PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 1

Stock Market Trading via Stochastic Network
Optimization
Michael J. Neely

University of Southern California
http://www-rcf.usc.edu/~mjneely

Abstract— We consider the problem of dynamic buying and
selling of shares from a collection of N stocks with random
price fluctuations. To limit investment risk, we place an upper
bound on the total number of shares kept at any time. Assuming
that prices evolve according to an ergodic process with a mild
decaying memory property, and assuming constraints on the total
number of shares that can be bought and sold at any time,
we develop a trading policy that comes arbitrarily close to
achieving the profit of an ideal policy that has perfect knowledge
of future events. Proximity to the optimal profit comes with a
corresponding tradeoff in the maximum required stock level and
in the timescales associated with convergence. We then consider
arbitrary (possibly non-ergodic) price processes, and show that
the same algorithm comes close to the profit of a frame based
policy that can look a fixed number of slots into the future.
Our approach uses a Lyapunov optimization technique previously
developed for optimizing stochastic queueing networks.

Index Terms— Queueing analysis, stochastic control, universal
algorithms

I. INTRODUCTION

This paper considers the problem of stock trading in an
economic market with N stocks. We treat the problem in
discrete time with normalized time slots t € {0,1,2,...},
where buying and selling transactions are conducted on each
slot. Let Q(t) = (Q1(t), ..., Qn(t)) be a vector of the current
number of shares owned of each stock, called the stock queue.
That is, for each n € {1,..., N}, the value of Q,(t) is an
integer that represents the number of shares of stock n. Stock
prices are given by a vector p(t) = (p1(t),...,pn(t)) and
are assumed to evolve randomly, with mild assumptions to be
made precise in later sections. Each buy and sell transaction
incurs trading costs. Stocks can be sold and purchased on every
slot. Let ¢(t) represent the net profit on slot ¢ (after transaction
costs are paid). The goal is to design a trading policy that
maximizes the long term time average of ¢(t).

For this system model, we enforce the additional constraint
that at most p'** shares of each stock n can be bought and
sold on a given slot. This ensures that our trading decisions
only gradually change the portfolio allocation. While this
pre® constraint can significantly limit the ability to take
advantage of desirable prices, and hence limits the maximum
possible long term profit, we show that it can also reduce
investment risk. Specifically, subject to the p*** constraint,
we develop an algorithm that achieves a time average profit

This material is supported in part by one or more of the following: the
DARPA IT-MANET program grant W911NF-07-0028, the NSF Career grant
CCF-0747525.

that is arbitrarily close to optimal, with a tradeoff in the
maximum number of shares Q'** required for stock n. The
Qm* values can be chosen as desired to limit the losses
from a potential collapse of one or more of the stocks. It
also impacts the timescales over which profit is accumulated,
where smaller @)]'*" levels lead to faster convergence times.

It is important to note that long term wealth typically
grows exponentially when the Q)'** and p"** constraints are
removed. In contrast, it can be shown that these Q]'** and
pare® constraints restrict wealth to at most a linear growth.
Therefore, using @;'** and p'** to limit investment risk
unfortunately has a dramatic impact on the long term growth
curve. However, our ability to bound the timescales over which
wealth is earned suggests that our strategy may be useful
in cases when, in addition to a good long-term return, we
also desire noticeable and consistent short-term gains. At the
end of this paper, we briefly describe a modified strategy
that increases Q7'** and u**® as wealth progresses, with the
goal of achieving noticeable short-term gains while enabling
exponential wealth increase.

Our approach uses the Lyapunov optimization theory devel-
oped for stochastic queueing networks in our previous work
[2][3][4]. Specifically, the work [2][3][4] develops resource
allocation and scheduling policies for communication and
queueing networks with random traffic and channels. The
policies can maximize time average throughput-utility and
minimize time average power expenditure, as well as optimize
more general time average attributes, without a-priori knowl-
edge of the traffic and channel probabilities. The algorithms
continuously adapt to emerging conditions, and are robust
to non-ergodic changes in the probability distributions [5].
This suggests that similar control techniques can be used
successfully for stock trading problems. The difference is that
the queues associated with stock shares are controlled to have
positive drift (pushing them towards the maximum queue size),
rather than negative drift (which would push them in the
direction of the empty state).

The Dynamic Trading Algorithm that we develop from these
techniques can be intuitively viewed as a variation on a theme
of dollar cost averaging, where price downturns are exploited
by purchasing more stock. However, the actual amount of
stock that we buy and sell on each slot is determined by
a constrained optimization of a max-weight functional that
incorporates transaction costs, current prices, and current stock
queue levels.

Much prior work on financial analysis and portfolio opti-

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 2

mization assumes a known probability model for stock prices.
Classical portfolio optimization techniques by Markowitz [6]
and Sharpe [7] construct portfolio allocations over N stocks to
maximize profit subject to variance constraints (which model
risk) over one investment period (see also [8] and references
therein). Solutions to this problem can be calculated if the
mean and covariance of stock returns are known. Samuel-
son considers multi-period problems in [9] using dynamic
programming, assuming a known product form distribution
for investment returns. Cover in [10] develops an iterative
procedure that converges to the constant portfolio allocation
that maximizes the expected log investment return, assuming a
known probability distribution that is the same on each period.
Recent work by Rudoy and Rohrs in [11] [12] considers risk-
aware optimization with a more complex cointegrated vector
autoregressive assumption on stock processes, and uses Monte
Carlo simulations over historical stock trajectories to inform
stochastic decisions. Stochastic models of stock prices using
Lévy processes and multi-fractal processes are considered in
[8] [13] [14] and references therein.

A significant departure from this work is the universal stock
trading paradigm, as exemplified in prior works of Cover and
Gluss [15], Larson [16], Cover [17], Merhav and Feder [18],
and Cover and Ordentlich [19] [20], where trading algorithms
are developed and shown to provide analytical guarantees for
any sample path of stock prices. Specifically, the work in
[15]-[20] seeks to find a non-anticipating trading algorithm
that yields the same growth exponent as the best constant
portfolio allocation, where the constant can be optimized with
full knowledge of the future. The works in [15][16] develop
algorithms that come close to the optimal exponent, and
the work in [17] achieves the optimal exponent under mild
assumptions that bound price sample paths away from zero.
Similar results are derived in [18] using a general framework
of sequential decision theory. Related results are derived in
[19] [20], where [19] treats problems with additional “side
information,” and [20] treats max-min performance when stock
prices are chosen by an adversary.

Our work is similar in spirit to this universal trading
paradigm, in that we do not base decisions on a known
(or estimated) probability distribution. However, our context,
solution methodology, and solution structure is very different.
Indeed, the works in [15]-[20] assume that the entire stock
portfolio can be sold and reallocated on every time period, and
allow stock holdings to grow arbitrarily large. This means that
the accumulated profit is always at risk of one or more stock
failures. In our work, we take a more conservative approach
that restricts reallocation to gradual changes, and that pockets
profits while holding no more than @)]*** shares of each stock
n. We also explicitly account for trading costs and integer
constraints on stock shares, which is not considered in the
works [15]-[20]. In this context, we first design an algorithm
under the assumption that prices are ergodic with an unknown
distribution. In this case, we develop a simple non-anticipating
algorithm that comes arbitrarily close to the optimal time
average profit that could be earned by an ideal policy with
complete knowledge of the future. The ideal policy used for
comparison can make different allocations at different times,

and is not restricted to constant allocations.

We then show that the same algorithm can be used for
general price sample paths, even non-ergodic sample paths
without well defined time averages. A more conservative
guarantee is shown in this case: The algorithm yields profit
that is arbitrarily close to that of a frame based policy with “T-
slot lookahead,” where the future is known up to 7" slots. Our
approach is different from prior work on universal algorithms
and is inspired by Lyapunov optimization and decision theory
for stochastic queueing networks [2]. However, the Lyapunov
theory we use here involves sample path techniques that are
different from those in [2]. These techniques might have
broader impacts on queueing problems in other areas.

In the next section we present the system model. In Section
III we develop the Dynamic Trading Algorithm and analyze
performance for the simple (and possibly unrealistic) case
when price vectors p(t) are ergodic and i.i.d. over slots.
While this i.i.d. case does not accurately model actual stock
prices, its analysis provides valuable insight. Section IV
shows the algorithm also provides performance guarantees for
completely arbitrary price processes (possibly non-ergodic).
Simple extensions are described in Section V.

II. SYSTEM MODEL

Let A(t) = (A1(t),...,An(t)) be a vector of decision
variables representing the number of new shares purchased
for each stock on slot ¢, and let p(t) = (1 (), ..., un(t))
be a vector representing the number of shares sold on slot
t. The values A, (t) and pu,(t) are non-negative integers for
each n € {1,...,N}. Each purchase of A new shares of
stock n incurs a transaction cost b, (A) (called the buying cost
function). Likewise, each sale of y shares of stock n incurs a
transaction cost s, (u) (called the selling cost function). The
functions b,, (A) and s,,(u) are arbitrary, and are assumed only
to satisfy b,(0) = s,(0) = 0, and to be non-negative, non-
decreasing, and bounded by finite constants b'** and s}'*%,
so that:

b axr

M
n
m
n

for 0 < A < pe®
for 0 < pu < pp**

where for each n € {1,..., N}, p*" is a positive integer
that limits the amount of shares of stock n that can be bought
and sold on slot ¢.

A. Example Transaction Cost Functions

The functions b,,(A) might be linear, representing a trans-
action fee that charges per share purchased. Another example
is a fixed cost model with some fixed positive fee b,,, so that:

b, ifA>0
b"(A)—{ 0 ifA=0

Similar models can be used for the s,(u) function. The
simplest model of all is the zero transaction cost model where
the functions b,,(A4) and s, (u) are identically zero.

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 3

B. System Dynamics

The stock price vector p(t) is assumed to be a random
vector process that takes values in some finite set P C RN,
where P can have an arbitrarily large number of elements.!
For each n, let p["*® represent a bound on p, (t), so that:

0<pn(t)<pr* foralltandallne{l,...,N} (1)
We assume that buying and selling decisions can be made on
each slot ¢ based on knowledge of p(t). The selling decision
variables p(t) are made every slot ¢ subject to the following
constraints:

foralln € {1,...,
forall n e {1,...,
forall n € {1,...,

N} (@
N} 3
N} @4

pn(t) €{0,1,..., umaery
P ()P (t) > sn(pn(t))
,Un(t) < Qn(t)

Constraint (2) ensures that no more than p*** shares can
be sold of stock n on a single slot. Constraint (3) restricts
to the reasonable case when the money earned from the sale
of a stock must be larger than the transaction fee associated
with the sale (violating this constraint would clearly be sub-
optimal).2 Constraint (4) requires the number of shares sold
to be less than or equal to the current number owned.

The buying decision variables A(t) are constrained as
follows:

A, (t) €40,1,2,..., 40"} forallne{l,...,N} (5
SN Au®pa(t) < ©)

where = is a positive value that bounds the total amount
of money used for purchases on slot ¢. For simplicity,
we assume there is always at least a minimum of z and
Zf:[pmrerpria® 4 by, (urte®)] dollars available for making
purchasing dec1sions. This model can be augmented by adding
a checking account queue Qo(t) from which we must draw
money to make purchases, although we omit this aspect for
brevity.

The resulting queueing dynamics for the stock queues @, ()
forn € {1,..., N} are thus:

Q’ﬂ(t + 1) = maX[Qn (t) - Mn(t) + An(t)7 O] (7N
Strictly speaking, the max|[-, 0] operator in the above dynamic
equation is redundant, because the constraint (4) ensures that
the argument inside the max[-,0] operator is non-negative.
However, the max|-, 0] shall be useful for mathematical anal-
ysis when we compare our strategy to that of a queue-
independent strategy that neglects constraint (4).

I'The cardinality of the set 7 does not enter into our analysis. We assume it
is finite only for the convenience of claiming that the supremum time average
profit °P? is achievable by a single “p-only” policy, as described in Section
II-D. Theorems 1, 2 are unchanged if the set P is infinite, although the
proofs of Theorem 1 would require an additional limiting argument over p-
only policies that approach ¢°P¢,

2Constraint (3) can be augmented by allowing equality only if pn, (t) = 0.

C. The Maximum Profit Objective
Define ¢(t) as the net profit on slot ¢:

N
$(t) 2 Y [()palt) = sn (1))
N

Define ¢ as the time average expected value of ¢(¢) under a
given trading algorithm (temporarily assumed to have a well
defined limit):

A lim —
t—»oo

Z E {¢(7)

The goal is to design a trading policy that maximizes ¢. It is
clear that the trivial strategy that chooses p(t) = A(t) = 0 for
all ¢ yields ¢(t) = 0 for all ¢, and results in ¢ = 0. Therefore,
we desire our algorithm to produce a long term profit that
satisfies ¢ > 0.

D. The Stochastic Price Vector and p-only Policies

We first assume the stochastic process p(t) has well defined
time averages (this is generalized to non-ergodic models in
Section IV). Specifically, for each price vector p in the finite
set P, we define 7(p) as the time average fraction of time that

p(t) = p, so that:
t—1
1 . o
thm n Z 1{p(r) = p} = n(p) with probability 1 (9)
7=0

where 1{p(7) = p} is an indicator function that is 1 if p(7) =
p, and zero otherwise.

Define a p-only policy as a buying and selling strategy
that chooses virfual decision vectors A*(t) and p*(t) as a
stationary and possibly randomized function of p(t), con-
strained only by (2)-(3) and (5)-(6). That is, the virtual decision
vectors A*(t) and p*(t) associated with a p-only policy do
not necessarily satisfy the constraint (4) that is required of
the actual decision vectors, and hence these decisions can be
made independently of the current stock queue levels.

Under a given p-only policy, define the following time
average expectations d;, and ¢*:

2,2 m LS R4 (7) - () (10)
T:O
52 Jim 7 ZE{Z (o) — s ()]
— Z[A;i(f)pn(ﬂ + bn(A:;(T))}} (11)

It is easy to see by (9) that these time averages are well defined
for any p-only policy. For each n, the value d, represents the
virtual drift of stock queue @, (t) associated with the virtual
decisions A*(t) and p*(t). The value ¢* represents the virtual
profit under virtual decisions A*(t) and p*(¢). Note that the

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 4

trivial p-only policy A™(t) = p*(t) = 0 yields d} = 0 for
all n, and ¢* = 0. Thus, we can define ¢°P! as the supremum
value of ¢* over all p-only policies that yield d;; > 0 for all
n, and we note that ¢°P* > (0. Using an argument similar to
that given in [3], it can be shown that:

1) ¢°P! is achievable by a single p-only policy that satisfies
df =0forallne{l,...,N}.

2) ¢°Pt is greater than or equal to the supremum of the
limsup time average expectation of ¢(¢) that can be
achieved over the class of all actual policies that satisfy
the constraints (2)-(6), including ideal policies that use
perfect information about the future. Thus, no policy can
do better than ¢°P.

That ¢°P! is achievable by a single p-only policy (rather
than by a limit of an infinite sequence of policies) can be
shown using the assumption that the set P of all price vectors
is finite. That ¢°P* bounds the time average profit of all
policies, including those that have perfect knowledge of the
future, can be intuitively understood by noting that the optimal
profit is determined only by the time averages m(p). These
time averages are the same (with probability 1) regardless of
whether or not we know the future. The detailed proofs of
these results are similar to those in [3] and are provided in [1].
In the next section we develop a Dynamic Trading Algorithm
that satisfies the constraints (2)-(6) and that does not know the
future or the distribution 7(p), yet yields time average profit
that is arbitrarily close to ¢°P¢.

To develop our Dynamic Trading Algorithm, we first focus
on the simple case when the vector p(t) is independent and
identically distributed (i.i.d.) over slots, with a general prob-
ability distribution 7(p). This is an overly simplified model
and does not reflect actual stock time series data. Indeed, a
more accurate model would be to assume the differences in the
logarithm of prices are i.i.d. (see [8] and references therein).
However, we show in Section IV that the same algorithm is
also efficient for arbitrary (possibly non-ergodic) price models.

E. The i.i.d. Model

Suppose p(t) is i.i.d. over slots with Pr[p(t) = p] = w(p)
for all p € P. Because the value ¢°P! is achievable by a
single p-only policy, and because the expected values of any
p-only policy are the same every slot under the i.i.d. model,
we have the following: There is a p-only policy A*(t), pu*(¥)
that yields for all ¢ and all Q(t):

E{AL () — pn ()| Q()} = (12)
and

E {00 [(0 (8) = su i (1)
= Sl AL OO + ba (AL 0N QU } = 07 (13)

III. CONSTRUCTING A DYNAMIC TRADING ALGORITHM

The goal is to ensure that all stock queues Q,(t) are
maintained at reasonably high levels so that there are typically
enough shares available to sell if an opportune price should
arise. To this end, define 61, ...,0,, as positive real numbers

that represent target queue sizes for the stock queues (soon to
be related to the maximum queue size). The particular values
01,...,0, shall be chosen later. As a scalar measure of the
distance each queue is away from its target value, we define
the following Lyapunov function L(Q(t)):

N

Q)2 > (@ulr) -

n=1

6,,)> (14)

Suppose that Q(t) evolves according to some probability law,
and define A(Q(t)) as the ome-slot conditional Lyapunov
drift:?

A(Q)ZEL{L(Q(t+1)) - L(Q(t) | Q(1)}

As in the stochastic network optimization problems of
[2][3][4], our approach is to take control actions on each slot
t to minimize a bound on the “drift-plus-penalty” expression:

AQ() - VE{o(t) | Q(1)}

where V is a positive parameter to be chosen as desired to
affect the proximity to the optimal time average profit ¢°Pt.
To this end, we first compute a bound on the Lyapunov drift.

Lemma 1: (Lyapunov drift bound) For all ¢ and all possible
values of Q(t), we have:

ZQn

where B is a finite constant that satisfies:

1
5 z:: ,un

Such a finite constant B exists because of the boundedness
assumptions on buy and sell variables pu,(t) and A, (t). In
particular, we have:

15)

A(Q(1)) On)E{un(t) — An(t) | Q(1)}

A, (1)1 Q(1)} (16)

1 X
B<3) (mp™)*2D (17)

n=1
Proof: The proof follows by squaring the queue dynamics
(7) (see [1]). O

Using Lemma 1 with the definition of ¢(¢) in (8), a bound
on the drift-minus-reward expression is given as follows:

AQ() —VE{o(t) | Q(t)} < B
= a1 (@u(t) = 0)E {p1a (1) — Au(1)| Q(1)}
VY0 E (i (0pa (1) = s (1 (9) | Q()}
+V Y0 E{Au(0)pa(8) + ba(Au()) | Q(1))
We desire an algorithm that, every slot, observes the Q(t)
values and the current prices, and makes a greedy trading

action subject to the constraints (2)-(6) that minimizes the
right-hand-side of (18).

(18)

3Strictly speaking, proper notation is A(Q(t),t), as the drift may arise
from a non-stationary algorithm. However, we use the simpler notation
A(Q(t)) as a formal representation of the right-hand-side of (15).

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 5

A. The Dynamic Trading Algorithm
Every slot ¢, observe Q(t) and p(¢) and perform the
following actions.

1) Selling: For eachn € {1,..., N}, choose p, () to solve:

Minimize: [0, — Qn(t) — Vpn ()] n(t) + Vsn (n(t))
Subject to: Constraints (2)-(4)
2) Buying: Choose A(t) = (A1(t),...,A,(t)) to solve:
Minimize: Egil[Qn (t) — 0n + V()] An(t)
+ 30 Von(An()
Subject to: Constraints (5)-(6)

The buying algorithm uses the integer constraints (5)-(6),
and is related to the well known bounded knapsack problem (it
is exactly the bounded knapsack problem if the b,,(-) functions
are linear). Implementation of this integer constrained problem
can be complex when the number of stocks N is large.
However, if we use 2 SN [umeepmaz 4 p, (1ma7)], then
constraint (6) is effectively removed. In thls case, the stocks are
decoupled and the buying algorithm reduces to making sep-
arate decisions for each stock n. Alternatlvely, the constraint
(6) can be replaced by the constraint Zn 1An(t) < Ao,
where A, is an integer that bounds the total number of stocks
that can be bought on a single slot. In this case, it is easy
to see that if buying costs are linear, so that b,(A4) = b, A4
for all n (for some positive constants b,), then the buying
algorithm reduces to successively buying as much stock as
possible from the queues with the smallest (and negative)
[Qn(t) — 0, + V (pn(t) + by,)] values. An alternative relaxation
of the constraint (6) is discussed in [1].

Lemma 2: For a given Q(t) on slot ¢, the above dynamic
trading algorithm satisfies:

N

B-Vo(t) = > (Qnlt) —

n= 1N
Z b () =

where A(t), wp(t) are the actual decisions made by the
algorithm, which define ¢(¢) by (8), and A*(t), p*(¢) are
any alternative (possibly randomized) decisions that can be
made on slot ¢ that satisfy (2)-(6), which define ¢*(t) by (8).
Furthermore, we have:

AQ() ~ VE{s(t) | Qt)} < B
= N Q) = 0)E{u (1) — AL ()| Q(1)}
—V S B (6)pa () — sn (15 (1) | Q(t)}
VN E{AL(Dpa(t) + ba(AL (1) | Q()}

where the expectation on the right-hand-side of (20) is with
respect to the random price vector p(t) and the possibly
random actions A*(t), p*(¢) in response to this price vector.

Proof: Given Q(t) on slot ¢, the dynamic algorithm makes
buying and selling decisions to minimize the left-hand-side of
(19) over all alternative decisions that satisfy (2)-(6). There-
fore, the inequality (19) holds for all realizations of the random

- An(t)) <

B—V¢*(t

AL(0) (19)

(20)

quantities, and hence also holds when taking conditional
expectations of both sides. The conditional expectation of the
left-hand-side of (19) is equivalent to the right-hand-side of
the drift-minus-reward expression (18), which proves (20). [

The main idea behind our analysis is that the Dynamic
Trading Algorithm is simple to implement and does not require
knowledge of the future or of the statistics of the price process
p(t). However, it can be compared to alternative policies
A*(t) and p*(t) (such as in Lemma 2), and these policies
possibly have knowledge both of the price statistics and of
the future.

B. Bounding the Stock Queues

The next lemma shows that the above algorithm does not
sell any shares of stock n if @Q,,(¢) is sufficiently small.

Lemma 3: Under the above Dynamic Trading Algorithm
and for arbitrary price processes p(t) that satisfy (1), if
Qn(t) < 6, —Vp*® for some particular queue n and slot ¢,
then p,(t) = 0. Therefore, if Q,(0) > 0,, — Vp'®® — mer,
then:

Qn(t) >0, — Vpia® — e for all ¢

Proof: Suppose that Q,(t) < 6, — Vp*® for some

particular queue 7 and slot ¢. Then for any p > 0 we have:

[0n, — Qu(t) = Vpu(H)p + Vsn()
> [9n - Qn(t) - maw}/‘ + Vsn()
> [0 — Qn(t) = V' *“lp
> 0

where the final inequality holds with equality if and only
if © = 0. Therefore, the Dynamic Trading Algorithm must
choose i, (t) = 0.

Now suppose that Q,,(t) > 60, — Vp'*® — %% for some
time ¢. We show it also holds for t+1. If Q,,(t) > 6,,—Vpre®,
then it can decrease by at most 1*** on a single slot, so that
Qn(t+1) > 0,,—Vprer —mer Conversely, if 6, —Vpro® >
Qn(t) > 0, — Vprer — mma® then we know p,(t) =0 and
so the queue cannot decrease on the next slot and we again
have Q,(t + 1) > 6,, — Vp*® — pm® Tt follows that this
inequality is always upheld if it is satisfied at ¢ = 0. O

We note that the above lemma is a sample path statement
that holds for arbitrary (possibly non-ergodic) price processes.
The next lemma also deals with sample paths, and shows that
all queues have a finite maximum size Q)'**.

Lemma 4: Under the above Dynamic Trading Algorithm
and for arbitrary price processes p(t) that satisfy (1), if
Qn(t) > 0, for some particular queue n and slot ¢, then
A, (t) = 0 and so the queue cannot increase on the next slot.
It follows that if Q,,(0) < 6,, + u**, then:

Qn() < 0 —|—,um‘w for all ¢
Proof: Suppose that @Q,,(t) > 6, for a particular queue
n and slot ¢. Let A(t) = (A1(¢),..., An(t)) be a vector of
buying decisions that solve the optimization associated with
the Buying algorithm on slot ¢, so that they minimize the
expression:
N

Z[Qm() O +me

m=1

) 2D

+ZVb

m=1

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 6

subject to (5)-(6). Suppose that A, (¢t) > 0 (we shall reach
a contradiction). Because the term [Q,(t) — 0, + Vpn(¢)]
is strictly positive, and because the by, (A) function is non-
decreasing, we can strictly reduce the value of the expression
(21) by changing A, (t) to 0. This change still satisfies the
constraints (5)-(6) and produces a strictly smaller sum in (21),
contradicting the assumption that A(¢) is a minimizer. Thus,
if Q. (t) > 6, then A,(t) =0.

Because the queue value can increase by at most p"'** on
any slot, and cannot increase if it already exceeds 0,,, it follows
that @, (t) < 0,, + p*® for all ¢, provided that this inequality

n

holds at ¢t = 0. L

C. Analyzing Time Average Profit

Theorem 1: Fix any value V' > 0, and define 6,, as follows:

O 2V PR + 2u0 (22)
Suppose that initial stock queues satisfy:
p < Qul0) S VpIT o+ 3y (23)

If the Dynamic Trading Algorithm is implemented over ¢ €
{0,1,2,...}, then:

(a) Stock queues Q,(t) (for n € {1,..., N}) are determin-
istically bounded for all slots ¢ as follows:

P < Qu(t) < Vp®® 4 3y * for all n and all ¢ (24)

(b) If p(¢) is ii.d. over slots with general distribution
Prip(t) = p] = n(p) forall p € P, then forall ¢t € {1,2,...}
we have:

0 opt __ E _]E{L(Q(O))}

e
where the constant B is defined by (16) (and satisfies the
inequality (17)), ¢°P! is the optimal time average profit, and
(t) is the time average expected profit over ¢ slots:

SEL S E{o(r)}

(25)

(26)

Therefore:
litm inf ¢(t) > ¢°P* — BV 27)
Theorem 1 shows that the time average expected profit
is within B/V of the optimal value ¢°P'. Because the B
constant is independent of V', we can choose V to make
B/V arbitrarily small. This comes with a tradeoff in the
maximum size required for each stock queue that is linear
in V. Specifically, the maximum stock level Q;"** required
for stock n is given as follows:

Q;naxévpmax + 3Mma$

n n

Now suppose that we start with initial condition @Q,,(0) =
ume® for all n and all ¢. Then for ¢t € {1,2,...} the error
term L(Q(0))/(Vt) is given by:

N max max

_ 2n=)? _
vt 2Vt =oW)/t 29

This shows that if V' is chosen to be large, then the amount
of time ¢ required to make this error term negligible must
also be large. One can minimize this error term with an initial

condition Q.,,(0) that is close to 6,, for all n. However, this
is an artificial savings, as it does not include the startup cost
associated with purchasing that many initial units of stock.
Therefore, the timescales are more accurately described by
the transient given in (28).

One may wonder how the Dynamic Trading Algorithm is
achieving near optimal profit without knowing the distribution
of the price vector p(t), and without estimating this distribu-
tion. The answer is that it uses the queue values themselves
to guide decisions. These queue values @, (t) only deviate
significantly from the target #,, when inefficient decisions are
made. The values then act as a “sufficient statistic” on which
to base future decisions. The same sufficient statistic holds for
the non-i.i.d. case, as shown in Section IV, so that we do not
need to estimate price patterns or time-correlations, provided
that we allow for a sufficiently large control parameter V' and
corresponding large timescales for convergence.

Finally, one may also wonder if the limiting time average
expected profit given in (27) also holds (with probability 1)
for the limiting time average profit (without the expectation).
When p(t) evolves according to a finite state irreducible
Markov chain (as is the case in this i.i.d. scenario), then
the Dynamic Trading Algorithm in turn makes Q(t) evolve
according to a finite state Markov chain, and it can be shown
that the limiting time average expected profit is the same (with
probability 1) as the limiting time average profit.

D. Proof of Theorem 1

Proof: (Theorem 1 part (a)) By Lemma 3 we know that
Qn(t) > 0, — Vpre® — % for all ¢ (provided that this
holds at t = 0). However, 6, — Vp'* — %% = 17**. Thus,
Qn(t) > p™ for all ¢, provided that this holds for ¢t = 0.
Similarly, by Lemma 4 we know that Q,,(t) < 6, + u"** for
all ¢ (provided that this holds for ¢ = 0), and 6,, + p*** =
Qe 0

Proof: (Theorem 1 part (b)) Fix aslot ¢t € {0,1,2,...}. To
prove part (b), we plug an alternative set of control choices
A*(t) and p*(t) into the drift-minus-reward bound (20) of
Lemma 2. Because p(t) is i.i.d., we can choose A*(t) and
p*(t) as the p-only policy that satisfies (12), (13). Note that
we must first ensure this p-only policy satisfies the constraint
(4) needed to apply the bound (20). However, we know from
part (a) of this theorem that Q,,(¢) > p%® for all n, and so
the constraint (4) is trivially satisfied. Therefore, we can plug
this policy A*(¢) and p*(t) into (20) and use equalities (12)
and (13) to yield:

AQ(1) ~ VE{(t) | Q1)) < B~ V™"

Taking expectations of the above inequality over the distribu-
tion of Q(t) and using the law of iterated expectations yields:

E{LQ(t+1)) - L(Q(t)} — VE{(t)} < B - V™'

The above holds for all ¢ € {0,1,2,..., }. Summing the above
over 7 € {0,...,¢t — 1} (for some positive integer t) yields:

t—1
E{L(Q(1)) ~ L(Q(0)} =V Y E{¢(r)} < tB —tV™"
7=0

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 7

Dividing by tV, rearranging terms, and using non-negativity
of L(+) yields:

o(t) > ¢ — BV —E{L(Q(0))} /Vt
where ¢(t) is defined in (26). This proves the result. O

IV. ARBITRARY PRICE PROCESSES

The Dynamic Trading Algorithm can be shown to provide
similar performance for more general non-i.i.d. processes
that are ergodic with a mild decaying memory property [1].
Here we consider the performance of the Dynamic Trading
Algorithm for an arbitrary price vector process p(t), possibly
a non-ergodic process without a well defined time average
such as that given in (9). In this case, there may not be a well
defined “optimal” time average profit ¢°P*. However, one can
define ¢°Pt(¢) as the maximum possible time average profit
achievable over the interval {0,...,¢ — 1} by an algorithm
with perfect knowledge of the future and that conforms to
the constraints (2)-(6). For the ergodic settings described in
the previous sections, ¢°P%(t) has a well defined limiting
value, and our algorithm comes close to its limiting value.
In this (possibly non-ergodic) setting, we do not claim that
our algorithm comes close to ¢°P!(t). Rather, we make a less
ambitious claim that our policy yields a profit that is close to
(or greater than) the profit achievable by a frame-based policy
that can look only 7" slots into the future.

A. The T-Slot Lookahead Performance

Let T be a positive integer, and fix any slot t, €
{0,1,2,...}. Define ¢7(to) as the optimal profit achievable
over the interval {to,...,to + T — 1} by a policy that has
perfect a-priori knowledge of the prices p(7) over this interval,
and that ensures for each n € {1,..., N} that the total amount
of stock n purchased over this interval is greater than or equal
to the total amount sold. Specifically, ¥r(to) is mathematically
defined according to the following optimization problem that
has decision variables A(7), p(7), and that treats the stock
prices p(7) as deterministically known quantities:

Max:)2 ZiOLOT_l Zgﬂ[#n(ﬂpn (1) = sn(pn(7))]
— e T Y [An(7)pa (7) + ba(An(7))] (29)
Subj. to: ST AL (r) = S0 () Y (30)
Constraints (2), (3), (5), (6) 31

The value ¢7(to) is equal to the maximizing value ¢ in the
above problem (29)-(31). Note that the constraint (30) only
requires the amount of type-n stock purchased to be equal to
the amount sold by the end of the T-slot interval, and does not
require this at intermediate steps of the interval. This allows
the T'-slot lookahead policy to sell short stock that is not yet
owned, provided that the requisite amount is purchased by the
end of the interval.

Note that the trivial decisions A(7) = p(7) = 0 for 7 €
{to,...,to+T—1} lead to O profit over the interval, and hence
Wr(tp) > 0 for all T and all 5. Consider now the interval
{0,1,..., MT —1} that is divided into a total of M frames of
T-slots. We show that for any positive integer M, our Dynamic

Trading Algorithm yields an average profit over this interval
that is close to the average profit of a T-slot lookahead policy
that is implemented on each T'-slot frame of this interval.

B. The T-Slot Sample Path Drift

Let L(Q(t)) be the Lyapunov function of (14). For a given
slot ¢ and a given positive integer 7', define the T-slot sample
path drift Ap(t) as follows:

Ar(EL(Q(t +T)) — L(Q(1))

This differs from the one-slot conditional Lyapunov drift in
(15) in two respects:
¢ It considers the difference in the Lyapunov function over
T slots, rather than a single slot.
o It is a random variable equal to the difference between
the Lyapunov function on slots ¢ and t + T, rather than
a conditional expectation of this difference.

Lemma 5: Suppose the Dynamic Trading Algorithm is im-
plemented, with 6,, values satisfying (22), and initial condition
that satisfies (23). Then for any given slot ¢y and all integers
T > 0, we have:

Ar(to) = V 0 o(r) < DT? — v AT g (1)

T=t1o T=1o
= X [Qu(to) = 0, 2T i (r) = As ()]

where the constant D is defined in (17), ¢(7) is defined in
(8), and ¢*(7), pw* (1), A*(7) represent any alternative control
actions for slot 7 that satisfy the constraints (2), (3), (5), (6).

Proof: See [1][21] (the D constant stated here uses a
technique in [21] to improve the bound given in [1]). O

Theorem 2: Suppose the Dynamic Trading Algorithm is
implemented, with 6,, values satisfying (22), and initial con-
dition that satisfies (23). Then for any arbitrary price process
p(t) that satisfies (1), we have:

(a) All queues @,,(t) are bounded according to (24).

(b) For any positive integers M and 7', the time average
profit over the interval {0,..., MT — 1} satisfies the deter-
ministic bound:

(32)

1 MT—-1 1 M-1
VT Tz:% o(r) > mmZ::OﬁJT(mT)
DT L(Q(0))
v oarv P

where the ¢ (mT) values are defined according to the T-
slot lookahead policy that uses knowledge of the future to
solve (29)-(31) for each T-slot frame. The constant D is
defined in (17), and if Q(0) = (p"**,..., ") then
L(Q(0))/(MTV) has the form (28) with t = MT.

Proof: Part (a) has already been proven in Theorem 1. To
prove part (b), fix any slot £y and any positive integer T'. Define
A*(7) and p*(7) as the solution of (29)-(31) over the interval
7 € {to,...,to + T — 1}. By (31), these decision variables
satisfy constraints (2), (3), (5), (6), and hence can be plugged
in to the bound in Lemma 5. Because (29), (30) hold for these
variables, by Lemma 5 we have:

to+T1T—1

Ar(to) =V Y ¢(r) < DT? = Vipr(to)

T=to

PROC. IEEE CONFERENCE ON DECISION AND CONTROL (CDC), ATLANTA, GA, DEC. 2010 8

Using the definition of Ar(ty) given in (32) yields:
to+1T—1
LQ(to+T))~L(Q(to)) -V > ¢(r) < DT*~Vir(ty)
T=to
The above inequality holds for all slots top € {0,1,2,...}.
Letting ¢t = mT and summing over m € {0,1,...,M — 1}
(for some positive integer M) yields:

MT-1

LQ(MT)) — L(Q(0)) =V Y é(r) <
Mt

MDT? =V Y~ ¢pp(mT)
m=0

Rearranging terms and using non-negativity of L(-) proves the
theorem. O
Theorem 2 is stated for general price processes, but has
explicit performance bounds for queue size in terms of the
chosen V' parameter, and for profit in terms of V' and of the
profit ¥ (mT) of T-slot lookahead policies. Plugging a large
value of T into the bound (33) increases the first term on
the right-hand-side because it allows for a larger amount of
lookahead. However, this comes with the cost of increasing
the term DT/V that is required to be small to ensure close
proximity to the desired profit. One can use this theorem
with any desired model of stock prices to compute statistics
associated with ¢7(mT') and hence understand more precisely
the timescales over which near-optimal profit is achieved.

V. EXTENSIONS

Theorems 1 and 2 require an initial stock level of at least
1e® in all of the N stocks. This can be achieved by initially
purchasing these shares (say, at time ¢ = —1). It turns out that
we can achieve the same performance as specified in Theorems
1 and 2 without paying this startup cost. This can be done
using the concept of place-holder backlog from [22], which
becomes place-holder stock in our context. This is detailed in
[1]. Our technical report [1] also considers extensions to cases
when: (i) the maximum stock price observed jumps above our
pre® value, (ii) stock prices can split, (iii) the 6,, and Q)"
parameters are scaled as time progresses, so that exponential
wealth growth can be achieved.

VI. CONCLUSION

This work uses Lyapunov optimization theory, developed
for stochastic optimization of queueing networks, to construct
a dynamic policy for buying and selling stock. When prices
are ergodic, a single non-anticipating policy was constructed
and shown to perform close to an ideal policy with perfect
knowledge of the future, with a tradeoff in the required amount
of stock kept in each queue and in the timescales associated
with convergence. For arbitrary price sample paths, the same
algorithm was shown to achieve a time average profit close
to that of a frame based T-slot lookahead policy that can
look T slots into the future. Our framework constrains the
maximum number of stock shares that can be bought and
sold at any time. While this restricts the long term growth

curve to a linear growth, it also limits risk by ensuring no
more than a constant value Q;'*” shares of each stock n are
kept at any time. A modified policy was briefly discussed that
achieves exponential growth by scaling @;'*® in proportion
to increased risk tolerance as wealth increases. These results
add to the theory of universal stock trading, and are important
for understanding optimal decision making in the presence of
a complex and possibly unknown price process.

REFERENCES

[1] M. J. Neely. Stock market trading via stochastic network optimization.
ArXiv Technical Report, arXiv:0909.3891v1, Sept. 2009.

[2] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[3] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[4] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[5] M. J. Neely and R. Urgaonkar. Cross layer adaptive control for wireless
mesh networks. Ad Hoc Networks (Elsevier), vol. 5, no. 6, pp. 719-743,
August 2007.

[6] H. Markowitz. Portfolio selection. Journal of Finance, vol. 7, no. 1,
pp- 77-91, March 1952.

[71 W. F. Sharpe. A simplified model for portfolio analysis. Management
Science, vol. 9, no. 2, pp. 277-293, Jan. 1963.

[8] J-P. Bouchaud and M. Potters. Theory of Financial Risk and Derivative
Pricing: From Statistical Physics to Risk Management, 2nd ed. Cam-
bridge University Press, 2003.

[9] P. A. Samuelson. Lifetime portfolio selection by dynamic stochastic

programming. The Review of Economics and Statistics, vol. 51, no. 3,

pp. 239-246, Aug. 1969.

T. M. Cover. An algorithm for maximizing expected log investment

return. [EEE Transactions on Information Theory, IT-30, pp. 369-373,

1984.

M. B. Rudoy and C. E. Rohrs. A dynamic programming approach

to two-stage mean-variance portfolio selection in cointegrated vector

autoregressive systems. IEEE Conf. on Decision and Control, 2008.

M. B. Rudoy. Multistage Mean-Variance Portfolio Selection in Coin-

tegrated Vector Autoregressive Systems. PhD thesis, Massachusetts

Institute of Technology, Feb. 2009.

A. Turiel and C. J. Pérez-Vicente. Multifractal geometry in stock market

time series. Physica A: Statistical Mechanics and its Applications, vol.

322, pp. 629-649, May 2003.

B. Mandelbrot and H. M. Taylor. On the distribution of stock price

differences. Operations Research, vol. 15, no. 6, pp. 1057-1062, 1967.

T. M. Cover and D. Gluss. Empirical bayes stock market portfolios.

Adv. Appl. Math, vol. 7, pp. 170-181, 1986.

D. C. Larson. Growth Optimal Trading Strategies. PhD thesis, Stanford

University, 1986.

[17] T. M. Cover. Universal portfolios. Mathematical Finance, vol. 1, no. 1,

pp. 1-29, Jan. 1991.

N. Merhav and M. Feder. Universal schemes for sequential decision from

individual data sequences. [EEE Transactions on Information Theory,

vol. 39, no. 4, pp. 1280-1292, July 1993.

[19] T. M. Cover and E. Ordentlich. Universal portfolios with side informa-

tion. IEEE Transactions on Information Theory, vol. 42, no. 2, 1996.

[20] E. Ordentlich and T. M. Cover. The cost of achieving the best portfolio

in hindsight. Mathematics of Operations Research, vol. 23, no. 4, Nov.

1998.

M. J. Neely and L. Huang. Dynamic product assembly and

inventory control for maximum profit. ArXiv Technical Report,

arXiv:1004.0479v1, April 2010.

M. J. Neely and R. Urgaonkar. Opportunism, backpressure, and

stochastic optimization with the wireless broadcast advantage. Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA, Oct.

2008.

(10]

(11]

(12]

[13]

[14]
[15]

[16]

(18]

[21]

[22]

