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Network Utility Maximization over Partially
Observable Markovian Channels

Chih-ping Li and Michael J. Neely

Abstract—We study throughput utility maximization in a
multi-user network with partially observable Markovian chan-
nels. Here, instantaneous channel states are unavailable and
all controls are based on partial channel information provided
by ACK/NACK feedback from past transmissions. Equivalently,
we formulate a restless multi-armed bandit problem in which
we seek to maximize concave functions of the time average
reward vector. Such problems are generally intractable and in
our problem the set of all achievable throughput vectors is
unknown. We use an achievable region approach by optimizing
the utility functions over a non-trivial reduced throughput
region, constructed by randomizing well-designed round robin
policies. Using a new ratio MaxWeight rule, we design admission
control and channel scheduling policies that stabilize the network
with throughput utility that is near-optimal within the reduced
throughput region. The ratio MaxWeight rule generalizes existing
MaxWeight-type policies for the optimization of frame-based
control systems with policy-dependent frame sizes. Our results
are applicable to limited channel probing in wireless networks,
dynamic spectrum access in cognitive radio networks, and target
tracking of unmanned aerial vehicles.

Index Terms—stochastic network optimization, Markovian
channels, restless multi-armed bandit, cognitive radio, oppor-
tunistic spectrum access, achievable region approach, Lyapunov
drift analysis, ratio max-weight policy

I. INTRODUCTION

We study a multi-user wireless scheduling problem in a
partially observable environment. Consider a base station serv-
ing N users with independent Markov ON/OFF channels (see
Fig. 1). Time is slotted with normalized slots t ∈ {0, 1, 2, . . .}.
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Abstract—This paper considers maximizing throughput util-
ity in a multi-user network with partially observable Markov
ON/OFF channels. Instantaneous channel states are never known,
and all control decisions are based on information provided
by ACK/NACK feedback from past transmissions. This system
can be viewed as a restless multi-armed bandit problem with
a concave objective function of the time average reward vector.
Such problems are generally intractable. However, we provide an
approximate solution by optimizing the concave objective over
a non-trivial inner bound on the network performance region,
where the inner bound is constructed by randomizing well-
designed stationary policies. Using a new frame-based Lyapunov
drift argument, we design a policy of admission control and chan-
nel selection that stabilizes the network with throughput utility
that can be made arbitrarily close to the optimal in the inner
performance region. Our problem has applications in limited
channel probing in wireless networks, dynamic spectrum access
in cognitive radio networks, and target tracking of unmanned
aerial vehicles. Our analysis generalizes the MaxWeight-type
scheduling policies in stochastic network optimization theory
from time-slotted systems to frame-based systems that have
policy-dependent frame sizes.

I. INTRODUCTION

This paper studies a multi-user wireless scheduling problem
in a partially observable environment. We consider a base
station serving N users via N independent Markov ON/OFF
channels (see Fig. 1). Time is slotted with normalized slots
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Fig. 1. The Markov ON/OFF model for channel n ∈ {1, 2, . . . , N}.

t ∈ Z+. Channel states are fixed in every slot, and can
only change at slot boundaries. Suppose the base station has
unlimited data to send for all users. In every slot, the channel
states are unknown, and the base station selects at most one
user to which it blindly transmits a packet. The transmission
succeeds if the used channel is ON, and fails otherwise. At
the end of a slot, an error-free ACK is fed back from the
served user to the base station over an independent control
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channel (absence of an ACK is considered as a NACK).
Since channels are ON/OFF and correlated over time, the
ACK/NACK feedback provides partial information of future
channel states, and can improve future scheduling decisions
for better performance. The goal is to design a control policy
that maximizes a concave utility function of throughput vectors
from all channels. Specifically, let yn(t) be the number of
packets delivered to user n ∈ {1, . . . , N} in slot t. Define
yn � limt→∞ 1

t

�t−1
τ=0 E [yn(τ)] as the throughput of user

n. Let Λ denote the network capacity region, defined as
the closure of the set of all achievable throughput vectors
y � (yn)N

n=1. The goal is to solve:

maximize: g(y), subject to: y ∈ Λ, (1)

where g(·) is a concave, continuous, nonnegative, and nonde-
creasing function.

The interest in the above problem comes from its many
applications. One application is limited channel probing over
wireless networks. Consider the same wireless downlink as
stated above, except that at most one channel is explicitly
probed in every slot. A packet is served over the probed
channel if the state is ON. This setup is essentially the same
as our original problem, except that channels are probed
differently (implicit probing by ACK/NACK feedback versus
probing by explicit signaling). The motivation for studying
limited channel probing is that, in a fast-changing environment
where full channel probing may be infeasible due to timing
overhead, we shall probe channels wisely and exploit channel
memory to improve network performance. As an example
of (1), we may additionally provide fairness to all users, such
as a variant of rate proportional fairness [1], [2] by solving:

maximize: g(y) =
N�

n=1

log (1+yn), subject to: y ∈ Λ. (2)

In cognitive radio networks [3], [4], a secondary user has
access to a collection of Markov ON/OFF channels. Every
channel reflects the occupancy of a spectrum by a primary
user, and the secondary user opportunistically transmits data
over unused spectrums for better spectrum efficiency. In target
tracking of unmanned aerial vehicles (UAVs) [5], a UAV
detects one of the many targets in every slot. Every Markov
channel reflects the movement of a target; a channel is ON if
its associated target moves to a hotspot, and OFF otherwise.
Delivering a packet over a channel represents gaining a
reward by locating a target at its hotspot. In the above two
applications, possible goals include maximizing a weighted
sum g(y) =

�N
n=1 cnyn of throughputs/time-average rewards,

Fig. 1. The Markov ON/OFF channel for user n ∈ {1, 2, . . . , N}.

Channel states are assumed to be fixed in every slot, but may
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change over time. The base station has unlimited data to send
for each user. In every slot, the instantaneous channel states
are unknown and the base station may blindly send a packet
to a selected user. The transmission succeeds if the channel
state is ON, and fails otherwise.1 At the end of a slot, the
served user sends an ACK/NACK feedback to the base station.
Since the channels have memory, the feedback provides partial
information of future channel states, and can be used to
improve future scheduling decisions for better performance.
Our goal is to design a network control policy that optimizes
the throughput vector over the partially observable channels.

Specifically, let yn be the throughput of user n under a
given policy. Let gn(·) be the utility function of user n, where
gn(yn) represents the satisfaction of user n with throughput
yn. We assume the functions gn(·) are concave, continuous,
nondecreasing, and differentiable. Examples of the utility func-
tions are weighted throughput gn(yn) = cn yn, proportional
fairness [2] gn(yn) = log(yn), or the more general α-fairness
functions [3] gn(yn) = (yn)1−α/(1−α), α ≥ 0. Let Λ be the
network capacity region, defined as the closure of the set of
all achievable throughput vectors in the network. We consider
the utility maximization problem:

maximize
N∑

n=1

gn(yn), subject to (yn) ∈ Λ. (1)

We have two types of control in the network: a flow controller
and a channel scheduling policy. We assume the unlimited data
at the base station is stored in an upper-layer reservoir. The
flow controller admits packets from the reservoir into network-
layer queues for transmission in every slot. Flow control is
used to differentiate the throughput received by all users so
as to maximize the long-term total utility

∑N
n=1 gn(yn). The

channel scheduling policy serves a user in a slot, basing its
decisions on the belief of channel states and on the backlogs
of the network-layered queues, so as to stabilize the network.

Before introducing our approach to attack the problem (1),
we discuss potential applications of the above model. It is
widely known that instantaneous channel state information
in wireless networks helps to achieve throughput optimality
(e.g., [4]–[6]). Yet, such information may be unavailable in a
fast-changing environment in which channel sensing is limited
or the channel feedback is delayed. The problem we consider
in this paper studies the use of time correlations of wireless
channels to improve throughput, and further investigates how
to perform utility maximization in this context. In cognitive

1Equivalently, we may assume the base station can probe a single channel
every slot, and transmits a packet if the state is ON.
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radio networks [7], [8], Markov ON/OFF channels are used
to model the idleness of radio spectrums exclusively assigned
to primary users. The problem stated above studies how
a secondary user can opportunistically transmit data over
temporarily unused channels to improve spectrum efficiency.
In target tracking of unmanned aerial vehicles (UAVs) [9],
a UAV monitors one of multiple targets in every slot. The
movement of a target can be modeled as a Markov channel;
the channel is ON if the target moves to a hotspot, and OFF
otherwise. Detecting a target at its hot spot yields a reward; this
is the same as delivering a packet over a channel. Tracking all
targets with some notion of fairness is an interesting problem
captured by the optimization problem (1).

The problem (1) is difficult because it belongs to the class of
restless multi-armed bandit (RMAB) problems [10], which are
known to be generally intractable [11]. Here, every channel is
viewed as a bandit, whose state in a slot is the conditional
probability (or the belief) that the channel is at state ON,
given the history of past channel observations. These bandits
(channels) are restless because the belief of channel states
changes over time even when the channels are not used in a
slot. From the view of optimization, the problem (1) is difficult
because the feasible region Λ does not seem to have a closed
form expression; every boundary point of Λ can be viewed
as the solution to a RMAB problem with some linear cost
function. Therefore, it seems impossible to solve (1) exactly.

A. Achievable region approach

Because the problem (1) is seemingly intractable, we resort
to an achievable region approach. That is, we construct a
convex throughput region Λint that is a subset of the network
capacity region Λ, and solve the convex optimization problem

maximize
N∑

n=1

gn(yn), subject to (yn) ∈ Λint. (2)

Solving (2) only provides a suboptimal solution to the original
problem (1). Nonetheless, in practice a reduced but easily
achievable throughput region Λint could be of greater inter-
est than exploring the full throughput region Λ; achieving
a throughput vector outside the region Λint may inevitably
involve solving a high-dimensional (partially observable)
Markov decision process (MDP), which is less desired in
practice. We may regard the reduced throughput region Λint
as an operational network capacity region, which may be
improved by a deeper investigation into the problem structure.
Also, as opposed to previous studies on RMAB problems
mostly with linear cost functions, convex optimization over
restless bandits itself is an interesting problem even with a
reduced throughput region.

In [12], we have developed a non-trivial reduced throughput
region Λint using the rich structure of Markovian channels. The
region Λint is constructed as a convex hull of performance
vectors of a collection of well-designed round robin policies.
These policies take advantage of channel memory to improve
throughput. The tightness of Λint is analyzed in the special
case that channels are independent and statistically identical.
The tightness of the region Λint is difficult to check in general

cases, but the region is intuitively large due to the nature of
its construction (see more details in Section III). We show
examples in Section VI that, under linear cost functions, our
network control policy resulting from optimizing over the
reduced throughput region Λint has similar performance as
Whittle’s index [13].

B. Ratio MaxWeight policies

Given the reduced throughput region Λint, the main con-
tribution of this paper is to develop novel ratio MaxWeight
policies that, together with simple admission control, solve (2).
In our policy, the amount of data admitted in every slot is the
solution to a simple convex program. For channel scheduling,
we divide time into frames and serve a subset of users (chosen
by ratio MaxWeight) in every frame in a round robin fashion
with proper dynamic orderings. Our control policy yields a
throughput utility that can be made arbitrarily close to the
optimal utility in the reduced throughput region Λint, at the
expense of increasing average queue sizes (see Section V).

In a broader context, the ratio MaxWeight rule generalizes
the existing Lyapunov optimization framework [14] and en-
ables us to solve convex optimization problems over frame-
based/renewal systems that have policy-dependent frame sizes.
To convey the basic idea, let us consider a network control
system in which we can run a set of stationary (possibly
random) policies Π = {π1, π2, . . . , πM} on a frame-by-frame
basis. That is, we divide time into frames and employ a policy
in Π in each frame; we only allow one policy per frame. In
a renewal system a frame can be the duration of a renewal
period. In a Markov decision problem a frame may be the
time between two visits to a recurrent system state. Let rm be
the average reward vector when policy πm is run in all frames,
and we have

rm =
E [total reward under πm in a frame of size Tm]

E [Tm]
. (3)

In renewal systems, the above equation is a standard renewal
reward theory result [15]. The distribution of the random frame
size Tm may depend on the choice of πm. By the time sharing
of policies in Π, the resulting performance region, denoted by
R, is the convex hull of the vectors {r1, . . . , rM}. Through
Lyapunov analysis, we can solve a convex optimization of the
form (2) over R, possibly with additional linear constraints,
by dynamically choosing a policy in Π to be executed in each
frame. The policy chosen in frame k is the one that maximizes
the ratio MaxWeight sum (cf. (3))

maximize
N∑

n=1

Znk rk, subject to (rk) ∈ R. (4)

The term Znk is the (virtual) queue backlog observed at
the beginning of frame k, constructed to capture the running
performance of user n. Note that the linear program (4) is
solved by a vertex of the polytope R, and therefore is solved
by a policy in Π. The complexity of solving (4) depends on
the context of the problem.

In this paper, although our problem does not have an
obvious renewal structure, we carefully design our round robin
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policies so that, under these policies, the throughput achieved
in a round of round robin is independent of the system history
prior to this round; thus a renewal property is enforced. Our
policy space Π consists of these round robin policies.

The recent applications of the ratio MaxWeight rule are
as follows. Work [16] [17, Chapter 5] shows constrained
convex optimization over a multi-class single-server queue that
has a polymatroid delay region is surprisingly solved by a
dynamic cµ rule [18], which chooses a strict priority policy
in every busy period. The optimality of the cµ rule is mostly
established in the past for linear cost functions (e.g., [18],
[19]). One example for solving a convex optimization in a
single-server queue is to provide fairness for the average delay
experienced by different classes of traffic. Work [20] studies
opportunistic cooperation between primary and second users in
a cognitive network, which is a constrained MDP problem; the
ratio MaxWeight rule here reduces to solving an average cost
MDP problem that can be solved exactly. The ratio MaxWeight
rule is also applied to dynamic index coding problems in
wireless networks [21] and energy-aware sleep scheduling in
a multi-server system [22]. We refer readers to [23, Chapter
7] for more discussions on using the ratio MaxWeight rule to
optimize renewal systems.

C. Related work
Stochastic utility maximization over wireless networks that

assumes perfect knowledge of instantaneous channel states is
studied in [24]–[27]; see also [28]–[30]. Limited channel prob-
ing in wireless networks is studied in [31]–[38], assuming i.i.d.
channel states over time. Work [39], [40] develops throughput-
optimal policies in networks with delayed/infrequent channel
state information over Markovian channels; it is assumed there
that channel probing is given as part of the system model and
is not to be controlled. In other words, channel probing and
network control are decoupled. Under such assumption, the
network capacity region can be fully characterized in terms
of the expected allowable transmission rates conditioning on
the most recent channel observations. The major difference of
this paper from [39], [40] is that we assume channel probing is
part of the network control actions, which completely changes
the nature of the problem.

RMAB problems with Markov ON/OFF states are studied
in [13], [41]–[48] for the maximization of sum of time average
or discounted rewards; see also [49]. Index policies such
Whittle’s index [10] are constructed in [13], [44], [49] with
good numerical performance, and are shown to have asymptot-
ically optimal properties in [48], [50]. A (2 + ε)-approximate
algorithm is derived in [45] based on duality methods. In
particular, work [41]–[43] shows that myopic round robin
policies maximize the sum throughput over Markovian chan-
nels in some special cases; in [12], we modify these policies
to construct the throughput region Λint used in this paper.
In general, most previous studies on RMAB problems focus
on linear cost functions. Our analysis in this paper is quite
different because we consider concave objective functions and
use an achievable region method. Index heuristics developed
for linear costs seem difficult to apply to our problem because
they use dynamic programming ideas.

Previous work [46] characterizes the full network capacity
region Λ over partially observable Markov ON/OFF channels
as a limit of a sequence of linear programs, each of which
solves a finite-state MDP truncated from an infinite-state MDP
that can describe Λ. Due to the curse of dimensionality, this
approach does not scale with the number of channels. Our
reduced throughput region Λint, although a strict subset of the
full network capacity region Λ in usual cases, is designed
to scale well with the number of channels. As a result, our
network control policy also scales with the number of channels
(see Section IV).

An outline of the paper is as follows. The network model
is given in the next section. Section III introduces the perfor-
mance region Λint constructed in [12]. Our dynamic control
policy is motivated and given in Section IV, followed by
performance analysis in Section V. The simulation results,
including the performance comparison to Whittle’s index, are
presented in Section VI.

II. DETAILED NETWORK MODEL

In addition to the network model described in the in-
troduction, we suppose that each Markov ON/OFF channel
n ∈ {1, . . . , N} changes states across slots according to the
transition probability matrix

Pn =

[
Pn,00 Pn,01

Pn,10 Pn,11

]
,

where state ON is represented by 1 and OFF by 0, and Pn,ij
denotes the transition probability from state i to j. We assume
0 < Pn,ij < 1 for all states i, j and all channels n, and that
the probability matrices Pn are known at the base station. We
assume each channel is positively correlated over time. An
equivalent mathematical assumption is to let Pn,01+Pn,10 < 1
(equivalently, Pn,11 > Pn,01) for all channels n.2 For channel
n, let P(k)

n,ij be the k-step transition probability from state i to
j, and πn,ON be the stationary probability of state ON.

We assume that the base station has a higher-layer unlimited
data source for each user. In every slot, the base station admits
rn(t) user-n packets into a network-layer queue Qn(t) of
infinite capacity, where Qn(t) denotes the user-n backlog in
slot t. For simplicity, we assume rn(t) takes real values in the
interval [0, 1] for all n.3 Let µn(t) ∈ {0, 1} be the service rate
for user n in slot t under a given policy; we have µn(t) = 1
if user n is served in slot t and its channel is ON, and 0
otherwise. The user-n queue {Qn(t)}∞t=0 evolves over time as

Qn(t+ 1) = max[Qn(t)− µn(t), 0] + rn(t). (5)

2With Pn,11 > Pn,01, we let sn(t) be the state of channel n in a slot and
observe that the auto-covariance of sn(t) is positive according to

E [sn(t)sn(t+ 1)]− E [sn(t)]E [sn(t+ 1)]

= θ Pn,11 − θ
[
(1− θ)Pn,01 + θ Pn,11

]
> θ Pn,11 − θ Pn,11 = 0,

where θ = Pr [sn(t) = 1].
3We can think of rn(t) as the number of packets admitted in a slot,

normalized by the maximal number of packets that can be admitted in every
slot; thus rn(t) can take real values between 0 and 1. We can accommodate
the alternative assumption that rn(t) takes integer values in {0, 1} by
introducing auxiliary queues; see [25] for an example.
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Initially, we assume Qn(0) = 0 for all n. We say queue Qn(t)
is (strongly) stable if its limiting average backlog is finite, i.e.,

lim sup
t→∞

1

t

t−1∑

τ=0

E [Qn(τ)] <∞.

The network is stable if all queues (Q1(t), . . . , QN (t)) are
stable. Clearly a sufficient condition for stability is:

lim sup
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [Qn(τ)] <∞. (6)

Our goal is to design a control policy that admits the right
amount of data into the network and serves them properly
by channel scheduling, so that the network is stable with
a throughput utility that (almost) solves the optimization
problem (2).

III. REDUCED THROUGHPUT REGION

This section introduces the reduced throughput region Λint
constructed by randomizing (or time sharing) over a collection
of round robin policies that exploit channel memory. For this,
we first study the structure of positively correlated Markovian
channels and how the belief of the channel states evolves in
the system.

A. The structure of Markovian channels

We define the information state (i.e., the belief) ωn(t) of
channel n as the conditional probability that channel n is ON
in slot t given all past channel observations. Namely,

ωn(t) , Pr [sn(t) = ON | channel observation history] ,

where sn(t) denotes the state of channel n in slot t. We
assume initially ωn(0) = πn,ON for all n.4 Conditioning on the
most recent observation, the belief ωn(t) takes values in the
countably infinite setWn , {P(k)

n,01,P
(k)
n,11 : k ∈ N}∪{πn,ON}.

If channel n is last observed k slots in the past and its state
was i ∈ {0, 1}, the current belief in slot t is ωn(t) = P

(k)
n,i1.

Let n(t) be the channel observed in slot t. Then the belief
ωn(t) evolves over time as:

ωn(t+1)=





Pn,01, if n = n(t), sn(t) = OFF

Pn,11, if n = n(t), sn(t) = ON

ωn(t)Pn,11 + (1− ωn(t))Pn,01, if n 6= n(t).
(7)

The belief vector (ωn(t))Nn=1 is a sufficient statistic [51]; i.e., it
is optimal to schedule channels based only on the (ωn(t))Nn=1

information.

B. Policies that exploit channel memory

Since channels are positively correlated over time, we have
shown in [12] that the feasible values of ωn(t) satisfy

Pn,11 ≥ P
(k1)
n,11 ≥ P

(k2)
n,11 ≥ πn,ON ≥ P

(k3)
n,01 ≥ P

(k4)
n,01 ≥ Pn,01

(8)

4In general, we need that the initial belief ωn(0) belongs to the set {P(k)
n,11 :

k ∈ N} ∪ {πn,ON}. This can be achieved by having a training period before
time zero in which every user is continuously served until an ACK is received.

for all integers k1 ≤ k2 and k3 ≥ k4. In particular, P(k)
n,01 is

increasing in k and P
(k)
n,11 is decreasing in k. This inequality

has important implications. The belief ωn(t) is the expected
throughput for user n in slot t. Thus, to have better throughput,
we should keep serving a channel whenever ωn(t) has the
maximal value Pn,11 (i.e., when the channel n is known to
be ON in the previous slot). On the other hand, given channel
n was OFF in its last use, we should idle the channel as
long as possible so that its belief P(k)

n,01 can improve over time
(noting that P

(k)
n,01 is increasing in k). One good policy that

exploits the above two throughput-improving properties is the
following class of myopic round robin policies:

Fix a subset A of channels in {1, . . . , N}. We serve
the channels in a nonstop round robin fashion with
a fixed channel ordering, where on each channel we
keep transmitting packets until a NACK is received
(i.e., when the channel turns OFF).

The use of round robin is indeed to give the last-accessed
channel the most time to “recover” from the worst belief
state Pn,01. This myopic round robin policy when applied
to all channels is known to maximize the sum throughput
when channels are positively correlated, independent, and
statistically identical [42].

Since the myopic round robin policies exploit wireless
channel memory, we may construct an achievable throughput
region Λint by randomizing over these policies. The difficulty
is that the throughput of a myopic round robin policy is hard
to analyze because it is directly related to a high-order Markov
chain [41]. Thus, the resulting throughput region is also hard
to obtain. Our approach is to develop a modified round robin
policy whose performance is easy to analyze. Randomizing
these policies yields a well-defined throughput region Λint, so
that the optimization problem (2) can be solved. This modified
policy is more conservative than myopic round robin because
it allows transmitting dummy packets; this is for the sake
of tractability. Nonetheless, the modified round robin policy
still exploits channel memory to improve throughput, and is
asymptotically optimal in some special cases such as when
channels are i.i.d. [12]. The development of the modified round
robin policies and their randomizations, together with the
associated throughput region, is studied in [12]; we summarize
these results in the rest of the section to facilitate later analysis.

C. Randomized round robin

The randomized round robin policy randomly serves a
subset of users for one round, after which it selects another
subset of users, and so on. The order in which users are served
in a round is important. Suppose we choose to serve user 1 and
2 in a round, where user 1 is the last served user in the previous
round. Recall from the above discussions that we need to give
the last-accessed channel the most time to recover from a bad
belief state. Thus, we should serve user 2 before user 1 in this
round. In general, we shall serve users in every round with
the ordering of least recently used first.

We describe the randomized round robin policies. Let Φ
be the set of all nonzero N -dimensional binary vectors. Each
vector φ , (φn)Nn=1 ∈ Φ denotes a collection of active
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channels; we say channel n is active if φn = 1. Let M(φ) be
the number of active channels (ones) in φ. Later in the paper
we also allow φ = 0, meaning that no channels are chosen
and the system is forced to idle for one slot.

Randomized Round Robin Policy (RandRR)

1) In every round, pick a subset of active channels φ ∈
Φ∪{0} with probability αφ, where {αφ} is a stationary
distribution with α0 +

∑
φ∈Φ αφ = 1.

2) If φ ∈ Φ is selected, serve active channels in φ for one
round using the ordering of least recently used first (in
the first round, the ordering is arbitrary). The service on
each channel is described in Step 4. If φ = 0, we idle
the system for one slot. At the end of either case, go to
Step 1.

3) Update the belief vector (ωn(t))Nn=1 by (7) in every slot.
4) When starting service on channel n, with probability

P
(M(φ))
n,01 /ωn(t) we keep transmitting packets until a

NACK is received. With probability 1−P
(M(φ))
n,01 /ωn(t)

we transmit a dummy packet with no information con-
tent for one slot. After either case, switch to the next
active channel.

Step 4 of the RandRR policy ensures that, when we start
serving a channel n in a round in which M channels are
chosen, we “fake” the current belief of channel n to be P

(M)
n,01,

which can be strictly worse than its actual belief ωn(t) (again,
the reason of doing this is to design policies with tractable
performance). To see this, in Step 4, the probability that
user n successfully transmits a packet in the first slot (and
subsequently keeps transmitting until receiving a NACK) is

P
(M)
n,01

ωn(t)
× ωn(t) = P

(M)
n,01.

Also, we switch to the next channel after the first slot with no
data packets delivered if either a dummy packet is transmitted
or a data packet is served but the channel is OFF. The event
happens with probability

(
1−

P
(M)
n,01

ωn(t)

)
+

P
(M)
n,01

ωn(t)

(
1− ωn(t)

)
= 1− P

(M)
n,01.

We see that transmitting a dummy packet is to “fake” an
OFF channel state. We note that allowing system idling in a
RandRR policy does not degrade the set of achievable through-
put vectors. If we let R be the set of feasible throughput
vectors under the set of RandRR policies in which idling the
system is prohibited, permitting system idling simply ensures
that any throughput vector dominated entrywise by a point in
R can be achieved by a RandRR policy. This is useful in later
analysis.

A RandRR policy is feasible only if the inequality
P

(M(φ))
n,01 ≤ ωn(t) holds whenever channel n starts service.

This can be proved by a similar argument as in [12, Lemma
6]; we provide the proof below for completeness.

Lemma 1. Every RandRR policy is feasible.

Proof: When a channel starts service in the first round,
by assumption we have ωn(t) = πn,ON ≥ P

(k)
n,01 for all

k ∈ {1, . . . , N} (see (8)). Thus every RandRR policy is
feasible in the first round. Suppose M channels are selected
for service in a round after the first. We index the M channels
by {n1, . . . , nM}, which is in the decreasing order of the time
duration between their last use and the beginning of the current
round. In other words, the last use of nk is earlier than that of
nk′ only if k < k′. Fix a channel nk. This lemma is proved
if we can show when channel nk starts service, say on slot
t, the time elapsed since the end of its last service is at least
(M − 1) slots. To see this, assuming this condition holds, we
have two cases:

• If channel nk is known to be ON at its last use (when
a dummy packet is transmitted), then its belief in slot t
is wnk(t) = P

(m)
nk,11 for some m ≥ M , which is greater

than or equal to P
(M(φ))
nk,01 = P

(M)
nk,01 by (8).

• If channel nk is OFF at its last use, then ωnk(t) = P
(m)
nk,01

for some m ≥M . Thus ωnk(t) ≥ P
(M)
nk,01 because P

(m)
nk,01

is increasing in m (cf. (8)).

It remains to show that when channel nk starts service,
the time elapsed since the end of its last service is at least
(M − 1) slots. We partition the M channels except for nk
into A = {n1, . . . , nk−1} and B = {nk+1, . . . , nM}. The
last use of every channel in B occurs after the last use of
nk, and thus channel nk has been idled for at least |B| slots.
However, the policy in this round will serve all channels in
A before serving nk from the ordering of least recently used
first. Each channel in A takes at least one slot, and so we wait
at least additional |A| slots before serving channel nk. The
total time that channel nk has been idled since its last use is
thus at least |A|+ |B| = (M − 1) slots.

We give a simple example of using a RandRR policy. Sup-
pose channel subsets {1, 2, 3, 4}, {2, 3}, {1, 2, 4} are selected
in the first three rounds. In the first round, channels are ordered
by 4→ 1→ 3→ 2. The complete ordering by least recently
used first in the first three rounds is then

(4→ 1→ 3→ 2)→ (3→ 2)→ (4→ 1→ 2).

Here are some useful properties of the RandRR policies.

Theorem 1. 1) In a round of a RandRR policy in which the
active channels φ ∈ Φ are chosen for service, we let Lφ

n be
the time duration an active channel n is accessed. The random
variable Lφ

n has the probability distribution:

Lφ
n =

{
1 with prob. 1− P

(M(φ))
n,01

j ≥ 2 with prob. P(M(φ))
n,01 (Pn,11)(j−2) Pn,10

(9)

and

E
[
Lφ
n

]
= 1 +

P
(M(φ))
n,01

Pn,10
. (10)

2) During Lφ
n , channel n serves (Lφ

n − 1) packets.
3) The random variables {Lφ

n}n:φn=1 are mutually indepen-
dent.

Proof of Theorem 1: The first two results are given in [12,
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Corollary 1]. For the last result, it is not difficult to see that

Pr
[
Lφ
n = j|ωn(t)

]
= Pr

[
Lφ
n = j

]
, j = 1, 2, . . . (11)

for all possible values of ωn(t), where ωn(t) denotes the belief
of channel n when channel n starts service, and Pr

[
Lφ
n = j

]

is given in (9). Equation (11) shows that the value of Lφ
n

is independent of the belief ωn(t). Since ωn(t) summarizes
the system history, the value of Lφ

n is indeed independent of
the system history including the values of Lφ

m for all active
channels m served before channel n. Therefore we must have

Pr
[
Lφ
n = j|Lφ

m = i
]

= Pr
[
Lφ
n = j

]
, j = 1, 2, . . .

for all active channels m in φ receiving service before channel
n in the same round. We conclude that the random variables
{Lφ

n}n:φn=1
are mutually independent.

Let Tk denote the duration of the kth round in a RandRR
policy, and φk represent the active channels served in Tk. An
important observation from the construction of the RandRR
policy is that the random variables {Tk, k = 0, 1, 2, . . .} are
i.i.d.. Specifically, let ωk be the belief state vector at the start
of Tk. Given that the active channels φ are served in Tk, we
have

Pr [Tk = j | ωk,φk = φ] = Pr
[ ∑

n:φn=1

Lφ
n = j | ωk

]

= Pr
[ ∑

n:φn=1

Lφ
n = j

]

where the last equality follows that the value of Lφ
n is

independent of the system history. When no channels are
served in Tk (i.e., the system is idle), we always have Tk = 1.
It follows that

Pr [Tk = j | ωk] =
∑

φ∈Φ∪{0}
αφ Pr [Tk = j | ωk,φk = φ]

= α01[j=1] +
∑

φ∈Φ

αφ Pr
[ ∑

n:φn=1

Lφ
n = j

]
,

(12)

which holds for all possible values of ωk, and 1[·] is an
indicator function. From (12), the value of Tk is independent
of the system history, indicating that Tk are independent over
k. From (12) we also have

Pr [Tk = j] = α01[j=1] +
∑

φ∈Φ

αφ Pr
[ ∑

n:φn=1

Lφ
n = j

]
, (13)

which holds for all k; thus Tk are identically distributed. From
these discussions we have the next lemma.

Lemma 2. 1) Let Tk denote the duration of the kth transmis-
sion round in a RandRR policy. The random variables Tk are
i.i.d. over k with

E [Tk] = α0 +
∑

φ∈Φ

αφ

( ∑

n:φn=1

E
[
Lφ
n

])
.

2) Let Nn,k denote the number of packets served for user
n in round Tk. For each user n, the random variables Nn,k
are i.i.d. over k with E [Nn,k] =

∑
φ:φn=1 αφ E

[
Lφ
n − 1

]
.

3) Because Nn,k and Tk are i.i.d. over k, the throughput for

user n under a RandRR policy is equal to E [Nn,k] /E [Tk].

Proof: That Tk are i.i.d. is shown above. The value of
E [Tk] follows (13). That Nn,k are i.i.d. over k follows directly
that Tk are i.i.d.. The value of E [Nn,k] follows the first result
and Theorem 1. The last result follows the first two results
and the Law of Large Numbers.

D. The reduced throughput region Λint

We define the throughput region Λint in the optimization
problem (2) as the set of all throughput vectors achieved by
the collection of RandRR policies. A closed form expression
of Λint is analyzed in [12, Theorem 1] and given next.

Theorem 2. For each nonzero binary vector φ ∈ Φ, define
an N -dimensional vector ηφ = (ηφn ) where

ηφn =





E[Lφ
n]−1∑

n:φn=1 E[Lφ
n]

if φn = 1

0 otherwise,

where E
[
Lφ
n

]
is defined in (10). The throughput region Λint

rendered by the class of RandRR policies is

Λint =
{

(λn)
∣∣ 0 ≤ λn ≤ µn ∀n, (µn) ∈ conv

(
{ηφ}φ∈Φ

) }
,

where conv (A) denotes the convex hull of set A.

The tightness of the region Λint in Theorem 2 is quantified
in [12, Section V] when channels are i.i.d.; in particular, it is
shown that the gap between the boundary of the region Λint
and that of the full network capacity region Λ in a feasible
direction d from the origin decreases to zero exponentially fast
as we move d to form a smaller angle with the all-one vector
(1, . . . , 1).

E. A two-user example

In a two-user network with i.i.d. channels with P01 = P10 =
0.2 (the subscript n is dropped due to channel symmetry),
Fig. 2 gives an idea of the tightness of the reduced throughput
region Λint compared to the full network capacity region Λ.
The points B, A, and C in Fig. 2 maximize the sum throughput

In every round of a RandRR policy, a RR(φ) policy is
feasible only if P

(M(φ))
n,01 ≤ ωn(t) when an active channel n

starts service (see Step 2 of the RR(φ) policy). This condition
is guaranteed by serving active channels in the order of least
recently used first [8, Lemma 6]. Thus all RandRR policies
are feasible.4

B. The inner performance region Λint

We present some useful properties of the RandRR policies.

Theorem 1 ([8]). 1) In every round of a RandRR policy, the
time duration Lφ

n an active channel n is accessed by a ran-
domly chosen RR(φ) policy has the probability distribution:

Lφ
n =

�
1 with prob. 1 − P

(M(φ))
n,01

j ≥ 2 with prob. P
(M(φ))
n,01 (Pn,11)

(j−2) Pn,10

and

E
�
Lφ

n

�
= 1 +

P
(M(φ))
n,01

Pn,10
. (8)

2) During the time duration Lφ
n , channel n serves (Lφ

n −1)
packets.

We note that the distribution of Lφ
n in Theorem 1 is

independent of the information state vector (ωn(t))N
n=1 at the

start of a transmission round. It only depends on the number
of channels, namely M(φ), chosen for service in a round.

Corollary 1. 1) Let Tk denote the duration of the kth
transmission round in a RandRR policy. The random variables
Tk are i.i.d. for different k with

E [Tk] = α0 +
�

φ∈Φ

αφ


 �

n:φn=1

E
�
Lφ

n

�

 ,

which is computed by conditioning on the policy chosen in a
round.

2) Let Nn,k denote the number of packets served for user n
in round Tk. For each fixed n, the random variables Nn,k are
i.i.d. for different k with E [Nn,k] =

�
φ:φn=1 αφ E

�
Lφ

n − 1
�
,

which is computed by conditioning on the RR(φ) policy that
is chosen and uses channel n.

3) Because Nn,k and Tk are i.i.d. over k, the throughput of
user n under a RandRR policy is equal to E [Nn,k] /E [Tk].

In this paper, we define the inner performance region Λint
in (3) as the set of all achievable throughput vectors by the
class of RandRR policies. A closed form expression is given
in [8, Theorem 1]. The tightness of the resulting region Λint is
quantified in Section V of [8] when channels are statistically
identical; an example is given next.

C. A two-user example

Consider a two-user system with statistically identical chan-
nels with P01 = P10 = 0.2. Fig. 2 shows the tightness of the

4The feasibility of RandRR policies is proved in [8] under the special case
that there are no idle operations (α0 = 0). Using the monotonicity of the k-
step transition probabilities {P

(k)
n,01, P

(k)
n,11}, the feasibility can be similarly

proved for the extended RandRR policies considered here.

inner throughput region Λint compared to the (unknown) full
network capacity region Λ. We note that points B, A, and

A

B

C

D

λ1

λ2

0.25 0.5

0.25

0.5

Λint

Λ

Fig. 2. The closeness of the inner throughput region Λint and the network
capacity region Λ in a symmetric two-user network.

C in Fig. 2 maximize the sum throughput of the network in
directions (0, 1), (1, 1), and (1, 0), respectively [24]. Thus the
boundary of Λ is a concave curve connecting these points.

IV. NETWORK UTILITY MAXIMIZATION

A. The QRRNUM policy

The inner throughput region Λint defined above can be
viewed as a convex hull of of the zero vector and the
performance vectors of the subset of RandRR policies each
of which executes a fixed RR(φ) policy in every round.
Therefore, the problem (3) is a well-defined convex program.
Yet, solving (3) is difficult because the performance region Λint
is represented as a convex hull of 2N vectors. The following
admission control and channel scheduling policy solves (3) in
a dynamic manner with low complexity.

Queue-dependent Round Robin for Network Utility
Maximization (QRRNUM):

• (Admission control) At the start of every round, observe
the current queue backlog Q(t) = (Q1(t), . . . , QN (t))
and solve the convex program

maximize: V g(r) −
N�

n=1

Qn(t) rn (9)

subject to: rn ∈ [0, 1], ∀n ∈ {1, . . . , N}, (10)

where V > 0 is a predefined control parameter, and
vector r � (rn)N

n=1. Let (rQRR
n )N

n=1 be the solution
to (9)-(10). In every slot of the current round, admit rQRR

n

packets for every user n ∈ {1, . . . , N} into queue Qn(t).
• (Channel scheduling) At the start of every round, over all

nonzero binary vectors φ ∈ Φ, let φQRR be the maximizer
of the ratio

�N
n=1 Qn(t)E

�
Lφ

n − 1
�
φn

�N
n=1 E

�
Lφ

n

�
φn

, (11)

where E
�
Lφ

n

�
is given in (8). If the maximum of (11) is

positive, run policy RR(φQRR) for one round using the
channel ordering of least recently used first. Otherwise,
idle the system for one slot. At the end of either case, start
a new round of admission control and channel scheduling.

Fig. 2. The closeness of the reduced throughput region Λint and the network
capacity region Λ in a two-user network with i.i.d. channels.

in the direction (0, 1), (1, 1), and (1, 0), respectively, and the
boundary of the network capacity region Λ shall be a concave
curve connecting these points. The loss of the sum throughput
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in the point D as compared to the optimal point A is less than
or equal to [12, Section III-C]

P01

xP10 + P01
(1− x)2, x , P01 + P10 < 1.

In general, in an N -user network with i.i.d. channels, the
difference between the maximum sum throughput over the
collection of RandRR policies and the optimal sum throughput
is at most [12, Section III]

P01

xP10 + P01
(1− x)N , x , P01 + P10 < 1,

which decreases to zero geometrically fast with N . We refer
readers to see additional examples in [46, Fig. 3], in which
the tightness of Λint is compared to the full network capacity
region Λ that is numerically computed in a two-user example.

IV. NETWORK UTILITY MAXIMIZATION

A. The QRRNUM policy

By the nature of its construction, the reduced throughput
region Λint defined in the previous section can be viewed as a
convex hull of the zero vector and (2N−1) throughput vectors,
where each of the (2N −1) throughput vectors corresponds to
the performance of a RandRR policy that serve a fixed subset
of users in every round (cf. Theorem 2). This can be proved
by a time sharing argument. As a result, the problem (2) is a
well-defined convex program. Yet, solving (2) remains difficult
because the feasible region Λint is represented as a convex
hull of 2N vectors. Next we introduce an admission control
and channel scheduling policy that solves (2) in a dynamic
manner with low complexity. In this policy, time is divided
into frames. In each frame we serve a subset of users by one
round of round robin; the frame size is equal to the duration
of a round. The amount of data admitted in every slot of a
frame is decided at the beginning of the frame.

Queue-Dependent Round Robin for Network Utility Maxi-
mization (QRRNUM)

• (Admission control) At the start of every frame, observe
the current queue backlog

(
Q1(t), . . . , QN (t)

)
and solve

the convex program for each user n

maximize V gn(rn)−Qn(t) rn (14)
subject to rn ∈ [0, 1], (15)

where V > 0 is a predefined control parameter. Let rQRR
n

be the solution to (14)-(15). Admit rQRR
n packets for user

n into queue Qn(t) in every slot of the current frame.
• (Channel scheduling) At the start of every frame, over all

nonzero binary vectors φ = (φn)Nn=1 ∈ Φ, let φQRR be
the solution to

max
φ∈Φ

∑N
n=1Qn(t)E

[
Lφ
n − 1

]
φn

∑N
n=1 E

[
Lφ
n

]
φn

, (16)

where E
[
Lφ
n

]
is given in (10). If the maximum of (16) is

positive, serve the active channels in φQRR for one round
with the ordering of least recently used first; the service

on each channel follows Step 4 of the RandRR policy. If
the maximum of (16) is less than or equal to zero, idle
the system for one slot. At the end of either case, start a
new frame of service.

The convex program (14)-(15) has a simple closed-form so-
lution because we assume gn(·) are differentiable. We illustrate
the properties of the admission controller in an example. Let
gn(rn) = cn log(rn) and the solution to (14)-(15) is

rQRR
n = min

[
cnV

Qn(t)
, 1

]
. (17)

We have the observations from (17): (a) User n admits less
data when the queue Qn(t) is more congested. (b) User n
admits data more aggressively as compared to other users if it
has a “better” utility function (in this example, with a larger
cn). (c) The parameter V reflects a performance tradeoff:
A large V allows data to be admitted more aggressively
so as to maximize the throughput utility, but incurs a large
backlog in the queue (see Section IV-D for more discussions
on this tradeoff). We can also visualize the above properties
by observing the concave function (14).

We note that solving (16) is essentially a max-weight policy.
The maximum (16) is equivalent to

max
φ∈Φ

N∑

n=1

Qn(t)µφ
n(t), µφ

n(t) =





E[Lφ
n]−1∑

n:φn=1 E[Lφ
n]

if φn = 1

0 otherwise.

From Theorem 1, the term µφ
n(t) is the average throughput

for user n when channels φ are chosen for service in a round.

B. Computing the maximum (16)

The most complex part of the QRRNUM policy is to
solve (16). We introduce a bisection algorithm that searches
for the maximum of (16) with exponentially fast speed. This
algorithm is motivated by the next lemma.

Lemma 3. ([23, Lemma 7.5]) Let a(φ) and b(φ) denote the
numerator and denominator of (16), respectively. Define

θ∗ , max
φ∈Φ

{
a(φ)

b(φ)

}
, c(θ) , max

φ∈Φ
[a(φ)− θb(φ)] .

Then:
If θ < θ∗, then c(θ) > 0.
If θ > θ∗, then c(θ) < 0.
If θ = θ∗, then c(θ) = 0.

The value c(θ) in Lemma 3 is easily computed by noticing

c(θ) = max
k∈{1,...,N}

{
max
φ∈Φk

[a(φ)− θb(φ)]

}
, (18)

where Φk ⊂ Φ denotes the set of binary vectors having k
ones. For every k ∈ {1, . . . , N}, the inner maximum of (18)
is equal to

max
φ∈Φk

{
N∑

n=1

[
P

(k)
n,01

Pn,10
(Qn(t)− θ)− θ

]
φn

}
. (19)
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This is solved by computing
[
P
(k)
n,01

Pn,10
(Qn(t)− θ) − θ

]
for

each user and activating the k channels (i.e., setting their
φn to be 1) with the first k largest values. The complexity
of computing (19) is as follows. It takes O(N) to compute[
P
(k)
n,01

Pn,10
(Qn(t)− θ)−θ

]
for all users, O(N logN) to sort, and

O(N) to add the first k largest values; it takes O(N logN) to
compute (19). Thus, it takes O(N2 logN) to compute c(θ).

From Lemma 3, we can search for the maximum ratio θ∗

as follows. Suppose initially we know θ∗ lies in some interval
[θmin, θmax]. We compute the midpoint θmid = 1

2 (θmin + θmax)
and evaluate c(θmid). If c(θmid) > 0, Lemma 3 indicates
that θmid < θ∗, and we know θ∗ lies in the reduced re-
gion [θmid, θmax], which is half the size of the initial region
[θmin, θmax]. Hence, one such bisection operation reduces the
feasible region of the unknown θ∗ by half. By iterating the
bisection process, we can find θ∗ with exponential speed.

With the knowledge of θ∗, the maximizer φQRR of (16) is
the maximizer of c(θ∗). To see this, by definition we have

θ∗ =
a(φQRR)

b(φQRR)
≥ a(φ)

b(φ)
, for all φ ∈ Φ.

It follows that

a(φQRR)−θ∗ b(φQRR) = 0 ≥ a(φ)−θ∗ b(φ), for all φ ∈ Φ.

Thus φQRR is the maximizer of maxφ∈Φ[a(φ)− θ∗ b(φ)].
Based on the above discussions, the bisection algorithm that

maximizes (16) is presented next.

Bisection Algorithm that Solves (16)

• Initially, define θmin , 0 and

θmax ,
(

N∑

n=1

Qn(t)

)(
N∑

n=1

πn,ON

Pn,10

)
.

It is not hard to verify that θmin ≤ a(φ)/b(φ) ≤ θmax for
all φ ∈ Φ, where a(φ) and b(φ) denote the numerator
and the denominator of (16), respectively. Then, θ∗ ∈
[θmin, θmax].

• Compute θmid = 1
2 (θmin + θmax) and c(θmid). If c(θmid) =

0, we have θ∗ = θmid and

φQRR = argmaxφ∈Φ [a(φ)− θ∗b(φ)] .

When c(θmid) < 0, update the feasible region [θmin, θmax]
of θ∗ as [θmin, θmid]. If c(θmid) > 0, update the region as
[θmid, θmax]. In either case, repeat the bisection process.

C. Lyapunov drift inequality

The construction of the QRRNUM policy follows a novel
Lyapunov drift argument. We start with constructing a frame-
based Lyapunov drift inequality over a frame of size T , where
T is possibly random but has a finite second moment bounded
by a constant C so that C ≥ E

[
T 2 | Q(t)

]
for all t and all

possible Q(t). Intuition for the inequality is provided later. By

iteratively applying (5), it is not hard to show

Qn(t+T ) ≤ max

[
Qn(t)−

T−1∑

τ=0

µn(t+ τ), 0

]
+

T−1∑

τ=0

rn(t+τ)

(20)
for each n ∈ {1, . . . , N}. We define the quadratic Lya-
punov function L(Q(t)) , 1

2

∑N
n=1Q

2
n(t) as a scalar measure

of the queue vector Q(t). Define the T -slot Lyapunov drift

∆T (Q(t)) , E [L(Q(t+ T ))− L(Q(t)) | Q(t)]

as the conditional expected difference of the queue sizes over
T slots, where the expectation is with respect to the random-
ness of the network (time-varying channels and the possibly
random control actions) over T slots and the randomness of
the duration T . By taking square of (20) for every n, using
inequalities

max[a− b, 0] ≤ a ∀a ≥ 0,

(max[a− b, 0])2 ≤ (a− b)2, µn(t) ≤ 1, rn(t) ≤ 1

to simplify terms, summing all resulting inequalities, and
taking conditional expectation on Q(t), we can show

∆T (Q(t)) ≤ B

− E

[
N∑

n=1

Qn(t)

[
T−1∑

τ=0

µn(t+ τ)− rn(t+ τ)

]
| Q(t)

]
(21)

where B , NC > 0 is a constant. Subtracting from both sides
of (21) the term V E

[∑T−1
τ=0

∑N
n=1 gn(rn(t+ τ)) | Q(t)

]

where V > 0 is a predefined control parameter, we get the
Lyapunov drift inequality

∆T (Q(t))− V E

[
T−1∑

τ=0

N∑

n=1

gn(rn(t+ τ)) | Q(t)

]

≤ B − f(Q(t))− h(Q(t)),

(22)

where

f(Q(t)) ,
N∑

n=1

Qn(t)E

[
T−1∑

τ=0

µn(t+ τ) | Q(t)

]
(23)

h(Q(t)) , E

[
T−1∑

τ=0

[
V

N∑

n=1

gn(rn(t+ τ))

−
N∑

n=1

Qn(t)rn(t+ τ)

]
| Q(t)

]
. (24)

The inequality (22) holds for any admission control and
scheduling policy over a duration of any size T .

D. Intuition behind the Lyapunov drift inequality

The desired network control policy shall stabilize all
queues (Q1(t), . . . , QN (t)) and maximize the throughput util-
ity
∑N
n=1 gn(yn). For queue stability, we want to minimize

the Lyapunov drift ∆T (Q(t)), because it captures the ex-
pected growth of queue sizes over a duration of time. To
increase throughput utility, we want to admit more data into
the system for service and maximize the expected sum util-
ity E

[∑T−1
τ=0

∑N
n=1 gn(rn(t+ τ)) | Q(t)

]
. Minimizing Lya-



ELSEVIER PERFORMANCE EVALUATION, 2012 9

punov drift and maximizing throughput utility, however, con-
flict with each other, because queue sizes increase with more
data admitted into the system. To capture this tradeoff, it is
natural to minimize a weighted difference of Lyapunov drift
and throughput utility, which is the left side of (22). The
tradeoff is controlled by the positive parameter V . Intuitively,
a large V value puts more weights on throughput utility, thus
throughput utility is improved, at the expense of the growth
of the queue sizes captured in ∆T (Q(t)). The construction
of the inequality (22) provides a useful upper bound on the
weighted difference of Lyapunov drift and throughput utility.

The QRRNUM policy that we construct in the next section
uses the above ideas with two modifications. First, it suffices
to minimize a bound on the weighted difference of Lyapunov
drift and throughput utility, i.e., the right side of (22). Second,
since the weighted difference of Lyapunov drift and throughput
utility in (22) is made over a frame of T slots, where the value
of T is random and depends on the policy used within the
frame, it is natural to normalize the weighted difference by the
average frame size, and we will minimize the resulting ratio
(see (25)). This new ratio rule is a generalization of existing
MaxWeight policies for stochastic network optimization over
frame-based systems. These two modifications lead to the next
analysis.

E. Construction of the QRRNUM policy

We consider the policy that, at the start of every round,
observes the current queue vector Q(t) and maximizes over
all feasible policies the average

f(Q(t)) + h(Q(t))

E [T | Q(t)]
(25)

over a frame of size T . Every feasible policy here consists
of: (1) an admission control mechanism that admits packets
into queues Q(t) for all users in every slot; (2) a randomized
round robin policy RandRR (given in Section III-C) for data
delivery. The frame size T in (25) is considered as the length of
one transmission round under the candidate RandRR policy,
and its distribution depends on the backlog vector Q(t) via
the queue-dependent choice of RandRR. When the feasible
policy that maximizes (25) is chosen, it is executed for one
round of transmission, after which a new policy is chosen by
maximizing the updated ratio of (25), and so on.

We simplify the maximization of (25); the result is the
QRRNUM policy. In h(Q(t)) (see (24)), the optimal admit-
ted data vector (rn(t + τ)) in every slot is independent of
the frame size T and of the rate allocations µn(t + τ) in
f(Q(t)) (see (23)). In addition, it should be the same for all
τ ∈ {0, . . . , T − 1}, and is the solution to (14)-(15). These
observations lead to the admission control subroutine in the
QRRNUM policy.

Let Ψ∗(Q(t)) denote the optimal objective of (14)-(15).
Since the optimal admitted data vector is independent of the
frame size T , we have h(Q(t)) = E [T | Q(t)] Ψ∗(Q(t)),
and (25) is equal to

f(Q(t))

E [T | Q(t)]
+ Ψ∗(Q(t)). (26)

It indicates that finding the optimal admission policy is inde-
pendent of finding the optimal RandRR policy that maximizes
the first term of (26).

Next we evaluate the first term of (26) under a fixed RandRR
policy with parameters {αφ}φ∈Φ∪{0}. Conditioning on the
subset φ of channels served in a round, we have

f(Q(t)) =
∑

φ∈Φ∪{0}
αφ f(Q(t),φ),

where f(Q(t),φ) denotes the term f(Q(t)) evaluated when
channels φ are served for one round. If φ = 0, f(Q(t),0)
corresponds to the decision of idling the system for one slot.
Similarly, by conditioning we can show 5

E [T ] = E [T | Q(t)] =
∑

φ∈Φ∪{0}
αφ E [Tφ] ,

where Tφ denotes the duration of serving channels φ for one
round; note that T0 = 1 when φ = 0. It follows that

f(Q(t))

E [T | Q(t)]
=

∑
φ∈Φ∪{0} αφ f(Q(t),φ)
∑

φ∈Φ∪{0} αφ E [Tφ]
. (27)

The next lemma shows that the maximum of (27) over the
collection of RandRR policies is achieved by either serving a
subset of channels for one round or idling the system for one
slot.

Lemma 4. We index the 2N vectors φ ∈ Φ ∪ {0}. For the
vector φ with index k we define

fk , f(Q(t),φ), Dk , E [Tφ] .

Without loss of generality, assume

f1

D1
≥ fk
Dk

, ∀k ∈ {2, 3, . . . , 2N}.

Then for any probability distribution {αk}k∈{1,...,2N} with

αk ≥ 0 and
∑2N

k=1 αk = 1, we have

f1

D1
≥
∑2N

k=1 αk fk∑2N

k=1 αkDk

.

Proof of Lemma 4: In Appendix A.
If maximizing (27) is to idle the system for one slot, we have

f(Q(t))/E [T | Q(t)] = 0. Otherwise, let us now evaluate (27)
when it is optimal to serve the channels φ ∈ Φ in this round.
From Theorem 1, we have

E [T ] = E [T | Q(t)] =
∑

n:φn=1

E
[
Lφ
n

]
,

E

[
T−1∑

τ=0

µn(t+ τ) | Q(t)

]
=

{
E
[
Lφ
n

]
− 1 if φn = 1

0 if φn = 0

As a result,

f(Q(t))

E [T | Q(t)]
=

∑N
n=1Qn(t)E

[
Lφ
n − 1

]
φn

∑N
n=1 E

[
Lφ
n

]
φn

,

which is the ratio in (16). The above discussions lead to the

5Given a fixed RandRR policy, the frame size T no longer depends on the
backlog vector Q(t). Thus E [T ] = E [T | Q(t)].
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channel scheduling subroutine of the QRRNUM policy.

V. PERFORMANCE ANALYSIS

Theorem 3. For any control parameter V > 0, the QRRNUM
policy stabilizes all queues {Q1(t), . . . , QN (t)} and yields a
throughput utility satisfying

lim inf
t→∞

N∑

n=1

gn

(
1

t

t−1∑

τ=0

E [rn(τ)]

)
≥ g∗ − B

V
,

where g∗ is the optimal utility in the optimization problem (2)
and B = NE

[
T 2

max

]
is a finite constant, where Tmax denotes

the duration of serving all channels for one round by the
QRRNUM policy.

Proof of Theorem 3: In Appendix B.
Theorem 3 shows that the throughput utility rendered by the

QRRNUM policy is at most B/V away from g∗. By choosing
V sufficiently large, the utility can be made arbitrarily close
to g∗. The tradeoff is that, as shown in (43), the average
queue size grows linearly with V . Such a tradeoff agrees
with the design principle of the QRRNUM policy discussed
in Section IV-D.

VI. SIMULATIONS

A. Rate proportional fairness

We use the QRRNUM policy to solve a variant of the
rate proportional fairness problem. We consider a two-
user network with i.i.d. channels that have transition prob-
abilities P01 = P10 = 0.2. From [12, Theorem 1],
the throughput region Λint is a convex hull of the set
{(0, 0), (0.5, 0), (0, 0.5), (4/13, 4/13)}; it is illustrated in
Fig. 2. We consider the problem:

maximize f(y1, y2) = 2 log(1 + y1) + log(1 + y2) (28)
subject to (y1, y2) ∈ Λint. (29)

The solution to (28)-(29) is (5/12, 2/15) ≈ (0.4167, 0.1333).
We simulate the QRRNUM policy for the problem (28)-(29)
for 106 rounds. The simulation result in Table I shows that

V y1 y2 f(y1, y2)
10 0.391 0.1477 0.7977
100 0.4133 0.1392 0.8221
1000 0.4165 0.1345 0.8226

solution to (28)-(29) 0.4167 0.1333 0.8218

TABLE I
SIMULATION FOR THE QRRNUM POLICY IN A RATE PROPORTIONAL

FAIRNESS PROBLEM.

the throughput utility approaches the optimal value for the
problem (28)-(29) as V increases, as proved in Theorem 3.

B. Comparison to Whittle’s index

Whittle’s index [10] is a well-known heuristic for RMAB
problems with linear cost functions. The index for each project
(channel) at a given state represents the minimum subsidy for
which we would choose not to play the project. In other words,

it captures the attractiveness of a given state on a project. The
index policy is simply to play the arm with the largest index
in every slot.

For Markov ON/OFF channels, Whittle’s index exists and
is computed in closed form in [13]. Here, we compare the
QRRNUM policy with Whittle’s index by simulations in the
case of linear reward functions. We consider a network of 10
independent, positively correlated Markov ON/OFF channels.
The objective is to maximize the weighted sum throughput∑10
n=1 cn yn, where c1, . . . , c10 are positive weights.
We conduct 20 simulation runs. In each run, the weights cn

are normalized and randomly generated according to a uniform
distribution over (0, 1]. The transition probabilities for each
channel are randomly generated as well. Every simulation run
lasts for 105 rounds for the QRRNUM policy, and 106 slots
for the Whittle’s index policy. We use V = 1000 throughout
in the QRRNUM policy.

In our simulations, we take advantage of a minor improve-
ment on the QRRNUM policy: When a channel is selected
for transmission, we simply keep transmitting until the chan-
nel turns OFF. This modification yields a better throughput
because we do not transmit dummy packets.

Fig. 3 compares the performance of the QRRNUM policy
and Whittle’s index. Every data point (a, b) in Fig. 3 corre-
sponds to one of the 20 simulation runs, where coordinates
a and b are the weighted sum throughput under Whittle’s
index and the QRRNUM policy, respectively. We note that
Whittle’s index outperforms QRRNUM if a data point lies
below the dotted line x = y, and vice versa. These simulations
suggest that the two policies have comparable performance
over channels of fairly arbitrary statistics.

0.4 0.5 0.6 0.7 0.8 0.9 1
Whittle's index

0.4

0.5

0.6

0.7

0.8
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1

Q
R
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Fig. 3. Comparison of the weighted sum throughput under the QRRNUM
policy and Whittle’s index in a 10-user network with randomly generated
channel statistics and user rewards.

VII. CONCLUSION

We provide an analytical framework for network util-
ity maximization over partially observable Markov ON/OFF
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channels. The performance and control in this network are
constrained by limiting channel probing and delayed/uncertain
channel state information, but can be improved by exploiting
channel memory. Equivalently, we consider a restless multi-
armed bandit (RMAB) problem with concave reward func-
tions, which is difficult to solve using existing tools such
as Whittle’s index or Markov decision theory. We adopt an
achievable region method that uses a novel ratio MaxWeight
policy to solve the RMAB problem over a reduced throughput
region constructed by randomizing well-designed round robin
policies. Extensions of this new achievable region method
to other open stochastic convex optimization problems are
interesting future research.
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APPENDIX A
Proof of Lemma 4: Fact 1: Let {a1, a2, b1, b2} be four

positive numbers, and suppose there is a bound z such that
a1/b1 ≤ z and a2/b2 ≤ z. Then for any probability θ (where
0 ≤ θ ≤ 1), we have:

θa1 + (1− θ)a2

θb1 + (1− θ)b2
≤ z. (30)

We prove Lemma 4 by induction and (30). Initially, for any
α1, α2 ≥ 0, α1 + α2 = 1, from f1/D1 ≥ f2/D2 we get

f1

D1
≥ α1f1 + α2f2

α1D1 + α2D2
.

For some K > 2, assume

f1

D1
≥
∑K−1
k=1 αkfk∑K−1
k=1 αkDk

holds for any probability distribution {αk}K−1
k=1 . It follows that,

for any probability distribution {αk}Kk=1, we get

∑K
k=1 αkfk∑K
k=1 αkDk

=
(1− αK)

[∑K−1
k=1

αk
1−αK fk

]
+ αKfK

(1− αK)
[∑K−1

k=1
αk

1−αKDk

]
+ αKDK

(a)

≤ f1

D1

where (a) follows Fact 1, because f1/D1 ≥ fK/DK by
definition and

f1

D1
≥
∑K−1
k=1

αk
1−αK fk∑K−1

k=1
αk

1−αKDk

by the induction assumption.

APPENDIX B
Proof of Theorem 3: In the QRRNUM policy, let tk−1

and Tk be the beginning and the duration of the kth trans-
mission round, respectively. We have Tk = tk − tk−1 and
tk =

∑k
i=1 Ti for all k ∈ N. Assume t0 = 0. The term Tk is

the duration of serving a subset of channels in the kth round of
the QRRNUM policy. Before we proceed, we present a useful
lemma.

Lemma 5. Let Tmax be the duration of serving all channels
for one round by a RandRR policy. Then

1) The random variable Tmax is stochastically larger than
Tk for all k ∈ {1, 2, 3, . . .}; i.e., Tmax ≥st Tk. In other
words,

Pr [Tmax > a] ≥ Pr [Tk > a] , ∀a ∈ {0, 1, 2, . . .}.

2) The random variable T 2
max is stochastically larger than

T 2
k for all k ∈ {1, 2, 3, . . .}.

3) We have, for all k ∈ {1, 2, 3, . . .},
E [Tk] ≤ E [Tmax] <∞, E

[
T 2
k

]
≤ E

[
T 2

max

]
<∞.

Proof of Lemma 5: In Appendix C.
To analyze the performance of the QRRNUM policy, we

compare it to a near-optimal feasible solution of the optimiza-
tion problem (2). We will adopt the approach in [25] but gen-
eralize it to a frame-based analysis. For some ε > 0, consider
the ε-constrained version of the optimization problem (2):

maximize
N∑

n=1

gn(yn), subject to (yn)Nn=1 ∈ Λint(ε), (31)

where Λint(ε) is the achievable region Λint stripping an “ε-
layer” off the boundary:

Λint(ε) , {(yn)Nn=1 | (yn + ε)Nn=1 ∈ Λint}.
Notice that Λint(ε) → Λint as ε → 0. Let (y∗n(ε)) be the
solution to (31) and (y∗n) be the solution to problem (2). For
simplicity, we assume (y∗n(ε)) converges to (y∗n) as ε→ 0.6

By definition of the reduced throughput region Λint, there
exists a randomized round robin policy RandRR∗ε that yields
the throughput vector (y∗n(ε) + ε) ∈ Λint. Let T ∗ε denote
the length of one transmission round under RandRR∗ε . From
Lemma 2, we have for every user n ∈ {1, . . . , N}:

E



T∗ε −1∑

τ=0

µn(t+ τ) | Q(t)


 = E



T∗ε −1∑

τ=0

µn(t+ τ)




= (y∗n(ε) + ε)E [T ∗ε ] .

Combining the policy RandRR∗ε with the admission control
policy σ∗ that sets rn(t + τ) = y∗n(ε) for all users n and all
τ ∈ {0, . . . , T ∗ε − 1},7 we get

f∗ε (Q(t)) = E [T ∗ε ]

N∑

n=1

Qn(t)(y∗n(ε) + ε) (32)

h∗ε (Q(t)) = E [T ∗ε ]

[
V g∗ε −

N∑

n=1

Qn(t) y∗n(ε)

]
(33)

where (32) and (33) are f(Q(t)) and h(Q(t)) (see (23), (24))
evaluated under policy RandRR∗ε and σ∗, respectively. The
term g∗ε is defined as g∗ε =

∑N
n=1 gn(y∗n(ε)).

Since the QRRNUM policy maximizes (25), comput-
ing (25) under both the QRRNUM policy and the joint policy
(RandRR∗ε , σ

∗) yields

fQRRNUM(Q(tk)) + hQRRNUM(Q(tk))

≥ E [Tk+1 | Q(tk)]
f∗ε (Q(tk)) + h∗ε (Q(tk))

E [T ∗ε ]

(a)
= E [Tk+1 | Q(tk)]

[
V g∗ε + ε

N∑

n=1

Qn(tk)

]

6This property is proved in a similar case in [24, Chapter 5.5.2].
7The throughput y∗n(ε) is less than or equal to one. Thus it is a feasible

choice of rn(t+ τ).
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= E

[
Tk+1

(
V g∗ε + ε

N∑

n=1

Qn(tk)

)
| Q(tk)

]
, (34)

where (a) is from (32) and (33). The inequality (22) under the
QRRNUM policy in the (k+ 1)th round of transmission then
satisfies

∆Tk+1
(Q(tk))− V E



Tk+1−1∑

τ=0

N∑

n=1

gn(rn(tk + τ)) | Q(tk)




(a)

≤ B − fQRRNUM(Q(tk))− hQRRNUM(Q(tk))

(b)

≤ B − E

[
Tk+1

(
V g∗ε + ε

N∑

n=1

Qn(tk)

)
| Q(tk)

]
,

(35)

where (a) is the inequality (22) under policy QRRNUM, and
(b) uses (34). Taking expectation over Q(tk) in (35) and
summing it over k ∈ {0, . . . ,K − 1}, we get

E [L(Q(tK))]− E [L(Q(t0))]− V E

[
tK−1∑

τ=0

N∑

n=1

gn(rn(τ))

]

≤ BK − V g∗ε E [tK ]− εE
[
K−1∑

k=0

(
Tk+1

N∑

n=1

Qn(tk)

)]
.

(36)

Since queue backlogs (Q1(·), . . . , QN (·)) and L(Q(·)) are all
nonnegative, and by assumption Q(t0) = Q(0) = 0, ignoring
all backlog-related terms in (36) yields

−V E

[
tK−1∑

τ=0

N∑

n=1

gn(rn(τ))

]
≤ BK − V g∗ε E [tK ]

(a)

≤ BE [tK ]− V g∗ε E [tK ]

(37)

where (a) uses tK =
∑K
k=1 Tk ≥ K. Dividing (37) by V and

rearranging terms, we get

E

[
tK−1∑

τ=0

N∑

n=1

gn(rn(τ))

]
≥
(
g∗ε −

B

V

)
E [tK ] . (38)

Recall from Section IV-C that B in (38) is an unspecified
constant satisfying B ≥ NE

[
T 2
k | Q(t)

]
for all k ∈ N and

all possible Q(t). From Lemma 5, it suffices to define B ,
NE

[
T 2

max

]
.

Under the QRRNUM policy, let K(t) be the number of
transmission rounds ending by time t. We have tK(t)+1 > t.
The expected sum utility over the first t slots satisfies

t−1∑

τ=0

N∑

n=1

E [gn(rn(τ))] = E



tK(t)+1−1∑

τ=0

N∑

n=1

gn(rn(τ))




− E



tK(t)+1−1∑

τ=t

N∑

n=1

gn(rn(τ))




(b)

≥
[
g∗ε −

B

V

]
E
[
tK(t)+1

]
− E

[
tK(t)+1 − t

]
gmax

=

[
g∗ε −

B

V

]
t+

[
g∗ε −

B

V
− gmax

]
E
[
tK(t)+1 − t

]

(c)

≥
[
g∗ε −

B

V

]
t, (39)

where we define gmax ,
∑N
n=1 gn(1) < ∞ as an upper

bound on the sum utility (since gn(·) are nondecreasing), (b)
follows (38), and (c) follows g∗ε ≤ gmax. Taking a limiting time
average of (39) yields

lim inf
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [gn(rn(τ))] ≥ g∗ε −
B

V
. (40)

Using Jensen’s inequality and concavity of gn(·), we get

lim inf
t→∞

1

t

t−1∑

τ=0

N∑

n=1

E [gn(rn(τ))] ≤ lim inf
t→∞

N∑

n=1

gn

(
r(t)
n

)
,

(41)
where we define

r(t)
n , 1

t

t−1∑

τ=0

E [rn(τ)] .

Combining (40) and (41) yields

lim inf
t→∞

N∑

n=1

gn

(
r(t)
n

)
≥ g∗ε −

B

V
,

which holds for any sufficiently small ε. Passing ε→ 0 yields

lim inf
t→∞

N∑

n=1

gn

(
r(t)
n

)
≥ g∗ − B

V
,

where g∗ is the optimal utility in the optimization problem (2)
(we have g∗ε → g∗ as ε→ 0 because gn(·) are continuous). It
remains to show that the network is stable.

To prove network stability, ignoring the first, second, and
fifth term in (36) yields

εE

[
K−1∑

k=0

(
Tk+1

N∑

n=1

Qn(tk)

)]

≤ BK + V E

[
tK−1∑

τ=0

N∑

n=1

gn(rn(τ))

]

(a)

≤ K
(
B + V gmaxE [Tmax]

)
(42)

where (a) uses
N∑

n=1

gn(rn(τ)) ≤ gmax, E [tK ] =

K∑

k=1

E [Tk] ≤ KE [Tmax] .

Dividing (42) by Kε, taking a lim sup as K →∞, and using
Tk+1 ≥ 1, we get

lim sup
K→∞

1

K
E

[
K−1∑

k=0

N∑

n=1

Qn(tk)

]
≤ B + V gmaxE [Tmax]

ε
<∞.

(43)
We note that (43) holds for all ε > 0 such that the ε1 ∈ Λint,
where 1 is the all-one vector. Different values of ε do not
alter the system dynamics under the QRRNUM policy, but
only affect the finite upper bound on the average backlog.

Equation (43) shows that the average backlog is bounded
when sampled at time instants {tk}∞k=0. This property is



14 ELSEVIER PERFORMANCE EVALUATION, 2012

enough to conclude that the average backlog over the whole
time horizon is bounded, i.e., inequality (6) holds and the
network is stable. It is because the length of each transmission
round Tk has a finite second moment and the maximal amount
of data admitted to each user in every slot is at most 1; see [12,
Lemma 13] for a detailed proof.

APPENDIX C

Proof of Lemma 5: The random variable Tk is the
duration of serving a subset of channels in the kth round of
the QRRNUM policy. Define Tφ as the duration of serving
the channels in φ ∈ Φ for one round in the QRRNUM policy.
Then, it suffices to show, for every φ ∈ Φ,

(1) Tmax ≥st Tφ.
(2) T 2

max ≥st T
2
φ.

(3) E [Tφ] ≤ E [Tmax] <∞, E
[
T 2
φ

]
≤ E

[
T 2

max

]
<∞.

When the system is idle in the kth round, i.e., Tk = 1, all the
above inequalities naturally hold. Given a vector φ ∈ Φ, from
Theorem 1 we have Tφ =

∑
n:φn=1 L

φ
n where the random

variable Lφ
n is defined in (9). We also have

Tmax =

N∑

n=1

L1
n, (44)

where L1
n is a special case of Lφ

n with φ = 1.
Next we show that

L1
n ≥st L

φ
n , for all n such that φn = 1. (45)

Since L1
n and Lφ

n are both at least one, we have

Pr
[
Lφ
n > 0

]
= 1 = Pr

[
L1
n > 0

]
. (46)

From Theorem 1, for every integer m ≥ 1, we have

Pr
[
Lφ
n > m

]
= P

(M(φ))
n,01 P

(m−1)
n,11

≤ P
(N)
n,01P

(m−1)
n,11 = Pr

[
L1
n > m

]
.

(47)

The inequality in (47) follows from the fact that, for positively
correlated channels, the k-step transition probability P

(k)
n,01 is

increasing in k. Combining (46) and (47) proves (45).
Next we show, for a given φ ∈ Φ,

∑

n:φn=1

L1
n ≥st

∑

n:φn=1

Lφ
n . (48)

If (48) holds, then for any m ∈ {0, 1, 2, . . .},

Pr [Tmax > m]
(a)

≥ Pr


 ∑

n:φn=1

L1
n > m




(b)

≥ Pr


 ∑

n:φn=1

Lφ
n > m


 = Pr [Tφ > m] ,

where (a) follows Tmax ≥
∑
n:φn=1 L

1
n and (b) uses (48).

Thus we have Tmax ≥st Tφ, proving the first part of the
lemma. Inequality (48) can be shown by iteratively applying
Lemma 6 presented later to the random variables {L1

n}n:φn=1

and {Lφ
n}n:φn=1; these random variables are mutually inde-

pendent by Theorem 1.

Next we show T 2
max ≥st T

2
φ for every φ ∈ Φ. For every

m ∈ {0, 1, 2, . . .},
Pr
[
T 2

max > m
]

= Pr
[
Tmax >

√
m
]

(a)
= Pr

[
Tmax > b

√
mc
]

(b)

≥ Pr
[
Tφ > b

√
mc
] (c)

= Pr
[
T 2
φ > m

]
,

where (a)(c) are because Tmax and Tφ are integer-valued, and
(b) follows Tmax ≥st Tφ.

Finally, that E [Tφ] ≤ E [Tmax] and E
[
T 2
φ

]
≤ E

[
T 2

max

]

follows directly from the first two results [15, Lemma 9.1.1].
The finiteness of E [Tmax] and E

[
T 2

max

]
can be easily verified

using (44) and Theorem 1.

Lemma 6. Consider four positive integer-valued random vari-
ables X1, X2, Y1, and Y2. Suppose they are mutually indepen-
dent, and Xn ≥st Yn for n ∈ {1, 2}. Then X1+X2 ≥st Y1+Y2.

Proof of Lemma 6: Since all four random variables are
positive, for m ∈ {0, 1},

Pr [X1 +X2 > m] = 1 = Pr [Y1 + Y2 > m] . (49)

For every integer m ≥ 2,

Pr [X1 +X2 > m]

=

m∑

a=1

Pr [X1 +X2 > m | X2 = a] Pr [X2 = a]

=

m∑

a=1

Pr [X1 > m− a] Pr [X2 = a]

(a)

≥
m∑

a=1

Pr [Y1 > m− a] Pr [X2 = a]

= Pr [Y1 +X2 > m] ,

where (a) follows X1 ≥st Y1. Likewise, from X2 ≥st Y2 we
have

Pr [Y1 +X2 > m] ≥ Pr [Y1 + Y2 > m] , m ≥ 2.

Hence,

Pr [X1 +X2 > m] ≥ Pr [Y1 +X2 > m]

≥ Pr [Y1 + Y2 > m] , m ≥ 2.
(50)

Combining (49) and (50) completes the proof.


