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Abstract—With the advent of smartphone technology, it has
become possible to conceive of entirely new classes of applica-
tions. Social swarming, in which users armed with smartphones
are directed by a central director to report on events in the
physical world, has several real-world applications. In this paper,
we focus on the following problem: how does the director opti-
mize the selection of reporters to deliver crediblecorroborating
information about an event? We first propose a model, based
on common intuitions of believability, about the credibility of
information. We then cast the problem as a discrete optimization
problem, and introduce optimal centralized solutions and an
approximate solution amenable to decentralized implementation
whose performance is about 20% off on average from the optimal
while being 3 orders of magnitude more computationally efficient.
More interesting, a time-averaged version of the problem is
amenable to a novel stochastic utility optimization formulation,
and can be solved optimally, while in some cases yielding
decentralized solutions.

I. Introduction

With the advent of smartphone technology, it has become
possible to conceive of entirely new classes of applications.
Recent research has considered personal reflection [1], social
sensing [2], lifestyle and activity detection [3], and advanced
speech and image processing applications [4]. These applica-
tions are enabled by the programmability of smartphones, their
considerable computing power, and the presence of a variety
of sensors on-board.

In this paper, we consider a complementary class of po-
tential applications, enabled by the same capabilities, that we
call social swarming. In this paper, we consider a constrained
form of a social swarming application in whichN participants,
whom we call reporters, collaboratively engage in a well-
defined task. Each reporter is equipped with a smartphone
and directly reports to a swarm director using the 3G/EDGE
network. A reporter may either be a human being or a sensor
(static, such as a fixed camera, or mobile, as a robot). Adi-
rector (either a human being, or analytic software) assimilates
these reports, and may perform some actions based on the
content of these combined reports.

Each reporter reports on anevent. The nature of the event
depends upon the social swarming application: for example,
in a search and rescue operation, an event corresponds to
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the sighting of an individual who needs to be rescued; in
the balloon hunt, an event is the sighting of a balloon1.
Events occur at a particularlocation, and multiple events may
occur concurrently either at the same location or at different
locations.

Reporters can transmit reports of an event using one of
several formats: as a video clip, an audio clip, or a text
message describing what the report sees. Each report is a
form of evidencefor the existence of the event. In general,
we assume that each reporter is capable of generatingR
different report formats, denoted byf j , for 1 ≤ j ≤ R.
However, different formats have different costs to the network:
for example, video or audio consumes significantly higher
transmission resources than text. We denote byej the cost
of a report f j : for ease of exposition, we assume that reports
are a fixed size so that all reports of a certain format have the
same cost (our results can be easily generalized to the case
where report costs are proportional to their length). Finally,
reporters can be mobile, but we assume that the director is
aware of the location of each reporter.

Now, suppose that the director in a swarming application has
heard, through out-of-band channels or from a single reporter,
of the existence of an eventE at locationL. To verify this
report, the director would like to requestcorroboratingreports
from other reporters in the vicinity ofL. Which reporters
should she get corroborating reports from? What formats
should those reporters use?

To understand this, recall that the goal of corroboration
is to increase the director’s belief in the occurrence of the
event. This depends upon the credibility of the report, which
we model using two common intuitions about credibility. The
first intuition is based on the maxim “seeing is believing”: a
video report is more credible than a text report. We extend this
maxim in our model to incorporate other formats, like audio:
audio is generally less credible than video (because, while
it gives some context about an event, video contains more
context), but more credible than text (for a similar reason).

Our second intuition is based on the often heard statement
“I’ll believe someone who was there”, suggesting that prox-
imity of the reporter to an event increases the credibility of
the report. More precisely, a reportA generated by a reporter
at distanceda from an event has a higher credibility than a
reportB generated by a reporter at a distancedb, if da < db.

More formally, let Si be the position of reporteri, L be
the position of eventE andci, j(Si , L) be the credibility of the

1http://www.crn.com/networking/222000334
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TABLE I
Notation

N the total number of available reporters
ci, j credibility of reporteri using format j (see (1))
R the total number of report formats
ej the cost when using report formatf j

C the target credibility in MinCost
A the dynamic programming process of MinCost
B the cost budget in MaxCred
D the dynamic programming process of MaxCred

report generated by reporteri when report formatf j is used.
Then, aci, j(Si , L) defined as:

ci, j(Si , L) =

{

γ j/d(Si, L)δ j , if h0 < d(Si , L)
γ j/h

δ j

0 , if d(Si, L) ≤ h0
(1)

with 1 ≤ j ≤ R, γ1 ≤ γ2 ≤ · · · ≤ γR, andδ1 > δ2 > · · · > δR,
incorporates the intuitions described above. Here,d(.) is the
Euclidean distance between points,h0 is a certain minimum
distance to avoid division by zero as well as to bound the
maximum credibility to a certain level,γ j is a constant of
proportionality implying the maximum achievable credibility
of report format f j , and the credibility decays according to a
power-law with exponentδ j when format f j is used.

Although we have assigned objective quantitative values
to credibility, belief or disbelief is often qualitative and sub-
jective. Thus, we expect swarm directors to operate in one
of two modes:a) ask the network to deliver corroborating
reports whose total credibility is above a certain threshold,
while minimizing cost, orb) obtain as much corroborating
information that they can get from the network for a given cost.
We study these two formulations, respectively called MinCost
and MaxCred. Our formulations use anadditive corroboration
functionwhich defines total credibility as the sum of individual
credibilities. Moreover, the intuition for a particular threshold
valueC can be explained as follows. Suppose a director would
be subjectively satisfied with 3 corroborating video clips from
someone within 10m of an event. One could translate this
subjective specification into a threshold value by simply taking
the sum of the credibilities of 3 video reports from a distance
of 10m.

In the next two sections, we formally define MinCost and
MaxCred, and then consider two problem variants: aone-
shotproblem which seeks to optimize reporting for individual
events, and arenewalsproblem which optimizes reporting
over a sequence of event arrivals. The introduction of a novel
problem setting and an exploration of the one-shot and the
renewals problem are the main contributions of the paper.

II. The One-Shot Problem

In this section, we formally state the MinCost and Max-
Cred formulations for the additive corroboration function and
develop optimal solutions for them, and then explore an
approximation algorithm that leverages the structure of the
credibility function for efficiency. Our exposition follows the
notation developed in the previous section, and summarized
in Table I.

A. Formulation and Complexity ofMinCost and MaxCred:

1) Problem Formulations:In the previous section, we in-
formally defined the MinCost problem to be: what is the min-

imum cost that guarantees total credibilityC > 0? MinCost
can be stated formally as an optimization problem:

Minimize :
∑N

i=1
∑R

j=1xi, jej (2)

Subject to:
∑N

i=1
∑R

j=1xi, jci, j ≥ C

xi, j ∈ {0, 1},∀i ∈ {1, ...,N},∀ j ∈ {1, ...,R}
∑R

j=1xi, j ≤ 1,∀i ∈ {1, ...,N}

wherexi, j is a binary variable that is 1 if reporteri uses format
f j , and 0 otherwise.

Analogously, we can formulate MaxCred (the maximum
credibility that can be achieved for a cost budget ofB > 0) as
the following optimization problem:

Maximize :
∑N

i=1
∑R

j=1xi, jci, j (3)

Subject to:
∑N

i=1
∑R

j=1xi, jej ≤ B

xi, j ∈ {0, 1},∀i ∈ {1, ...,N},∀ j ∈ {1, ...,R}
∑R

j=1xi, j ≤ 1,∀i ∈ {1, ...,N}

2) On the Complexity ofMinCost andMaxCred: If, in the
above formulation, the costej is also dependent on the identity
of the reporter (and therefore denoted byei, j), the MaxCred
problem generalizes to the Multiple-Choice Knapsack Problem
(MCKP, [7]). Moreover, the special case of one format (and
ei, j = ei) is the well-known Knapsack problem (KP) which is
NP-hard. However, when the cost is dependent only on the
format (i.e.,ei, j = ej), we can state the following theorem,
whose proof (omitted for brevity) uses a reduction from the
original Knapsack problem.

Theorem 2.1:MinCost and MaxCred are NP-Hard.

B. Optimal Solutions

Despite Theorem 2.1, it is instructive to consider optimal
solutions for the two problems for two reasons. First, for many
social swarming problem instances, the problem sizes may
be small enough that optimal solutions might apply. Second,
optimal solutions can be used to calibrate an approximation
algorithm that we discuss later. In this section, we discussthe
dynamic programmingbased optimal solutions.

Since there exist optimal, weakly-polynomial algorithms for
MCKP, it is natural that similar algorithms exist for MinCost
and MaxCred. We describe these algorithms for completeness,
since we use them in a later evaluation.

For MinCost (2), we can writeyi, j = 1 − xi, j , whereyi, j ∈

{0, 1}, and then we have:

N
∑R

j=1 ej −Maximize:
∑N

i=1
∑R

j=1 yi, jej (4)

Subject to:
∑N

i=1
∑R

j=1yi, jci, j ≤
∑N

i=1
∑R

j=1ci, j −C =W

yi, j ∈ {0, 1},∀i ∈ {1, . . . ,N} ,∀ j ∈ {1, . . . ,R}
∑R

j=1 yi, j ≥ R− 1,∀i ∈ {1, . . . ,N}

where the minimization problem (2) has been transformed into
a maximization problem, and the notation in (4) emphasizes
that the first term in the total costN

∑R
j=1 ej does not depend

on the yi, j variables to be optimized. For a given event, the
sum of theci, j values is a constant, and soW is also a constant.

This optimization problem can be solved by a dynamic
programming approach if we assume allci, js are truncated
to a certain decimal precision, so thatci, j ∈ {0, ζ, 2ζ, . . .}
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where ζ is a discretization unit. Then for any binaryyi, j

values that meet the constraints of the above problem, the sum
∑N

i=1
∑R

j=1 yi, jci, j takes values in a setW△

={0, ζ, 2ζ, . . . ,W}.
Note that the cardinality|W| depends onN, R, theci, j values,
and the discretization unitζ. Now defineA(l, s) as the sub-
problem of selecting reporters in the set{1, . . . , l} subject to a
constraints. AssumingA(l, s) values are known for a particular
l, we recursively computeA(l + 1, s) for all s ∈ W by:

A(l + 1, s) = max[φ(0)(l, s), φ(1)(l, s), . . . , φ(R)(l, s)] (5)

whereφ(k)(l, s) is defined fork ∈ {0, 1, . . . ,R}:

φ(k)(l, s)△=A(l, s−
∑R

j=1, j,k cl, j) +
∑R

j=1, j,k ej

This can be understood as follows: The valueφ(k)(l, s) is the
cost associated with reporterl+1 using optionk ∈ {0, 1, . . . ,R}
and then allocating reporters{1, . . . , l} according to the optimal
solution A(l, s −

∑R
j=1, j,k cl, j) that corresponds to a smaller

budget. Note that optionk ∈ {1, . . . ,R} corresponds to reporter
l + 1 using a particular format (so thatyl+1,k = 0 for optionk
and yl+1,m = 1 for all m , k), and optionk = 0 corresponds
to reporterl + 1 remaining idle (so thatyl+1,m = 1 for all m).
The time complexity of this dynamic programming algorithm,
called MinCost-DP, is O(NR|W|). MaxCred can also be
solved, in a similar manner, using dynamic programming.

C. Leveraging the Structure of the Credibility Function

The solutions discussed so far do not leverage anystructure
in the problem. Given an event and reporter locations, the
credibility associated with each report format is computedas
a number and acts as an input to the algorithms discussed.
However, there are two interesting structural properties in the
problem formulation. First, for a given reporter at a given
location, the credibility is higher for a format whose cost is
also higher. Second, for reporters at different distances, the
credibility decays as a function of distance. In this section,
we ask the question: can we leverage this structure to devise
efficient approximation algorithms, or optimal special-case
solutions either for MaxCred or MinCost?

1) An Efficient Optimal GreedyMaxCred Algorithm for
Two Formats:When a social swarming application only uses
two report formats (say, text and video), it is possible to devise
an optimal greedy MaxCred algorithm.

Assume each of theN reporters can report with one of two
formats, f1 or f2, that reporters are indexed so that reporter
i is closer to the event than reporterk, for i < k, and that
credibility decays with distance. Furthermore, we assume that
e1 = β > 1 ande2 = 1.

With these assumptions, the algorithm in the table below,
denoted MaxCred-2F, finds an assignment with maximum
credibility that falls within a budgetB and runs in timeO(N2).

The output of this algorithm is the maximum credibility
assignment of formats to reporters.

We can prove that this algorithm is optimal.
Theorem 1:The above algorithm finds the solutionCMAX

to MaxCred-2F problem with budgetB.
We can analogously define a MinCost version for two

formats, but omit it for brevity.

Algorithm 1 Algorithm MaxCred-2F
INPUT : (ci, j ): i ∈ {1, ..,N}, j ∈ {1,2}; (1, β); BudgetB
Definedm

△

=cm,1 − cm,2 for eachm∈ {1, . . . ,N}.
For i ∈ {0, . . . ,min[⌊B/β⌋,N]}, do:

1) DefineY△

=min[N − i, ⌊B− βi⌋].
2) Define theactive setA△

={1, . . . , i + Y}, being the set ofi + Y
reporters closest to the event. (recall that reporters are ordered
by distance).

3) DefineD∗ as the set ofi reporters inA with the largestdm

values (breaking ties arbitrarily). Then choose formatf1 for all
reportersm ∈ D∗, choosef2 for m ∈ A−D∗, and choose “idle”
for all m < A.

4) DefineCi
MAX as the total credibility of this assignment:

Ci
MAX

△

=
∑

m∈A cm,2 +
∑

m∈D∗ dm

OUTPUT: i∗△= arg maxi Ci
MAX.

2) A Computationally-Efficient Approximation Algorithm:
In this section, we describe an approximation algorithm for
MinCost, called MinCost-CC. The intuition behind MinCost-
CC is that it is beneficial for a reporter to use a format that
gives the highestcredibility per unit cost (hence MinCost-
CC)—this gives the most “bang for the buck.” Of course, this
pre-determination can result in a non-optimal choice, which is
why MinCost-CC is an approximation algorithm. Formally, in
MinCost-CC, reporteri chooses formatfk∗ , wherek∗ is:

k∗ = arg maxk
[

ci,k(Si , L)/ek
]

This choice can be pre-computed (since it depends only upon
the credibility and cost models) with time complexityO(NR),
but each reporter needs to readjust its choice of the report
format whenever its relative distance to the concerning event
changes. The event locations that determine the formatfk∗
chosen by a particular reporteri form annular regions about
the reporter.

Once each reporter has made the format choice, it remains
for the director to decide which reporter(s) to select. For
MinCost-CC, the minimum cost formulation is identical to
(4), and with comparable complexity, but with two crucial
differences: both the constant|W| and the runtime now relate
only to the numberN of reporters, not toN ×R. As we shall
show below, this makes a significant practical difference in
runtime, even for moderate-sized inputs.

In MinCost-CC, the dynamic programming process of (5)
is replaced by

A(l + 1, s) = max{A(l, s), el + A(l, s− cl)} (6)

wherecl replacescl, j in (5), since each reporter precomputes its
format of choice. Compared with (5), the time complexity of
(6) is reduced toO(N|W|) with a much smaller|W| in general.
Notice that this time complexity is independent ofR, the
number of report formats, greatly improving its computational
efficiency at the expense of some optimality. In addition, the
overall runtime with both the time for the precomputation and
the time for the dynamic programming isO(N(R+ |W|)).

Using steps similar to that presented in Section II-B, it is
possible to define a MaxCred-CC approximation algorithm
for maximizing credibility. We omit the details for brevity, but
indicate that MinCost-CC and MaxCred-CC still have weakly-
polynomial asymptotic complexity, but are computationally
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much more efficient than MinCost-DP and MaxCred-DP.

Evaluation of M inCost-CC. We have compared MinCost-
CC with MinCost-DP in order to quantify the trade-off,
for practical swarm configurations, between optimality and
reduced computational complexity. Our comparison has used
two datasets, one derived by manually extracting several hun-
dred events from Google News, and a random event placement
dataset generated synthetically.

We are interested in two metrics: theoptimality gap, which
is the ratio of the min-cost obtained by MinCost-CC to that
obtained by MinCost-DP; and theruntimeof the computation
for each of these algorithms.

For the Google News dataset, the optimality gap is, on
average 19.7%, while for random topologies, it is on average
19.0%. This is encouraging, since it suggests that MinCost-
CC produces results that are not significantly far from the
optimal. More interestingly, the runtime of MinCost-CC is 2-
3 orders of magnitudelower than that of MinCost-DP with
the discretization setting|W| = 1000W. This difference is not
just a matter of degree, but may make the difference between a
useful application and one that is not useful: MinCost-DP can
take severaltens of secondsto complete while MinCost-CC
takes at most a few hundred milliseconds, which might make
the difference between victory and defeat in a balloon hunt,
or life and death in a disaster response swarm!

III. The Renewals Problem: Randomly Arriving Events

In the previous section we discussed a one-shot problem:
that of optimizing for a single event. We now consider a
sequence of events with arrival times{t1, t2, t3, . . .}, where tk
is the arrival time for eventk. In this setting, we consider a
stochastic variant of MaxCred, called MaxCred-Stochastic:
Instead of maximizing credibility for a single event subject
to a cost constraint, we maximize the average credibility-per-
event subject to an average cost constraint and a per-event
credibility minimum. This couples the decisions needed for
each event. However, we first show that this time average
problem can be solved by a reduction to individual knapsack
problems of the type described in previous sections. We then
show that if the per-event credibility minimum is removed,
then decisions can be made in a decentralized fashion. The
solution technique, described below, is general and can also
be used to solve stochastic variants of MinCost.

A. The General Stochastic Problem

Letω[k] represent a random vector of parameters associated
with each eventk, such as the location of the event and the
corresponding costs and credibilities. Whileω[k] can include
different parameters for different types of problems, we shall
soon useω[k]△=[(ci, j[k]), (ej[k])], where (ci, j [k]) is the matrix
of event-k credibility values for reportersi ∈ {1, . . . ,N} and
formats f j ∈ { f1, . . . , fR}, and (ej[k]) is a vector of cost
information. We assume the processω[k] is ergodic with a
well defined steady-state distribution. The simplest example
is whenω[k] is independent and identically distributed (i.i.d.)
over eventsk ∈ {1, 2, 3, . . .}.

Let framek denote the period of time [tk, tk+1) which starts
with the arrival of eventk and ends just before the next event.

For every framek, the director observesω[k] and chooses
a control actionα[k] from a general set of feasible actions
Aω[k] that possibly depend onω[k]. The valuesω[k] and
α[k] together determine anM + 1 dimensional vectory[k],
representingnetwork attributesfor eventk:

y[k] = (y0[k], y1[k], . . . , yM[k])

Specifically, eachym[k] attribute is given by a general function
of α[k] andω[k]:

ym[k] = ŷm(α[k], ω[k]) ∀m ∈ {0, 1, . . . ,M}

The functions ˆym(α[k], ω[k]) are arbitrary and are only as-
sumed to be bounded. Defineym as the time average expecta-
tion of the attributeym[k], averaged over all frames:

ym
△

= limk→∞
1
K

∑K
k=1 E {ym[k]}

The general problem is to find an algorithm for choosing
control actionsα[k] for each framek ∈ {1, 2, 3, . . .} to solve:

Minimize: y0 (7)

Subject to: 1) ym ≤ 0 ∀m ∈ {1, 2, . . . ,M} (8)

2) α[k] ∈ Aω[k] ∀ framesk ∈ {1, 2, . . .} (9)

The solution to the general problem is given in terms of
a positive parameterV, which affects a peformance tradeoff.
Specifically, for each of theM time average inequality con-
straintsym ≤ 0 (for m ∈ {1, . . . ,M}) define avirtual queue
Zm[k] with Zm[0] = 0, and with frame-update equation:

Zm[k+ 1] = max[Zm[k] + ym[k], 0] (10)

Then every framek, observe the value ofω[k] and perform
the following actions:
• Chooseα[k] ∈ Aω[k] to minimize:

Vŷ0(α[k], ω[k]) +
∑M

m=1 Zm[k]ŷm(α[k], ω[k])

• Update the virtual queuesZm[k] according to (10), using
the valuesym[k] = ŷm(α[k], ω[k]) determined from the
above minimization.

Assuming the problem is feasible (so that it is possible to
meet the time average inequality constraints), this algorithm
will also meet all of these constraints, and will achieve a
time average valuey0 that is within O(1/V) of the optimum.
Typically, theV parameter also affects the average size of the
virtual queues (these can be shown to beO(V), which directly
affects theconvergence timeneeded for the time averages to
be close to their limiting values). The proofs of these claims
follow the theory developed in [9], [10].

B. Corroboration Pull as a Stochastic Optimization Problem

Here we formulate MaxCred-Stochastic. Define
ω[k]△=[(ci, j[k]), (ej[k])], α[k]△=(xi, j [k]), where xi, j[k] is a
binary variable that is 1 if reporteri ∈ {1, . . . ,N} uses
format f j ∈ { f1, . . . , fR} on framek. The goal is to maximize
the average credibility-per-frame subject to average cost
constraints and to a minimum credibility level required on
each framek ∈ {1, 2, . . .}:

Maximize: c (11)

Subject to: e≤ eav (12)
∑N

i=1
∑R

j=1 xi, j [k]ci, j[k] ≥ cmin ∀framesk (13)

xi, j [k] ∈ {0, 1} ,
∑R

b=1 xi,b[k] ≤ 1 ∀i, j,∀framesk (14)
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whereeav andcmin are given constants, andc andeare defined:

c △

= limK→∞
1
K

∑K
k=1
∑N

i=1
∑R

j=1 E
{

xi, j [k]ci, j[k]
}

e △

= limK→∞
1
K

∑K
k=1
∑N

i=1
∑R

j=1 E
{

xi, j [k]ej[k]
}

This problem fits the general stochastic optimization frame-
work of the previous subsection by definingy0[k], y1[k] by:

y0[k] = ŷ0(α[k], ω[k])△= −
∑N

i=1
∑R

j=1 xi, j [k]ci, j[k]

y1[k] = ŷ1(α[k], ω[k])△= − eav +
∑N

i=1
∑R

j=1 xi, j [k]ej[k]

and by definingAω[k] as the set of all (xi, j [k]) matrices
that satisfy the constraints (13)-(14). The resulting stochastic
algorithm thus defines a virtual queueZ1[k] with update:

Z1[k+ 1] = max
[

Z1[k] − eav+
∑N

i=1
∑R

j=1 xi, j [k]ej[k], 0
]

(15)

It then observesZ1[k] and theω[k] parameters every framek
and chooses (xi, j[k]) subject to (13)-(14) to minimize:

∑N
i=1
∑R

j=1 xi, j [k][Z1[k]ej[k] − Vci, j [k]] (16)

Algorithm performance degrades gracefully if approximate
solutions to the above minimization are used [9] [10]. A simple
and exact distributed implementation arises if thecmin con-
straint (13) is removed (i.e., ifcmin

△

=0). In this case the frame
k decisions areseparable over reportersand reduce to having
each reporteri choose the single formatf j ∈ { f1, . . . , fR}
with the smallest value ofZ1[k]ej [k] − Vci, j [k], breaking ties
arbitrarily and choosing to be idle (withxi, j [k] = 0 for all
j ∈ {1, . . . ,R}) if all of the weightsZ1[k]ej [k] − Vci, j[k] are
positive. The swarm director observes the outcomes of the
decisions on framek and iterates theZ1[k] update (15), passing
Z1[k+ 1] to all reporters before the next event occurs.

IV. RelatedWork

We are not aware of any prior work in the wireless network-
ing literature that has tackled information credibility assess-
ment. However, other fields have actively explored credibility,
defined as the believability of sources or information [11],
[13], [14]. Credibility has been investigated in a number of
fields including information science, human communication,
human-computer interaction (HCI), marketing, psychology
and so on [15]. In general, research has focused on two
threads: the factors that affect credibility, and the dynamics
of information credibility.

The seminal work of Hovland et al. [12] may be the earliest
attempt on exploring credibility, which discusses how the
various characteristics of a source can affect a recipient’s
acceptance of a message, in the context of human communica-
tion. Rieh, Hilligoss and other explore important dimensions of
credibility in the context of social interactions [11], [15], [16],
such as trustworthiness, expertise and information validity.
McKnight and Kacmar [11] study a unifying framework of
credibility assessment in which three distinct levels of credi-
bility are discussed: construct, heuristics, and interaction. Their
work is in the context of assessing the credibility of websites
as sources of information.

Finally, there is a body of work that has examined processes
and propagation of credible information. Corroboration asa
process of credibility assessment is discussed in [17]. Prox-
imity, both geographic and social, and its role in credibility

assessment is discussed in [5]: our role of geographic distance
as a measure of credibility is related to this discussion.
Saavedra et al. [18] explore the dynamics and the emergence
of synchronicity in decision-making when traders use corrob-
oration as a mechanism for trading decisions.

V. Conclusions and FutureWork

In this paper, we have explored the design space of algo-
rithms for a new problem, optimizing corroboration pull in an
emerging application area, social swarming. We have proposed
optimal special-case algorithms, computationally efficient ap-
proximations, and decentralized optimal stochastic variants.
Several directions for future work are possible: increasing
credibility and cost model realism, incorporating malice,al-
lowing peers to relay reports, and exploring other realistic,
yet efficient and near-optimal special-case solutions.
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