm for all t.

Each session m ∈ {1, . . . ,M} has a particular source
node and destination node. Data delivery takes place by
transmissions over possibly multi-hop paths. We assume that
a transport layer flow controller observes Am(t) every slot
and decides how much of this data to add to the network
layer at its source node, and how much to drop. Let x(t) =
(x1(t), . . . , xM (t)) be a vector of flow control decision vari-
ables on slot t. These decisions are made subject to the
constraints:

0 ≤ xm(t) ≤ Am(t) ∀m ∈ {1, . . . ,M},∀t (1)

All data that is intended for destination node c ∈ {1, . . . , N}
is called commodity c data, regardless of its particular session.
For each n ∈ {1, . . . , N} and c ∈ {1, . . . , N}, let M(c)

n

denote the set of all sessions m ∈ {1, . . . ,M} that have
source node n and commodity c. All data is queued according
to its commodity, and we define Q

(c)
n (t) as the amount of

commodity c data in node n on slot t. We assume that
Q

(n)
n (t) = 0 for all t, as data that reaches its destination is

removed from the network. Let Q(t) denote the matrix of
current queue backlogs for all nodes and commodities.

The queue backlogs change from slot to slot as follows:

Q(c)
n (t+1) = Q(c)

n (t)−
N∑
j=1

µ̃
(c)
nj (t)+

N∑
i=1

µ̃
(c)
in (t)+

∑
m∈M(c)

n

xm(t)

where µ̃(c)
ij (t) denotes the actual amount of commodity c data

transmitted from node i to node j (i.e., over link (i, j)) on slot
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t. It is useful to define transmission decision variables µ(c)
ij (t)

as the transmission rate offered by link (i, j) to commodity c
data, where this full amount is used only if there is that much
commodity c data available at node i, so that:

µ̃
(c)
ij (t) ≤ µ(c)

ij (t) ∀i, j, c ∈ {1, . . . , N},∀t

Thus, for all n 6= c:

Q
(c)
n (t+ 1) ≤ max

[
Q

(c)
n (t)−

∑N
j=1 µ

(c)
nj (t), 0

]
+
∑N
i=1 µ

(c)
in (t) +

∑
m∈M(c)

n
xm(t) (2)

The inequality is because the actual endogenous arrivals
µ̃

(c)
in (t) may not be as large as µ(c)

in (t) if there is little or no
data available for transmission over that link. Our results hold
for any scheduling choices that satisfy (2). For example, if
there are 5 units of commodity c data in node n, and there
are two outgoing links offering non-zero rates µ(c)

n1 (t) = 4 and
µ

(c)
n2 (t) = 3, then the 5 units will be cleared from node n, but

can be distributed over the two links in different ways, such
as µ̃(c)

n1 (t) = 4, µ̃(c)
n2 (t) = 1, or µ̃(c)

n1 (t) = 3, µ̃(c)
n2 (t) = 2, etc.

A. Transmission Variables

Let S(t) represent the topology state of the network on
slot t, observed on each slot as in [1]. The value of S(t) is an
abstract and possibly multi-dimensional quantity that describes
the current link conditions between all nodes under the current
slot. The collection of all transmission rates that can be offered
over each link (i, j) of the network is given by a general
transmission rate function b(I(t), S(t)):1

b(I(t), S(t)) = (bij(I(t), S(t)))i,j∈{1,...,N},i6=j

where I(t) is a general network-wide resource allocation
decision (such as link scheduling, bandwidth selection, mod-
ulation, etc.) and takes values in some abstract set IS(t)

that possibly depends on the current S(t). We assume the
transmission rate function bij(I(t), S(t)) is non-negative and
bounded by a finite constant bmaxij for all (i, j), I(t), and S(t).

Every slot the network controller observes the current
S(t) and makes a resource allocation decision I(t) ∈ IS(t).
The controller then chooses µ(c)

ij (t) variables subject to the
following constraints:

µ
(c)
ij (t) ≥ 0 ∀i, j, c ∈ {1, . . . , N} (3)

µ
(c)
ii (t) = µ

(i)
ij (t) = 0 ∀i, j, c ∈ {1, . . . , N} (4)

µ
(c)
ij (t) = 0 if (i, j) /∈ L(c) ∀i, j, c ∈ {1, . . . , N} (5)
N∑
c=1

µ
(c)
ij ≤ bij(I(t), S(t)) ∀i, j ∈ {1, . . . , N} (6)

Constraint (4) ensures data is not transmitted from a node
to itself, or transmitted again once it reaches its destination.

1It is worth noting now that for networks with orthogonal channels, our
“max-weight” transmission algorithm (to be defined in the next subsection)
decouples to allow nodes to make transmission decisions based only on
those components of the current topology state S(t) that relate to their own
local channels. Of course, for wireless interference networks, all channels
are coupled, although distributed approximations of max-weight transmission
exist in this case, see Section 4.7 and Corollary 5.2 in [1].

Constraint (6) ensures the total transmission rate offered over
link (i, j) on slot t is at most bij(I(t), S(t)). Constraint (5)
restricts transmission of commodity c data to a pre-specified
set of links L(c), which is sometimes useful. The case of
unrestricted routing is covered by defining L(c) as the set of
all network links.

B. The Utility Optimization Problem

For simplicity, let ω(t)M=[A(t), S(t)] represent the random
network events that are observed on slot t. Let α(t) represent
the collection of control actions taken on slot t, constrained
to a set Aω(t). Specifically:

α(t)M=[I(t), (µ(c)
ij (t)),x(t)]

The constraint α(t) ∈ Aω(t) is a simple way of representing
all constraints (1), (3)-(6), and I(t) ∈ IS(t).

Fix a finite implementation time tend, and define xm, µ(c)
ab

as time averages over τ ∈ {0, 1, . . . , tend − 1}:

µ
(c)
ab

M=
1
tend

tend−1∑
τ=0

µ
(c)
ab (τ)

x M=
1
tend

tend−1∑
τ=0

x(τ) = (x1, . . . , xM ) (7)

Our objective is to solve the following problem:2

Maximize: φ(x) (8)
Subject to:∑
m∈M(c)

n

xm +
N∑
i=1

µ
(c)
in ≤

N∑
j=1

µ
(c)
nj ,∀(n, c), n 6= c (9)

α(t) ∈ Aω(t) ∀t ∈ {0, . . . , tend − 1} (10)

where φ(x) is a continuous, concave, and entrywise non-
decreasing function over the hyper-rectangle R, defined:

RM=
{
x ∈ RM |0 ≤ xm ≤ Amaxm ∀m ∈ {1, . . . ,M}

}
(11)

Define νminm and νmaxm respectively as the infimum and supre-
mum right partial derivative of φ(x) with respect to xm over
the interior of the rectangle R, assumed to be finite.3 An
example is a separable utility function such as:

φ(x) =
∑M
m=1 log(1 + νmxm)

for which νmaxm = νm and νminm = νm/(1 + νmA
max
m ).

Another example is:

φ(x) = min[x1, . . . , xM ]

for which νmaxm = 1 and νminm = 0. Finally, in the linear case
φ(x) =

∑M
m=1 νmxm we have νminm = νmaxm = νm.

2A more general optimization problem is treated in our technical report
[24] (see also Section V).

3Continuous and concave functions over a hyper-rectangle R have well
defined left and right partial derivatives over the interior of R.
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C. T -Slot Lookahead Policies

For a given S(t) on slot t, define Ω(t) as the set of all
vectors [(bij), (µ

(c)
ij )] such that there exists an action I ∈ IS(t)

such that bij = bij(I, S(t)) for all i, j, and µ(c)
ij satisfies µ(c)

ij ≥
0, µ(c)

ii = µ
(i)
ij = 0 for all i, j, c, and:∑N

c=1 µ
(c)
ij ≤ bij ∀i, j ∈ {1, . . . , N}

Rather than compare performance to the optimum of the
problem (8)-(10) over the full interval t ∈ {0, . . . , tend − 1},
we compare to the maximum utility that can be achieved
over successive frames of size T , assuming the time average
constraints (9) must be achieved over each frame. Further, in
this comparison we allow variables [(bij(t)), (µ

(c)
ij (t))] to be

chosen in the extended set Conv(Ω(t)), rather than just Ω(t).
Specifically, let T > 0 be an integer frame size. For each

integer r ≥ 0, define the rth frame as the interval τ ∈
{rT, . . . , rT+T−1}. Define F ∗r as the supremum value asso-
ciated with the following problem (where γ∗ M=(γ∗1 , . . . , γ

∗
M )):

Maximize: φ(γ∗) (12)

Subject to: γ∗m = 1
T

∑rT+T−1
τ=rT x∗m(τ) ∀m ∈ {1, . . . ,M}∑

m∈M(c)
n
γ∗m + 1

T

∑rT+T−1
τ=rT

∑N
i=1 µ

∗(c)
in (τ)

≤ 1
T

∑rT+T−1
τ=rT

∑N
j=1 µ

∗(c)
nj (τ) ∀(n, c), n 6= c

[(b∗ij(t)), (µ
∗(c)
ij (t))] ∈ Conv(Ω(τ)) ,∀τ

0 ≤ x∗m(τ) ≤ Am(τ) ∀m ∈ {1, . . . ,M},∀τ

The value of F ∗r represents the supremum of the utility in (12)
that can be achieved over the frame, considering all policies
that satisfy the constraints and that have perfect knowledge
of the future ω(τ) values over the frame. Note that the trivial
solution γm = xm = µ

(c)
in = 0 satisfies all constraints in the

T -slot lookahead problem, and hence the problem is always
feasible and F ∗r ≥ 0 for all r. Our new goal is to design a
non-anticipating control policy that is implemented over time
tend = RT (for some positive integer R), and that satisfies
all constraints of the original problem while achieving a total
utility that is close to (or larger than) the value of:

1
R

∑R−1
r=0 F

∗
r (13)

The problem (8)-(10) might have a strictly larger utility
than (13) because it only requires the time average constraints
to be met over the full time interval, rather than requiring
them to be satisfied on each of the R frames. Nevertheless,
when T is large, it is not trivial to achieve the utility value
of (13), as this utility is defined over policies that have T -
slot lookahead, whereas an actual policy does not have future
lookahead capabilities and makes decisions within the smaller
set Ω(t) rather than Conv(Ω(t)).

D. Example for 1-Hop Networks

For intuition, here we describe F ∗r for a wireless downlink
system with N queues, arrivals (A1(t), . . . , AN (t)), and chan-
nel states S(t) = (S1(t), . . . , SN (t)) (we have re-indexed the
variables because of the one-hop structure of this example).
There is a single server that can be allocated to at most one

queue per slot, serving at rate Sn(t) if it selects channel n
on slot t. The decision vector is I(t) = (I1(t), . . . , IN (t))
with In(t) = 1 if channel n is selected on slot t, and 0
else. The rates for each channel n ∈ {1, . . . , N} are µn(t) =
bn(In(t), Sn(t)), where:

bn(In(t), Sn(t)) =
{
Sn(t) if In(t) = 1
0 if In(t) = 0

For a frame size T and frame r consisting of slots τ ∈
{rT, . . . , rT + T − 1} we have that F ∗r is the solution to:

Maximize: φ(γ∗) (14)

Subject to: γ∗n = 1
T

∑rT+T−1
τ=rT µ∗n(τ) ∀n ∈ {1, . . . , N}(15)

0 ≤ µ∗n(τ) ≤ Sn(τ) ∀n ∈ {1, . . . , N},∀τ (16)∑
{n|Sn(τ)>0}

µ∗n(τ)
Sn(τ) ≤ 1 ,∀τ (17)

0 ≤ x∗n(τ) ≤ An(τ) ∀(i, j),∀τ (18)

The constraint (17) is a convexification of the more stringent
constraint that (µ1(τ), . . . , µN (τ)) is non-zero in at most 1
component, and satisfies µn(τ) = Sn(τ) in any non-zero
component n, which applies to the actual system.

III. SAMPLE PATH LYAPUNOV OPTIMIZATION

The problem (8)-(10) is equivalent to the following, which
introduces auxiliary variables γ(t) = (γ1(t), . . . , γM (t)):

Maximize: φ(γ)
Subject to: xm ≥ γm ∀m ∈ {1, . . . ,M}∑
m∈M(c)

n
xm +

∑N
i=1 µ

(c)
in ≤

∑N
j=1 µ

(c)
nj ,∀(n, c), n 6= c

γ(t) ∈ R , α(t) ∈ Aω(t) ∀t ∈ {0, . . . , tend − 1}

where R is defined in (11), and γ is defined:

γ M= 1
tend

∑tend−1
τ=0 γ(τ)

The auxiliary variables γ(t) are useful because they are chosen
in the rectangle set R every slot t, and decouple the nonlinear
function φ(·) from the variables x(t) that are constrained
differently every slot based on the value of Am(t) (so that
0 ≤ xm(t) ≤ Am(t)). The constraints xm ≥ γm are enforced
by virtual queues Gm(t), with update:

Gm(t+ 1) = max[Gm(t) + γm(t)− xm(t), 0] (19)

The intuition is that if Gm(t) is stable, then the time average
of xm(t) is greater than or equal to that of γm(t) [25][1]. This
method of auxiliary variables was developed in [1][2].

Define Θ(t)M=[Q(t),G(t)] as a vector of all actual and
virtual queues, and define the following Lyapunov function:

L(Θ(t))M= 1
2

∑
n,cQ

(c)
n (t)2 + 1

2

∑M
m=1Gm(t)2

Let ∆T (t) represent the T -slot sample path Lyapunov drift
associated with particular actions implemented over the inter-
val {t, . . . , t+T − 1} when the queues have state Θ(t) at the
start of the interval:4

∆T (t)M=L(Θ(t+ T ))− L(Θ(t)) (20)

This notion of T -slot drift differs from that given in [1] in that
it does not involve an expectation.

4The value ∆T (t) depends on Θ(t), the random events {ω(t), . . . , ω(t+
T − 1)}, and the control actions {α(t), . . . , α(t+ T − 1)}.
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A. The Drift-Plus-Penalty Method

It is difficult to know the T -slot drift because it depends
on future (and hence unknown) ω(t) values. Thus, following
the approach [1], our policy every slot t observes the current
ω(t) and Θ(t) and chooses a control action α(t) ∈ Aω(t)

and auxiliary variables γ(t) ∈ R to come within an additive
constant of minimizing an upper bound on the following 1-slot
drift-plus-penalty expression:

∆1(t)− V φ(γ(t))

where V ≥ 0 is a control parameter chosen in advance to
affect a performance tradeoff.

Lemma 1: The 1-slot drift ∆1(t) satisfies:

∆1(t)− V φ(γ(t)) ≤ B − V φ(γ(t))

+
M∑
m=1

Gm(t)[γm(t)− xm(t)]

+
∑
n,c

Q(c)
n (t)

 ∑
m∈M(c)

n

xm(t) +
N∑
i=1

µ
(c)
in (t)−

N∑
j=1

µ
(c)
nj (t)


where the constant B is defined:

B M=
1
2

M∑
m=1

(Amaxm )2 +
1
2

N∑
n=1

[(Amax,inn )2 + (bmax,outn )2]

where Amax,inn and bmax,outn are bounds on the maximum
arrivals to and departures from node n on a given slot,
including all commodities (where the arrival bound includes
both exogenous and endogenous arrivals).

Proof: The proof involves squaring the queue update
equations for Q(c)

n (t), Gm(t) in (2), (19) and then adding the
“penalty” −V φ(γ(t)) to both sides. Details are in [24].

B. The Universal Network Scheduling Algorithm

Our algorithm makes decisions about auxiliary variables
γ(t) and flow control variables x(t) to minimize the right-
hand-side of the drift-plus-penalty expression in Lemma 1.
It also chooses routing and resource allocation variables
(µ(c)
ab (t)), I(t) to “approximately” minimize the right-hand-

side of this expression (to within an additive constant), where
the approximation enables a deterministic queue backlog
bound.
• (Auxiliary Variables) For each slot t, the G(t) queues are

observed and γ(t) is chosen to solve:

Maximize: V φ(γ(t))−
∑M
m=1Gm(t)γm(t) (21)

Subject to: 0 ≤ γm(t) ≤ Amaxm ∀m ∈ {1, . . . ,M}(22)

This amounts maximization of M separate single-variable
concave functions in the case when φ(γ) has the separa-
ble structure φ(γ) =

∑M
m=1 φm(γm).

• (Flow Control) For each slot t, each session m observes
Am(t) and the queue values Gm(t), Q(cm)

nm (t) (where nm
denotes the source node of session m, and cm represents
its destination). Note that these queues are all local to the

source node of the session, and hence can be observed
easily. It then chooses xm(t) to solve:

Maximize: Gm(t)xm(t)−Q(cm)
nm (t)xm(t) (23)

Subject to: 0 ≤ xm(t) ≤ Am(t)

This reduces to the “bang-bang” flow control decision
of choosing xm(t) = Am(t) if Q(cm)

nm (t) ≤ Gm(t), and
xm(t) = 0 otherwise.

• (Resource Allocation and Transmission) For each slot t,
the network controller observes queue backlogs {Q(c)

n (t)}
and the topology state S(t) and chooses I(t) ∈ IS(t) and
{µ(c)

ij (t)} subject to (3)-(6) to approximately solve:

Max:
∑
n,cQ

(c)
n (t)[

∑N
j=1 µ

(c)
nj (t)−

∑N
i=1 µ

(c)
in (t)] (24)

S.t.: I(t) ∈ IS(t) and (3)-(6)

The specific choices that are made in the approximation
are detailed in the next subsection.

• (Queue Updates) Update the queues Gm(t) and Q
(c)
n (t)

according to (19) and (2).

C. Resource Allocation and Transmission

There are two modifications to the max-weight rule (24)
that we use below (similar to [25][10]): The first modifies the
backpressure problem to ensure bounded queues. The second
allows for approximate implementations of a max-weight rule.
Specifically, define differential backlogs W (c)

ij (t) as follows:

W
(c)
ij (t)M=Q

(c)
i (t)−Q(c)

j (t)

Define Ŵ (c)
ij (t) as follows:

Ŵ
(c)
ij (t)M=

{
W

(c)
ij (t) + θ

(c)
i − θ

(c)
j if Q(c)

j (t) ≤ Qmax − βj
−1 otherwise

(25)

where for each j ∈ {1, . . . , N}, βj is the largest amount of any
commodity that can enter node j, considering both exogenous
and endogenous arrivals (this is finite by the boundedness
assumptions), and where Qmax is defined:

Qmax M=V νmax +Amax + βmax

where νmax, Amax, βmax are given by:

νmax M= max
m∈{1,...,M}

νmaxm , Amax M= max
m∈{1,...,M}

Amaxm

βmax M= max
n∈{1,...,N}

βn

Finally, the values θ
(c)
i are any non-negative weights that

represent some type of estimate of the distance from node i to
destination c (possibly being zero if there is no such estimate
available). Such weights are known to experimentally improve
delay by biasing routing decisions towards favorable directions
[6][26][10]. Then define Ŵij(t) as:

Ŵij(t)M= max
c∈{1,...,N}|(i,j)∈L(c)

max[Ŵ (c)
ij (t), 0]
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and define ĉ∗ij(t) as the maximizing commodity. Choose
I(t) ∈ IS(t) to come within an additive constant C ≥ 0 of
maximizing: ∑N

i=1

∑N
j=1 bij(I(t), S(t))Ŵij(t) (26)

and choose transmission variables:

µ
(c)
ij (t) =

{
bij(I(t), S(t)) if c = ĉ∗ij(t) and Ŵ (c)

ij (t) ≥ 0
0 otherwise

(27)

Theorem 1: Suppose the following: We implement the
above universal network scheduling algorithm using any pa-
rameter V ≥ 0 and any weights θ(c)i ≥ 0. Every slot we choose
I(t) ∈ IS(t) to come within an additive constant C ≥ 0 of
maximizing the expression (26). Suppose all actual queues are
initially empty, so that Q(0) = 0, and that Gm(t) queues are
initialized to Gm(0) = max[V νminm −Amaxm , 0]. Then:

(a) The queues Q
(c)
n (t) and Gm(t) are deterministically

bounded for all t, so that for all (n, c) ∈ {1, . . . , N}2 and
all m ∈ {1, . . . ,M}:

Q(c)
n (t) ≤ Qmax M=V νmax +Amax + βmax ∀t ≥ 0 (28)

Gminm ≤ Gm(t) ≤ Gmaxm ∀t ≥ 0 (29)

where constants Gminm and Gmaxm are defined:

Gminm
M= max[V νminm −Amaxm , 0]

Gmaxm
M= V νmaxm +Amaxm

(b) For any integer frame size T > 0 and any integer number
of frames R > 0, define tend M={0, 1, . . . , RT − 1}. Then time
average admission rates x, defined as time averages over the
first tend slots as in (7), satisfy:

φ(x) ≥ 1
R

R−1∑
r=0

F ∗r −
B̃T + C

V

−
M∑
m=1

νmaxm (V (νmaxm − νminm ) + 2Amaxm )
RT

(30)

where 1
R

∑R−1
r=0 F

∗
r represents the target utility (13) associated

with implementing the T -slot lookahead policy over R frames
of size T . The constant B̃ is equal to B plus an additional
term related to worst case bmax, Amaxm parameters and the
θ
(c)
i values (and is independent of V , R, T ). The constant B̃

is computed explicitly in [24].

D. Discussion of Theorem 1

Note that the final term on the right-hand-side of (30) is
independent of V in the special case when φ(x) is linear,
so that νmaxm = νminm for all m. When φ(x) is nonlinear,
the above theorem shows that the “fudge factor” between the
achieved utility φ(x) and the target 1

R

∑T−1
r=0 F

∗
r has the form:

fudge factor =
B1T

V
+
B2V

RT

where constants B1 and B2 are defined:

B1
M= B̃ + C/T

B2
M=

M∑
m=1

[νmaxm (νmaxm − νminm ) + 2νmaxm Amaxm /V ]

Finally, we note that the initial conditions for Q(c)
n (t) and

Gm(t) given in Theorem 1 are not crucial. The same inequal-
ities (28)-(29) hold for all slots t ≥ 0 provided that they also
hold for t = 0, and (32) of the proof shows an additional
fudge-factor that quickly vanishes is added to the utility bound.

E. Proof of Theorem 1 part (a)

Lemma 2: If for a given m ∈ {1, . . . ,M} and a given slot t,
we have Gm(t) > V νmaxm , then the auxiliary variable selection
rule (21)-(22) chooses γm(t) = 0, and hence Gm(t) cannot
increase on the next slot. Alternatively, if Gm(t) < V νminm ,
then Gm(t) cannot decrease on the next slot.

Proof: (Lemma 2) Suppose Gm(t) > V νmaxm for a
particular m ∈ {1, . . . ,M}. Let γ ∈ R, and define γ(0)

m as γ
with the mth entry set to 0. Because φ(γ) is non-decreasing
with maximum mth partial derivative νmaxm , we have for any
γ such that γ ∈ R:

V φ(γ)−
M∑
i=1

Gi(t)γi ≤ V φ(γ(0)
m )−

∑
i 6=m

Gi(t)γi

+γm(V νmaxm −Gm(t))

≤ V φm(γ(0)
m )−

∑
i 6=m

Gi(t)γi

Equality in the above holds if and only if γm = 0, because
(V νmaxm −Gm(t)) < 0. Thus, the rule (21)-(22) must choose
γm(t) = 0. It follows by the Gm(t) update rule (19) that
Gm(t) cannot increase on the next slot. It can similarly be
shown that Gm(t) cannot decrease if it is less than V νminm .

Proof: (Theorem 1 part (a)) Fix m ∈ {1, . . . ,M}. We
first show that Gm(t) is bounded by V νmaxm +Amaxm for all t.
Suppose this holds for a given slot t (we know it holds for t =
0 by assumption). We prove it also holds for t+1. If Gm(t) ≤
V νmaxm , then Gm(t+ 1) ≤ V νmaxm +Amaxm , since Gm(t) can
increase by at most Amaxm on each slot (see dynamics in (19)).
On the other hand, if V νmaxm < Gm(t) ≤ V νmaxm + Amaxm ,
then by Lemma 2 we know Gm(t) cannot increase on the next
slot, and so Gm(t+1) ≤ Gm(t) ≤ V νmaxm +Amaxm . It follows
by induction that the bound holds for all t ≥ 0.

Similarly, because Lemma 2 also ensures Gm(t) cannot
decrease when it is less than V νminm , it follows easily that
Gm(t) ≥ max[V νminm −Amaxm , 0] for all t.

We now prove the Q(c)
n (t) bound. Suppose that Q(c)

n (t) ≤
Qmax for all (n, c) for a given slot t (this clearly holds for t =
0). We show that it also holds for slot t+1. Take any particular
(n, c). If Q(c)

n (t) ≤ Qmax − βn, then the desired bound must
hold on slot t+1 because at most βn units of new commodity
c data (considering both exogenous and endogenous arrivals)
can enter node n in one slot (by definition of βn).
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Now suppose that Qmax − βn < Q
(c)
n (t) ≤ Qmax. Thus

(because Gm(t) ≤ V νmax +Amax for all m and all t):

Gm(t) ≤ V νmax +Amax ≤ Qmax − βn < Q(c)
n (t)

Thus, Q(c)
n (t) > Gm(t) for all m ∈ {1, . . . ,M}. It follows by

the flow control algorithm (23) that xm(t) = 0 for all sources
m for which nm = n and cm = c, that is, all sources that
have source node n and have commodity c. Hence, there can
be no exogenous arrivals on slot t. We next show that there
can be no endogenous arrivals from other nodes either, and so
Q

(c)
n (t) cannot increase on the next slot (proving the result).

To this end, note that because Q(c)
n (t) > Qmax−βn, we have

Ŵ
(c)
in (t) = −1 for all other nodes i that can send data to node

n (recall the definition of Ŵ (c)
ij (t) in (25)). It follows by (27)

that µ(c)
in (t) = 0 for all i, and so node n can receive no new

commodity c data on slot t.

IV. UTILITY ANALYSIS — PROOF OF THEOREM 1(B)
Lemma 3: The universal scheduling algorithm with any

parameter V ≥ 0, any weights θ
(c)
i , and any approximate

implementation that solves (26) to within a constant C ≥ 0
every slot, satisfies for any slot t ≥ 0 and any integer T > 0:

∆T (t)− V
t+T−1∑
τ=t

φ(γ(τ)) ≤ B̃T 2 + CT − V Tφ(γ∗)

+
M∑
m=1

Gm(t)
t+T−1∑
τ=t

[γ∗m − x∗m(τ)]

+
∑
n,c

Q(c)
n (t)

t+T−1∑
τ=t

 N∑
i=1

µ
∗(c)
in (τ)−

N∑
j=1

µ
∗(c)
nj (τ)


+
∑
n,c

Q(c)
n (t)

t+T−1∑
τ=t

∑
m∈M(c)

n

x∗m(τ)

where γ∗ is any vector in R, x∗m(τ) are any values that
satisfy 0 ≤ x∗m(τ) ≤ Am(τ), and µ

∗(c)
ab (τ) are any values in

Conv(Ω(τ)). The constant B̃ is equal to B plus an additional
term that depends on the worst case bmax and Amaxm values.

Proof: The proof follows from the fact that decision vari-
ables µ(c)

ab (t) are chosen in Ω(t) to minimize the right-hand-
side of the drift-plus-penalty expression in Lemma 1 to within
an additive constant on every slot t. Because they appear in
linear terms on the right-hand-side, they also minimize over
all variables in Conv(Ω(t)). See [24] for details, where B̃ is
explicitly computed.

Now fix a frame size T and define tr M=rT as the start of
frame r, for r ∈ {0, 1, . . . , R−1}. We apply the above lemma
with t = tr, and with γ∗m, x∗m(τ), b∗ij(τ), µ∗(c)ab (τ) defined
as the actions that solve the T -slot lookahead problem (12)
over the frame τ ∈ {tr, . . . , tr + T − 1}.5 Plugging these
decisions into the right-hand-side of the inequality in Lemma
3, we find that the constraints of problem (12) greatly simplify
the inequality to:

∆T (tr)− V
∑t+T−1
τ=tr

φ(γ(τ)) ≤ B̃T 2 + CT − V TF ∗r (31)

5If the supremum utility in (12) is not achievable, we can recover (31)
simply by taking a limit over policies that approach the supremum.

where we have used the fact that φ(γ∗) = F ∗r , where F ∗r is
the supremum utility in the problem (12).

Summing (31) over r ∈ {0, . . . , R − 1} and using the
definition of ∆T (tr) in (20) yields:

L(Θ(RT ))− L(Θ(0))− V
∑RT−1
τ=0 φ(γ(τ))

≤ B̃RT 2 + CRT − V T
∑R−1
r=0 F

∗
r (32)

Rearranging terms, dividing by V RT , and using the fact that
L(Θ(RT )) − L(Θ(0)) ≥ 0 (since Q(c)

n (RT ) ≥ 0 = Q
(c)
n (0)

and Gm(RT ) ≥ Gminm = Gm(0)) yields:
1
RT

∑RT−1
τ=0 φ(γ(τ)) ≥ 1

R

∑R−1
r=0 F

∗
r −

(B̃T+C)
V

However, by concavity of φ(γ) and Jensen’s inequality, the
left-hand-side of the above inequality can be modified to yield:

φ(γ) ≥ 1
R

∑R−1
r=0 F

∗
r −

(B̃T+C)
V

where γ is defined:

γ M= 1
RT

∑RT−1
τ=0 γ(τ) (33)

The result of Theorem 1 part (b) then follows by relating
φ(γ) to φ(x), as described in the next lemma.

Lemma 4: Define γ as a time average of γ(τ) over RT
slots, given by (33), and define x as a time average of x(τ)
over the same interval. Then:

φ(x) ≥ φ(γ)−
M∑
m=1

νmaxm (Gm(RT )−Gm(0))
RT

Assuming that Gm(0) = Gminm for all m ∈ {1, . . . ,M}, then:

φ(x) ≥ φ(γ)−
M∑
m=1

νmaxm [V (νmaxm − νminm ) + 2Amaxm ]
RT

Proof: (Lemma 4) From the update rule for Gm(t) in (19)
we have for any slot τ :

Gm(τ + 1) ≥ Gm(τ) + γm(τ)− xm(τ)

Summing the above over τ ∈ {0, . . . , RT − 1} yields:

Gm(RT )−Gm(0) ≥
∑RT−1
τ=0 γm(τ)−

∑RT−1
τ=0 xm(τ)

Dividing by RT yields:

xm ≥ γm − [Gm(RT )−Gm(0)]/(RT )

This can be written in vector form as:

x ≥ max [γ − (G(RT )−G(0))/(RT ),0]

where we define G(RT ) as an M -dimensional vector with
entries Gm(RT ), and G(0) is defined similarly. The max[·, 0]
in the above vector inequality is due to the fact that xm ≥
0 for all m. Because φ(x) is entrywise non-decreasing with
maximum mth partial derivatives νmaxm , we have:

φ(x) ≥ φ(max [γ − (G(RT )−G(0))/(RT ),0])

≥ φ(γ)−
M∑
m=1

νmaxm (Gm(RT )−Gm(0))
RT

This proves the first part of the lemma. Assuming that
Gm(0) = Gminm for all m, we know by part (a) of Theorem
1 that Gm(RT )−Gm(0) ≤ Gmaxm −Gminm , and:

Gmaxm −Gminm ≤ V (νmaxm − νminm ) + 2Amaxm
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V. GENERAL OPTIMIZATION OF TIME AVERAGES

We conclude with a recipe for general optimization of
time averages in a universal context (see [24] for anal-
ysis against a T -slot lookahead policy). Consider a slot-
ted time system with ω(t) being a general random event
and α(t) ∈ Aω(t) representing a general control action,
which affects system attributes x(t) = (x1(t), . . . , xM (t)),
y(t) = (y0(t), y1(t), . . . , yL(t)) via arbitrary bounded func-
tions xm(t) = x̂m(α(t), ω(t)), yl(t) = ŷl(α(t), ω(t)) for
m ∈ {1, . . . ,M}, l ∈ {0, 1, . . . , L}. There is no probability
distribution for the events ω(t). The problem is to solve:

Minimize: y0 + f(x)
Subject to: yl + gl(x) ≤ 0 ∀l ∈ {1, . . . , L}

α(t) ∈ Aω(t) ∀t ≥ 0

where f(x), gl(x) are general convex functions. Assume
that xm,min ≤ xm(t) ≤ xm,max for all t, for some finite
constants xm,min, xm,max. We introduce virtual queues Zl(t)
and Hm(t) as follows:

Zl(t+ 1) = max[Zl(t) + yl(t) + gl(γ(t)), 0] (34)
Hm(t+ 1) = Hm(t) + γm(t)− xm(t) (35)

where auxiliary variables γ(t) = (γ1(t), . . . , γM (t)) are
chosen every slot t subject to:

xm,min ≤ γm(t) ≤ xm,max ∀m ∈ {1, . . . ,M} (36)

The virtual queues Hm(t) have a different structure than
Gm(t) in (19) because they enforce the equality constraint
γm = xm, which is needed because f(x), gl(x) are not
necessarily entrywise non-decreasing or non-increasing.

Define Θ(t)M=[Z(t),H(t)], and define L(Θ(t)) as:

L(Θ(t))M= 1
2

∑L
l=1 Zl(t)

2 + 1
2

∑M
m=1Hm(t)2

Define the 1-slot drift ∆1(t) as before. Every slot t, the
algorithm observes ω(t) and chooses α(t) ∈ Aω(t) and γ(t)
subject to (36) to minimize (to within an additive constant):

∆1(t) + V ŷ0(α(t), ω(t)) + V f(γ(t))

This reduces to the following simple policy. Every slot t:
• Observe Θ(t). Choose γ(t) subject to (36) to minimize:

V f(γ(t)) +
∑L
l=1 Zl(t)gl(γ(t)) +

∑M
m=1Hm(t)γm(t)

• Observe Θ(t), ω(t). Choose α(t) ∈ Aω(t) to minimize:

V ŷ0(α(t), ω(t)) +
∑L
l=1 Zl(t)ŷl(α(t), ω(t))

−
∑M
m=1Hm(t)x̂m(α(t), ω(t))

• Update Zl(t) and Hm(t) by (34) and (35).
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