
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 63(4), PP. 1105–1112, APRIL, 2018

On the Convergence Time of Dual Subgradient
Methods for Strongly Convex Programs

Hao Yu and Michael J. Neely
University of Southern California

Abstract—This paper studies the convergence time of dual gra-
dient methods for general (possibly non-differentiable) strongly
convex programs. For general convex programs, the convergence
time of dual subgradient/gradient methods with simple running
averages (running averages started from iteration 0) is known to
be O(1

ε2
). This paper shows that the convergence time for general

strongly convex programs is O(1
ε
). This paper also considers

a variation of the average scheme, called the sliding running
averages, and shows that if the dual function of the strongly
convex program is locally quadratic then the convergence time
of the dual gradient method with sliding running averages is
O(log(1

ε
)). The convergence time analysis is further verified by

numerical experiments.

I. INTRODUCTION

Consider the following strongly convex program:

min f(x) (1)
s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (2)

x ∈ X (3)

where set X ⊆ Rn is closed and convex; function f(x) is
continuous and strongly convex on X (strong convexity is de-
fined in Section II-A); functions gk(x),∀k ∈ {1, 2, . . . ,m} are
Lipschitz continuous and convex on X . Note that the functions
f(x), g1(x), . . . , gm(x) are not necessarily differentiable. It
is assumed throughout that problem (1)-(3) has an optimal
solution. Strong convexity of f implies the optimum is unique.

Convex program (1)-(3) arises often in control applications
such as model predictive control (MPC) [2], decentralized
multi-agent control [3], and network flow control [4], [5].
More specifically, the model predictive control problem is to
solve problem (1)-(3) where f(x) is a quadratic function and
each gk(x) is a linear function [2]. In decentralized multi-
agent control [3], our goal is to develop distributive algorithms
to solve problem (1)-(3) where f(x) is the sum utility of
individual agents and constraints gk(x) ≤ 0 capture the com-
munication or resource allocation constraints among individual
agents. The network flow control and the transmission control
protocol (TCP) in computer networks can be interpreted as
the dual subgradient algorithm for solving a problem of the
form (1)-(3) [4], [5]. In particular, Section V-B shows that
the dual subgradient method based online flow control rapidly
converges to optimality when utilities are strongly convex.

Hao Yu and Michael J. Neely are with the Department of Electrical
Engineering, University of Southern California, Los Angeles, CA, USA.

This work was presented in part at IEEE Conference on Decision and
Control (CDC), Osaka, Japan, December, 2015 [1]. This work is supported
in part by the NSF grant CCF-0747525.

A. The ε-Approximate Solution

Definition 1. Let x∗ be the optimal solution to problem (1)-
(3). For any ε > 0, a point xε ∈ X is said to be an ε-
approximate solution1 if f(xε) ≤ f(x∗) + ε and gk(xε) ≤
ε,∀k ∈ {1, . . . ,m}.

Definition 2. Let x(t), t ∈ {1, 2, . . .} be the solution sequence
yielded by an iterative algorithm. The convergence time (to an
ε-approximate solution) is the number of iterations required
to achieve an ε-approximate solution. An algorithm is said to
have convergence time O(h(ε)) if {x(t), t ≥ O(h(ε))} is a
sequence of ε-approximate solutions for some function h(ε).

Note if x(t) satisfies f(x(t)) ≤ f(x∗) + 1
t and gk(x(t)) ≤

1
t ,∀k ∈ {1, . . . ,m} for all t ≥ 1, then error decays with time
like O(1

t) and the convergence time is O(1
ε).

B. The Dual Subgradient/Gradient Method

The dual subgradient method is a conventional method
to solve (1)-(3) [6], [7]. It is an iterative algorithm that,
every iteration, removes the inequality constraints (2) and
chooses primal variables to minimize a function over the set
X . This can be decomposed into parallel smaller problems
if the objective and constraint functions are separable. The
dual subgradient method can be interpreted as a subgradi-
ent/gradient method applied to the Lagrangian dual function
of convex program (1)-(3) and allows for many different step
size rules [7]. This paper focuses on a constant step size due
to its simplicity for practical implementations. Note that by
Danskin’s theorem (Proposition B.25(a) in [7]), the Lagrangian
dual function of a strongly convex program is differentiable,
thus the dual subgradient method for strongly convex program
(1)-(3) is in fact a dual gradient method. The constant step
size dual subgradient/gradient method solves problem (1)-(3)
as follows:

Algorithm 1. [The Dual Subgradient/Gradient Method] Let
c > 0 be a constant step size. Let λ(0) ≥ 0, be a given
constant vector. At each iteration t, update x(t) and λ(t+ 1)
as follows:

• x(t) = argmin
x∈X

[f(x) +
∑m
k=1 λk(t)gk(x)] .

• λk(t+ 1) = max {λk(t) + cgk(x(t)), 0} ,∀k.

1If there exists z ∈ X such that gk(z) ≤ −δ,∀k ∈ {1, . . . ,m} for
some δ > 0, one can convert an ε-approximate point xε to another point
x = θxε+(1−θ)z, for θ = δ

ε+δ
, which satisfies all desired constraints and

has objective value within O(ε) of optimality.

Rather than using x(t) from Algorithm 1 as the primal solu-
tions, the following running average schemes are considered:

1) Simple Running Averages: Use x(t) = 1
t

∑t−1
τ=0 x(τ)

as the solution at each iteration t ∈ {1, 2, . . .}.
2) Sliding Running Averages: Use x̃(t) = x(0) and

x̃(t) =

{
2
t

∑t−1
τ= t

2
x(τ) if t is even

x̃(t− 1) if t is odd

as the solution at each iteration t ∈ {1, 2, . . .}.
The simple running average sequence x(t) is also called the
ergodic sequence in [8]. The idea of using the running average
x(t) as the solutions, rather than the original primal variables
x(t), dates back to Shor [9] and has been further developed in
[10] and [8]. The constant step size dual subgradient algorithm
with simple running averages is also a special case of the
drift-plus-penalty algorithm, which was originally developed
to solve more general stochastic optimization [11] and used
for deterministic convex programs in [12]. (See Section I.C
in [1] for more discussions.) This paper proposes a new
running average scheme, called sliding running averages. This
paper shows that the sliding running averages can have a
better convergence time when the dual function of the convex
program satisfies additional assumptions.

C. Related Work

A lot of literature focuses on the convergence time of dual
subgradient methods to an ε-approximate solution. For general
convex programs in the form of (1)-(3), where the objective
functionf(x) is convex but not necessarily strongly convex, the
convergence time of the drift-plus-penalty algorithm is shown
to be O(1

ε2) in [12], [13]. A similar O(1
ε2) convergence time

of the dual subgradient algorithm with the averaged primal
sequence is shown in [14]. A recent work [15] shows that the
convergence time of the drift-plus-penalty algorithm is O(1

ε)
if the dual function is locally polyhedral and the convergence
time is O(1

ε3/2
) if the dual function is locally quadratic. For a

special class of strongly convex programs in the form of (1)-
(3), where f(x) is second-order differentiable and strongly
convex and gk(x),∀k ∈ {1, 2, . . . ,m} are second-order dif-
ferentiable and have bounded Jacobians, the convergence time
of the dual subgradient algorithm is shown to be O(1

ε) in [2].
Note that convex program (1)-(3) with second order differ-

entiable f(x) and gk(x) in general can be solved via interior
point methods with linear convergence time. However, to
achieve fast convergence in practice, the barrier parameters
must be scaled carefully and the computation complexity
associated with each iteration is high. In contrast, the dual sub-
gradient algorithm is a Lagrangian dual method and can yield
distributed implementations with low computation complexity
when the objective and constraint functions are separable.

This paper considers a class of strongly convex programs
that is more general than those treated in [2].2 Besides the
strong convexity of f(x), we only require the constraint

2Note that bounded Jacobians imply Lipschitz continuity. Work [2] also
considers the effect of inaccurate solutions for the primal updates. The analysis
in this paper can also deal with inaccurate updates. In this case, there will be
an error term δ on the right of (6).

functions gk(x) to be Lipschitz continuous. The functions
f(x) and gk(x) can even be non-differentiable. Thus, this
paper can deal with non-smooth optimization. For example, the
l1 norm ‖x‖1 is non-differentiable and often appears as part
of the objective or constraint functions in machine learning,
compressed sensing and image processing applications. This
paper shows that the convergence time of the dual subgradient
method with simple running averages for general strongly
convex programs is O(1

ε) and the convergence time can be
improved to O(log(1

ε)) by using sliding running averages
when the dual function is locally quadratic.

A closely related recent work is [16] that considers strongly
convex programs with strongly convex and second order
differentiable objective functions f(x) and conic constraints
in the form of Gx + h ∈ K, where K is a proper cone.
The authors in [16] show that a hybrid algorithm using both
dual subgradient and dual fast gradient methods can have
convergence time O(1

ε2/3
); and the dual subgradient method

can have convergence time O(log(1
ε)) if the strongly convex

program satisfies an error bound property. Results in the cur-
rent paper are developed independently and consider general
nonlinear convex constraint functions; and show that the dual
subgradient/gradient method with a different averaging scheme
has an O(log(1

ε)) convergence time when the dual function
is locally quadratic. Another parallel work [17] considers
strongly convex programs with strongly convex and smooth
objective functions f(x) and general constraint functions g(x)
with bounded Jacobians. The authors in [17] show that the dual
subgradient/gradient method with simple running averages has
O(1

ε) convergence.
This paper and independent parallel works [16], [17] obtain

similar convergence times of the dual subgradient/gradient
method with different averaging schemes for strongly convex
programs under slightly different assumptions. However, the
proof technique in this paper is fundamentally different from
that used in [16] and [17]. Works [16], [17] and other previous
works, e.g., [2], follow the classical optimization analysis
approach based on the descent lemma, while this paper is
based on the drift-plus-penalty analysis that was originally
developed for stochastic optimization in dynamic queuing
systems [18], [11]. Using the drift-plus-penalty technique,
we further propose a new Lagrangian dual type algorithm
with O(1

ε) convergence for general convex programs (possibly
without strong convexity) in a following work [19].

II. PRELIMINARIES AND BASIC ANALYSIS

A. Preliminaries and Assumptions

Definition 3 (Lipschitz Continuity). Let X ⊆ Rn be a convex
set. Function h : X → Rm is said to be Lipschitz continuous
on X with modulus L if there exists L > 0 such that ‖h(y)−
h(x)‖ ≤ L‖y − x‖ for all x,y ∈ X .

Note that ‖ ·‖ in the above definition can be general norms.
However, throughout this paper, we use ‖ · ‖ to denote the
vector Euclidean norm.

Definition 4 (Strongly Convex Functions). Let X ⊆ Rn be
a convex set. Function h is said to be strongly convex on X

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 63(4), PP. 1105–1112, APRIL, 2018

with modulus α if there exists a constant α > 0 such that
h(x)− 1

2α‖x‖
2 is convex on X .

Lemma 1. [See [20] or Corollary 1 in [19]] Let h(x) be
strongly convex on convex set X with modulus α. If xopt is a
global minimum, h(xopt) ≤ h(y)− α

2 ‖y − xopt‖2,∀y ∈ X .

Denote the stacked vector of multiple functions
g1(x), g2(x), . . . , gm(x) as

g(x) =
[
g1(x), g2(x), . . . , gm(x)

]T
.

Assumption 1. In convex program (1)-(3), function f(x) is
strongly convex on X with modulus α; and function g(x) is
Lipschitz continuous on X with modulus β.

Assumption 2. There exists a Lagrange multiplier vector
λ∗ = [λ∗1, λ

∗
2, . . . , λ

∗
m]T ≥ 0 such that

q(λ∗) = min
x∈X
{f(x) : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}} ,

where q(λ) = min
x∈X
{f(x)+

∑m
k=1 λkgk(x)} is the Lagrangian

dual function of problem (1)-(3).

B. Properties of the Lyapunov drift

Denote λ(t) =
[
λ1(t), . . . , λm(t)

]T
. Define Lyapunov

function L(t) = 1
2‖λ(t)‖2 and drift ∆(t) = L(t+ 1)− L(t).

Lemma 2. At each iteration t in Algorithm 1,
1

c
∆(t) = λT (t+ 1)g(x(t))− 1

2c
‖λ(t+ 1)− λ(t)‖2 (4)

Proof: The update equations λk(t + 1) = max{λk(t) +
cgk(x(t)), 0},∀k ∈ {1, 2, . . . ,m} can be rewritten as

λk(t+ 1) = λk(t) + cg̃k(x(t)),∀k ∈ {1, 2, . . . ,m}, (5)

where g̃k(x(t)) =

{
gk(x(t)), if λk(t) + cgk(x(t)) ≥ 0
− 1
cλk(t), else ,

∀k ∈ {1, 2, . . . ,m}. Fix k ∈ {1, 2, . . . ,m}. Squaring both
sides of (5) and dividing by factor 2 yields:

1

2
[λk(t+ 1)]2

=
1

2
[λk(t)]2 +

c2

2
[g̃k(x(t))]2 + cλk(t)g̃k(x(t))

=
1

2
[λk(t)]2 +

c2

2
[g̃k(x(t))]2 + cλk(t)gk(x(t))

+ cλk(t)[g̃k(x(t))− gk(x(t))]

(a)
=

1

2
[λk(t)]2 +

c2

2
[g̃k(x(t))]2 + cλk(t)gk(x(t))

− c2g̃k(x(t))[g̃k(x(t))− gk(x(t))]

=
1

2
[λk(t)]2 − c2

2
[g̃k(x(t))]2 + c[λk(t) + cg̃k(x(t))]gk(x(t))

(b)
=

1

2
[λk(t)]2 − 1

2
[λk(t+ 1)− λk(t)]2 + cλk(t+ 1)gk(x(t))

where (a) follows from λk(t)[g̃k(x(t)) − gk(x(t))] =
−cg̃k(x(t))[g̃k(x(t))−gk(x(t))], which can be shown by sep-
arately considering cases g̃k(x(t)) = gk(x(t)) and g̃k(x(t)) 6=
gk(x(t)); and (b) follows from the fact that λk(t + 1) =
λk(t) + cg̃k(x(t)). Summing over k ∈ {1, 2, . . . ,m} and
dividing both sides by factor c yields the result.

III. CONVERGENCE TIME ANALYSIS

This section analyzes the convergence time of x(t) for
strongly convex program (1)-(3).

A. Objective Value Violations

Lemma 3. Let x∗ be the optimal solution to (1)-(3). Assume
c ≤ α/β2. At each iteration t in Algorithm 1, we have

1

c
∆(t) + f(x(t)) ≤ f(x∗) ,∀t ≥ 0. (6)

Proof: Fix t ≥ 0. Since f(x) is strongly convex with
modulus α and for all k ∈ {1, . . . ,m} functions gk(x)
are convex and scalars λk(t) are non-negative, the function
f(x)+

∑m
k=1 λk(t)gk(x) is also strongly convex with modulus

α. Note that x(t) = argmin
x∈X

[f(x) +
∑m
k=1 λk(t)gk(x)]. By

Lemma 1 with xopt = x(t) and y = x∗, we have

f(x(t)) +
∑m
k=1λk(t)gk(x(t))

≤
[
f(x∗) +

∑m
k=1λk(t)gk(x∗)

]
− α

2
‖x(t)− x∗‖2

Adding this to equation (4) yields 1
c∆(t) + f(x(t)) ≤

f(x∗) +B(t), where

B(t) =− 1

2c
‖λ(t+ 1)− λ(t)‖2 − α

2
‖x(t)− x∗‖2

+ λT (t)[g(x∗)− g(x(t))] + λT (t+ 1)g(x(t)) (7)

It remains to show that B(t) ≤ 0. Since x∗ is the optimal
solution to problem (1)-(3), we have gk(x∗) ≤ 0 for all k.
Note that λk(t+1) ≥ 0 for all k. Thus, −λT (t+1)g(x∗) ≥ 0.
Adding the nonnegative quantity −λT (t+1)g(x∗) to the right-
hand-side of (7) gives:

B(t) ≤− 1

2c
‖λ(t+ 1)− λ(t)‖2 − α

2
‖x(t)− x∗‖2

+ λT (t)[g(x∗)− g(x(t))] + λT (t+ 1)g(x(t))

− λT (t+ 1)g(x∗)

=− 1

2c
‖λ(t+ 1)− λ(t)‖2 − α

2
‖x(t)− x∗‖2

+ [λT (t)− λT (t+ 1)][g(x∗)− g(x(t))]

(a)

≤ − 1

2c
‖λ(t+ 1)− λ(t)‖2 − α

2
‖x(t)− x∗‖2

+ ‖λ(t)− λ(t+ 1)‖‖g(x(t))− g(x∗)‖
(b)

≤ − 1

2c
‖λ(t+ 1)− λ(t)‖2 − α

2
‖x(t)− x∗‖2

+ β‖λ(t)− λ(t+ 1)‖‖x(t)− x∗‖

=− 1

2c

(
‖λ(t+ 1)− λ(t)‖ − cβ‖x(t)− x∗‖

)2
− 1

2
(α− cβ2)‖x(t)− x∗‖2

(c)

≤0

where (a) follows from the Cauchy-Schwarz inequality; (b)
follows from Assumption 1; and (c) follows from c ≤ α

β2 .

Theorem 1 (Objective Value Violations). Let x∗ ∈ X be the
optimal solution to problem (1)-(3). If c ≤ α

β2 in Algorithm 1,

then f(x(t)) ≤ f(x∗) + ‖λ(0)‖2
2ct ,∀t ≥ 1.

Proof: Fix t ≥ 1. Summing (6) over τ ∈ {0, 1, . . . , t−1}
yields 1

c

∑t−1
τ=0 ∆(τ) +

∑t−1
τ=0 f(x(τ)) ≤ tf(x∗). Dividing by

factor t and rearranging terms yields

1
t

∑t−1
τ=0 f(x(τ)) ≤ f(x∗) + L(0)−L(t)

ct

= f(x∗) + ‖λ(0)‖2−‖λ(t)‖2
2ct .

Finally, f(x(t)) ≤ 1
t

∑t−1
τ=0 f(x(τ)) by Jensen’s inequality.

B. Constraint Violations

Lemma 4. For any t2 > t1 ≥ 0,

λk(t2) ≥ λk(t1) + c

t2−1∑
τ=t1

gk(x(τ)) ,∀k ∈ {1, 2, . . . ,m}

In particular, λk(t) ≥ λk(0) + c
∑t−1
τ=0 gk(x(τ)) for all t ≥ 1

and k ∈ {1, 2, . . . ,m}.

Proof: Fix k ∈ {1, 2, . . . ,m}. Note that λk(t1 + 1) =
max{λk(t1) + cgk(x(t1)), 0} ≥ λk(t1) + cgk(x(t1)). By
induction, this lemma follows.

Lemma 5. Let λ∗ ≥ 0 be given in Assumption 2. If c ≤ α
β2

in Algorithm 1, then λ(t) satisfies

‖λ(t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖,∀t ≥ 1. (8)

Proof: Let x∗ be the optimal solution to problem (1)-
(3). Assumption 2 implies that f(x∗) = q(λ∗) ≤ f(x(τ)) +∑m
k=1 λ

∗
kgk(x(τ)),∀τ ∈ {0, 1, . . .}, where the inequality

follows from the definition of q(λ). Thus, we have f(x∗) −
f(x(τ)) ≤

∑m
k=1 λ

∗
kgk(x(τ)),∀τ ∈ {0, 1, . . .}. Summing

over τ ∈ {0, 1, . . . , t− 1} yields

tf(x∗)−
t−1∑
τ=0

f(x(τ)) ≤
t−1∑
τ=0

m∑
k=1

λ∗kgk(x(τ))

=

m∑
k=1

λ∗k

[t−1∑
τ=0

gk(x(τ))
] (a)

≤ 1

c

m∑
k=1

λ∗k[λk(t)− λk(0)]

≤1

c

m∑
k=1

λ∗kλk(t)
(b)

≤ 1

c
‖λ∗‖‖λ(t)‖ (9)

where (a) follows from Lemma 4 and (b) follows from the
Cauchy-Schwarz inequality. On the other hand, summing (6)
in Lemma 3 over τ ∈ {0, 1, . . . , t− 1} yields

tf(x∗)−
t−1∑
τ=0

f(x(τ)) ≥ L(t)− L(0)

c
=
‖λ(t)‖2 − ‖λ(0)‖2

2c

(10)

Combining (9) and (10) yields

‖λ(t)‖2 − ‖λ(0)‖2

2c
≤ 1

c
‖λ∗‖‖λ(t)‖

⇒ (‖λ(t)‖ − ‖λ∗‖)2 ≤ ‖λ(0)‖2 + ‖λ∗‖2

⇒ ‖λ(t)‖ ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

Theorem 2 (Constraint Violations). Let λ∗ ≥ 0 be defined in
Assumption 2. If c ≤ α

β2 in Algorithm 1, then the constraint
functions satisfy for all t ≥ 1:

gk(x(t)) ≤
√
‖λ(0)‖2 + ‖λ∗‖2 + ‖λ∗‖

ct
,∀k ∈ {1, . . . ,m}

Proof: Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that

x(t) = 1
t

∑t−1
τ=0 x(τ). Thus, gk(x(t))

(a)

≤ 1
t

∑t−1
τ=0 gk(x(τ))

(b)

≤
λk(t)−λk(0)

ct ≤ λk(t)
ct ≤ ‖λ(t)‖

ct

(c)

≤
√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖

ct ,
where (a) follows from the convexity of gk(x); (b) follows
from Lemma 4; and (c) follows from Lemma 5.

Theorems 1-2 show that using the simple running average
sequence x(t) ensures the objective value and constraint error
decay like O(1/t). A lower bound of f(x(t)) ≥ f(x∗)−O(1

t)
easily follows from strong duality and Theorem 2. See full
version [20] for more discussions.

IV. EXTENSIONS

This section shows that the convergence time of sliding
running averages x̃(t) is O(log(1

ε)) when the dual function
of problem (1)-(3) satisfies additional assumptions.

A. Smooth Dual Functions

Definition 5 (Smooth Functions). Let X ⊆ Rn and function
h(x) be continuously differentiable on X . Function h(x) is
said to be smooth on X with modulus L if ∇xh(x) is Lipschitz
continuous on X with modulus L.

Define q(λ) = min
x∈X
{f(x)+λTg(x)} as the dual function of

problem (1)-(3). Recall that f(x) is strongly convex with mod-
ulus α by Assumption 1. For fixed λ ∈ Rm+ , f(x) + λTg(x)
is strongly convex with respect to x ∈ X with modulus α.
Define x(λ) = argminx∈X {f(x) + λTg(x)}. By Danskin’s
theorem (Proposition B.25 in [7]), q(λ) is differentiable with
gradient ∇λq(λ) = g(x(λ)).

Lemma 6 (Smooth Dual Functions). The dual function q(λ)

is smooth on Rm+ with modulus γ = β2

α .

Proof: Fix λ,µ ∈ Rm+ . Let x(λ) = argminx∈X {f(x) +

λTg(x)} and x(µ) = argminx∈X {f(x) + µTg(x)}. By
Lemma 1, we have f(x(λ)) + λTg(x(λ)) ≤ f(x(µ)) +
λTg(x(µ))− α

2 ‖x(λ)−x(µ)‖2 and f(x(µ))+µTg(x(µ)) ≤
f(x(λ)) + µTg(x(λ)) − α

2 ‖x(λ) − x(µ)‖2. Summing the
above two inequalities and simplifying gives

α‖x(λ)− x(µ)‖2 ≤ [µ− λ]T [g(x(λ))− g(x(µ))]

(a)

≤ ‖µ− λ‖‖g(x(λ))− g(x(µ))‖
(b)

≤ β‖µ− λ‖‖x(λ)− x(µ)‖

where (a) follows from the Cauchy-Schwarz inequality and (b)
follows because g(x) is Lipschitz coninuous. This implies

‖x(λ)− x(µ)‖ ≤ β

α
‖λ− µ‖ (11)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 63(4), PP. 1105–1112, APRIL, 2018

Thus, we have ‖∇q(λ)−∇q(µ)‖ (a)
= ‖g(x(λ))−g(x(µ))‖

(b)

≤

β‖x(λ) − x(µ)‖
(c)

≤ β2

α ‖λ − µ‖ where (a) follows from
∇λq(λ) = g(x(λ)); (b) follows from the Lipschitz continuity
of g(x); and (c) follows from (11).

Thus, q(λ) is smooth on Rm+ with modulus L = β2

α .
Since ∇λq(λ(t)) = g(x(t)), the dynamic of λ(t) can be

interpreted as the projected gradient method with step size c
to solve maxλ∈Rm

+
{q(λ)} where q(·) is a smooth function by

Lemma 6. Thus, we have the next lemma.

Lemma 7. Assume problem (1)-(3) satisfies Assumptions 1-2.
If c ≤ α

β2 , then q(λ∗)− q(λ(t)) ≤ 1
2ct‖λ(0)− λ∗‖2,∀t ≥ 1.

Proof: Recall that a projected gradient algorithm with
step size c < 1

γ maximizes a concave function with smooth
modulus γ with the error decaying like O(1

t). Thus, this
lemma follows. See [20] for the complete proof.

B. Problems with Locally Quadratic Dual Functions

In addition to Assumptions 1-2, this subsection further
requires the next assumption.

Assumption 3 (Locally Quadratic Dual Functions). Let λ∗

be a Lagrange multiplier of problem (1)-(3) defined in As-
sumption 2. There exists Dq > 0 and Lq > 0, where the
subscript q denotes locally “quadratic”, such that for all
λ ∈ {λ ∈ Rm+ : ‖λ − λ∗‖ ≤ Dq}, the dual function q(λ)
satisfies q(λ∗) ≥ q(λ) + Lq‖λ− λ∗‖2.

Lemma 8. Suppose problem (1)-(3) satisfies Assumptions 1-3.
Let q(λ),λ∗, Dq and Lq be given in Assumption 3.

1) If λ ∈ Rm+ and q(λ∗)−q(λ) ≤ LqD2
q , then ‖λ−λ∗‖ ≤

Dq .
2) The λ∗ defined in Assumption 2 is unique.

Proof: See [20] for the proof.
Define

Tq =
‖λ(0)− λ∗‖2

2cLqD2
q

. (12)

Lemma 9. Assume problem (1)-(3) satisfies Assumptions 1-3.
If c ≤ α

β2 in Algorithm 1, then ‖λ(t) − λ∗‖ ≤ Dq for all
t ≥ Tq , where Tq is defined in (12).

Proof: By Lemma 7 and Lemma 8, if 1
2ct‖λ(0)−λ∗‖2 ≤

LqD
2
q , then ‖λ(t) − λ∗‖ ≤ Dq . Note that t ≥ ‖λ(0)−λ∗‖2

2cLqD2
q

implies that 1
2ct‖λ(0)− λ∗‖2 ≤ LqD2

q .

Lemma 10. Assume problem (1)-(3) satisfies Assumptions 1-3.
If c ≤ α

β2 in Algorithm 1, then
1) ‖λ(t) − λ∗‖ ≤ 1√

t
1√
2cLq

‖λ(0) − λ∗‖,∀t ≥ Tq , where

Tq is defined in (12).
2) ‖λ(t) − λ∗‖ ≤

(√
1

1+2cLq

)t−Tq‖λ(Tq) − λ∗‖ ≤(
1√

1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 , ∀t ≥ Tq , where Tq is

defined in (12).

Proof:
1) By Lemma 7, q(λ∗)−q(λ(t)) ≤ 1

2ct‖λ(0)−λ∗‖2,∀t ≥
1. By Lemma 9 and Assumption 3, q(λ∗)− q(λ(t)) ≥

Lq‖λ(t) − λ∗‖2,∀t ≥ Tq . Thus, we have Lq‖λ(t) −
λ∗‖2 ≤ 1

2ct‖λ(0) − λ∗‖2,∀t ≥ Tq , which implies that
‖λ(t)− λ∗‖ ≤ 1√

t
1√
2cLq

‖λ(0)− λ∗‖,∀t ≥ Tq .
2) By part (1), we know ‖λ(t)−λ∗‖ ≤ Dq,∀t ≥ Tq . The

second part essentially follows from Theorem 12 in [21],
which shows that the projected gradient method for set
constrained smooth convex optimization converge geo-
metrically if the objective function satisfies a quadratic
growth condition. See [20] for the proof.

Corollary 1. Assume problem (1)-(3) satisfies Assumptions
1-3. If c ≤ α

β2 in Algorithm 1, then ‖λ(2t) − λ(t)‖ ≤
2
(

1√
1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 ,∀t ≥ Tq , where Tq is defined

in (12).

Proof:

‖λ(2t)− λ(t)‖ ≤ ‖λ(2t)− λ∗‖+ ‖λ(t)− λ∗‖
(a)

≤
(1√

1 + 2cLq

)2t
Dq(1 + 2cLq)

Tq
2 +

(1√
1 + 2cLq

)t
Dq(1 + 2cLq)

Tq
2

(b)

≤2
(1√

1 + 2cLq

)t
Dq(1 + 2cLq)

Tq
2 ,

where (a) follows from part (2) in Lemma 10; and (b) follows
from 1√

1+2cLq
< 1.

Theorem 3. Assume problem (1)-(3) satisfies Assumptions
1-3. Let x∗ be the optimal solution and λ∗ be de-
fined in Assumption 3. If c ≤ α

β2 in Algorithm 1, then

f(x̃(2t)) ≤ f(x∗) + 1
t

(
1√

1+2cLq

)t
η,∀t ≥ Tq , where η =

2D2
q(1+2cLq)

Tq+2Dq(1+2cLq)
Tq
2 (
√
‖λ(0)‖2+‖λ∗‖2+‖λ∗‖)

c and Tq
is defined in (12).

Proof: Fix t ≥ Tq . By Lemma 3, we have 1
c∆(τ) +

f(x(τ)) ≤ f(x∗) for all τ ∈ {0, 1, . . .}. Summing over τ ∈
{t, t+1, . . . , 2t−1} yields 1

c

∑2t−1
τ=t ∆(τ)+

∑2t−1
τ=t f(x(τ)) ≤

tf(x∗). Dividing by factor t yields

1

t

2t−1∑
τ=t

f(x(τ)) ≤ f(x∗) +
L(t)− L(2t)

ct
(13)

Thus, we have

f(x̃(2t))
(a)

≤ 1

t

2t−1∑
τ=t

f(x(τ))
(b)

≤ f(x∗) +
L(t)− L(2t)

ct

= f(x∗) +
‖λ(t)‖2 − ‖λ(2t)‖2

2ct

= f(x∗) +
‖λ(t)− λ(2t) + λ(2t)‖2 − ‖λ(2t)‖2

2ct
(c)

≤ f(x∗) +
‖λ(t)− λ(2t)‖2 + 2‖λ(2t)‖‖λ(t)− λ(2t)‖

2ct

(d)

≤ f(x∗) +

(
2
(

1√
1+2cLq

)t
Dq(1 + 2cLq)

Tq
2

)2
2ct

+
4
(

1√
1+2cLq

)t
Dq(1 + 2cLq)

Tq
2 ‖λ(2t)‖

2ct

(e)

≤ f(x∗) +
1

t

(1√
1 + 2cLq

)t(2D2
q(1 + 2cLq)

Tq

c

+
2Dq(1 + 2cLq)

Tq
2 ‖λ(2t)‖

c

)
(f)

≤ f(x∗) +
1

t

(1√
1 + 2cLq

)t
η

where (a) follows from x̃(2t) = 1
t

∑2t−1
τ=t x(τ) and the

convexity of f(x); (b) follows from (13); (c) follows from
the Cauchy-Schwarz inequality; (d) follows from Corollary 1;
(e) follows from 1√

1+2cLq

< 1; and (f) follows from (8) and

the definition of η.

Theorem 4. Assume problem (1)-(3) satisfies Assumptions
1-3. If c ≤ α

β2 in Algorithm 1, then gk(x̃(2t)) ≤
2Dq(1+2cLq)

Tq
2

ct

(
1√

1+2cLq

)t
,∀k ∈ {1, 2, . . . ,m},∀t ≥ Tq ,

where Tq is defined in (12).

Proof: Fix t ≥ Tq and k ∈ {1, 2, . . . ,m}. Thus, we have

gk(x̃(2t))
(a)

≤ 1

t

2t−1∑
τ=t

gk(x(τ))
(b)

≤ 1

ct

(
λk(2t)− λk(t)

)
≤ 1

ct
‖λ(2t)− λ(t)‖

(c)

≤ 2Dq(1 + 2cLq)
Tq
2

ct

(1√
1 + 2cLq

)t
where (a) follows from the convexity of gk(x); (b) follows
from Lemma 4; and (c) follows from Corollary 1.

Under Assumptions 1-3, Theorems 3 and 4 show that if
c ≤ α

β2 , then x̃(t) provides an ε-approximate solution with
convergence time O(log(1

ε)).

C. Discussions

1) Practical Implementations: Assumption 3 in general
is difficult to verify. However, we note that to ensure x̃(t)
provides the better O(log(1

ε)) convergence time, we only
require c ≤ α

β2 , which is independent of the parameters in
Assumptions 3. Namely, in practice, we can blindly apply
Algorithm 1 to problem (1)-(3) with no need to verify As-
sumption 3. If problem (1)-(3) happens to satisfy Assumption
3, then x̃(t) enjoys the faster convergence time O(log(1

ε)). If
not, then x̃(t) (or x(t)) at least has convergence time O(1

ε).
2) Local Assumption and Local Geometric Convergence:

Since Assumption 3 only requires the “quadratic” property
to be satisfied in a local radius Dq around λ∗, the error of
Algorithm 1 starts to decay like O

(
1
t

(
1√

1+2cLq

)t)
only after

λ(t) arrives at the Dq local radius after Tq iterations, where Tq
is independent of the approximation requirement ε and hence
is order O(1). Thus, Algorithm 1 provides an ε-approximate
solution with convergence time O(log(1

ε)). However, it is
possible that Tq is relatively large if Dq is small.

In fact, Tq > 0 because Assumption 3 only requires the
dual function to have the “quadratic” property in a local
radius. Thus, the theory developed in this section can deal
with a large class of problems. On the other hand, if the

dual function has the “quadratic” property globally, i.e., for
all λ ≥ 0, then Tq = 0 and the error of Algorithm 1 decays
like O

(
1
t

(
1√

1+2cLq

)t)
,∀t ≥ 1.

3) Locally Strongly Concave Dual Functions: The follow-
ing assumption is stronger than Assumption 3 but can be easier
to verify in certain cases.

Assumption 4 (Locally Strongly Concave Dual Functions).
Let λ∗ be a Lagrange multiplier vector defined in Assumption
2. There exists Dc > 0 and Lc > 0, where the subscript c
denotes locally strongly “concave”, such that the dual function
q(λ) is strongly concave with modulus Lc over {λ ∈ Rm+ :
‖λ− λ∗‖ ≤ Dc}.

In fact, Assumption 4 implies Assumption 3.

Lemma 11. If problem (1)-(3) satisfies Assumption 4, then it
also satisfies Assumption 3 with Dq = Dc and Lq = Lc

2 .

Proof: See [20] for the proof.
Since Assumption 4 implies Assumption 3, by the results

from the previous subsection, x̃(t) from Algorithm 1 provides
an ε-approximate solution with convergence time O(log(1

ε)).

V. APPLICATIONS

A. Problems with Non-Degenerate Constraint Qualifications

Theorem 5. Consider strongly convex program (1)-(3) where
f(x) and gk(x),∀k ∈ {1, 2, . . . ,m} are second-order contin-
uously differentiable. Let x∗ be the unique solution.

1) Let K ⊆ {1, 2, . . . ,m} be the set of active constraints,
i.e., gk(x∗) = 0,∀k ∈ K, and denote the vector
composed by gk(x), k ∈ K as gK. If g(x) has a
bounded Jacobian and rank(∇xgK(x∗)T) = |K|, then
Assumptions 1-3 hold.

2) If g(x) has a bounded Jacobian and rank(∇xg(x∗)T) =
m, then Assumptions 1-4 hold.

Proof: See [20] for the proof.

Corollary 2. Consider min{f(x) : Ax ≤ b}, where f(x) is
second-order continuously differentiable and strongly convex
function; and A is an m× n matrix.

1) Let x∗ be the optimal solution. Assume Ax∗ ≤ b has
l rows that hold with equality, and let A′ be the l × n
submatrix of A corresponding to these “active” rows.
If rank(A′) = l, then Assumptions 1-3 hold.

2) If rank(A) = m, then Assumptions 1-4 hold with Dc =
∞.

B. Network Utility Maximization (NUM)

Consider a network with l links and n flow streams.
Let {b1, b2, . . . , bl} be the capacities of each link and
{x1, x2, . . . , xn} be the rates of each flow stream. Let N (k) ⊆
{1, 2, . . . , n}, 1 ≤ k ≤ l be the set of flow streams that
use link k. This problem is to maximize the utility function∑n
i=1 wi log(xi) with constants wi > 0,∀1 ≤ i ≤ n, which

represents a measure of network fairness [22], subject to the
capacity constraint of each link. This problem is known as

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 63(4), PP. 1105–1112, APRIL, 2018

the network utility maximization (NUM) problem and can be
formulated as follows3:

min

n∑
i=1

−wi log(xi) (14)

s.t. Ax ≤ b (15)
x ≥ 0 (16)

where A = [a1, · · · ,an] is a 0-1 matrix of size m × n such
that aij = 1 if and only if flow xj uses link i and b > 0.

Note that problem (14)-(16) satisfies Assumptions 1 and 2.
By the results from Section III, x(t) has convergence time
O(1

ε). The next theorem provides sufficient conditions such
that x̃(t) has better convergence time O(log(1

ε)).

Theorem 6. The NUM problem (14)-(16) satisfies:
1) Let bmax = max1≤i≤n bi and xmax > 0 such that

xmax
i > bmax,∀i ∈ {1, . . . , n}. If we replace constraint

(16) with 0 ≤ x ≤ xmax in problem (14)-(16), then we
obtain an equivalent problem.

2) Let x∗ be the optimal solution. Assume Ax∗ ≤ b has
m′ rows that hold with equality, and let A′ be the m′×n
submatrix of A corresponding to these “active” rows.
If rank(A′) = m′, then Assumptions 1-3 hold for the
above equivalent problem.

3) If rank(A) = m, then Assumptions 1-4 hold for the
above equivalent problem.

Proof: See [20] for the proof.

VI. NUMERICAL RESULTS

A. Network Utility Maximization Problems

Consider the simple NUM problem described in Figure 1.
Let x1, x2 and x3 be the data rates of stream 1, 2 and 3 and
let the network utility be minimizing − log(x1)− 2 log(x2)−
3 log(x3). It can be checked that capacity constraints other
than x1 + x2 + x3 ≤ 10, x1 + x2 ≤ 8, and x2 + x3 ≤ 8
are redundant. By Theorem 6, the NUM problem can be
formulated as follows:

min − log(x1)− 2 log(x2)− 3 log(x3)

s.t. Ax ≤ b,0 ≤ x ≤ xmax

where A =

 1 1 1
1 1 0
0 1 1

, b =

 10
8
8

 and xmax =

[11, 11, 11]T . The optimal solution to this NUM problem is
x∗1 = 2, x∗2 = 3.2, x∗3 = 4.8 and the optimal value is −7.7253.

Since the objective function is separable, the dual subgra-
dient/gradient method can yield a distributed solution. This is
why the dual subgradient/gradient method is widely used to
solve NUM problems [4]. The objective function is strongly
convex with modulus α = 2

121 on X = {0 ≤ x ≤ xmax}
and g(·) is Lipschitz continuous with modulus β ≤

√
6 on X .

Figure 2 verifies the convergence of x(t) with c = α
β2 = 1

363

3Without loss of optimality, we define log(0) = −∞ and hence log(·) is
defined over R+. Or alternatively, we can replace the non-negative rate con-
straints with xi ≥ xmin

i , ∀i ∈ {1, 2, . . . , n} where xmin
i , ∀i ∈ {1, 2, . . . , n}

are sufficiently small positive numbers.

and λ(0) = 0. Since λ(0) = 0, by Theorem 1, we have
f(x(t)) ≤ f(x∗),∀t > 0. To verify the convergence time
of constraint violations, Figure 3 plots g1(x(t)), g2(x(t)),
g3(x(t)) and 1/t with both x-axis and y-axis in log10 scales.
As observed in Figure 3, the curves of g1(x(t)) and g3(x(t))
are parallel to the curve of 1/t for large t. Note that g2(x(t)) ≤
0 is satisfied early because this constraint is loose. Figure
3 shows that error decays like O(1

t) and suggests that the
convergence time is actually Θ(1

ε) for this NUM problem.

capacity=8)

stream)1)

stream)2)

stream)3)

capacity=8) capacity=8)

capacity=8)

capacity=10)

Fig. 1. A simple NUM problem with 3 flow streams

Note that rank(A) = 3. By Theorem 6, this NUM problem
satisfies Assumptions 1-4. Figure 4 verifies Theorem 6 that
the convergence time of x̃(t) is O(log(1

ε)) by showing that
error decays like O(1

t 0.998t) with c = α
β2 = 1

363 .

B. Large Scale Quadratic Programs

Consider quadratic program minx∈RN {xTQx + dTx :
Ax ≤ b} where Q,A ∈ RN×N and d,b ∈ RN . Q =
UΣUH ∈ RN×N where U is the orthonormal basis for a
random N × N zero mean and unit variance normal matrix
and Σ is the diagonal matrix with entries from uniform [1, 3].
A is a random N × N zero mean and unit variance normal
matrix. d and b are random vectors with entries from uniform
[0, 1]. In a PC with a 4 core 2.7GHz Intel i7 Cpu and
16GB Memory, we run both Algorithm 1 and quadprog from
Matlab, which by default is using the interior point method,
over randomly generated large scale quadratic programs with
N = 400, 600, 800, 1000 and 1200. For different problem size
N , the running time is the average over 100 random quadratic
programs and is plotted in Figure 5.

Iterations: t
0 100 200 300 400 500 600 700

O
bj

ec
tiv

e
Va

lu
es

-15
-14
-13
-12
-11
-10

-9
-8
-7

NUM: Convergence of Objective Values of x(t)

Iterations: t
0 100 200 300 400 500 600 700

Co
ns

tra
in

t V
al

ue
s

-5

0

5

10

15

20

25
NUM:Convergence of Constraint Values of x(t)

optimal
value

f(x(t))

g1(x(t)) = x1(t) + x2(t) + x3(t)! 10

g2(x(t)) = x1(t) + x2(t)! 8
g3(x(t)) = x2(t) + x3(t)! 8

g(t) = 0

Fig. 2. The convergence of x(t) for a NUM problem.

Iterations: t
100 101 102 103 104

C
on

st
ra

in
t V

io
la

tio
ns

10-4

10-3

10-2

10-1

100

101

102
NUM: Convergence Time of Constraint Violations of x(t) v.s. O(1/t)

g1(x(t)) = x1(t) + x2(t) + x3(t)! 10

g2(x(t)) = x1(t) + x2(t)! 8

g3(x(t)) = x2(t) + x3(t)! 8

1=t

curves are parallel
for large t

Fig. 3. The convergence time of x(t) for a NUM problem.

Iterations: t
100 101 102 103 104

C
on

st
ra

in
t V

io
la

tio
ns

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102
NUM: Convergence Time of Constraint Violations of ex(t) v.s. O(1t (0:998)

t)

g1(ex(t)) = ex1(t) + ex2(t) + ex3(t)! 10

g2(ex(t)) = ex1(t) + ex2(t)! 8

g3(ex(t)) = ex2(t) + ex3(t)! 8

1
t
0:998t

Fig. 4. The convergence time of x̃(t) for a NUM problem.

VII. CONCLUSIONS

This paper studies the dual gradient method for strongly
convex programs and shows that the convergence time of
simple running averages is O(1

ε). This paper also considers a
variation of the primal averages, called the sliding running av-
erages, and shows that if the dual function is locally quadratic
then the convergence time is O(log(1

ε)).

Problem Dimension: N
400 500 600 700 800 900 1000 1100 1200

R
un

ni
ng

 T
im

e
(s

ec
s)

0

2

4

6

8

10

12

14

16

18

20
Dual Gradient Method v.s. quadprog

quadprog

dual gradient method

Fig. 5. The average running time for large scale quadratic programs.

VIII. ACKNOWLEDGEMENT

We thank an anonymous reviewer for bringing to our
attentions independent parallel works [16], [17] on similar
topics and work [21] on linear convergence for unconstrained
optimization. By using the results from [21], we improve the
convergence time from O(1

ε2/3
) in our conference version [1]

to O(log(1
ε)) when the dual function is locally quadratic.

REFERENCES

[1] H. Yu and M. J. Neely, “On the convergence time of the drift-plus-
penalty algorithm for strongly convex programs,” in Proceedings of
IEEE Conference on Decision and Control (CDC), 2015.

[2] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first-order
methods application to dual decomposition,” IEEE Transactions on
Automatic Control, vol. 59, no. 5, pp. 1232–1243, May 2014.

[3] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent
optimization via dual decomposition,” in IFAC World Congress, 2011.

[4] S. H. Low and D. E. Lapsley, “Optimization flow control—I: basic
algorithm and convergence,” IEEE/ACM Transactions on Networking,
vol. 7, no. 6, pp. 861–874, 1999.

[5] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 525–536,
2003.

[6] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear Programming:
Theory and Algorithms. Wiley-Interscience, 2006.

[7] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[8] T. Larsson, M. Patriksson, and A.-B. Strömberg, “Ergodic, primal
convergence in dual subgradient schemes for convex programming,”
Mathematical programming, vol. 86, no. 2, pp. 283–312, 1999.

[9] N. Z. Shor, Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, 1985.

[10] H. D. Sherali and G. Choi, “Recovery of primal solutions when using
subgradient optimization methods to solve lagrangian duals of linear
programs,” Operations Research Letters, vol. 19, no. 3, pp. 105–113,
1996.

[11] M. J. Neely, Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool Publishers,
2010.

[12] ——, “Distributed and secure computation of convex programs over a
network of connected processors,” in DCDIS International Conference
on Engineering Applications and Computational Algorithms, 2005.

[13] ——, “A simple convergence time analysis of drift-plus-penalty for
stochastic optimization and convex programs,” arXiv:1412.0791, 2014.

[14] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimization,
vol. 19, no. 4, pp. 1757–1780, 2009.

[15] S. Supittayapornpong, L. Huang, and M. J. Neely, “Time-average
optimization with nonconvex decision set and its convergence,” in
Proceedings of IEEE Conference on Decision and Control (CDC), 2014.

[16] I. Necoara and A. Patrascu, “Iteration complexity analyisis of dual first
order methods for conic convex programming,” Optimization Method
and Software, vol. 31, no. 3, pp. 645–678, 2016.

[17] I. Necoara, A. Patrascu, and A. Nedić, “Complexity certifications of
first-order inexact lagrangian methods for general convex programming:
Application to real-time mpc,” in Developments in Model-Based Opti-
mization and Control. Springer, 2015, pp. 3–26.

[18] M. J. Neely, “Dynamic power allocation and routing for satellite and
wireless networks with time varying channels,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2003.

[19] H. Yu and M. J. Neely, “A simple parallel algorithm with an O(1/t)
convergence rate for general convex programs,” SIAM Journal on
Optimization, vol. 27, no. 2, pp. 759–783, 2017.

[20] ——, “On the convergence time of dual subgradient methods for
strongly convex programs,” arXiv:1503.06235, 2015.

[21] I. Necoara, Y. Nesterov, and F. Glineur, “Linear convergence of first
order methods for non-strongly convex optimization,” arXiv:1504.06298,
2015.

[22] F. P. Kelly, “Charging and rate control for elastic traffic,” European
Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

