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Efficient Algorithms for Renewable Energy
Allocation to Delay Tolerant Consumers

Michael J. Neely, Arash Saber Tehrani, Alexandros G. Dimakis

Abstract— We investigate the problem of allocating energy
from renewable sources to flexible consumers in electricity
markets. We assume there is a renewable energy supplier
that provides energy according to a time-varying (and possibly
unpredictable) supply process. The plant must serve consumers
within a specified delay window, and incurs a cost of drawing
energy from other (possibly non-renewable) sources if its own
supply is not sufficient to meet the deadlines. We formulate two
stochastic optimization problems: The first seeks to minimize the
time average cost of using the other sources (and hence strives
for the most efficient utilization of the renewable source). The
second allows the renewable source to dynamically set a price
for its service, and seeks to maximize the resulting time average
profit. These problems are solved via the Lyapunov optimization
technique. Our resulting algorithms do not require knowledge of
the statistics of the time-varying supply and demand processes
and are robust to arbitrary sample path variations.

I. INTRODUCTION

The highly variable and unpredictable nature of some re-
newable energy sources (such as wind and solar) has been
a major obstacle to their integration. For example, a recent
study conducted by Enernex for wind power integration in
Minnesota [5] indicates that the variability and day-ahead
forecast errors will result in an additional $2.11− $4.41 (for
15% and 25% penetration) per MWh of delivered wind power.
Along the same lines, the CAISO report [6] predicted that ten
minute real-time energy prices could increase substantially due
to wind forecasting errors and identified day-ahead and same-
day forecasts and modeling as important tasks for integration
of renewable resources.

The necessity to offset variability by stand-by generators
and system backup investments substantially increases the cost
of renewables. One approach that can mitigate this problem is
to couple this supply variability to demand side flexibility [2],
[3], [4]. The renewable power suppliers could sell their energy
at a lower price to consumers that are willing to wait in a
queue, given that it will be served to them within a pre-agreed
deadline. This essentially allows a lower price of renewable
energy to consumers willing to provide this extra time flexibil-
ity. The renewable power supplier can now use this flexibility
to deliver the energy when it is available.1 The supplier will
sometimes, hopefully rarely, be in a situation when a prior
deadline commitment cannot be matched and will have to
purchase the extra energy from the energy spot market (or
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1Note that in this paper we assume no energy storage although it can be
naturally incorporated into our framework.

maintain a costly system backup). Papavasiliou and Oren [4]
introduced this problem and proposed an exact backward
dynamic programming algorithm and an efficient approximate
dynamic programming algorithm for the scheduling decisions
of the renewable energy supplier.

In this paper we build a similar model and utilize the
technique of Lyapunov optimization initially developed in
[11][12][13] for dynamic control of queueing systems for
wireless networks. We show that the queuing model naturally
fits in the renewable supplier scheduling problem and present
a simple energy allocation algorithm that does not require
prior statistical information and is provably close to optimal.
The proposed framework can be extended to include pricing,
multiple queues (with different deadlines) and different objec-
tive functions, building on the general results from [11]. We
finally evaluate the proposed algorithm on actual CAISO spot
market and wind energy production data and show substantial
reduction to the operating costs for the renewable supplier
compared to a simple greedy algorithm.

In particular, we consider a single renewable energy plant
that operates in discrete time with unit timeslots t ∈
{0, 1, 2, . . .}, and provides s(t) units of energy on each slot
t. The s(t) process corresponds to the renewable supply and
is assumed to be time varying and unpredictable. Since we
assume no storage, the energy s(t) must either be used or
wasted. Demands for this energy arrive randomly according to
a process a(t) (being the amount of energy that is requested
on slot t). We assume that consumers requesting energy are
flexible, and can tolerate their energy requests being satisfied
with some delay. The requests are thus stored in a queue. Every
slot t, we use all of our supply s(t) to serve the requests in
the queue in a First-In-First-Out (FIFO) manner. However, this
may not be enough to meet all of the requests within a timely
manner, and hence we also decide to purchase an amount of
energy x(t) from an outside (possibly non-renewable) plant.
Letting Q(t) represent the total energy requests in our queue
on slot t, we have the following update equation:

Q(t+ 1) = max[Q(t)− s(t)− x(t), 0] + a(t) (1)

The value x(t) is a control decision variable, and incurs a
cost x(t)γ(t) on slot t, where γ(t) is a process that specifies
the per-unit-cost of using the outside energy supply on slot
t. The value of γ(t) can represent a current market price
for guaranteed energy services from (possibly non-renewable)
sources. As such, the decision to use x(t) units of energy on
slot t means the outside source agrees to provide this much
energy at time t+K for some fixed (and small) integer K ≥ 0,
for the price x(t)γ(t). Without loss of generality, we assume
throughout that K = 0, so that the energy request is removed
from our queue on the same slot in which we decide to use
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the outside source. In the actual implementation, requests that
are served from the outside source can be removed from the
primary queue Q(t) but must still wait an additional K slots.

We first look at the problem of choosing x(t) to stabilize
our queue Q(t) while minimizing the time average of the
cost x(t)γ(t) and also providing a guarantee on the maximum
delay Dmax spent in the queue. If the future values of supply,
demand, and market price values (s(t), a(t), γ(t)) were known
in advance, one could in principle make x(t) decisions that
minimize total time average cost, possibly choosing x(t) = 0
for all t if it is possible to meet all demands using only the
renewable energy s(t). The challenge is to provide an efficient
algorithm without knowing the future. To this end, we first
assume the vector process (s(t), a(t), γ(t)) is independent and
identically distributed (i.i.d.) over slots but has an unknown
probability distribution. Under this assumption, we develop
an algorithm, parameterized by a positive value V , that comes
within O(1/V ) of the minimum time average cost required to
stabilize the queue, with a worst-case delay guarantee that is
O(V ). The parameter V can be tuned as desired to provide
average cost arbitrarily close to optimal, with a tradeoff in
delay. We further show that the same algorithm is provably
robust to non-i.i.d. situations, and operates efficiently even for
arbitrary sample paths for (s(t), a(t), γ(t)). Finally, we extend
the problem to consider pricing decisions at the renewable
energy source, so that the requests a(t) are now influenced by
the current prices. In this case, we design a related algorithm
that maximizes time average profit.

The Lyapunov optimization technique we use [11][12][13]
is related to the primal-dual and fluid-model techniques
in [14][15][16][17]. The work in [11][12][13] establishes
a general [O(1/V ), O(V )] performance-congestion tradeoff
for stochastic network optimization problems with i.i.d. (and
more general ergodic) processes. Recent work in [18][19][21]
provides similar results on a sample path basis, without any
probabilistic assumptions. We apply these results in our current
paper. Further, we extend the theory by introducing a novel
virtual queue that turns an average delay constraint of O(V )
(which is achievable with the prior analytical techniques) into
a worst case delay guarantee that is also O(V ).

It is useful to distinguish the proposed Lyapunov opti-
mization method that we use in this paper from dynamic
programming techniques. Dynamic programming can be used
to solve stronger versions of our problem (such as minimizing
average cost subject to a delay constraint) see e.g. [4]. How-
ever, dynamic programming requires more stringent system
modeling assumptions, has a more complex solution that
typically requires knowledge of the supply, demand, and mar-
ket price probabilities, and cannot necessarily adapt if these
probabilities change and/or if there are unmodeled correlations
in the actual processes. It involves computation of a value
function that can be difficult when the state space of the
system is large, and suffers from a curse of dimensionality
when applied to large dimensional systems (such as systems
with many queues).

In contrast, Lyapunov optimization is relatively simple to
implement, does not need a-priori statistical knowledge, and is
robust to non-i.i.d. and non-ergodic behavior. Further, it has no

curse of dimensionality and hence can be applied just as easily
in extended formulations that have multiple queues corre-
sponding to multiple customers requesting different deadlines,
contrary to dynamic programming [4] which would require
exponential complexity in the number of users.

The reason for this efficiency is that Lyapunov optimiza-
tion relaxes the question that dynamic programming asks:
Rather than minimizing time average cost subject to a delay
constraint, it seeks to push time average cost towards the
more ambitious minimum over all possible algorithms that
can stabilize the queue (without regard to the delay con-
straint). It then specifies an explicit bound on the resulting
queue congestion, which depends on the desired proximity
to the minimum cost (as defined by the [O(1/V ), O(V )]
performance-congestion tradeoff). However, the resulting time
average queue congestion (and delay) that is achieved is not
necessarily the optimal that could be achieved over all possible
algorithms that yield the same time average performance cost.

In the next section, we formulate the basic model under
the assumption that the (s(t), a(t), γ(t)) vector is i.i.d. over
slots, and present the main allocation algorithm. Section III
extends to the case when the renewable power source can
set a price for its services. These algorithms are provably
robust to non-i.i.d. situations and arbitrary sample paths of
events, as shown in Section IV-A. Section IV-B presents an
experimental evaluation of our algorithm on a real six-month
data set and shows substantial gains over a simple greedy
scheduling algorithm.

II. THE DYNAMIC ALLOCATION ALGORITHM

Suppose that the supply process s(t), the request process
a(t), and the market price process γ(t), as described in the
introduction, form a vector (s(t), a(t), γ(t)) that is i.i.d. over
slots with some unknown probability distribution. We further
assume the values of s(t), a(t), γ(t) are deterministically
bounded by finite constants smax, amax, γmax, so that:

0 ≤ s(t) ≤ smax , 0 ≤ a(t) ≤ amax , 0 ≤ γ(t) ≤ γmax ∀t (2)

The queue backlog Q(t) evolves according to (1). The
decision variable x(t) is chosen every slot t in reaction to the
current (s(t), a(t), γ(t)) (and possibly additional queue state
information) subject to the constraint 0 ≤ x(t) ≤ xmax for
all t, where xmax is a finite upper bound. We assume that
xmax ≥ amax so that it is always possible to stabilize the
queue Q(t) (and this can be done with one slot delay if we
choose x(t) = xmax for all t). Define c as the time average
cost incurred by our control policy (assuming temporarily that
our policy yields such a well defined limit):

cM= limt→∞
1
t

∑t−1
τ=0 E {γ(t)x(t)}

We want to find an allocation algorithm that chooses x(t) over
time to solve:

Minimize: c (3)
Subject to: 1) Q <∞ (4)

2) 0 ≤ x(t) ≤ xmax ∀t (5)
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where Q is the time average expected queue backlog, defined:

QM= lim supt→∞
1
t

∑t−1
τ=0 E {Q(τ)}

Define c∗ as the infimum time average cost associated with
the above problem, considering all possible ways of choosing
x(t) over time. The value of c∗ is an ambitious target because
the above problem is defined only in terms of a queue stability
constraint and does not impose any additional delay constraint.
We shall construct a solution, parameterized by a constant
V > 0, that satisfies the constraints of the above problem and
pushes the average cost within O(1/V ) of the optimal value
c∗. Further, we show that our algorithm has the additional
property that worst case delay is no more than O(V ).

A. The Delay-Aware Virtual Queue

We solve the above problem while also maintaining finite
worst case delay using the following novel “virtual queue”
Z(t): Fix a parameter ε > 0, to be specified later. Define
Z(0) = 0, and define the virtual queue Z(t) for t ∈
{0, 1, 2, . . .} according to the following update:

Z(t+ 1) = max[Z(t)− s(t)− x(t) + ε1{Q(t)>0}, 0] (6)

where 1{Q(t)>0} is an indicator function that is 1 if Q(t) > 0,
and zero else. The intuition is that Z(t) has the same service
process as Q(t) (being s(t) + x(t)), but now has an arrival
process that adds ε whenever the actual queue backlog is non-
empty. This ensures that Z(t) grows if there are requests in the
Q(t) queue that have not been serviced for a long time. If we
can control the system to ensure that the queues Q(t) and Z(t)
have finite upper bounds, then we can ensure all requests are
served with a worst case delay given in the following lemma.2

Lemma 1: (Worst Case Delay) Suppose the system is con-
trolled so that Z(t) ≤ Zmax and Q(t) ≤ Qmax for all t, for
some positive constants Zmax and Qmax. Then all requests
are fulfilled with a maximum delay of Dmax slots, where:

Dmax
M=d(Qmax + Zmax)/εe (7)

Proof: Consider any slot t for which a(t) > 0. We show
that the requests a(t) are fulfilled on or before time t+Dmax.
Suppose not (we shall reach a contradiction). Then during slots
τ ∈ {t + 1, . . . , t + Dmax} it must be that Q(τ) > 0 (else
the requests a(t) would have been served before slot τ ). Thus,
1{Q(τ)>0} = 1, and from (6) we have that for all τ ∈ {t +
1, . . . , t+Dmax}:

Z(τ + 1) ≥ Z(τ)− s(τ)− x(τ) + ε

Summing the above over τ ∈ {t+ 1, . . . , t+Dmax} yields:

Z(t+Dmax+1)−Z(t+1) ≥ −
t+Dmax∑
τ=t+1

[s(τ)+x(τ)]+Dmaxε

Rearranging and using the fact that Z(t + 1) ≥ 0 and Z(t +
Dmax + 1) ≤ Zmax yields:∑t+Dmax

τ=t+1 [s(τ) + x(τ)] ≥ Dmaxε− Zmax (8)

2In the case when requests are served by the outside source with an addi-
tional delay K > 0, then this bound is modified in the actual implementation
to d(Qmax + Zmax)/εe+K.

Now note that the requests a(t) are first available for service
at time t+ 1, and are part of the backlog Q(t+ 1) (see (1)).
Because Q(t+1) ≤ Qmax and because service is FIFO, these
requests a(t) are served on or before time t+Dmax whenever
there are at least Qmax units of energy served during the
interval τ ∈ {t+1, . . . , t+Dmax}. Because we have assumed
the requests a(t) are not served by time t+Dmax, it must be
that

∑t+Dmax

τ=t+1 [s(τ)+x(τ)] < Qmax. Using this in (8) yields:

Qmax > Dmaxε− Zmax

This implies that Dmax < (Qmax + Zmax)/ε, contradicting
the definition of Dmax in (7).

B. Lyapunov Optimization

Define Θ(t)M=(Z(t), Q(t)) as the concatenated vector of the
real and virtual queues. As a scalar measure of the congestion
in both the Z(t) and Q(t) queues, we define the following
Lyapunov function: L(Θ(t))M= 1

2 [Z(t)2 + Q(t)2]. Define the
conditional 1-slot Lyapunov drift as follows:

∆(Θ(t))M=E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (9)

Following the drift-plus-penalty framework of [11][12][13],
our control algorithm is designed to observe the current queue
states Z(t), Q(t) and the current (s(t), a(t), γ(t)) vector, and
to make a decision x(t) (where 0 ≤ x(t) ≤ xmax) to minimize
a bound on the following expression every slot t:

∆(Θ(t)) + V E {γ(t)x(t)|Θ(t)}

where V is a positive parameter that will be useful to affect a
performance-delay tradeoff. The intuition is that taking actions
to minimize ∆(Θ(t)) alone would push both queues towards
lower backlog but incur a large penatly, and so our approach
minimizes a weighted sum of drift and penalty.

Lemma 2: (Drift Bound) For any control policy that sat-
isfies 0 ≤ x(t) ≤ xmax for all t, the drift-plus-penalty
expression for all slots t satisfies:

∆(Θ(t)) + V E {γ(t)x(t)|Θ(t)} ≤ B + V E {γ(t)x(t)|Θ(t)}
+Q(t)E {a(t)− s(t)− x(t)|Θ(t)}
+Z(t)E {ε− s(t)− x(t)|Θ(t)} (10)

where the constant B is defined:

B M=
(smax + xmax)2 + a2

max

2
+

max[ε2, (smax + xmax)2]
2

(11)
Proof: See our technical report [1].

C. The Dynamic Algorithm

Minimizing the right-hand-side of the drift-plus-penalty
bound (10) every slot t leads to the following dynamic
algorithm: Every slot t, observe Z(t), Q(t), (s(t), a(t), γ(t)),
and choose x(t) according to the following optimization:

Minimize: x(t)[V γ(t)−Q(t)− Z(t)]
Subject to: 0 ≤ x(t) ≤ xmax
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Then update the actual and virtual queues Q(t) and Z(t) by (1)
and (6). The above minimization for the x(t) decision reduces
to the following simple threshold rule:

x(t) =
{

0 if Q(t) + Z(t) ≤ V γ(t)
xmax if Q(t) + Z(t) > V γ(t) (12)

The above x(t) value drives the queueing updates (1) and
(6). However, note by the max[·, 0] structure of the Q(t)
update in (1) that we may not need to purchase the full x(t)
units of energy from the outside plant on slot t. Indeed, define
x̃(t) as the actual amount purchased from the plant, given by:

x̃(t)M=

{
x(t) if Q(t)− s(t) ≥ x(t)
min[Q(t)− s(t), 0] otherwise

(13)
Then we have x̃(t) ≤ x(t) for all t.

Theorem 1: (Performance Analysis) Suppose xmax ≥
max[amax, ε]. If Q(0) = Z(0) = 0, and if the above dynamic
algorithm is implemented with any fixed ε ≥ 0 and V > 0 for
all t ∈ {0, 1, 2, . . .}, then:

a) The queues Q(t) and Z(t) are deterministically bounded
by Qmax and Zmax every slot t, where:

Qmax
M=V γmax + amax , Zmax

M=V γmax + ε (14)

That is, Q(t) ≤ Qmax and Z(t) ≤ Zmax for all t. Thus the
constraints (4)-(5) are also satisfied.

b) The worst case delay of any request is:

Dmax = d(2V γmax + amax + ε)/εe (15)

c) If the vector (s(t), a(t), γ(t)) is i.i.d. over slots, and if the
ε parameter is chosen to satisfy ε ≤ max[E {a(t)} ,E {s(t)}],
then for all slots t > 0 the time average cost satisfies:

1
t

t−1∑
τ=0

E {γ(τ)x̃(τ)} ≤ 1
t

t−1∑
τ=0

E {γ(τ)x(τ)} ≤ c∗ +B/V

where B is defined in (11).
This theorem demonstrates the [O(1/V ), O(V )] cost-delay

tradeoff. To obtain the smallest Dmax, the ε value should
be chosen as large as possible while still maintaining ε ≤
max[E {a(t)} ,E {s(t)}]. We can choose ε = E {a(t)} if this
expectation is known. Using ε = 0 preserves parts (a) and (c)
but does not give a finite Dmax. More discussion of the ε = 0
case is given in Section IV-B.

Proof: (Theorem 1 part (a)) We first show that Q(t) ≤
V γmax+amax for all t. This is clearly true for t = 0 (because
Q(0) = 0). Suppose it holds for slot t. We show it also holds
for slot t + 1. Consider the case when Q(t) ≤ V γmax. Then
Q(t+1) ≤ V γmax+amax, because the queue can increase by
at most amax on any slot (see dynamics (1)). Thus, the result
holds in this case.

Now consider the opposite case when V γmax < Q(t) ≤
V γmax + amax. In this case, we have:

Q(t) + Z(t) ≥ Q(t) > V γmax ≥ V γ(t)

and hence the algorithm will choose x(t) = xmax according
to (12). If Q(t) − xmax − s(t) > 0, then on slot t we serve
at least xmax units of data. Because arrivals a(t) are at most
amax (and amax ≤ xmax), the queue cannot increase on the

next slot and so Q(t+ 1) ≤ Q(t) ≤ V γmax + amax. Finally,
if Q(t)− xmax − s(t) ≤ 0, then by (1) we have Q(t + 1) =
a(t) ≤ amax, again being less than or equal to V γmax+amax.

Therefore, Q(t) ≤ V γmax + amax for all t. The proof that
Z(t) ≤ V γmax + ε for all t is similar and omitted for brevity.

Proof: (Theorem 1 part (b)) This follows immediately from
Lemma 1 together with part (a).

The proof of Theorem 1 part (c) uses the Lyapunov opti-
mization technique [11], and is given in [1].

III. PRICING FOR MAXIMUM PROFIT

We now extend the problem to consider pricing decisions.
Instead of a process a(t) that represents requests arriving at
slot t, we define a process y(t), called the demand state on
slot t. The demand state captures any properties of the demand
that may affect requests for the renewable energy source in
reaction to the price advertised on slot t. A simple example
is when y(t) can take one of two possible values, such as
HIGH and LOW, representing different demand conditions
(such as during peak times or non-peak times for requesting
energy). Another example is when y(t) represents the number
of consumers willing to purchase renewable energy on slot t.
We assume the demand state y(t) is known at the beginning
of each slot t (we show a particular case where y(t) does not
need to be known after our algorithm is stated).

Every slot t, in addition to choosing the amount of energy
x(t) purchased from outside sources, the renewable energy
plant makes a binary decision b(t) ∈ {0, 1}, where b(t) = 1
represents a willingness to accept new requests on slot t, and
b(t) = 0 means no requests will be accepted. If b(t) = 1
is chosen, the plant also chooses a per-unit-energy price p(t)
within an interval 0 ≤ p(t) ≤ pmax, where pmax is a pre-
established maximum price. The arriving requests a(t) are then
influenced by the current price p(t), the current market price
γ(t), and the current demand state y(t), according to a general
demand function F (p, y, γ). Specifically, the values of a(t) are
assumed to be conditionally i.i.d. over all slots with the same
p(t), y(t), γ(t), and satisfy:

E {a(t)|p(t), y(t), γ(t), b(t) = 1} = F (p(t), y(t), γ(t))

We assume the function F (p, y, γ) is continuous in p for each
given y and γ.3 We further assume the arrivals a(t) continue to
be worst-case bounded by amax, regardless of p(t), y(t), γ(t).
The queue iteration Q(t) still operates according to (1), with
the understanding that a(t) is now influenced by the pricing
decisions. Let φ(t) represent the instantaneous profit earned
on slot t, defined as:

φ(t) = b(t)p(t)a(t)− γ(t)x(t)

We now consider the following problem:

Maximize: φ (16)
Subject to: 1) Q <∞ (17)

2) 0 ≤ x(t) ≤ xmax∀t (18)
3) b(t) ∈ {0, 1} , 0 ≤ p(t) ≤ pmax∀t (19)

3This continuity is only used to ensure the resulting min-drift decision has
a well defined minimizing price p(t) every slot.
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where φ is defined as the limiting time average profit:

φM= limt→∞
1
t

∑t−1
τ=0 E {φ(τ)}

To solve the problem, we use the same queueing structure
for Q(t) and Z(t) in (1) and (6), and the same Lyapunov
function L(Θ(t)). However, we now consider the “penalty”
−φ(t), and so the drift-plus-penalty technique seeks to choose
a vector that minimizes a bound on:

∆(Θ(t))− V E {φ(t)|Θ(t)}

Using the same analysis as Lemma 2, we can show the
following bound on this drift-plus-penalty expression:

∆(Θ(t))− V E {φ(t)|Θ(t)} ≤ B
−V E {b(t)p(t)F (p(t), y(t), γ(t))− γ(t)x(t)|Θ(t)}

+Q(t)E {b(t)F (p(t), y(t), γ(t))− s(t)− x(t)|Θ(t)}
+Z(t)E {ε− s(t)− x(t)|Θ(t)} (20)

Our joint energy-allocation and pricing algorithm observes
the current system state on each slot t, and chooses b(t),
p(t), and x(t) to minimize the right-hand side of the above
drift expression (given the observed Θ(t)). This reduces to
the following: Every slot t, observe queues Q(t), Z(t), and
observe s(t), γ(t), y(t). Then choose a price p(t) and an
allocation x(t) as follows:
• (Pricing p(t)) Choose p(t) as the solution to:

Max: F (p(t), y(t), γ(t))(V p(t)−Q(t))
S.t.: 0 ≤ p(t) ≤ pmax

If the resulting maximum value is non-negative, choose
b(t) = 1. Else choose b(t) = 0 so that no new requests
are allowed on slot t.

• (Allocating x(t)) Choose x(t) according to (12).
• (Queue Updates) Update Q(t) and Z(t) by (1) and (6).
This pricing pricing policy does not need to know the de-

mand state y(t) in the special case when F (p(t), y(t), γ(t)) =
y(t)F̂ (p(t), γ(t)), so that demand state simply scales the
demand function. This pricing structure is similar to that
considered in [20] for wireless service providers.

Theorem 2: Assume that xmax ≥ max[amax, ε], and that
Q(0) = Z(0) = 0. If the above joint pricing and allocation
policy is implemented every slot with fixed parameters ε ≥ 0,
V > 0, then:

a) The worst case delay Dmax and backlog Qmax are
the same as before (given in (15), (14)), where Qmax is
proportional to V and Dmax is proportional to V/ε.

b) If the vector (s(t), y(t), γ(t)) is i.i.d. over slots, and if
ε ≤ E {s(t)}, then:4

1
t

∑t−1
τ=0 E {φ(τ)} ≥ φ∗ −B/V ∀t > 0

where B is defined in (11), and φ∗ is the optimal time average
profit that can be achieved by any algorithm that satisfies the
constraints of the problem (16)-(19).

Proof: See [1].

4Note that actual profit can be defined φ̃(t)M
=b(t)p(t)a(t)−γ(t)x̃(t), with

x̃(t) defined in (13). Clearly φ̃(t) ≥ φ(t) for all t, and so the time average
of the actual profit φ̃(t) is even closer to the optimal value φ∗.

IV. EXPERIMENTAL EVALUATION

A. Robustness to Non-i.i.d. Behavior

We first note that the deterministic bounds Qmax, Zmax,
Dmax in Theorems 1 and 2 hold for all sample paths that
satisfy (2), not just those with i.i.d. properties. This is because
our proof used a sample path argument. Further, using the
universal scheduling technique of [18][19][21], we can show
that for any (possibly non-i.i.d., non-ergodic) sample path, the
same algorithms always yield performance within BT/V of
the performance of a “genie aided” policy that makes decisions
based on knowledge up to T slots into the future, for any
integer T > 0. This gap BT/V can be made arbitrarily small
if we fix T and choose a large value of V , which also increases
delay as O(V ). This analysis is omitted for brevity (see [1]).

B. Simulations on Real Data Sets

We evaluated the performance of the proposed algorithm on
a six-month data set that we created by combining 10-minute
average spot market prices γ(t) for Los Angeles area (LA1)
from CAISO [22] and 10-minute energy production s(t) for a
small subset of windfarms from the Western Wind resources
Dataset published by the National Renewable Energy Labo-
ratory [23]. We modeled the demand a(t) as i.i.d. over slots
and uniformly distributed over the integers {0, 1, . . . , amax}.
We executed the algorithm in 10-minute timeslots and ex-
perimented with different values of the parameters V, ε and
the corresponding deadlines they generate. Here we present a
subset of those results (see [1] for more).

We compare the proposed algorithm against a simple greedy
strategy “Purchase at deadline,” which tries to use all the
available resource s(t) and only buys from the spot market as a
last resort if a deadline is reached. As can be seen in Fig. 1, the
proposed algorithm reduces the cost of the renewable supplier
by approximately a factor of 2 in the tested six-month window.
This is not surprising since the greedy strategy does not hedge
for future high prices in the spot market while the proposed
algorithm learns to proactively buy when the spot market
prices are lower than typical and deadline violations seem
probable. The high variability of the spot market prices [22]
makes this advantage significant. The second observation, seen
in Fig. 2, is that the proposed algorithm has on average a much
smaller delay than the deadline, which for our parameters was
Dmax = 69.1 hours. On the contrary, the greedy algorithm
makes many requests wait close to (or exactly at) the maxi-
mum allowed 69.1 hours. Note that 69.1 hours corresponds to
415 slots, and our algorithm maintains delays within 10 hours
(60 slots), as shown in Fig. 2. We have used a slot size of 10
minutes because that was the granularity of the available data.
If system updates are available every minute or less, then the
slot size can be reduced by at least an order of magnitude.

Our results use ε = E {a(t)} = amax/2. We also conducted
simulations with ε = 0, which does not require knowledge
of E {a(t)}. While ε = 0 does not provide a finite delay
guarantee, it still guarantees the same finite Qmax. Together
with FIFO service, this means that the worst case delay
for requests that arrive at time t is given by the smallest
integer T > 0 such that

∑t+T
τ=t+1 s(τ) ≥ Qmax. While
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Fig. 1. Cost of the renewable energy supplier for energy purchased at the
spot market. For the proposed algorithm we used the parameters amax =
175, γmax = 180, xmax = 400, V = 100, Dmax = 415 = 2.9 days.
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Fig. 2. Histogram of delay for the customers waiting in the service queues
of the renewable energy supplier under the two algorithms (vertical axis in
logarithmic scale). Case ε = 0 is not shown, but has max delay 14 hours, as
compared with the ε = E {A(t)} case (shown) with max delay 9.5 hours.

there is no bound on this for general s(t) processes, it can
still lead to small delays. Indeed, in the simulations it still
maintained all delays under Dmax = 2.9 days (having a
maximum experimental delay of 14 hours, as compared to
9.5 hours for the ε = E {a(t)} case).5 Fig. 1 shows it gives
slightly better cost, particularly because it increases delay.
Both Lyapunov optimization algorithms provided significantly
better cost and delay as compared to the greedy algorithm. It
should be noted that we did not compare against dynamic
programming algorithms such as the one proposed in [4].
While it is clear that a dynamic programming approach could
solve this problem optimally if the statistics of the underlying
processes were known, one benefit of our approach is that
no such prior knowledge is required. Further, while we treat
only the 1-queue case here, the Lyapunov approach can be
used to provide an efficient algorithm for multiple queues
corresponding to different customers with different deadlines.
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