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Abstract—The multiple-access framework of ZigZag decoding
[1] is a useful technique for combating interference via multiple
repeated transmissions, and is known to be compatible with
distributed random access protocols. However, in the presence of
noise this type of decoding can magnify errors, particularly when
packet sizes are large. We present a simple soft-decoding version,
called SigSag, that improves performance. We show that for two
users, collisions result in a cycle-free factor graph that can be
optimally decoded via belief propagation. For collisions between
more than two users, we show that if a simple bit-permutation is
used then the graph is locally tree-like with high probability, and
hence belief propagation is near optimal. Through simulations we
show that our scheme performs better than coordinated collision-
free time division multiple access (TDMA) and the ZigZag
decoder.

I. INTRODUCTION

Despite the substantial amount of theoretical work in mul-
tiuser detection and inference cancellation, most implementa-
tions rely on carrier sense (CSMA) to limit collisions while
CDMA receivers decode each user by treating interference
as noise. One important step towards practical systems that
decode interfering users was ZigZag decoding by Gollakota
and Katabi [1] that relies on the 802.11 MAC. This restricts
the design space into a very simple repetition of packets when
there are collisions and decoding failures. We build on the
same assumptions as the original ZigZag framework. However,
we develop a soft-decoding version, called SigSag, that is just
as simple to implement but results in significantly improved
reception rates.

Specifically, we assume there are N users, each having
a packet of B bits, trying to communicate with an access
point (AP) (See Fig. 1). Each user relies on carrier sensing
to detect if other users are transmitting. If this fails (the case
of a hidden terminal) there is interference at the AP, modeled
by a simple linear superposition of the symbols plus noise.
In this paper we only consider the worst case, where carrier
sensing constantly fails and there are always packet collisions.
The improved decoding probabilities we obtain in this paper
can be used to improve performance of higher layer multi-
access protocols that incorporate ZigZag-like collision frames,
such as those in [23]. Under the 802.11 protocol, each sender
retransmits its packet until it receives an acknowledgment that
the AP successfully decoded it. In our model, each of the
N users transmits its packet N times and the AP receives
linear equations involving the sum of the collided symbols
plus noise. Similarly to prior work, we model the random
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Fig. 1. All nodes send data to the access point (AP) together.

delay offsets (jitter) of the 802.11 protocol as follows: as
packets from two or more users collide, each user chooses a
random bit-offset uniform over [0,W ] and transmits its packet
again. The maximum likelihood (ML) detection (also referred
to as a multiuser demapping) problem consists of finding the
most likely user symbols given the noise statistics. In the high-
SNR case (when the noise is negligible) this simply reduces to
solving linear equations, while for the noisy case it becomes
a statistical inference problem which is well known to be
computationally intractable.

Our contributions: We show that the ZigZag algorithm can
be seen as an instance of belief propagation in the high-SNR
limit, essentially attempting to solve linear equations by back-
substitution only. We introduce a new algorithm called SigSag
that exploits and maintains soft information about each sym-
bol. If ZigZag is seen as hard-decision belief propagation, our
algorithm is a natural generalization that maintains likelihoods
and runs in a loopy manner on the factor graph created by the
linear equations formed by collided packets.

We show that for N = 2 users, our iterative soft message-
passing algorithm is optimal, by establishing that the cor-
responding factor graph is cycle-free with high probability.
Further, for N ≥ 3 users, we show that the factor graph is
tree-like by establishing that the local neighborhood is cycle-
free with high probability. Our results establish that while the
maximum-likelihood inference problem is NP-hard in general,
the random jitter bit-offsets and bit permutations in packets
create easy instances with high probability. For these instances
the maximum likelihood solution is found by our soft message-
passing detector. The last part of our theoretical analysis
shows that random jitter and fading can critically influence
performance even in the high-SNR regime. Our preliminary
experimental analysis shows the substantial practical benefits
of using SigSag soft message-passing compared to ZigZag and
Time Division Multiple Access (TDMA), also often referred
to as collision free scheduling.
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Fig. 2. Two consecutive collisions of two packets x and y of B = 3 symbols
sent by N = 2 users. Both packets are transmitted twice and the AP receives
u1 and u2.

A. System Model

As shown in Fig. 1, we have N users trying to communicate
to an access point (AP). Each user re-transmits N times and
the packets collide forming linear equations at the AP. We
assume that the users can permute the bits of their packets
before each transmission, as discussed in [11]. We further
assume a block fading channel model where data sent by user
i on the cth transmission are attenuated by coefficients h(c)

i

assumed known at the receiver1. Under this model, the AP
receives the signal

uc = uc + ν(c) =
N∑

i=1

h
(c)
i Tw(i,c)(xi) + ν(c), (1)

where c ∈ {1, 2, . . . , N} is the collision round, xi =
[xi,1, xi,2, . . . , xi,B ] is the packet (assuming BPSK, xi,j =
±1) sent by the ith user, ν(c) is the channel noise vector of
cth collision, assumed to be independent and identically dis-
tributed Gaussian for simplicity. Finally, Tw(i,c)(.) represents
the jitter or time delay user i chooses randomly before the
cth transmission. Note that the above does not mean that the
bth symbol b ∈ {1, . . . , B} of the packets xi, i ∈ {1, . . . , N}
combine with each other. The notation is only to keep the
exposition clear. As a result the whole system can be modeled
as Ax + ν = u or Ax = u where A is the collision matrix,
x = [x1, x2, . . . , xN ]T , and u = [u1, u2, . . . , uN ]T .

As an example, consider the case shown in Fig. 2 which
depicts two consecutive collisions of the packets sent by
N = 2 users. Notice that each collision results in at least
B linear equations. As explained, the whole system of linear
equations can be rephrased in the form of Ax = u, where here
x = [x,y]2 and u = [u1, u2]

T . The set of linear equations
corresponding to the collision patterns shown in Fig. 2 are

u1,1 = h
(1)
1 x1 + ν

(1)
1

u1,2 = h
(1)
1 x2 + h

(1)
2 y1 + ν

(1)
2

u1,3 = h
(1)
1 x3 + h

(1)
2 y2 + ν

(1)
3

u1,4 = h
(1)
2 y3 + ν

(1)
4

u2,1 = h
(2)
1 x1 + h

(2)
2 y1 + ν

(2)
1

u2,2 = h
(2)
1 x2 + h

(2)
2 y2 + ν

(2)
2

u2,3 = h
(2)
1 x3 + h

(2)
2 y3 + ν

(2)
3

1Note that for estimating the fading coefficients h
(c)
i at the receiver, the

802.11 adds a known preamble sequence to each packet. Further, for this
estimation to be exact, we require fading to be extremely slow.

2For more clarity, here we call the two packets by x and y instead of x1

and x2.

and the corresponding collision matrix A is

A =



h
(1)
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h
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h
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2

h
(2)
1 h
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.

Notice that if there was no noise (all v(c)
i = 0), the optimal

decoder would simply have to solve these linear equations. In
the presence of noise, optimal decoding would correspond to
finding which vectors xi ∈ {±1}B , yi ∈ {±1}B have the
highest likelihood under the noise statistics, which reduces to
a computationally intractable integer least-square problem.

II. RELATED WORK

The amount of related work in communications and in-
formation theory on multiuser joint detection and decoding
is overwhelming and without trying to be comprehensive we
will point the interested reader to [2], [4], [8]–[10], [12], and
references therein. A comprehensive overview on the recent
advances in interference cancellation can be found in [14].

ZigZag decoding [1] is the closest to our work. The ap-
proach taken in this paper is to restrict the design space
to packet repetitions and hence maintain compatibility with
802.11. One important advantage of this approach is that,
unlike joint decoding methods, senders do not need to reduce
their rate in order for the AP to be able to decode the collisions.

By exploiting the small variations in the transmission times,
ZigZag attempts to decode the packets of each user by solving
the linear equations Ax = u by back-substitution. This
version of ZigZag (the Forward ZigZag) is identical to the
belief propagation decoder for the BEC (see e.g. [5], [7]),
also known as the leaf-stripping decoder which looks for a
degree one variable, makes a hard decision (decides either
±1) about it and removes it from the factor graph. This
algorithm is feasible because the random jitter allows some
symbols to appear without interference (i.e. have degree 1)
with high probability. An improved version of ZigZag runs this
algorithm from different starting points (Forward-Backward
[1]) and then combines partial soft-information from the two
executions to decode the variables. Our algorithm is essentially
an optimized version of this idea that keeps track of how this
soft information evolves and deferring the rounding decisions
until the end. Remap [11] is an extension of ZigZag where
senders permute their data after the first transmission and
Chorus [13] resolves collisions over a multi-hop network to
improve latency and transmission diversity of the network.

Our work is closely related to wireless network coding
(see e.g. [16], [18], [21]) and cross-layer designs that exploit
coding [17]. In our case, it is the interference that creates
the code, similarly to [20]. Our technical analysis relies on
iterative message passing algorithms and the theory developed
for sparse-graph codes [5], [7], [15], [19].
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Fig. 3. The probability mass function of d = w1−w2 when wi’s are discrete
random variables uniformly chosen from {0, 1, . . . , W} (here W = 5).

A. Shortcomings of ZigZag

In this paper we extend ZigZag decoding [1], addressing
two main drawbacks:

1) ZigZag can fail to decode when back-substitution is not
possible.

2) Noise is accumulated as the ZigZag decoder advances
through the packet.

1) Back-substitution Failure: Here, we focus on the first
drawback of ZigZag and show that it causes a threshold
on the bit error probability that ZigZag can achieve. This
threshold depends on the number of collided packets N and
the maximum waiting time before each transmission W , but
not on the SNR.

Consider the case of N = 2 users where each user waits for
a random time uniformly chosen from {0, 1, . . . ,W} before
each transmission. Assuming the users have similar SNR’s3,
the zigzag decoder fails to retrieve the packets if the two
collision patterns are identical. In other words, if we define
w

(c)
i for i ∈ {1, 2} to be the waiting time of user i before

its cth transmission, then the patterns will be identical if
d(1) = w

(1)
1 − w(1)

2 is equal to d(2) = w
(2)
1 − w(2)

2 , i.e. the
waiting time difference of two users for both transmissions are
equal.4

As shown in Fig. 3 the probability mass function of d =
w1 − w2 where w1 and w2 are uniformly distributed over
{0, . . . ,W} is

pD(d = k) =

{
(W+1)−|k|

(W+1)2 if |k| ≤W

0 otherwise

and the probability of having identical collision patterns in

3If the SNR’s are too different, ZigZag can decode the packets using the
capture effect.

4Note that a collision (the bit-offset d) can be detected at the receiver by
adding a known preamble to each packet, as explained in [1]
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Fig. 4. The BER threshold of the ZigZag decoder for N = 2 and N = 3
user.

both transmissions is
W∑

k=−W

(PD(d = k))2 =
1
3

2W 2 + 4W + 3
(W + 1)3

.

When the above happens, the ZigZag is unable to decode the
packets since it cannot initiate the back-substitution.

For N = 3 users, the error happens if either two out of
three collision patterns are identical, or two packets collide in
the same way in all three collisions. As we are only looking
for a lower bound, we consider only the latter case and we
have

P [failure] >
∑W

k=−W (PD(d = k))3

where PD(d = k)3 is the probability that users 1 and 2 have
a delay difference of k on all 3 collision rounds (which is the
same probability if computed between users 1 and 3 or users
2 and 3).

Fig. 4 shows the bound on the error probability of the
ZigZag decoder for N = 2, 3 users as a function of the
maximum waiting time W . Again note that the above bound
holds, regardless of the SNR.

2) Error Accumulation: The second shortcoming of ZigZag
is error accumulation which can be described as follows.
ZigZag decoding relies on continuously repeating two steps: i)
finding free chunks and decoding them, and ii) removing the
decoded bits from other collisions to produce new free chunks
(back-substitution). At each decoding step, ZigZag makes a
hard decision on the value of the bit which causes ZigZag
to aggregate noise as it decodes through the packet. This
aggregation becomes more severe as the length of the collided
packets grow and worsens the performance of ZigZag. Fig. 5
shows the bit error probability of ZigZag for N = 2 users at
SNR = 5dB, as the length of the packets B grows.

On the other hand, as it is shown in Fig. 6, the performance
of our proposed SigSag algorithm improves as the length of
the packets grow. This is due to the fact that the factor graph on
which we run the message passing for SigSag becomes more
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Fig. 5. ZigZag error accumulation for N = 2 users at SNR = 5dB.
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Fig. 6. Performance of SigSag as the length of the packets grow for N = 2
users at SNR = 5dB.

tree-like as the length of the packets grow. This is proved in
section IV-B.

III. SIGSAG ALGORITHM

In this section we introduce SigSag, our soft iterative
message-passing decoder, which attempts to find a good
approximation decoding for the users packets. There are two
variations of SigSag with slightly different objectives: The first
uses iterative sum-product to compute the marginals for each
bit and hence minimize the bit-error rate. The second uses
max-product to compute the jointly most likely configuration,
attempting to minimize the block-error rate. When executed on
factor graphs with cycles these algorithms can be suboptimal
and in practice we observe that max-product has slightly better
performance for the cases tested.

We derive the messages for the first few steps of the max-
product algorithm for the check f11, as explained in [6], [7],
on the factor graph shown in Fig. 7 which corresponds to the
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Fig. 7. Two consecutive collisions of two senders and the factor graph
representation of the pattern.

collision pattern shown in Fig. 2. Here, µa−→b(x) represents
the probability distribution function of x estimated at node a
and sent as a message to node b. This distribution (sent over
link a −→ b) is estimated from the previous messages that
were sent on all incoming links to node a (other than the link
connecting it to b). The vector uc is the noisy observation at
the receiver on the cth collision. Also let uc be the received
signal if the channel was noise-free, i.e. uc = uc + ν where ν
is the noise vector.

step 1:
µu11−→f11(u11) =

{
p{u11 = h

(1)
1 |u11}

p{u11 = −h(1)
1 |u11}

step 2:
µf11−→x1(x1) =

p{x1 = 1} = p{u11 = h
(1)
1 |u11}

p{x1 = −1} = p{u11 = −h(1)
1 |u11}

step 3:
µx1−→f21(x1) =

p{x1 = 1}

p{x1 = −1}

Step 4 is quite similar to step 1, only the degree of the nodes
are different:

µu21−→f21(u21) =



p{u21 = h
(2)
1 + h

(2)
2 |u21}

p{u21 = h
(2)
1 − h

(2)
2 |u21}

p{u21 = −h(2)
1 + h

(2)
2 |u21}

p{u21 = −h(2)
1 − h

(2)
2 |u21}

In step 5, the algorithm applies the max operation to find the
most probable configuration for each mass point {1,−1}:

µf21→y1(y1) =



p{y1 = 1} =
1
z

max
(
p{u21 = h

(2)
1 + h

(2)
2 |u21}p{x1 = 1},

p{u21 = −h(2)
1 + h

(2)
2 |u21}p{x1 = −1}

)
p{y1 = −1} =
1
z

max
(
p{u21 = h

(2)
1 − h

(2)
2 |u21}p{x1 = 1},

p{u21 = −h(2)
1 − h

(2)
2 |u21}p{x1 = −1}

)
where z is a normalization factor. By changing the max
operation to sum the algorithm becomes the sum-product
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Fig. 8. Demonstration of isolated, once collided and twice collided bits for
the two user scenario.

algorithm. Further, instead of propagating the probabilities,
one can transmit log-likelihood ratios

mf−→x(x) = log
p{x = 1}
p{x = −1}

mx−→f (x) = log
p{x = 1}
p{x = −1}

for factor node f and variable node x, where p{x = 1}, and
p{x = −1} are derived as mentioned earlier. For instance,
for the sum-product algorithm, mf21−→y1(y1) from the above
example can be computed to be

mf21−→y1 (y1) = log
p{y1 = 1}
p{y1 = −1}

= log
p{u21 = h

(2)
1 + h

(2)
2 |u21}emx1−→f21 (x1)

p{u21 = h
(2)
1 − h

(2)
2 |u21}emx1−→f21 (x1)

· · ·+ p{u21 = −h(2)
1 + h

(2)
2 |u21}

· · ·+ p{u21 = −h(2)
1 − h

(2)
2 |u21}

IV. THEORETICAL ANALYSIS

In this section, we analyze the performance of SigSag
theoretically, and prove that it is ML for two users and close
to ML for more than two users. Then we consider the high
SNR regime and discuss the importance of jitter and fading.

A. Factor graph is cycle-free for two users

We show that for the case of two users the factor graph of
the received signal is cycle-free if the bit-offsets of the two
consecutive collisions are different. This result does not require
permutations of bits with every retransmission. We start by
observing that there are three different kinds of bits

1) Isolated or degree zero bits: are received in free symbols,
i.e. without colliding with any other bit in both collision
rounds.

2) Once collided or degree one bits: collide with a bit from
the other packet in one collision and received unharmed
on the next collision.

3) Twice collided or degree two bits: collide with different
bits of the other packet in each collision.

The above node classes are shown in Fig. 8.
Since for two users every function node has degree at most

two, we can remove the factor nodes and consider two bits
connected if they collide with each other.

Theorem 1: In the case of two users transmitting without
permuting their bits, the resulting factor graph is cycle-free if
the bit-offsets of the two consecutive collisions are different.

Proof: First, observe that there can be no cycle of length
two (including factor nodes) since a bit cannot collide with

itself, and there cannot be any cycle of length four since it
means the bit-offset differences are identical. Therefore, we are
only concerned about cycles of higher length. Here we use the
same notation introduced in II-A1, where d(1) and d(2) are the
time difference between user transmissions in first and second
collisions. Arrange the variable nodes according to their order
of appearance in the packets. In other words, arrange them
in two columns x1, x2, . . . , xB and y1, y2, . . . , yB . Beginning
from an arbitrary variable node, we try to draw a cycle (length
more than four) by connecting the variable nodes through
arbitrary factor nodes. Assume that we intend to make a cycle
which begins and ends at xi where xi is a degree two node.
First we connect xi to yj , and then we connect yj to xk. Note
that these two edges have already determined the pattern of
the both collisions, since d(1) = i − j and d(2) = k − j. For
example, we can deduce that the node xi collides with yj on
the first collision and with yi−d(2) = yi−k+j on the second
one. We consider two cases, either k > i or k < i (Note that
k = i contradicts the assumption since d(1) = d(2)). Consider
the former k > i. As mentioned before, We want to continue
connecting the bits from yj and get back to xi. The pass is
{xi, yj , xk, yk−d(1) , xk−d(1)+d(2) , . . . }. We see that on every
return to an ”x” bit, the index increases by exactly k− i (note
that (k−d(1)+d(2))−k = k−i). Thus the chain must increase
away from xi until it reaches a degree-1 node that terminates
and shows this is not a cycle. The same argument holds for
the case k < i, only this time the chain moves toward the start
of the packets and terminates there.
We proved that if the bit-offsets of the the two collisions are
different the factor graph is cycle-free. In this case, it is trivial
to check that each isolated bit form a path together with its
neighboring factor nodes while all degree one and degree two
bits form a path starting and ending in a degree one bit which
has degree two bits in the middle. Since message passing on
cycle-free factor graphs is optimal [6], our soft receiver is
performing ML detection for two users.

B. Tree-like factor graph for multiple users

We now consider any number of users N ≥ 2, but assume
that the users permute the bits of the packets randomly before
each transmission. Here, it is shown that the factor graph
formed from the collision pattern is almost tree-like as the
length of the packets B grows, and thus, the belief propagation
result is close to ML. In the following, N`

e denotes the directed
neighborhood of depth ` of e = (v, c) which is defined as the
induced subgraph containing all edges and nodes on paths
e1, . . . , e` starting from v such that e1 6= v.

Theorem 2: The left-regular bipartite factor graph G re-
sulted form collision of N packets of length B sent by N
users with symbol permutation is locally tree-like with high
probability. Specifically,

Pr{N2`∗

e is not tree like} ≤ s

B

where e = (v, c) is a randomly chosen edge of the graph, 2`
is a fixed depth, and s is a suitable constant that depends on
`, N , but not on B.
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Proof: This proof is using a similar technique as the local
tree-like proofs for random sparse graphs developed for Low
Density Parity Check (LDPC) codes [7]. The ensemble of
random graphs we are dealing with, formed by the random
jitter and permutations, are different from the LDPC ensembles
but still the same inductive approach works. Note that all the
variable nodes v have degree dv = N and the degree of
the check nodes dc is less than or equal to N (dc ≤ N ).
In other words, each bit appears in exactly N equations and
each equation contains at most N variables. Since increasing
the degree of the checks only increase the probability of
existence of cycles, without loss of generality we assume
dc = N as shown in Fig. 9. At each level i there are
Vi = (dv − 1)i(dc − 1)i = (N − 1)2i variable nodes and
Ci = (dv − 1)i+1(dc − 1)i = (N − 1)2i+1 check nodes. As a
result, assuming that N2`

e is tree-like, there are

V ` =
∑̀
i=0

Vi

V ` =
∑̀
i=0

(dv − 1)i(dc − 1)i

=
∑̀
i=0

(N − 1)2i

=
(N − 1)2`+2 − 1

(N − 1)2 − 1
=

(N − 1)2`+2 − 1
N(N − 2)

variable nodes and

C` = 1 +
`−1∑
i=0

Ci

= 1 + (dv − 1)
`−1∑
i=0

(dv − 1)i(dc − 1)i

= 1 + (N − 1)
`−1∑
i=0

(N − 1)2i

= 1 + (N − 1)
(N − 1)2` − 1
(N − 1)2 − 1

check nodes in it. Recall that the collision matrix A is M ×
NB, where NB ≤M ≤ N(B+W ). We want to compute the
probability that the N2`+1

e is tree-like. For that, we consider
a variable node in the 2`th depth. The probability that its kth

edge does not create a loop assuming that its previous k − 1
edges have not, is

P ≥ (M − C` − k)dc

Mdc − C` − k
≥ 1− C`∗

M ,

for ` ≤ `∗ . Thus the probability that N2`+1
e is tree-like given

that N2`
e is tree-like is lower bounded by (1−C`∗

M )C`+1 . Notice
that each check is allowed to have at most one neighbor from
each packet. So consider the variable node at level zero (V0)
to belong to the ith packet. We use R` for number of bits from
the ith packet at level `, and (since number of bits from each
of other packets are equal at each level) K` for number of bits
from each one of the other packets at level `. Apparently, at
level ` = 0, we have R0 = 1, and K0 = 0. It is easy to check
that R` = (N − 1)K`−1 and K` = V`−R`

N−1 for all `. Unlike
the previous part, the number of bits at each level are different
for different users. However, we can bound the total number
of bits from each user at level ` by cV `

N , i.e cV `

N ≥
∑`∗

`=0R`

and cV `

N ≥
∑`∗

`=0K` where c is a positive scalar (for example
c = 2). As a result, the same as above, we can show that the
outgoing edges of the check nodes at depth 2` + 1 will not
make a loop with probability

Q ≥ (B−c
V `
N )dv

Bdv−
V `
N

≥ 1− c V `∗

NB
.

So, the probability that N2`+2
e is tree-like given that N2`+1

e is
tree like is lower-bounded by (1− cV `∗

NB )V`+1 . Thus,

Pr{N2`
e is tree like} ≥ (1− c V `∗

NB
)V `∗ (1− C`∗

M
)C`∗

≥ (1− c V `∗

NB
)V `∗ (1− C`∗

N(B +W )
)C`∗ .

For large enough n,

Pr{N2`
e is not tree like} ≤

c2
V

2
`∗

N + C
2
`∗

N

B

=
c2V

2

`∗ + C
2

`∗

NB
.

If we want to run the message passing for ` iterations and
we want Pr{N2`

e is not tree like} ≤ ε, then

c2V
2
`∗+C

2
`∗

NB ≤ ε,

and substituting the values C`∗ ≈ N2`−1 and V `∗ ≈ N2` we
get

c2N4`+N4`−2

NB ≤ ε⇒
B ≥ 2c2ε−1N4`.

C. Importance of Jitter

The purpose of this section is to point out the importance
of jitter in our model. To begin, consider a high SNR system
with flat fading hc

i = hi for all i, c ∈ {1, . . . , N} where
hi is a positive constant. That is, the fading coefficients are
constant for each user and does not change over time. An
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indoor wireless LAN is a good example of such system where
the fading coefficients are constant for each user over time.

We prove the necessity of jitter by showing that for the
above system, when the maximum delay W = 0, the linear
equations are not full rank even if the users permute their
packets before each round of transmission. Observing the
above while the users are not permuting their bits is trivial,
since the fading coefficients are constant, and as a result the
AP receives NB copies of the same equation which obviously
makes matrix A singular.

Theorem 3: For the above system, if the users transmit
packets consecutively without any delay (W = 0), the matrix
A is rank deficient regardless of the particular permutations
used.

Proof: Define (bitn,b) as the matrix of bits for each user
n ∈ {1, . . . , n} and each bit b ∈ {1, . . . , B}. Define xnb as
the matrix of ”faded-bits” where each row n is multiplied by
the fading coefficient hn (so that xnb = hnbitnb) for all n
and b). If W = 0, each faded-bit received on each collision
round is a sum of contributions from each of the N users.
Assume each user permutes its bits, and

(
x̃

(c)
nb

)B

b=1
represents

the vector of permuted bits for user n ∈ {1, . . . , N} on
collision round c ∈ {1, . . . , N}. It is assumed that the receiver
knows the permutation orders used on each transmission. Let
uc,b represent the bth bit received on the cth collision round,
for b ∈ {1, . . . , B} and c ∈ {1, . . . , N}:

uc,b =
∑N

n=1 x̃
(c)
nb

These values uc,b represent NB linear equations, involving
NB unknowns (xnb). Thus, matrix A will be rank deficient
if at least one of the equations is redundant.

Let S be the sum of all elements in the N×B matrix (xnb).
On each collision round c ∈ {1, . . . , N}, each row of matrix
(x̃(c)

nb ) is just a permutation of the matrix (xnb), and so the
sum of all its elements is also equal to S, i.e.∑N

b=1

∑N
n=1 x̃

(c)
nb = S, for all c ∈ {1, . . . , N} .

Let us now sum the B received bits u1,b from the first collision
round

S =
∑B

b=1 u1,b =
∑B

b=1

∑N
n=1 x̃

(1)
nb . (2)

Now sum the first B − 1 received values u2,b on the second
round of collision, i.e.∑B−1

b=1 u2,b =
∑B−1

b=1

∑N
n=1 x̃

(2)
nb

=
∑B

b=1

∑N
n=1 x̃

(2)
nb −

∑N
n=1 x̃

(2)
nB

= S − u2,B

Subtracting this from equation (2) yields:∑B
b=1 u1,b −

∑B−1
b=1 u2,b = u2,B .

Therefore, we can infer the value of the (2B)th received value
u2B = u2,B only from observing the first 2B − 1 bits, and
hence the equation associated with this bit is redundant.
Notice that, as discussed in IV-E, rank deficiency of matrix A
does not mean that the received patterns are not decodable. In
the high SNR regime, however, when the SNR of the senders

are in the same level, ML detection simply becomes solving
the linear system Ax = u. If the collision pattern is decodable
by ZigZag decoding, it is equivalent to Gaussian elimination
(essentially only doing the back-substitution steps). Such sys-
tems are discussed in the next section.

D. Random Delay of one Symbol Suffices

We now show that, even if the users do not permute their
symbols, a random delay of one-time slot W = 1 is sufficient
for the above system to be decodable. Observe that if we
can decode the first bits of all packets, then we can decode
the system. The reason is that as the first bits of all packets
are decodable and known, then by removing the first bits
from the equations we will again have the same pattern with
packets of length B − 1, since there are no permutations. It
should be pointed out that it is easy to arrange a coordinated
deterministic system with maximum delay of one symbol for it
to be decodable. We assume that N users with similar SNR’s
want to transmit their packets to the AP and we require each
of them to transmit its packet N times. At ith transmission
i ∈ {1, 2, . . . , N}, user i transmits its packet with zero delay
and rest of the users transmit with one-time slot delay. As
explained, the system will be decodable.

Consider the uncoordinated model introduced in the previ-
ous section with W = 1. In other words, each user may trans-
mit its packet without any delay or with the delay of one-time
slot both with probability of 1/2. In this case the decodability
of the system solely depends on the uniqueness of the collision
patterns. In other words, we form the N ×N jitter matrix J
which consists of the coefficients of the first equations of each
collision, i.e J [x11, . . . , xN1]

T = [u11, u21, . . . , uN1]
T , then

the pattern is decodable if the matrix J is non-singular. As an
example, the linear equations and their resulted matrix J for
the pattern shown in Fig. 2 are

J =

[
h1 0
h1 h2

]
,

{
h1x1 = u11

h1x1 + h2y1 = u21

Derive the matrix J by factoring out hi coefficients i ∈
{1, 2, . . . , N} from each column of matrix J. Notice that J
is an N × N matrix with elements independently taking the
values (0, 1) with probability 1/2, and |J| = |J|

∏N
i=1 hi. A

classic result by Komlós [3] establishes that matrices such as
J are nonsingular with probability going to 1 as N →∞.

E. Importance of Fading

We note that our SigSag algorithm exploits fading in a way
that pure back-substitution or Gaussian elimination cannot.
To illustrate the importance of fading, we consider a simple
example with 3 users and zero noise. Assume the delay
offset is 0 in all three collision rounds. Thus, the resulting
equations are redundant and the matrix A is obviously rank
deficient. ZigZag would thus fail in this scenario. However, our
algorithm would perfectly decode each user with probability
1. For intuition on this, we simply show that the bits are
perfectly decodable with probability 1 just by looking at the
first collision: Suppose the channel coefficients on the first
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round are h = [h1, h2, h3]. The first bit transmitted by each
user is either +1 or −1. Thus, there are only 8 possible
resulting collision values for the first received symbol:

h1 + h2 + h3

h1 + h2 − h3

h1 − h2 + h3

h1 − h2 − h3

−h1 + h2 + h3

−h1 + h2 − h3

−h1 − h2 + h3

−h1 − h2 − h3

If all 8 possible values are distinct, then we can completely
decode the first bit of all 3 users. Clearly this holds not just
for the first bit, but for all bits, and so in the noiseless case
with different fading coefficients, all three packets can be com-
pletely decoded after only one transmission round. It is clear
that if the distribution on the joint fading coefficients have a
continuous joint density, then the probability that all 8 collision
values are distinct is equal to 1. For example, the probability
Pr [h1 + h2 + h3 = h1 + h2 − h3] is the probability that the
3-dimensional vector (h1, h2, h3) lies on the 2-dimensional
plane h3 = 0, and hence this probability is equal to 0. While
this example is for the noiseless case, it shows that fading can
be exploited to achieve very high decoding probability in the
high SNR regime.

V. EXPERIMENTAL RESULTS

In this section we present our preliminary experimental
evaluation of SigSag for N = 2, 3 users, and compare against
a ZigZag decoder and a coordinated system that uses an
interference-free round-robin TDMA schedule. Surprisingly,
we find that the performance of our system greatly surpasses
that of the coordinated TDMA. The reason is that each bit
influences multiple observations, acting as a code that our
near-optimal decoding algorithm can decode with high prob-
ability. Since any message passing algorithm can be used for
SigSag to compute likelihoods of bits, we consider both max-
product and sum-product. We call the former SigSag max-
product (SSMP), and the latter SigSag sum-product (SSSP).

For our simulation we consider an additive white Gaussian
noise channel with fading modeled as a uniform random vari-
able chosen between [0.8, 1.2]. The block fading is assumed,
i.e. fading is identical for all the bits of a packet in each
transmission; but it can vary across users and in different
transmissions. In our simulations, Users transmit packets of
length B = 100, with the maximum waiting time of W = 10.
Here, we consider the case where packets always collide with
each other, and ZigZag never fails to decode, i.e. the collision
patterns are not identical.

Our first experiment compares the performance of SigSag,
without any permutation, versus forward ZigZag, ZigZag
(forward-backward), and TDMA. For SigSag, Message pass-
ing is run for 20 iterations (after which it converged). As
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Fig. 10. Bit error rate comparison of TDMA, forward zigzag, forward-
backward zigzag, Sigsag max-product, and Sigsag sum-product over different
SNR’s for N = 2 users transmitting packets of length B = 100.
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Fig. 11. Bit error rate comparison of TDMA, zigzag, Sigsag max-product,
Sigsag sum-product over different SNR’s for N = 3 users transmitting
packets of length B = 100.

shown in Fig. 10, for N = 2 users, SSMP and SSSP performs
quite similar to each other while both surpass ZigZag and
TDMA with a great margin.

For the second experiment, we consider the previous sce-
nario, only this time with N = 3 users. For simulating ZigZag,
we used its extension for more than two users from [1]. As
shown in Fig. 11, the performance of ZigZag degrades as
number of users increase and it becomes worse than TDMA.
Again, as before, SSMP and SSSP surpasses other methods
while this time SSMP performs even better than SSSP.

Notice that our proposed algorithms are computationally
efficient, requiring a linear number of messages per iteration
and typically a number of iterations that scales logarithmically
in the packet sizes and number of users [7], [22]. There
is slightly more complexity compared to ZigZag since soft
information needs to be communicated with each message
but the performance benefits would probably justify these
additional requirements for most applications.
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VI. CONCLUSION

In this paper we introduced a novel decoding algorithm
that is compatible with the 802.11 framework and allows the
decoding of interfering users. As it is well known in the
information and coding theory community, repetition codes
are highly suboptimal. In this paper we show that repetition
with the addition of small random jitter and bit permutation
forms good codes that can be efficiently decoded and can
outperform TDMA. There are several issues that need to
be further investigated. On the practical side, how to enable
bit permutations and access to soft information with current
infrastructure would be important for exploiting interference at
the physical layer [11], [20]. Further, our fading assumptions
would need to be tested in real deployments and the perfor-
mance of our algorithm investigated under different fading
and retransmission models. On the theoretical side, one future
direction is to use density evolution [7] to predict the exact
performance of the proposed decoders and further optimize the
design of the jitter distribution. More generally, investigating
the factor graphs created by uncoordinated users interfering
and exploiting the message-passing inference machinery for
such problems is promising direction for wireless.
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