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On the Convergence Time of the Drift-Plus-Penalty Algorithm for
Strongly Convex Programs

Hao Yu and Michael J. Neely

Abstract— This paper studies the convergence time of the
drift-plus-penalty algorithm for strongly convex programs. The
drift-plus-penalty algorithm was originally developed to solve
more general stochastic optimization and is closely related to
the dual subgradient algorithm when applied to deterministic
convex programs. For general convex programs, the conver-
gence time of the drift-plus-penalty algorithm is known to be
O( 1

ε2
). This paper shows that the convergence time for general

strongly convex programs is O( 1
ε
). This paper also proposes a

new variation of the drift-plus-penalty algorithm, the drift-plus-
penalty algorithm with shifted running averages, and shows that
if the dual function of the strongly convex program is smooth
and locally quadratic then the convergence time of the new
algorithm is O( 1

ε2/3
). The convergence time analysis is further

verified by numerical experiments.

I. INTRODUCTION

Consider the following strongly convex program:

min f(x) (1)
s.t. gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (2)

x ∈ X (3)

where set X ⊆ Rn is closed and convex; function f(x) is
continuous and strongly convex on X ; functions gk(x),∀k ∈
{1, 2, . . . ,m} are Lipschitz continuous and convex on X .
Denote g(x) = [g1(x), . . . , gm(x)]T . The minimum of the
problem (1)-(3) is assumed to exist.

A. The ε-Optimal Solution

Let x∗ be an optimal solution to problem (1)-(3). For any
ε > 0, a point xε ∈ X is said to be an ε-optimal solution if
f(xε) ≤ f(x∗) + ε and gk(xε) ≤ ε,∀k ∈ {1, . . . ,m}. Let
x(t), t ∈ {1, 2, . . .} be the solution sequence yielded by an
iterative algorithm. The convergence time of this algorithm is
said to be O(h(ε)) if x(t),∀t ≥ O(h(ε)) is a sequence of ε-
optimal solutions. It is immediate that if h̃(t) : R+ → R+ is
a decreasing and invertible function and f(x(t)) ≤ f(x∗) +
h̃(t) and gk(x(t)) ≤ h̃(t),∀k ∈ {1, . . . ,m} for all t ≥ 1,
then the convergence time is O(h̃−1(ε)). For example, if the
solution sequence x(t), t ∈ {1, 2, . . .} yielded by an iterative
algorithm satisfies f(x(t)) ≤ f(x∗) + 1√

t
and gk(x(t)) ≤

1√
t
,∀k ∈ {1, . . . ,m} for all t ≥ 1, then error decays with

time like O( 1√
t
) and the convergence time of this algorithm

is O( 1
ε2 ).
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B. The Drift-Plus-Penalty Algorithm

The drift-plus-penalty algorithm in [1] can be used to solve
problem (1)-(3) as follows:

Algorithm 1: [The Drift-Plus-Penalty Algorithm] Let
V > 0 be a constant parameter. Let Qk(0) ≥ 0,∀k ∈
{1, 2, . . . ,m} be given constants. At each iteration t, update
x(t), Qk(t+ 1), k ∈ {1, 2, . . . ,m} and x(t) as follows:

• x(t) = argmin
x∈X

[
V f(x) +

m∑
k=1

Qk(t)gk(x)
]
.

• Qk(t + 1) = max
{
Qk(t) + gk(x(t)), 0

}
,∀k ∈

{1, 2, . . . ,m}.

• x(t+ 1) = 1
t+1

t∑
τ=0

x(t) = x(t)
t

t+ 1
+ x(t)

1

t+ 1
.

The drift-plus-penalty algorithm introduces a virtual queue
Qk(t) for each constraint gk(x) in (2) defined as Qk(t+1) =
max{Qk(t) + gk(x(t)), 0}. Note that x(t) is the running
average of the sequence x(τ), τ ∈ {0, 1, 2, . . . , t− 1}.

C. The Dual Subgradient Algorithm

The drift-plus-penalty algorithm was originally developed
to solve more general stochastic optimization and was shown
applicable to deterministic convex programs [2]. It was
noted in [3], [4] that the drift-plus-penalty algorithm for
convex programs is closely related to the dual subgradient
algorithm with the averaged primal sequence. The classical
dual subgradient algorithm for problem (1)-(3) is as follows:

Algorithm 2: [The Dual Subgradient Algorithm]Let c > 0
be a constant step size. Let λk(0) ≥ 0,∀k ∈ {1, 2, . . . ,m} be
given constants. At each iteration t, update x(t) and λk(t+
1), k ∈ {1, 2, . . . ,m} as follows:

• x(t) = argmin
x∈X

[
f(x) +

m∑
k=1

λk(t)gk(x)
]
.

• λk(t + 1) = max
{
λk(t) + cgk(x(t)), 0

}
,∀k ∈

{1, 2, . . . ,m}.
It can be observed that if we let V = 1

c and Qk(0)
V =

λk(0),∀k ∈ {1, 2, . . . ,m}, then Algorithm 1 and Algorithm
2 yield the same sequence of x(t) and Qk(t)

V = λk(t),∀k ∈
{1, 2, . . . ,m},∀t ≥ 0. Thus, the convergence time results of
the drift-plus-penalty algorithm can be carried over to the
dual subgradient algorithm and vice versa.

D. Related Works

Problem (1)-(3) in general can be solved via interior
point methods with linear convergence time. To achieve
the linear convergence time, however, the barrier parameters
must be scaled carefully and the complexity associated with
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each iteration can be high. In contrast, the drift-plus-penalty
algorithm is a first-order method and often yields distributed
implementations when the objective and constraint functions
are separable. A lot of literature focuses on the convergence
time of first-order methods. Work [5] considers the problem
of minimizing non-smooth and strongly convex functions
over convex sets based on noisy observations of gradients
and shows that the stochastic gradient algorithm with the
averaged primal sequence guarantees that the suboptimality
decays like O(log(t)/t). For general convex programs in the
form of (1)-(3), where the objective function f(x) is convex
but not necessarily strongly convex, the convergence time
of the drift-plus-penalty algorithm is shown to be O( 1

ε2 )
in [2], [6]. A similar O( 1

ε2 ) convergence time of the dual
subgradient algorithm with the averaged primal sequence is
shown in [7]. A recent work [4] shows that the convergence
time of the drift-plus-penalty algorithm is O( 1

ε ) if the dual
function is locally polyhedral and the convergence time
is O( 1

ε1.5 ) if the dual function is locally quadratic. For a
special class of strongly convex programs in the form of (1)-
(3), where f(x) is second-order differentiable and strongly
convex and gk(x),∀k ∈ {1, 2, . . . ,m} are second-order
differentiable and have bounded Jacobians1, the convergence
time of the dual subgradient algorithm is shown to be O( 1

ε )
in [8].

This paper considers a class of strongly convex programs
that is more general than those treated in [8]. Besides the
strong convexity of f(x), we only require that gk(x), k ∈
{1, 2, . . . ,m} are Lipschitz continuous. The function f(x)
and gk(x), k ∈ {1, 2, . . . ,m} can even be non-differentiable
(and hence non-smooth). This paper shows that the conver-
gence time of the drift-plus-penalty algorithm for general
strongly convex programs is O( 1

ε ). If the dual function of
the strongly convex program is smooth and locally quadratic,
this paper shows that the convergence time of the drift-
plus-penalty algorithm can be improved to O( 1

ε2/3
) by using

shifted running averages. Further improvement to O(log( 1
ε ))

convergence time is shown under more restrictive assump-
tions.

II. PRELIMINARIES AND BASIC ANALYSIS

A. Prelimaries

Definition 1 (Lipschitz Continuity): Let X ⊆ Rn be a
convex set. Function f is said to be Lipschitz continuous
on X with modulus L if there exists L > 0 such that
|f(y)− f(x)| ≤ L‖y − x‖ for all x,y ∈ X .

Lemma 1: Let gk(x), k ∈ {1, 2, . . . ,m} be Lipschitz
continuous on X with modulus L. Then ‖g(y) − g(x)‖ ≤
L
√
m‖y − x‖ for all x,y ∈ X .

Definition 2 (Strongly Convex Functions): Let X ⊆ Rn
be a convex set. Function f is said to be strongly convex
on X with modulus α if there exists a constant α > 0 such
that f(x)− 1

2α‖x‖
2 is convex on X .

Define ∂f(x) as the set of all subgradients of function f
at a point x in X .

1Note that bounded Jacobians imply Lipschitz continuity.

Lemma 2 (Theorem 6.1.2 in [9]): If f(x) is strongly con-
vex on convex set X with modulus α, then f(y) ≥ f(x) +
dT (y−x)+ α

2 ‖y−x‖2 for all x,y ∈ X and all d ∈ ∂f(x).
Lemma 3 (Proposition B.24 (f) in [10]): If f(x) is con-

vex on convex set X and xopt is a global minimum, then
there exists d ∈ ∂f(xopt) such that dT (y − xopt) ≥ 0 for
all y ∈ X .

Combining Lemma 2 and Lemma 3 gives the following:
Corollary 1: Let f(x) be strongly convex on convex set X

with modulus α. If xopt is a global minimum, then f(xopt) ≤
f(y)− α

2 ‖y − xopt‖2,∀y ∈ X .

B. Properties of the Drift

Let Q(t) =
[
Q1(t), . . . , Qm(t)

]T
be the vector of virtual

queue backlogs. Define a Lyapunov function as L(t) =
1
2‖Q(t)‖2 and the Lyapunov drift as ∆(t) = L(t+1)−L(t).

Lemma 4: At each iteration t in Algorithm 1, the Lya-
punov drift is given by

∆(t) = QT (t+ 1)g(x(t))− 1

2
‖Q(t+ 1)−Q(t)‖2 (4)

Proof: The virtual queue update equations Qk(t +
1) = max{Qk(t) + gk(x(t)), 0},∀k ∈ {1, 2, . . . ,m} can
be rewritten as

Qk(t+ 1) = Qk(t) + g̃k(x(t)),∀k ∈ {1, 2, . . . ,m}, (5)

where g̃k(x(t)) =

{
gk(x(t)), if Qk(t) + gk(x(t)) ≥ 0
−Qk(t), else ,

∀k ∈ {1, 2, . . . ,m}.
Fix k ∈ {1, 2, . . . ,m}. Squaring both sides of (5) and

dividing by factor 2 yields:

1

2
(Qk(t+ 1))2

=
1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)g̃k(x(t))

=
1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)gk(x(t))

+Qk(t)
(
g̃k(x(t))− gk(x(t))

)
(a)
=

1

2
(Qk(t))2 +

1

2

(
g̃k(x(t))

)2
+Qk(t)gk(x(t))

− g̃k(x(t))
(
g̃k(x(t))− gk(x(t))

)
=

1

2
(Qk(t))2 − 1

2

(
g̃k(x(t))

)2
+
(
Qk(t) + g̃k(x(t))

)
gk(x(t))

(b)
=

1

2
(Qk(t))2 − 1

2

(
Qk(t+ 1)−Qk(t)

)2
+Qk(t+ 1)gk(x(t))

where (a) follows from the fact that Qk(t)
(
g̃k(x(t)) −

gk(x(t))
)

= −g̃k(x(t))
(
g̃k(x(t))− gk(x(t))

)
, which can be

shown by considering g̃k(x(t)) = gk(x(t)) and g̃k(x(t)) 6=
gk(x(t)); and (b) follows from the fact that Qk(t + 1) =
Qk(t) + g̃k(x(t)).

Summing over k ∈ {1, 2, . . . ,m} yields 1
2‖Q(t+ 1)‖2 =

1
2‖Q(t)‖2 − 1

2‖Q(t + 1) − Q(t)‖2 + QT (t + 1)g(x(t)).
Rearranging the terms yields the desired result.
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C. The Drift-Plus-Penalty Algorithm

Let V > 0 be a constant parameter. By Lemma 4, the drift-
plus-penalty is defined as ∆(t) + V f(x(t)) = V f(x(t)) +
QT (t+1)g(x(t))− 1

2‖Q(t+1)−Q(t)‖2. To solve problem
(1)-(3), the idea is to minimize this expression at each
iteration. Since Q(t+ 1) is unavailable at iteration t, we use
V f(x(t)) + QT (t)g(x(t)) as a “reasonable” approximation
of the actual drift-plus-penalty. The corresponding algorithm
is described in Algorithm 1.

For general convex programs in the form of (1)-(3), where
the objective functionf(x) is convex but not necessarily
strongly convex, it is shown in [2], [6] that the sequence x(t)
yielded by Algorithm 1 with V = 1/ε satisfies f(x(t)) ≤
f(x∗) + O(ε) and gk(x(t)) ≤ O(ε),∀k ∈ {1, 2, . . . ,m} for
all t ≥ 1

ε2 . That is, the convergence time for general convex
programs is O( 1

ε2 ).

III. CONVERGENCE TIME ANALYSIS

This section analyzes the convergence time of the drift-
plus-penalty algorithm for strongly convex program (1)-(3).

A. Problem Assumptions

Throughout this paper, we require the following assump-
tions on problem (1)-(3):

Assumption 1: Objective function f(x) is strongly convex
on X with modulus α. Each constraint function gk(x), k ∈
{1, 2, . . . ,m} is Lipschitz continuous on X with modulus β.

Assumption 2 (Strong Duality): The strong duality holds
for problem (1)-(3). That is, there exists a Lagrange multi-
plier vector λ∗ = [λ∗1, λ

∗
2, . . . , λ

∗
m] ≥ 0 such that q(λ∗) =

min
x∈X

{
f(x) : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}

}
,where q(λ) =

min
x∈X
{f(x)+

∑m
k=1 λkgk(x)} is the Lagrangian dual function

of problem (1)-(3).
If the strong duality holds for a convex program in the

form of (1)-(3), then λ∗kgk(x∗) = 0,∀k ∈ {1, 2, . . . ,m} and
x∗ = argmin

x∈X

[
f(x) +

∑m
k=1 λ

∗
kgk(x)

]
, where λ∗ is defined

in Assumption 2 and x∗ is the optimal solution to problem
(1)-(3). (See also Theorem 6.2.5 in [11].)

For convex programs, strong duality is implied by Slater’s
condition [11]. However, there are convex programs where
strong duality holds but Slater’s condition does not hold.
Thus, the strong duality assumption is a mild assumption.

B. Objective Value Violations

Lemma 5: Let x∗ ∈ X be the optimal solution to problem
(1)-(3). At each iteration t in Algorithm 1, the drift-plus-
penalty satisfies ∆(t)+V f(x(t)) ≤ V f(x∗)+B(t),∀t ≥ 0,
where B(t) = − 1

2‖Q(t+ 1)−Q(t)‖2− V α
2 ‖x(t)−x∗‖2 +

QT (t)
[
g(x∗)− g(x(t))

]
+ QT (t+ 1)g(x(t)).

Proof: Fix t ≥ 0. Since f(x) is strongly convex
with modulus α; gk(x),∀k ∈ {1, 2, . . . ,m} are convex; and
Qk(t),∀k ∈ {1, 2, . . . ,m} are non-negative at each iteration
t, the function V f(x) +

∑m
k=1Qk(t)gk(x) is also strongly

convex with modulus V α at each iteration t. Note that
x(t) = argmin

x∈X

[
V f(x) +

∑m
k=1Qk(t)gk(x)

]
. By Corollary

1 with xopt = x(t) and y = x∗, we have
[
V f(x(t)) +∑m

k=1Qk(t)gk(x(t))
]
≤
[
V f(x∗) +

∑m
k=1Qk(t)gk(x∗)

]
−

V α
2 ‖x(t)− x∗‖2.
Hence, V f(x(t)) ≤ V f(x∗)+QT (t)

[
g(x∗)−g(x(t))

]
−

V α
2 ‖x(t)− x∗‖2.
Adding the above inequality to equation (4) and using the

definition of B(t) yields the result.
Lemma 6: If V ≥ mβ2

α in Algorithm 1, then B(t) ≤
0,∀t ≥ 0.

Proof: Since x∗ is the optimal solution to problem
(1)-(3), we have gk(x∗) ≤ 0,∀k ∈ {1, 2, . . . ,m}. Note that
Qk(t+ 1) ≥ 0,∀k ∈ {1, 2, . . . ,m},∀t ≥ 0. Thus,

QT (t+ 1)g(x∗) ≤ 0, ∀t ≥ 0 (6)

Now we have,

B(t) =− 1

2
‖Q(t+ 1)−Q(t)‖2 − V α

2
‖x(t)− x∗‖2

+ QT (t)
[
g(x∗)− g(x(t))

]
+ QT (t+ 1)g(x(t))

(a)

≤ − 1

2
‖Q(t+ 1)−Q(t)‖2 − V α

2
‖x(t)− x∗‖2

+ QT (t)
[
g(x∗)− g(x(t))

]
+ QT (t+ 1)g(x(t))

−QT (t+ 1)g(x∗)

=− 1

2
‖Q(t+ 1)−Q(t)‖2 − V α

2
‖x(t)− x∗‖2

+
[
QT (t)−QT (t+ 1)

][
g(x∗)− g(x(t))

]
(b)

≤ − 1

2
‖Q(t+ 1)−Q(t)‖2 − V α

2
‖x(t)− x∗‖2

+ ‖Q(t)−Q(t+ 1)‖‖g(x(t))− g(x∗)‖
(c)

≤ − 1

2
‖Q(t+ 1)−Q(t)‖2 − V α

2
‖x(t)− x∗‖2

+
√
mβ‖Q(t)−Q(t+ 1)‖‖x(t)− x∗‖

=− 1

2

(
‖Q(t+ 1)−Q(t)‖ −

√
mβ‖x(t)− x∗‖

)2
− 1

2
(V α−mβ2)‖x(t)− x∗‖2

(d)

≤0

where (a) follows from (6); (b) follows from the Cauchy-
Schwartz inequality; (c) follows from Lemma 1; and (d)

follows from V ≥ mβ2

α .
Lemmas 5 and 6 immediately imply the following results.
Corollary 2: If V ≥ mβ2

α in Algorithm 1, then the drift-
plus-penalty satisfies

∆(t) + V f(x(t)) ≤V f(x∗),∀t ≥ 0. (7)
Theorem 1 (Objective Value Violations): Let x∗ ∈ X be

the optimal solution to problem (1)-(3). If V ≥ mβ2

α in
Algorithm 1, then f(x(t)) ≤ f(x∗) + ‖Q(0)‖2

2V t ,∀t ≥ 1.
Proof: By Corollary 2, we have ∆(τ) + V f(x(τ)) ≤

V f(x∗) for all τ ∈ {0, 1, . . . , t − 1}. Summing over τ ∈
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{0, 1, . . . , t− 1}, we have

t−1∑
τ=0

∆(τ) + V

t−1∑
τ=0

f(x(τ)) ≤ V tf(x∗)

⇒ L(t)− L(0) + V

t−1∑
τ=0

f(x(τ)) ≤ V tf(x∗)

⇒ 1

t

t−1∑
τ=0

f(x(τ)) ≤ f(x∗) +
L(0)− L(t)

V t
≤ f(x∗) +

L(0)

V t

Finally, Jensen’s inequality implies that f(x(t)) ≤
1
t

∑t−1
τ=0 f(x(τ)) ≤ f(x∗) + L(0)

V t = f(x∗) + ‖Q(0)‖2
2V t

Corollary 3: If V ≥ mβ2

α and Qk(0) = 0,∀k ∈
{1, 2, . . . ,m} in Algorithm 1, then f(x(t)) ≤ f(x∗),∀t ≥ 1.

C. Constraint Violations

The analysis of constraint violations is similar to that in [6]
for general convex programs. However, using the improved
upper bound of the drift-plus-penalty expression in Corollary
2, the convergence time of constraint violations in strongly
convex programs is order-wise better than that in [6].

Lemma 7: For any t2 > t1 ≥ 0, Qk(t2) ≥ Qk(t1) +∑t2−1
τ=t1

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}. In particular, for any
t > 0, Qk(t) ≥ Qk(0)+

∑t−1
τ=0 gk(x(τ)),∀k ∈ {1, 2, . . . ,m}

Proof: Fix k ∈ {1, 2, . . . ,m}. Note that Qk(t1 + 1) =
max{Qk(t1) + gk(x(t1)), 0} ≥ Qk(t1) + gk(x(t1)). By
induction, this lemma follows.

Lemma 8: Let λ∗ ≥ 0 be given in Assumption 2. If V ≥
mβ2

α in Algorithm 1, then the virtual queue vector satisfies

‖Q(t)‖ ≤
√
‖Q(0)‖2 + V 2‖λ∗‖2 + V ‖λ∗‖,∀t ≥ 1. (8)

Proof: Let x∗ be the optimal solution to problem (1)-
(3). The strong duality assumption implies that f(x∗) =
f(x∗) +

∑m
k=1 λ

∗
kgk(x∗) and f(x∗) +

∑m
k=1 λ

∗
kgk(x∗) ≤

f(x(τ)) +
∑m
k=1 λ

∗
kgk(x(τ)),∀τ ∈ {0, 1, . . .}. Thus, for all

τ ≥ 0, we have f(x∗) − f(x(τ)) ≤
∑m
k=1 λ

∗
kgk(x(τ)).

Summing over τ ∈ {0, 1, . . . , t− 1} yields

tf(x∗)−
t−1∑
τ=0

f(x(τ)) ≤
t−1∑
τ=0

m∑
k=1

λ∗kgk(x(τ))

=

m∑
k=1

λ∗k

[ t−1∑
τ=0

gk(x(τ))
] (a)

≤
m∑
k=1

λ∗k[Qk(t)−Qk(0)]

≤
m∑
k=1

λ∗kQk(t)
(b)

≤ ‖λ∗‖‖Q(t)‖,

where (a) follows from Lemma 7 and (b) follows from
Cauchy-Schwartz inequality.

On the other hand, summing (7) in Corollary 2 over
τ ∈ {0, 1, . . . , t − 1} and dividing by V yield tf(x∗) −∑t−1
τ=0 f(x(τ)) ≥ L(t)−L(0)

V = ‖Q(t)‖2−‖Q(0)‖2
2V .

Combining the last two inequalities yields
‖Q(t)‖2−‖Q(0)‖2

2V ≤ ‖λ∗‖‖Q(t)‖ ⇒
(
‖Q(t)‖ − V ‖λ∗‖

)2 ≤
‖Q(0)‖2+V 2‖λ∗‖2 ⇒ ‖Q(t)‖ ≤

√
‖Q(0)‖2 + V 2‖λ∗‖2+

V ‖λ∗‖.

Theorem 2 (Constraint Violations): Let λ∗ ≥ 0 be de-
fined in Assumption 2. If V ≥ mβ2

α in Algorithm
1, then the constraint functions satisfy gk(x(t)) ≤√
‖Q(0)‖2+V 2‖λ∗‖2+V ‖λ∗‖

t ,∀k ∈ {1, 2, . . . ,m},∀t ≥ 1.
Proof: Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that

x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)

≤ 1

t

t−1∑
τ=0

gk(x(τ))
(b)

≤ Qk(t)−Qk(0)

t

≤Qk(t)

t
≤ ‖Q(t)‖

t

(c)

≤
√
‖Q(0)‖2 + V 2‖λ∗‖2 + V ‖λ∗‖

t

where (a) follows from the convexity of gk(x), k ∈
{1, 2, . . . ,m}; (b) follows from Lemma 7; and (c) follows
from Lemma 8.

Theorems 1 and 2 show that the drift-plus-penalty algo-
rithm provides an ε-optimal solution to a general strongly
convex program with convergence time O(1/ε).

IV. EXTENSIONS

This section proposes a new variation of the drift-plus-
penalty algorithm and shows that the convergence time is
improved to O( 1

ε2/3
) when the dual function of problem (1)-

(3) satisfies additional assumptions.

A. Smoothness and Locally Quadratic

Definition 3 (Smooth Functions): Let X ⊆ Rn and func-
tion f(x) be continuously differentiable on X . Function f(x)
is said to be smooth on X with modulus L if ∇xf(x) is
Lipschitz continuous on X with modulus L.

Assumption 3 (Smooth Dual Functions): The dual func-
tion of problem (1)-(3) is smooth on Rm+ with modulus γ.

The next lemma from [8] provides a sufficient condition
of Assumption 3.

Lemma 9 (Theorem 2.1 in [8]): In problem (1)-(3), if the
objective function f(x) is second-order differentiable and is
strongly convex with modulus σF on X and constraints g(x)
are second-order differentiable and have a bounded Jacobian,
i.e., ‖∇g(x)‖F ≤ ch for all x ∈ X , then the dual function
q is smooth on Rm+ with modulus c2h

σF
.

Assumption 4 (Locally Quadratic Dual Functions): Let
λ∗ be a Lagrange multiplier of problem (1)-(3) defined
in Assumption 2. There exists Dq > 0 and Lq > 0 such
that for any λ ∈ {λ ∈ Rm+ : ‖λ − λ∗‖ ≤ Dq}, the dual
function q(λ) = min

x∈X

{
f(x) +

∑m
k=1 λkgk(x)

}
satisfies

q(λ∗) ≥ q(λ) + Lq‖λ− λ∗‖2.
Assumption 4 is introduced in [3] and further studied in

[4]. It has been shown in [4] that if a convex program satisfies
this assumption, then the drift-plus-penalty algorithm with
restarted running averages can have better convergence time
compared with the standard drift-plus-penalty algorithm.
Inspired by this result, the next subsection shows that if prob-
lem (1)-(3) satisfies Assumptions 1-4, then the convergence
time of another variation of the drift-plus-penalty algorithm,
called the drift-plus-penalty algorithm with shifted running
average, is O( 1

ε2/3
).
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B. Convergence Time Analysis
Lemma 10: Suppose problem (1)-(3) satisfies Assumption

4. Let q(λ),λ∗, Dq and Lq be defined in Assumption 4. We
have the following properties:

1) If λ ∈ Rm+ and q(λ∗)−q(λ) ≤ LqD2
q , then ‖λ−λ∗‖ ≤

Dq .
2) The Lagrange multiplier defined in Assumption 2 is

unique.
Proof: See [12] for the details.

Let λ(t) = Q(t)
V . By the strong convexity of f(x)

and Proposition B.25 in [10], the dual function q(λ) is
differentiable and has gradient ∇λq(λ(t)) = g(x(t)). It can
be observed that the dynamic of λ(t) is the same as that in
the projected gradient method with constant step size 1

V to
solve max

λ∈Rm
+

{
q(λ)

}
. Thus, we have the next theorem.

Theorem 3: Assume problem (1)-(3) satisfies Assump-
tions 1-3. Let {λ(t) = Q(t)

V , t ≥ 0} be the sequence yielded
by Algorithm 1 with fixed Q(0) ≥ 0 and V > 0. Let
θ = max

{
4V 2‖λ(0)−λ∗‖2

(2V−γ) , q(λ∗) − q(λ(0))
}

. If V ≥ γ,

then q(λ∗)− q(λ(t)) ≤ θ
t ,∀t ≥ 1.

Proof: This is essentially the same as the convergence
time proof of projected gradient methods for unconstrained
smooth optimization in [13]. See [12] for details.

Lemma 11: Assume problem (1)-(3) satisfies Assump-
tions 1-4. Let {λ(t) = Q(t)

V , t ≥ 0} be the sequence
yielded by Algorithm 1 with fixed Q(0) ≥ 0 and V >
0. If V ≥ γ, then ‖λ(t) − λ∗‖ ≤ Dq for all t >

max
{

4V 2‖λ(0)−λ∗‖
(2V−γ)LqD2

q
, q(λ

∗)−q(λ(0))
LqD2

q

}
. That is, there exists a

constant Tq =
⌈

max
{

4V 2‖λ(0)−λ∗‖
(2V−γ)LqD2

q
, q(λ

∗)−q(λ(0))
LqD2

q

}⌉
such

that λ(Tq) arrives where Assumption 4 holds and Assump-
tion 4 holds for all λ(t), t ≥ Tq .

Proof: By Theorem 3 and Lemma 10, if θ
t < LqD

2
q ,

then ‖λ(t) − λ∗‖ ≤ Dq . It can be checked that if t >
max

{
4V 2‖λ(0)−λ∗‖
(2V−γ)LqD2

q
, q(λ

∗)−q(λ(0))
LqD2

q

}
, then θ

t < LqD
2
q .

In the remaining part of this subsection, let θ be defined
in Theorem 3 and Tq be defined in Lemma 11.

Lemma 12: Assume problem (1)-(3) satisfies Assump-
tions 1-4. Let Q(t), t ∈ {1, 2, . . . } be the sequence yielded
by Algorithm 1 with fixed Q(0) ≥ 0 and V > 0. Let λ(t) =
Q(t)
V ,∀t ≥ 0. If V ≥ γ, ‖λ(t)− λ∗‖ ≤ 1√

t

√
θ
Lq
,∀t ≥ Tq .

Proof: By Theorem 3, we have q(λ∗) − q(λ(t)) ≤
θ
t ,∀t ∈ {1, 2, . . .}. By Lemma 11, we have q(λ∗) −
q(λ(t)) ≥ Lq‖λ(t) − λ∗‖2,∀t ≥ Tq . Thus, for all t ≥ Tq ,
we have ‖λ(t)− λ∗‖ ≤ 1√

t

√
θ
Lq

.
Corollary 4: Under the assumption of Lemma 12,

‖λ(2t) − λ(t)‖ ≤ 2√
t

√
θ
Lq
,∀t ≥ Tq; or equivalently,

‖Q(2t)−Q(t)‖ ≤ 2V√
t

√
θ
Lq
,∀t ≥ Tq .

Proof: By Lemma 12, we have ‖λ(t)−λ∗‖ ≤ 1√
t

√
θ
Lq

and ‖λ(2t) − λ∗‖ ≤ 1√
2t

√
θ
Lq

. Thus, ‖λ(2t) − λ(t)‖ ≤

‖λ(2t) − λ∗‖ + ‖λ(t) − λ∗‖ ≤ 1√
2t

√
θ
Lq

+ 1√
t

√
θ
Lq
≤

2√
t

√
θ
Lq

.

The drift-plus-penalty algorithm with shifted running av-
erages is summarized as follows:

Algorithm 3: [The Drift-Plus-Penalty Algorithm with
Shifted Running Averages] Let V > 0 and Qk(0) ≥ 0,∀k ∈
{1, 2, . . . ,m} be given constant parameters. At each iteration
t, update x(t), Qk(t+ 1) and x(t+ 1) as follows:

• x(t) = argmin
x∈X

[
V f(x) +

m∑
k=1

Qk(t)gk(x)
]
.

• Qk(t + 1) = max
{
Qk(t) + gk(x(t)), 0

}
,∀k ∈

{1, 2, . . . ,m}.
•

x(t+ 1) =


1
t+1
2

t∑
τ= t+1

2

x(τ) if t+ 1 is even

x(t) if t+ 1 is odd
The only difference between Algorithm 3 and Algorithm 1

is the step of updating running averages. At each iteration t,
the running averages in Algorithm 1 are started from iteration
0 while the running averages in Algorithm 3 are started from
iteration b t+1

2 c and are updated only for even iterations.
The next two theorems show that if problem (1)-(3)

satisfies Assumptions 1-4, then Algorithm 3 provides an ε-
optimal solution with convergence time O( 1

ε2/3
).

Theorem 4: Assume problem (1)-(3) satisfies Assump-
tions 1-4. Let x∗ be the optimal solution and λ∗ be defined
in Assumption 4. Let x(t),Q(t) be sequences yielded by
Algorithm 3. If V ≥ max{mβ

2

α , γ}, then f(x(2t)) ≤
f(x∗) + 1

t3/2

(
2V θ
t1/2Lq

+ 2
√
θη√
Lq

)
,∀t ≥ Tq , where η =√

‖Q(0)‖2 + V 2‖λ∗‖2 + V ‖λ∗‖.
Proof: Fix t > Tq . By Corollary 2, we have ∆(τ) +

V f(x(τ)) ≤ V f(x∗) for all τ ∈ {0, 1, . . .}. Summing
over τ ∈ {t, t + 1, . . . , 2t − 1} yields

∑2t−1
τ=t ∆(τ) +

V
∑2t−1
τ=t f(x(τ)) ≤ V tf(x∗). Dividing by factor V t yields

1

t

2t−1∑
τ=t

f(x(τ)) ≤ f(x∗) +
L(t)− L(2t)

V t
(9)

Thus, we have

f(x(2t))
(a)

≤ 1

t

2t−1∑
τ=t

f(x(τ))
(b)

≤ f(x∗) +
L(t)− L(2t)

V t

= f(x∗) +
‖Q(t)‖2 − ‖Q(2t)‖2

2V t

= f(x∗) +
‖Q(t)−Q(2t) + Q(2t)‖2 − ‖Q(2t)‖2

2V t
(c)

≤ f(x∗) +
‖Q(t)−Q(2t)‖2 + 2‖Q(2t)‖‖Q(t)−Q(2t)‖

2V t

(d)

≤ f(x∗) +

4V 2θ
tLq

+ 2η 2V√
t

√
θ√
Lq

2V t

= f(x∗) +
1

t3/2

( 2V θ

t1/2Lq
+

2
√
θη√
Lq

)
where (a) follows from the fact that x(2t) = 1

t

∑2t−1
τ=t x(τ)

and the convexity of f(x); (b) follows from (9); (c) follows
from the Cauchy-Schwartz inequality; and (d) is true because
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‖Q(2t) − Q(t)‖ ≤ 2V√
t

√
θ
Lq
,∀t ≥ Tq by Corollary 4

and ‖Q(2t)‖ ≤
√
‖Q(0)‖2 + V 2‖λ∗‖2 + V ‖λ∗‖ = η by

Lemma 8.

Theorem 5: Assume problem (1)-(3) satisfies Assump-
tions 1-4. Let x(t), t ∈ {1, 2, . . . } be the sequence yielded by
Algorithm 3. If V ≥ γ , then gk(x(2t)) ≤ 1

t3/2
2V
√
θ√

Lq

,∀k ∈
{1, 2, . . . ,m},∀t ≥ Tq .

Proof: Fix t > Tq and k ∈ {1, 2, . . . ,m}. We have

gk(x(2t))
(a)

≤ 1
t

∑2t−1
τ=t gk(x(τ))

(b)

≤ 1
t

(
Qk(2t) − Qk(t)

)
≤

1
t ‖Q(2t)−Q(t)‖

(c)

≤ 2V
t3/2

√
θ
Lq

, where (a) follows from the
convexity of gk; (b) follows from Lemma 7; and (c) follows
from Corollary 4.

C. Network Utility Maximizations

Consider a network with m links and n flow streams.
Let {b1, b2, . . . , bm} be the capacities of each link and
{x1, x2, . . . , xn} be the rates of each flow stream. Let
N (k) ⊆ 1, 2, . . . , n, 1 ≤ k ≤ m be the set of flow streams
that use link k. This problem is to maximize the utility
function

∑n
i=1 ci log(xi) with ci > 0,∀1 ≤ i ≤ n, which

represents a measure of network fairness [14], subject to the
capacity constraint of each link. This problem is known as
the network utility maximization (NUM) problem and can
be formulated as follows:

min

n∑
i=1

−ci log(xi) (10)

s.t. Ax ≤ b (11)
x ≥ 0 (12)

where ci > 0,∀1 ≤ i ≤ n and Ax ≤ b represents the link
capacity constraints. Note that A = [a1, · · · ,an] is a 0-1
matrix of size m × n such that aij = 1 if and only if flow
xj uses link i; and b > 0.

Note that problem (10)-(12) satisfies Assumptions 1 and 2.
By Theorems 1 and 2, Algorithm 1 solves this problem with
O( 1

ε ) convergence time. The next theorem shows sufficient
conditions under which Algorithm 3 can be applied to solve
this problem and yields a better O( 1

ε2/3
) convergence time.

Theorem 6: The network utility maximization problem
(10)-(12) has the following properties:

1) Let bmax = max1≤i≤n bi and xmax > 0 such that
xmax
i > bmax,∀i ∈ {1, . . . , n}. The network utility

maximization problem (10)-(12) is equivalent to the
following problem

min

n∑
i=1

−ci log(xi) (13)

s.t. Ax ≤ b (14)
0 ≤ x ≤ xmax (15)

2) Let x∗ be an optimal solution. Assume Ax∗ ≤ b has
m′ rows that hold with equality, and let A′ be the
m′ × n submatrix of A corresponding to these active

rows. If rank(A′) = m′, then Assumptions 1-4 hold for
this problem. That is, Algorithm 3 for problem (13)-
(15) ensures error decays like O( 1

t3/2
) and provides an

ε-optimal solution with convergence time O( 1
ε2/3

).
3) 2 If rank(A) = m, then Algorithm 3 for problem (13)-

(15) ensures error decays like O
(
1
t

(
1 − Lc

V

)t/4)
and

provides an ε-optimal solution with convergence time
O(log( 1

ε )).
Proof: See [12] for details.

V. NUMERICAL RESULTS

Consider the simple NUM problem described in Figure 1.
Let x1, x2 and x3 be the data rates of stream 1, 2 and 3 and
the network utility be minimizing − log(x1) − 2 log(x2) −
3 log(x3). It can be checked that capacity constraints other
than x1 + x2 + x3 ≤ 10, x1 + x2 ≤ 8, and x2 + x3 ≤ 8
are redundant. By Theorem 6, the NUM problem can be
formulated as follows:

min − log(x1)− 2 log(x2)− 3 log(x3)

s.t. Ax ≤ b

0 ≤ x ≤ xmax

where A =

 1 1 1
1 1 0
0 1 1

, b = [10, 8, 8]T and xmax =

[11, 11, 11]T . The optimal solution to this NUM problem
is x∗1 = 2, x∗2 = 3.2, x∗3 = 4.8 and the optimal value is
−7.5253. Note that the second capacity constraint x1+x2 ≤
8 is loose and the other two capacity constraints are tight.

Since the objective function is decomposable, the drift-
plus-penalty algorithm can yield a distributed solution. This
is why the drift-plus-penalty algorithm, or equivalent, the
dual subgradient algorithm (which makes similar decisions
but traditionally does not take primal averages), is widely
used to solve NUM problems [15]. It can be checked that the
objective function is strongly convex with modulus α = 2

121
on X = {0 ≤ x ≤ xmax} and each constraint gk(·), 1 ≤
k ≤ 3 is Lipschitz continuous with modulus β =

√
3 on

X . Figure 2 shows the values of objective and constraint
functions yielded by Algorithm 1 with V = 2β2

α = 363 and
Q1(0) = Q2(0) = Q3(0) = 0. By Theorem 1, we know
f(x(t)) ≤ f(x∗),∀t > 0 and this is verified in Figure 2. To
verify the convergence time of constraint violations, Figure
3 plots g1(x(t)), g2(x(t)), g3(x(t)) and 1/t with both x-
axis and y-axis in log10 scales. We observe that the curves
of g1(x(t)) and g3(x(t)) are parallel to the curve of 1/t
for large t. Note that constraint g1(x(t)) ≤ 0 is satisfied
early because it is loose. Figure 3 verifies that the error
of Algorithm 1 decays like O(1/t) and suggests that it is
actually Θ(1/t) for this NUM problem.

2In this part, the dual function of problem (13)-(15) is locally strongly
concave, which implies locally quadratic. In this case, Algorithm 3 ensures
error decays like O

(
1
t

(
1− Lc

V

)t/4), where Lc is the radius of the locally
strongly concave property, i.e., a parameter similar to Lq in Assumption 4.
See [12] for detailed discussions.
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Fig. 1. A simple NUM problem with 3 flow streams
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optimal
value

f(x(t))
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g2(x(t)) = x1(t) + x2(t)! 8
g3(x(t)) = x2(t) + x3(t)! 8

g(t) = 0

Fig. 2. The convergence of Algorithm 1 for a NUM problem.

Note that rank(A) = 3. By Theorem 6, this NUM problem
satisfies Assumption 1-4. By Lemma 9, the dual function of
this NUM problem is smooth with modulus γ = 422. So
we apply Algorithm 3 with V = max{ 2β

2

α , γ} = 422 and
Q1(0) = Q2(0) = Q3(0) = 0 to this NUM problem. Figure
4 verifies the convergence of the objective and constraint
functions. Figure 5 verifies that the error of Algorithm 3
decays at least exponentially as proven in Theorem 6.
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