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Abstract—With the advent of smartphone technology, it has the sighting of an individual who needs to be rescued; in
become possible to conceive of entirely new classes of appii  the balloon hunt, an event is the sighting of a balfoon
tions. Social swarming, in which users armed with smartphones Events occur at a particuléwcation, and multiple events may

are directed by a central director to report on events in the tlv eith t th | i fiedint
physical world, has several real-world applications. In ths paper, occur concurrently either at the same location or n

we focus on the following problem: how does the director opti locations.
mize the selection of reporters to deliver crediblecorroborating Reporters can transmit reports of an event using one of

information about an event? We first propose a model, based several formats: as a video clip, an audio clip, or a text
on common intuitions of believability, about the credibility of message describing what the report sees. Each report is a

information. We then cast the problem as a discrete optimizéion f f evid for th ist f th o |
problem, and introduce optimal centralized solutions and a orm or evidencetor the existence of the event. In general,

approximate solution amenable to decentralized implemention W€ assume that each reporter is capable of generaing
whose performance is about 20% ff on average from the optimal ~ different report formats, denoted bfy, for 1 < j < R
while being 3 orders of magnitude more computationally flicient.  However, diferent formats have flierent costs to the network:
More interesting, a time-averaged version of the problem is 5. eyample, video or audio consumes significantly higher
amenable to a novel stochastic utility optimization formubtion, L
and can be solved optimally, while in some cases yielding transmission resources than te_X_t' We denoteepyhe cost
decentralized solutions. of a reportfj: for ease of exposition, we assume that reports
are a fixed size so that all reports of a certain format have the
same cost (our results can be easily generalized to the case
where report costs are proportional to their length). Fynal
With the advent of smartphone technology, it has becomeporters can be mobile, but we assume that the director is
possible to conceive of entirely new classes of applicatioraware of the location of each reporter.
Recent research has considered personal reflection [ifil soc Now, suppose that the director in a swarming application has
sensing [2], lifestyle and activity detection [3], and adeed heard, through out-of-band channels or from a single report
speech and image processing applications [4]. These appligf the existence of an everf at locationL. To verify this
tions are enabled by the programmability of smartphones; threport, the director would like to requestrroboratingreports
considerable computing power, and the presence of a variiym other reporters in the vicinity of. Which reporters
of sensors on-board. should she get corroborating reports from? What formats
In this paper, we consider a complementary class of pshould those reporters use?
tential applications, enabled by the same capabilitiest, W&~ To understand this, recall that the goal of corroboration
call social swarminglIn this paper, we consider a constraines to increase the director’s belief in the occurrence of the
form of a social swarming application in whid participants, event. This depends upon the credibility of the report, Whic
whom we callreporters collaboratively engage in a well- e model using two common intuitions about credibility. The
defined task. Each reporter is equipped with a smartphofiet intuition is based on the maxim “seeing is believing™: a
and directly reports to a swarm director using the/BBGE video report is more credible than a text report. We exteisd th
network. A reporter may either be a human being or a sensfilaxim in our model to incorporate other formats, like audio:
(static, such as a fixed camera, or mobile, as a robot)i-A audio is generally less credible than video (because, while
rector (either a human being, or analytic software) assimilatgsgives some context about an event, video contains more
these reports, and may perform some actions based on ¢bftext), but more credible than text (for a similar reason)
content of these combined reports. Our second intuition is based on the often heard statement
Each reporter reports on @vent The nature of the event«|'|| pelieve someone who was there”, suggesting that prox-
depends upon the social swarming application: for examplity of the reporter to an event increases the credibility o
in a search and rescue operation, an event correspondshreport. More precisely, a repaktgenerated by a reporter
This research was sponsored by the Army Research Laboratuafgr at distanced, from an event has a hlgher creQ|b|I|ty than a
Cooperative Agreement Number W911NF-09-2-0053. The viemesconciu-  "€POrtB generated by a reporter at a distamgeif da < dp.
sions contained in this document are those of the authorsskaodld not be More formally, letS; be the position of reporter, L be

interpreted as representing theficial policies, either expressed or implied, of i (. il
the Army Research Laboratory or the U.S. Government. The GoBernment the position of evenk andc;;(Si, L) be the credibility of the
is authorized to reproduce and distribute reprints for Gavesnt purposes

notwithstanding any copyright notation here on. Ihttp://www.crn.com/networking/222000334
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TABLE | . L

NOTATION imum cost that guarantees total credibil@y> 0? M~NCost
N the total number of available reporters can be stated formally as an optimization problem:
Ci,j credibility of reporteri using formatj (see (1))
R the total number of report formats Minimize : le\il ZRﬁlxi i€j (2)
g the cost when using report formag ) N IJ?_ ’
C the target credibility in NNCost Subject to: X, ijlxi,jci,j >C
A the dynamic programming process ofiN@ost . .
B the cost budget in MkCreD X j€f{0, 1, Vie{l,..,NL,Vjel{l .. ,R}
D the dynamic programming process ofaMCrep R :

SR %)< LVie(l...N)

report generated by reportewhen report format; is used. wherex; ; is a binary variable that is 1 if reporteuses format

Then, ac; j(Si, L) defined as: fj, and O otherwise. _
Analogously, we can formulate MCrep (the maximum

‘ 1Y ‘
Gii(Si,L) = { yl/d(s'gjl‘) K ff ho <d(Si. L) (1) credibility that can be achieved for a cost budgeBof 0) as

. . vilhy, if d(Si, L) < ho the following optimization problem:
with 1< j<R y1 <y2<---<yRr, andoy > 62 > -+ > R, Maximize : er\il Z]Filxi,jci,j 3)

incorporates the intuitions described above. Heig), is the . N <R
Euclidean distance between poinkg, is a certain minimum ~ Subjectto: 3%, X% j€j < B

distance to avoid division by zero as well as to bound the Xij€{0,1},Vie{l, ..,NL¥je{l, . .,R
maximum credibility to a certain levely; is a constant of YR%j < LVie(l . ..N)
proportionality implying the maximum achievable crediil

_ - . 2) On the Complexity oMinCost and MaxCrep: If, in the
of report formatf,, and the credibility decgys according to %bove formulation, the cosj is also dependent on the identity
power-law with exponeng; when formatf; is used.

Although we have assigned objective quantitative valugé the reporter (and therefore denoted &y), the MaxCrep

to credibility, belief or disbelief is often qualitative drsub- pl\r/loé)llfén [97?; e'\r/lagrzeeosvteortr;ﬁeMSuItelgéli:C(::r;cs)g:eollfg?];;s:)crlrnlastlm(loaln d
jective. Thus, we expect swarm directors to operate in or(w X i ' b

of two modes:a) ask the network to deliver corroboratingﬁl*ll:);:r) dlsl—ﬁgsvgg:-kvr\]/ﬁ\g: Ezagiifﬁsp;oeblgrr:jé};?)xhI((:)rr]1Ifhe
rep_orts W.ho.s‘? total credibility iS. above a certain thred.hOIformat (i.e 8= é,—) we can state the Following thgorem
Wh"e minimizing cost, orb) obtain as much corroporatmgwhose proof ’(omitted for brevity) uses a reduction from the
information that they can get from the network for a giventcos_ . .
We study these two formulations, respectively called@®bst original Knapsa?ck problem.

and MaxCrep. Our formulations use aadditive corroboration Theorem 2.1:MCost and MixCrep are NP-Hard.
functionwhich defines total credibility as the sum of individual

credibilities. Moreover, the intuition for a particularréshold B. Optimal Solutions

valueC can be explained as follows. Suppose a director would Despite Theorem 2.1, it is instructive to consider optimal
be subjectively satisfied with 3 corroborating video clipsni  sq|ytions for the two problems for two reasons. First, fongna
someone within 10m of an event. One could translate thiggjg) swarming problem instances, the problem sizes may
subjective specification into a threshold value by simpkiitg e small enough that optimal solutions might apply. Second,
the sum of the credibilities of 3 video reports from a dismn‘bptimal solutions can be used to calibrate an approximation

of 10m. _ _ algorithm that we discuss later. In this section, we disthes
In the next two sections, we formally definemMost and dynamic programmindgpased optimal solutions.
MaxCrep, and then consider two problem variantsoBe-  ~gince there exist optimal, weakly-polynomial algorithros f

shotproblem which seeks to optimize reporting for individualyckp, it is natural that similar algorithms exist foriMCost

events, and aenewalsproblem which optimizes reporting 5nq MyxCrep. We describe these algorithms for completeness,
over a sequence of event arrivals. The introduction of alnowg,ce we use them in a later evaluation

problem setting and an exploration of the one-shot and thegqy, MinCost (2), we can writey,; = 1 — % ;, wherey; |
renewals problem are the main contributions of the paper. (g 1}, and then we have: . N .

R ey N R
Il. THE ONE-SHOT PROBLEM N 21 & — Maximize: 25, 35, vij€ - (4)

In this section, we formally state the iMCost and Max- ~ Subject to: St DEaYiiCiy < By BiaGj - C =W
Crep formulations for the additive corroboration function and yijef0,1},Vief{l,...,N},¥je{l,....R}
develop optimal solutions for them, and then explore an Z,Rzl)’i,i >R-1Vie{l,...,N}
approximation algorithm that leverages the structure @&f t
credibility function for dficiency. Our exposition follows the a
notation developed in the previous section, and summarizt%cg:
in Table I.

I(5\/here the minimization problem (2) has been transformedl int
aximization problem, and the notation in (4) emphasizes
the first term in the total co$t Z?:l e does not depend
on they;; variables to be optimized. For a given event, the
. ) sum of thec; ; values is a constant, and ¥bis also a constant.
A. Formulation and Complexity dfinCost and M axCRreb: This optimization problem can be solved by a dynamic
1) Problem Formulations:In the previous section, we in- programming approach if we assume glis are truncated
formally defined the MkCost problem to be: what is the min-to a certain decimal precision, so thgt; € {0,£,2¢,...}
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where 7 is a discretization unit. Then for any binagy; Algorithm 1 Algorithm MaxCrep-2F

values that meet the constraints of the above problem, time SINPUT: (cij): i € {1,..,N}, j € {1, 2}; (1,5); BudgetB

SN SRy takes values in a seW2(0,£,2¢,...,W). DefinednZcn, — e, for eachme (1., N).

Note that the cardinality’| depends o, R, thec, ; values, T°''€ {Q""’T'“_[LB/ﬁJ’_N]}' do:

and the discretization unif. Now defineA(l, s) as the sub- g Bg;:ﬂgt;e”;'cr;i[\'/\'e_s'é%;;{[i’)'ﬂ' Y, being the set of + Y
problem of selecting reporters in the $&t...,1} subject to a ~ event |

. . ) reporters closest to the event. (recall that reporters atered
constraints. AssumingA(l, s) values are known for a particular by distance).

[, we recursively comput@(l + 1, s) for all se ‘W by: 3) Define »* as the set of reporters inA with the largestdy,
_ (0) (1) R values (breaking ties arbitrarily). Then choose formator all
Al +1,9) = maxj¢™(l. ), ¢, 9)......6™(1. 9] (5) reporteram € O*, choosef, for me A - D*, and choose “idle”
where¢®(l, s) is defined fork € {0,1,...,R}: for all m¢ A.

4) DefineC},,, as the total credibility of this assignment:

CiMAxé Yimea Cm2 + Xmep+ Om
OUTPUT: i*£ arg maxC

MAX*

oM, 92A(, s - le:zzl,j;tk G+ Z?:l,j;tk €]
This can be understood as follows: The valfé(l, s) is the
cost associated with reporter 1 using optiork € {0,1, ..., R}
and then allocating reportefs, . . ., |} according to the optimal _ _ o _
solution A(l,s - 3%, ., cj) that corresponds to a smaller 2) A Computationally-icient Approximation Algorithm:

budget. Note that optiok € {1,..., R} corresponds to reporter!n this section, we describe an approximation algorithm for
| +1 using a particu|ar format (SO thylte-l,k =0 for Optionk MmnCosr, called MnCost-CC. The intuition behind MCost-

andyi.1m = 1 for all m # k), and optionk = 0 corresponds CC is that it is beneficial for a reporter to use a format that

to reporterl + 1 remaining idle (so thagi,im = 1 for all m). gives the highestredibility per unit cost (hence MCosr
The time complexity of this dynamic programming algorithmCC)—this gives the most “bang for the buck.” Of course, this
called MnCos-DP, is ONRW]|). MaxCrep can also be Pre-determination can result in a non-optimal choice, Wiisc

solved, in a similar manner, using dynamic programming. Why MinCost-CC is an approximation algorithm. Formally, in
MinCost-CC, reporteli chooses formafy., wherek® is:

k* = argmax [Cix(Si, L)/&]
This choice can be pre-computed (since it depends only upon
The solutions discussed so far do not leveragestructure the credibility and cost models) with time complex@®(NR),
in the problem. Given an event and reporter locations, thet each reporter needs to readjust its choice of the report
credibility associated with each report format is compuaed format whenever its relative distance to the concerningheve
a number and acts as an input to the algorithms discusseldanges. The event locations that determine the forfpat

However, there are two interesting structural propertiethe chosen by a particular reporteform annular regions about
problem formulation. First, for a given reporter at a givethe reporter.

location, the credibility is higher for a format whose coSt i once each reporter has made the format choice, it remains
also higher. Second, for reporters affelient distances, the, the director to decide which reporter(s) to select. For

credibility decays. as a function of distar_lce. In this seCtioMlNCOST—CC, the minimum cost formulation is identical to
we r_:lsk the que;tlon_: can we_leverage thls_structure _to devdgi and with comparable complexity, but with two crucial
efficient approximation algorithms, or optimal special-cas§grerences: both the constafi/| and the runtime now relate
solutions either for MxCrep or MinCost? only to the numbeN of reporters, not tiN x R. As we shalll
1) An Efjicient Optimal GreedyMaxCrep Algorithm for  show below, this makes a significant practicaffetience in
Two Formats:When a social swarming application only usegyntime, even for moderate-sized inputs.
two report formats (say, text and video), it is possible teisk
an optimal greedy MxCrep algorithm.
Assume each of thBl reporters can report with one of two
formats, f; or f,, that reporters are indexed so that reporter Al +1.5) = max{A(l, s).a + A(l,s—c)} (6)
i is closer to the event than reporter for i < k, and that whereg replaces j in (5), since each reporter precomputes its
credibility decays with distance. Furthermore, we assumaé t format of choice. Compared with (5), the time complexity of
e =8>1ande, = 1. (6) is reduced t@(N|'W|) with a much smallefW| in general.
With these assumptions, the algorithm in the table beloNptice that this time complexity is independent Bf the
denoted MxCrep-2F, finds an assignment with maximunrmumber of report formats, greatly improving its computasb
credibility that falls within a budgeB and runs in timeD(N?).  efficiency at the expense of some optimality. In addition, the
The output of this algorithm is the maximum credibilityoverall runtime with both the time for the precomputationl an

C. Leveraging the Structure of the Credibility Function

In MinCostCC, the dynamic programming process of (5)
is replaced by

assignment of formats to reporters. the time for the dynamic programming &(N(R + ['W])).
We can prove that this algorithm is optimal. Using steps similar to that presented in Section II-B, it is
Theorem 1:The above algorithm finds the solutid@@wvax possible to define a MCrep-CC approximation algorithm
to MaxCrep-2F problem with budgeB. for maximizing credibility. We omit the details for brevjtigut

We can analogously define a mMCost version for two indicate that MxCost-CC and MixCrep-CC still have weakly-
formats, but omit it for brevity. polynomial asymptotic complexity, but are computatiopall
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much more #icient than MxCost-DP and MixCrep-DP. For every framek, the director observes[k] and chooses
Evaluation of MinCost-CC. We have compared MCost- a control actiona[k] from a general set of feasible actions
CC with MnCost-DP in order to quantify the tradefip “leid that possibly depend on[k]. The valuesw[K] and

for practical swarm configurations, between optimality argll together determine aM + 1 dimensional vectoy[k],
reduced computational complexity. Our comparison has us&presentingietwork attributesior eventk:

two datasets, one derived by manually extracting severma hu YIK] = (Yo[K], ya[K], . .., ym[K])
dred events from Google News, and a random event placemggkcifically, eacly[K] attribute is given by a general function
dataset generated synthetically. of o[k and w[K]:

We are interested in two metrics: t@timality gap which s
is the ratio of the min-cost obtained bymCost-CC to that ¥m["] _Aym(a[k],w[k]) Vme.{O, Lo, My
obtained by MxCost-DP; and theruntimeof the computation The functionsym(a[k], w[K]) are arbitrary and are only as-

for each of these algorithms. sumed to be bounded. Defifyg as the time average expecta-
For the Google News dataset, the optimality gap is, dipn of the attributeyn[k], averaged over all frames:
average 19.7%, while for random topologies, it is on average V2 iMoo % ZszlE{ym[k]}

19.0%. This is encouraging, since it suggests thatQdst- o general problem is to find an algorithm for choosing

CC produces results that are not significantly far from t%ntrol actionsa[K] for each framek € {1,2,3,.. ) to solve:
optimal. More interestingly, the runtime of IMCosT-CC is 2- T '

3 orders of magnitudéower than that of MkCost-DP with Minimize: Yo @)
the discretization setting’| = 1000W. This diference is not Subjectto: 1) ¥, <0VYme{l,2,...,M} (8)
just a matter of degree, but may make thetence between a 2) o[k € Ay ¥ framesk e {1,2,...} (9)

useful application and one that is not usefuln®ost-DP can
take severatens of secondto complete while NNCost-CC
takes at most a few hundred milliseconds, which might ma
the diference between victory and defeat in a balloon hu
or life and death in a disaster response swarm!

The solution to the general problem is given in terms of
positive parametey, which &fects a peformance trad&o
ecifically, for each of theVl time average inequality con-
Iﬁétfraintsym < 0 (for m € {1,..., M}) define avirtual queue
Zn[K] with Z,[0] = 0, and with frame-update equation:

IIl. THE RENEwALs PrROBLEM: RANDOMLY ARRIVING EVENTS Zmlk + 1] = max[Zm[K] + ym[K], O] (10)

In the previous section we discussed a one-shot probleTien every framek, observe the value ab[k] and perform
that of optimizing for a single event. We now consider e following actions:
sequence of events with arrival timés, to, ts, ...}, wherety « Choosex[K] € A, to minimize:
is the arrival time for evenk. In this setting, we consider a - M N
stochastic variant of MxCrep, called MaxCrep-SrocHASTIC: VoK, WK + Yimeg ZnlK§m(eTK], [K])
Instead of maximizing credibility for a single event sultjec * Update the virtual queuea,[k] according to (10), using
to a cost constraint, we maximize the average credibildy-p the valuesym[k] = Ym(alk], w[k]) determined from the
event subject to an average cost constraint and a per-event @bove minimization.
credibility minimum. This couples the decisions needed for Assuming the problem is feasible (so that it is possible to
each event. However, we first show that this time averafjeeet the time average inequality constraints), this algori
problem can be solved by a reduction to individual knapsa®kll also meet all of these constraints, and will achieve a
problems of the type described in previous sections. We thiéfie average valug, that is within O(1/V) of the optimum.
show that if the per-event credibility minimum is removedTypically, theV parameter alsoftects the average size of the
then decisions can be made in a decentralized fashibime Virtual queues (these can be shown toQ{¥), which directly
solution technique, described below, is general and cam aféfects theconvergence timeeeded for the time averages to
be used to solve stochastic variants ofn@osr. be close to their limiting values). The proofs of these ckim

) follow the theory developed in [9], [10].
A. The General Stochastic Problem

Let w[K] represent a random vector of parameters associafed Corroboration Pull as a Stochastic Optimization Problem
with each evenk, such as the location of the event and the Here we  formulate  MxCrep-Srochastic.  Define
corresponding costs and credibilities. Whilgk] can include [KI2[(cij[K]). (gj[KD)], o[KI=(xj[K]), where X j[k] is a
different parameters for fiierent types of problems, we shallbinary variable that is 1 if reporter € {1,...,N} uses
soon usew[KI2[(ci j[K]), (ej[K])], where (i j[K]) is the matrix format fj € {fi,..., fr} on framek. The goal is to maximize
of eventk credibility values for reporters € {1,...,N} and the average credibility-per-frame subject to average cost
formats f; € {fi,..., fr}, and @[K]) is a vector of cost constraints and to a minimum credibility level required on
information. We assume the procesfk] is ergodic with a €ach framek e {1,2,...}:
well defined steady-state distribution. The simplest edamp Maximize: T (11)

is whenwl[K] is independent and identically distributed (i.i.d.) Subject to: e<e, (12)
over eventk € {1,2,3,.. ). C N eR -
Let framek denote the period of time{ ti.1) which starts izt Zj=1 Xij[KICij[K] = Cmin Viramesk (13)

with the arrival of evenk and ends just before the next event. i j[K] € {0,1} , Zszl Xip[Kl <1 Vi, j, Vframesk (14)
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wheree,, andcnin are given constants, agchnde are defined:

II>

T L limkae 221G BN, SR E{x KK

iMoo & Zies 2 2 E {x[Kle[K])

2

ol

assessment is discussed in [5]: our role of geographicraista

as a measure of credibility is related to this discussion.
Saavedra et al. [18] explore the dynamics and the emergence
of synchronicity in decision-making when traders use doiro

This problem fits the general stochastic optimization frameration as a mechanism for trading decisions.

work of the previous subsection by definiggKk], y1[k] by:
yo[K] = Yo(alK], w[K))2 - 2, Z5, % j[Klcij[K]
ya[Kl = 91(e[K], w[K]) 2 — eay + 25 3R % [Klej[K]

and by definingA,q as the set of all X ;[k]) matrices

that satisfy the constraints (13)-(14). The resulting Iséstic
algorithm thus defines a virtual queidg[k] with update:

Zi[k+ 1] = max|Za[K] — e + T 575 % j[Klg[K], 015)
It then observeZ;[k] and thew[k] parameters every franie

V. ConcLusioNs AND FUTURE WORK

In this paper, we have explored the design space of algo-
rithms for a new problem, optimizing corroboration pull in a
emerging application area, social swarming. We have pexpos
optimal special-case algorithms, computationaltyceent ap-
proximations, and decentralized optimal stochastic wésia
Several directions for future work are possible: incregsin
credibility and cost model realism, incorporating malieg,

and choosesx(j[K]) subject to (13)-(14) to minimize:
SN SR xKIZalKl e [K] - Va,i[K] (16)
Algorithm performance degrades gracefully if approximate
solutions to the above minimization are used [9] [10]. A dienp
and exact distributed implementation arises if thg, con-
straint (13) is removed (i.e., nin20). In this case the frame [2]
k decisions arseparable over reporterand reduce to having
each reporteti choose the single format; € {fi,..., fgr}
with the smallest value ofj[K]ej[K] — V¢ j[K], breaking ties
arbitrarily and choosing to be idle (witk;[k] = O for all
j € {L,...,R) if all of the weightsZ;[K]ej[K] — Vg j[K] are
positive. The swarm director observes the outcomes of thej
decisions on framk and iterates th&;[k] update (15), passing
Z;[k + 1] to all reporters before the next event occurs.

(1]

(3]

(6]

IV. ReLateD WoRK 7]

We are not aware of any prior work in the wireless networksg
ing literature that has tackled information credibilitysass-
ment. However, other fields have actively explored crettiybil
defined as the believability of sources or information [11],
[13], [14]. Credibility has been investigated in a number gio
fields including information science, human communication
human-computer interaction (HCI), marketing, psycholo
and so on [15]. In general, research has focused on two
threads: the factors thatfact credibility, and the dynamics[12]
of information credibility.

The seminal work of Hovland et al. [12] may be the earliegt3)
attempt on exploring credibility, which discusses how the

. I L [14)
various characteristics of a source caffieet a recipient's
acceptance of a message, in the context of human communijcsy-
tion. Rieh, Hilligoss and other explore important dimensiof
credibility in the context of social interactions [11], [1516],
such as trustworthiness, expertise and information wvglidi
McKnight and Kacmar [11] study a unifying framework of
credibility assessment in which three distinct levels afdir (7]
bility are discussed: construct, heuristics, and intéoaciTheir [18]
work is in the context of assessing the credibility of wedsit
as sources of information.

Finally, there is a body of work that has examined processes
and propagation of credible information. Corroborationaas
process of credibility assessment is discussed in [17]x-Pro
imity, both geographic and social, and its role in credipili

El

[16]

] B. Hilligoss and S. Rieh.

lowing peers to relay reports, and exploring other realisti
yet dficient and near-optimal special-case solutions.
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