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Abstract—This paper considers a time-varying game with N
players. Every time slot, players observe their own random events
and then take a control action. The events and control actions
affect the individual utilities earned by each player. The goal is
to maximize a concave function of time average utilities subject
to equilibrium constraints. Specifically, participating players are
provided access to a common source of randomness from which
they can optimally correlate their decisions. The equilibrium
constraints incentivize participation by ensuring that players
cannot earn more utility if they choose not to participate. This
form of equilibrium is similar to the notions of Nash equilibrium
and correlated equilibrium, but is simpler to attain. A Lyapunov
method is developed that solves the problem in an online max-
weight fashion by selecting actions based on a set of time-
varying weights. The algorithm does not require knowledge
of the event probabilities. A similar method can be used to
compute a standard correlated equilibrium, albeit with increased
complexity.

I. INTRODUCTION

Consider a repeated game with N players and one game
manager. The game is played over an infinite sequence of
time slots ¢ € {0,1,2,...}. Every slot ¢ there is a random
event vector w(t) = (wo(t),w1(t),...,wn(t)). The game
manager observes the full vector w(t), while each player
i €{1,..., N} observes only the component w;(t). The value
wo(t) represents information known only to the manager. After
the slot ¢ event is observed, the game manager sends a message
to each player i. Based on this message, the players choose a
control action a;(t). The random event and the collection of
all control actions for slot ¢ determine individual utilities u;(t)
for each player i € {1,..., N}. Each player is interested in
maximizing the time average of its own utility process. The
game manager is interested in providing messages that lead to
a fair allocation of time average utilities across players.

Specifically, let T, be the time average of u;(t). The fairness
of an achieved vector of time average utilities is defined
by a concave fairness function ¢(us,...,uy). The goal is
to devise strategies that maximize ¢(Ty,...,Uy) subject to
certain game-theoretic equilibrium constraints. For example,
suppose the fairness function is a sum of logarithms:

N
¢(ﬂ1, e 7@]\/‘) = Z log(ﬂl)
=1

This corresponds to proportional fair utility maximization,
a concept often studied in the context of communication
networks [[1]]. Another natural concave fairness function is:

¢(uy, ..., uy) = minfay, ..., uy, |

for some given constant ¢ > 0. This fairness function assigns
no added value when the average utility of one player exceeds
that of another.

Let M(t) = (My(t),...,Mn(t)) be the message vector
provided by the game manager on slot t. The value M;(t) is
an element of the set .A; and represents the action the manager
would like player i to take. A player ¢ € {1,..., N} is said
to participate if she always chooses the suggestion of the
manager, that is, if o;(t) = M;(t) for all t € {0,1,2,...}. At
the beginning of the game, each player makes a participation
agreement. Participating players receive the messages M;(t),
while non-participating players do not.

This paper considers the class of algorithms that deliver
message vectors M (t) as a stationary and randomized func-
tion of the observed w(t). Assuming that all players partici-
pate, this induces a conditional probability distribution on the
actions, given the current w(¢). The conditional distribution is
defined as a coarse correlated equilibrium (CCE) if it yields
a time average utility vector (@y,...,uy) with the following
property [2]: For each player ¢ € {1,...,N}, the average
utility u; is at least as large as the maximum time average
utility this player could achieve if she did not participate
(assuming the actions of all other players do not change).
Overall, the goal is to maximize ¢(uy,...,Uy) subject to the
CCE constraints.

A. Contributions and related work

The notion of coarse correlated equilibrium (CCE) was
introduced in [2] in the static case where there is no event
process w(t). The CCE definition is similar to a correlated
equilibrium (CE) [3][4][3)]. The difference is as follows: A
correlated equilibrium (CE) is more stringent and requires the
utility achieved by each player ¢ to be at least as large as the
utility she could achieve if she did not participate but if she still
knew the M;(t) messages on every slot. It is known that both
CCE and CE constraints can be written as linear programs. The
concept of Nash equilibrium (NE) is more stringent still: The
NE constraint requires all players to act independently without
the aid of a message process M (t) [6][5]. Unfortunately, the
problem of computing a Nash equilibrium is nonconvex.

This paper uses the NE, CE, and CCE concepts in the
context of a stochastic game with random events w(t). When
fairness functions are concave but nonlinear, the optimal action
associated with a particular event can depend on whether or
not the event is rare. This paper develops an online algorithm


http://www-bcf.usc.edu/~mjneely

PROC. ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, OCT. 2013 2

that is influenced by the event probabilities, but does not
require knowledge of these probabilities. The algorithm uses
the Lyapunov optimization theory of [7]][8] and is of the
max-weight type. Specifically, every slot ¢, the game man-
ager observes the w(t) realization and chooses a suggestion
vector by greedily minimizing a drift-plus-penalty expression.
Such Lyapunov methods are used extensively in the context
of queueing networks [9][10] (see also related methods in
[L1][12][L3]). This is perhaps the first use of such techniques
in a game-theoretic setting.

One reason the solution of this paper can have a simple
structure is that the random event process w(t) is assumed to
be independent of the prior control actions. Specifically, while
the components w;(t) are allowed to be arbitrarily correlated
across ¢ € {0,1,..., N}, the vector w(t) is assumed to be
independent and identically distributed (i.i.d.) over slots. Prior
work on stochastic games considers more complex problems
where w(t + 1) is influenced by the control action of slot ¢,
including work in [[14] which studies correlated equilibria in
this context. This typically involves Markov decision theory
and has complexity that grows exponentially with the dimen-
sion of the state vector w(t), and hence exponentially in the
number of players V.

In contrast, while the current paper treats a stochastic
problem with more limited structure, the resulting solution
scales gracefully with V. Specifically, the algorithm uses a
number of virtual queues that is linear in N, rather than
exponential in NV, resulting in polynomial time bounds on
complexity and convergence time. Furthermore, the number
of virtual queues is independent of the number of possible
values of wy(t). Unfortunately, the number of virtual queues
is exponential in the number of possible values of w;(t) for
1 € {1,..., N}. Hence, the algorithm works best when players
observe only a small number of possible random events.

II. STATIC GAMES

This section introduces the problem in the static case with-
out random processes wq(t), w1 (t),...,wn(t). The different
forms of equilibrium are defined and compared through a
simple example. The general stochastic problem is treated in
Section [

Suppose there are N players, where N is an integer larger
than 1. Each player ¢ € {1,..., N} has an action space A;,
assumed to be a finite set. The game operates in slotted time
t €{0,1,2,...}. Every slot ¢, each player i chooses an action
a;(t) € A;. Let a(t) = (ai1(t),...,an(t)) be the vector of
control actions on slot ¢. The utility u;(¢) earned by player 4
on slot ¢ is a real-valued function of a(t):

wi(t) = wi(a(t)) Vi e {1,..., N}

The utility functions 4;(c) can be different for each player i.
Define A = A; x---x Apy. Consider starting with a particular
vector o« € A and modifying it by changing a single entry 4
from «; to some other action ;. This new vector is represented
by the notation (8;, o). Define A; as the set of all vectors
a;, being the set product of A; over all j # 1.

The three different forms of equilibrium considered in this
section are defined by probability mass functions Pr[ca] for
a € A. It is assumed throughout that:

e Prla] >0 forall a € A

. ZQEAPT‘[Q} =1.

If actions «(¢) are chosen independently every slot according
to the same probability mass function Pr[c], the law of large
numbers ensures that, with probability 1, the time average
utility of each player i € {1,..., N} is:

U; = Zae.A Pr[a]ﬂl(a)

A. Nash equilibrium (NE)

The standard concept of Nash equilibrium assumes players
take independent actions, so that Pra] = Hf\il gilai], where
gila] is defined for all ¢ € {1,..., N} and «; € A; by:

gilai] = Prio;(t) = o)

A collection of such functions g;[e;] for ¢ € {1,...,N}
defines a mixed strategy Nash equilibrium (NE) if [13[][6]:

N N
> T gilejlas(e) > > T g5lay)a(Bi, o)

acAj=1 acAj=1
Vie{l,....N\.VBieA (1)

B. Correlated equilibrium (CE)

The standard concept of correlated equilibrium from [3]][4]
can be motivated by a game manager that provides suggested
actions (o (t),...,an(t)) every slot t, where player 1 only
sees v (t), player 2 only sees s (t), and so on. Assume the
suggestion vector is independent and identically distributed
(i.1.d.) over slots with some probability mass function Pr|a].
Assume all players participate, so that every slot their chosen
actions match the suggestions. The probability mass function
Prla] is a correlated equilibrium (CE) if [3]][4]:

Z PT[OQ‘,O[{}QAM(O[Z',Q{) Z Z Pr[ai,a;]ﬁi(ﬂi,a;)
OL,LTEAZ OLZEAT
vie{l,...,N},Va; € A;,VB; € A; with 5; # o 2)

This can be understood as follows: Fix an ¢ € {1,...,N}
and an «; € A; such that Pr[a;(t) = «;] > 0. Divide both
sides of the above inequality by Pr[a;(t) = «;]. Then:

o The left-hand-side is the conditional expected utility of

player ¢, given that all players participate and that player
1 sees suggestion «; on the current slot.

o The right-hand-side is the conditional expected utility of
player 7, given that she sees «; on the current slot, that all
other players j # i participate, and that player ¢ chooses
action 3; instead of «; (so player i does not participate).

The correlated equilibrium constraints are linear in the
Prla] variables. Define |.A;| as the number of actions in set
A;. The number of linear constraints specified by (@) is then:

SN A (4] - 1)
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C. Coarse correlated equilibrium (CCE)

The definition of correlated equilibrium assumes that non-
participating players still receive the suggestions from the
game manager. As the suggestion «;(t) for player i may
be correlated with the suggestions «;(t) of other players
j # 1, this can give a non-participating player i a great
deal of information about the likelihood of actions from other
players. The following simple modification assumes that non-
participating players do not receive any suggestions from the
game manager. A probability mass function Pr{a] is a coarse
correlated equilibrium (CCE) if:

Z Prlali;(a) > Z Prla]i, (B;, o)
acA acA
VZ’E{L...,N},Vﬁl‘E.Ai 3)

This CCE definition was introduced in [2]. While the above
constraints are defined in terms of fixed alternatives [3;, it can
be shown that these constraints imply that no player ¢ can reach
an improved payoff by using a different strategy. Intuitively,
this is because any different strategy can, at a given time ¢, be
viewed as a probabilistic mixture of fixed actions.

These CCE constraints (3) are linear in the Pr{c] values.
The number of CCE constraints is:

S Al

This number is typically much less than the number of
constraints required for a CE in (2). Assuming that |A;| > 2
for each player ¢ (so that each player has at least 2 action
options), the number of CCE constraints is always less than
or equal to the number of CE constraints, with equality if and
only if |A;| = 2 for all players 3.

D. A superset result

The assumption that all sets A; are finite make the game
a finite game. Fix a finite game and define Engsn, EcEs
and Eccp as the set of all probability mass functions Pr{c]
that define a (mixed strategy) Nash equilibrium, a correlated
equilibrium, and a coarse correlated equilibrium, respectively.
It is known that every such finite game has at least one mixed
strategy Nash equilibrium, and so Engsp i nonempty [L5]][6]].
Furthermore, in [3][4] it is shown that any (mixed strategy)
Nash equilibrium is also a correlated equilibrium. Similarly, it
can be shown that any correlated equilibrium is also a coarse
correlated equilibrium [2]. Thus:

Enash € EcE C EccE 4

Furthermore, the sets Ecg and Ecc g are closed, bounded,
and convex. For example, this is true for £cc g because this set
is the intersection of the linear constraints @ and the closed,
bounded, and convex probability simplex.

E. A simple example

Consider a game where player 1 has three control options
and player 2 has two control options:

A = {0‘757'7} , A2 = {O@ﬁ}

The utility functions @ (o, ae) and ds(ay, az) are specified
in the table of Fig. I} where player 1 actions are listed by row
and player 2 actions are listed by column.

Utility 1 Utility 2 Probabilities
a | p a | B a|p
al|2|5 a |50 |1 alalb
B 1412 Bl 2|4 Blcl|d
vy 3|5 vl 3]0 ylelf

Fig. 1. Example utility functions @1 (a1, a2) and @2 (a1, o).

There are six possible action vectors (a7, ag). Define the
mass function Pr|a] by values a, b, ¢, d, e, f associated with
each of the six possibilities, as shown in Fig. [T}

The eight CE constraints for this problem are:

2a + 5b > 4a + 2b

2a + 5b > 3a + 5b

4c+ 2d > 2¢ + 5d

4c+2d > 3¢+ bd

3e+5f>2e+5f

3e+5f > e+ 2f
50a + 2¢ + 3e > a + 4c + Oe
b+4d+0f > 500+ 2d + 3f

player 1 sees a:
player 1 sees a:
player 1 sees f3:
player 1 sees 3:
player 1 sees :
player 1 sees v:
player 2 sees «:
player 2 sees [(3:

It can be shown that there is a single probability mass function
Prla] that satisfies all of these CE constraints:

a=b=0, c=045 d=0.15, e=0.3, f=0.1

This is also the only NE. The average utility vector associated
with this mass function is (41, %2) = (3.5,2.4).
In contrast, the five CCE constraints for this problem are:

26 +5b+4c+2d+3e+5f
>2(a+c+e)+5b+d+f)

2a+5b+4c+2d+3e+5f
>4(a+c+e)+2(b+d+f)

26 +5b+4c+2d+3e+5f
>3(a+c+e)+5b+d+f)

player 1 chooses a:

player 1 chooses j3:

player 1 chooses 7:

player 2 chooses a:  50a + b+ 2¢c + 4d + 3e
>50(a+0b)+2(c+d)+3(e+f)
player 2 chooses 8:  50a + b+ 2¢c + 4d + 3e

> 1(a+b)+4(c+d)+0(e + f)

There are an infinite number of probability mass functions
Prla] that satisfy these CCE constraints. Three different
ones are given in the table of Fig. |2| labeled distribution 1,
distribution 2, and distribution 3. Distribution 1 corresponds
to the CE and NE distribution.

The set of all utility vectors (u1,T2) achievable under CCE
constraints is the triangular region shown in Fig. (3] The three
vertices of the triangle correspond to the three distributions in
Fig. 2l and are:

(u1,7) € {(3.5,2.4),(3.5,9.3), (3.8773,3.7914)}
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The point (3.5,2.4) is the lower left vertex of the trian-
gle and corresponds to the CE (and NE) distribution. It is
clear that both players can significantly increase their utility
by changing from CE constraints to CCE constraints. This
illustrates the following general principle: All players benefit
if non-participants are denied access to the suggestions of the
game manager. This principle is justified by (@).

Distribution 1 Distribution 2 Distribution 3

« I5) « 15} «@ B
al| 0 0 al.d15] 0 a | .0368 0
8| .45 .15 8| .60 | .15 5| .9018 | .0368
~ | .30 | .10 ~1 0 |.10 v 0 .0245

Fig. 2. Three different probability distributions that satisfy the CCE
constraints. The first distribution also satisfies the CE and NE constraints.

Utility region under CCE constraints

(3.5,9.3)

(3.7323, 5.9091)

/

Utility 2 average
2

4+
NE and CE point

3r 3.5, 2.4) (3.8773, 3.7914)

3.4 35 3.6 3.7 3.8 3.9

Utility 1 average

Fig. 3. The region of (u1,u2) values achievable under CCE constraints. All
points inside and on the triangle are achievable. The NE and CCE point is the
lower left vertex. The point (3.7323,5.9091) is the solution to the convex
optimization example of Section [[I-F

F. Utility optimization with equilibrium constraints

For convenience, assume all utility functions are nonnega-
tive. Define u{"** as an upper bound on the utility for each
player i € {1,..., N}, so that:

0 <i(e) <u™™™ Vae A

Define ¢(uq,...,uy) as a continuous and concave function
that maps the set x¥,[0,u™] to the real numbers. This
is called the fairness function. The game manager chooses a
probability mass function Pr[c] with the goal of maximizing
¢(uy,...,uy) subject to CCE constraints:

Maximize: o(wy, ..., uN) (5)
Subject to:  u; = ) 4 Priaji;(a) Vie {1,...,N} (6)
Prla] >0 Vae A )
Yoaca Pria =1 8)

CCE constraints are satisfied 9)

The above is a convex optimization problem. If the CCE
constraints are replaced by the CE constraints (2)), the problem
remains convex but can have significantly more constraints. If
the CCE constraints are replaced with the NE constraints (IJ),
the problem becomes nonconvex.

Consider the special case example of Section [[I-E| with
fairness function given by:

(U1, uz) = 10log(1 + @) + log(1 + w2)
where player 1 is given a higher priority. The optimal utility
is (u},us) = (3.7323,5.9091), plotted in Fig.

III. STOCHASTIC GAMES

Let w(t) = (wo(t), w1 (t),...,wn(t)) be a vector of random
events for slot ¢t € {0,1,2,...}. Each component w;(¢) takes
values in some finite set €2;, for i € {0,1,..., N}. Define

Q =0Q¢x Q1 x---x Q. The vector process w(t) is assumed
to be independent and identically distributed (i.i.d.) over slots
with probability mass function:

Tw]&2Prlw(t) = w] Yw €

where the notation “£” means “defined to be equal to.”

On each slot ¢, the components of the vector w(t) can be
arbitrarily correlated.

At the beginning of each slot ¢, each player i € {1,...,N}
observes its own random event w;(t). The game manager
observes the full vector w(t), including the additional infor-
mation wy(t). It then sends a suggested action M, () to each
participating player ¢ € {1,...,N}. Assume M;(t) € A,
where A; is the finite set of actions available to player . Each
player ¢ chooses an action «;(t) € A;. Participating players
always choose «;(t) = M;(t). Non-participating players do
not receive M;(t) and choose «;(t) using knowledge of only
w;(t) and of events that occurred before slot ¢.

Let a(t) = (a1(t),...,an(t)) be the action vector. The
utility u;(¢) earned by each player ¢ on slot ¢ is a function of
a(t) and w(t):

ui(t) = i(e(t), w(t))

For convenience, assume utility functions are nonnegative with
maximum values u[*** for i € {1,..., N}, so that:

0 < du(at), w(t)) < upe

A. Discussion of game structures

This model can be used to treat various game structures.
For example, the scenario where all players have full in-
formation can be treated by defining w;(t) = wq(t) for all
i € {1,...,N}. This is useful in games related to economic
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markets, where wy(t) can represent a commonly known vector
of current prices. Alternatively, one can imagine a game with
a single random event process wq(t) that is known to the game
manager but unknown to all players. For example, consider a
game defined over a wireless multiple access system. Wireless
users are players in the game, and the access point is the
game manager. In this example, wo(¢) can represent a vector
of current channel conditions known only to the access point.
Such games can be treated by setting w;(¢) to a default
constant value for all ¢ € {1,..., N} and all slots ¢.

B. Pure strategies and the virtual static game

Assume all players participate, so that M;(t) = «;(t) for
all 4. Like the previous section, the goal here is to define
equilibrium conditions that ensure no player can benefit by
individually deviating from the suggested actions of the game
manager.

Foreachi € {1,..., N}, denote the sizes of sets §2; and A;
by |©;| and |.A;|, respectively. Define a pure strategy function
for player i as a function b;(w;) that maps §; to the set A;.
There are |A;|/®*! such functions. Define:

Enumerate the ure strategy functions for player ¢ and repre-
sent them by b;” (w;) for s € S;. Define:

S:Sl XSQX"'XSN

Each vector (s1,82,...,55) € S can be used to specify a
profile of pure strategies used by each player. For each s € S
and each w € (), define:

b (w) = (B (w1), b5 (wa), - -, B (wi))

The vector b'® (w) is equal to (ay(t),...,ax(t)) in the
special case when w(t) = w and when the action of each
player 7 on slot ¢ is defined by pure strategy s;. The average
utility earned by player ¢ on such a slot ¢ is defined:

hi(8)2 Y e e () (w), w)

The stochastic game can be transformed into a virtual static
game as follows: The virtual static game also has N players.
The virtual action space of each player ¢ is viewed as the set
of pure strategies S;. The virtual utility functions are given by
the functions h;(s).

As the virtual action spaces of the players remain finite,
the virtual static game is indeed a finite game. Hence, the
NE, CE, and CCE definitions specified for static games in
the previous section can be used for this virtual static game.
This provides a natural path for extending these equilibrium
concepts to the stochastic context. In particular, let Pr[s] be a
probability mass function over the finite set of strategy profiles
s € §. This generates a conditional probability mass function
Pr{a|w] defined over all & € A and w €

Sees Prisli{d®(w) =a} (1)

where 1{b®)(w) = a} is an indicator function that is 1 if
b®(w) = a, and is O else. The next lemma shows that

(10)

Prla|w] =

every conditional probability mass function Pr|ajw] can be
generated in this way (proof in [[16]).

Lemma 1: Let Pr[a|w] be a conditional probability mass
function defined over (a,w) € A x . Then there exists a
probability mass function Pr|s], defined over s € S, for which
(TT) holds.

Now suppose Pr[s] is a CCE of the virtual static game. By
definition of CCE:

ZSES P’I"[S]hi(s) Z ZSES P’I"[S]hq;(ri; Sg)

ViE{l,...,N},VTiESi (12)

Lemma 2: 1If Pr(s] and Pr[aw] are probability mass func-
tions that satisfy (IT)), then Pr[s] satisfies the CCE constraints
for the virtual static game if and only if Pr|aw] satisfies
the following constraints:

PIPIL

w]Prla|w]i;(a,w)

weN acA
>3 Y rlwlPrialwli (68 (@), a5), @)
weN acA
Vie{l,...,N},Vs €S, (13)

Proof: 1t suffices to show that the left-hand-side of (12)) is
equal to the left-hand-side of @]) and that the same is true of
the right-hand-sides. The following two identities are useful.
Fixie{l,...,N}, we Q, s€S. Then:

(6 (w),w) = Y b (w) = a}iy(a,w)
acA

Fix r; € S;, and define s’ = (r;, s;), being the strategy profile
that replaces the ith component of s with strategy r;. Then:

(6" (w), w)

(14)

= > 1 (@) = adii (0 (wi). o)) (15)
acA
Now consider the left-hand-side of (12):
ZPr[s}h s
seS
= Prls] Y wlwlis (b (), w) (16)
SES weN
=> " Pr[s] Y wlw] Y 1{b¥(w) = a}ii(a,w) (17)
seS weN acA
= Z Z [a|w]ii; (o, w) (18)
weN acA

where (I6) follows by (T10), follows by (14), and (I8)
follows by (TI). This proves the left-hand-sides are equal. A

similar argument proves the right-hand-sides are equal. [ ]

C. Equilibrium for the stochastic game
Let Pr[ajw] be a conditional probability mass function
defined over w € Q, a € A. It is assumed throughout that:
Prialw] >0 VYa e A VweQ (19)
Y aea Priajw] =1 Yw € Q (20)

Lemma [2] suggests the following definition: A conditional
probability mass function Pr[a|w] is a coarse correlated
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equilibrium (CCE) for the stochastic game if constraints
are satisfied for all ¢ € {1,...,N} and all s € S;.

Definitions of NE and CE can be similarly extended to this
stochastic context. A probability mass function Pr|a|w] is a
mixed strategy Nash equilibrium (NE) for the stochastic game
if it has the product form:

Prialw] = TIY, Prlai|w]

and if the following constraints are satisfied:

N
Z Z 7 [w] H Pria|w;]i;(a, w)

weEN aEA =1
N
> Z Z mw] HPT[%M]% ((bgs)(wi),a;),w)
weN acA i=1

Vie{l,...,N},Vs € S; 21

A conditional probability mass function Pr|aw] is a cor-
related equilibrium (CE) for the stochastic game if:

PSS

weR acA|la;=c;

>3 Y wlwlPrlafwlis (0 @), ag),w)

weEQ acA|a;=c;
VZIE{I,...,N},VSESZ‘,VC{,EAZ‘ (22)

Let E319¢, E&toe, £8125, be the set of all conditional prob-
ability mass functions Pr{a|w] that are NE, CE, and CCE,
respectively, for the stochastic game.

Lemma 3: For the general stochastic game defined above:

(a) The set E3/% is nonempty.

(b) Exlgs C Eelge C £xi2s.

(c) Sets Elg¢ and E825, are closed, bounded, and convex.

Proof: See [[16]. [ |

As in the static case, it can be shown that the CCE con-
straints imply that no player can benefit by individually
choosing not to participate (assuming non-participants do not
receive the messages from the game manager) [16]. Likewise,
the CE constraints (22) imply that no player can benefit
by individually choosing not to participate (assuming non-
participants still receive the messages).

7[w] Pri{o|w]i; (o, w)

D. Optimization objective

As before, define ¢(uq,...,uy) as a continuous and con-
cave function that maps x 2 ; [0, u"%?] to the set of real num-
bers. The goal is to choose messages M (t) = a(t) according
to a conditional probability mass function Pr{c(t)|w(t)] that
solves the problem below:

Maximize: o(Ty, ..., uN) (23)
Subject to: W = D, cq P qen TIW]|Prlo|w]i; (o, w)

Vie{l,...,N} (24)

CCE constraints (T3) are satisfied (25)

Prlajw] >0 Va € A,w € Q (26)

Yoaca Priajw] =1 Vw € Q (27)

This is a convex program in the unknowns Pr[aw]. Section
presents an online solution technique that does not require
knowledge of the probabilities 7[w].

IV. LYAPUNOV OPTIMIZATION

For a real-valued stochastic process u(t) defined over slots
t€{0,1,2,...}, define:

()21 YT Efu(r)]

Recall that u; ()24, (c(t),w(t)). For each i € {1,..., N},
define ugs)(t)éﬂgs)(a(t), w(t)), where ﬁz(»s) (a(t),w(t)) is the
corresponding utility when the player ¢ action is replaced by
the action of the pure strategy bgs) (w;):

il (alt), w(t) 2 (o7 @i), ez(t) ) w(®))

Consider the following modification of the problem (23)-
(27): Every slot ¢t € {0,1,2,...} the game manager observes
w(t) and chooses an action vector a(t) € A to solve:

Maximize:
lim inf ¢(am1 (1), ..., T (1))
Subject to:
lim inf [ (1) - V(1) >0Vie{l,...,N}L,Vs€S (29)
at)e A vte {0,1,2,...} (30)

(28)

It can be shown that optimality can be achieved by a
stationary and randomized algorithm that observes w(t) and
independently chooses «(t) according to the same condi-
tional probability mass function Pr|ajw] every slot. Such
algorithms yield well defined limits. Any probability mass
function Prlaw] that solves (23)-(2Z7) must also solve (28)-
(30). Moreover, any solution to (28)-(B0) must have time
average expectations that are arbitrarily close to conditional
probability mass functions Pr{a|w] that solve (23)-27).

A. Transformation via Jensen’s inequality

Using the auxiliary variable technique of [7], the problem
(28)-(B0), which maximizes a nonlinear function of a time
average, can be transformed into a maximization of the time
average of a nonlinear function. To this end, let ~(t) =
(71(t),...,yn(t)) be an auxiliary vector that the game man-
ager chooses on slot ¢, assumed to satisfy 0 < ~;(¢t) < u***
for all ¢ and all 7. Define:

OELCHONNIRINO)

Jensen’s inequality implies that for all slots £ > 0:

g(t) < o(F1(1), ..., AN (1)) (3D

Now consider the following problem: Every slot t €
{0,1,2,...} the game manager observes w(t) and chooses
both an action vector a(t) € A and an auxiliary vector ~y(t)
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to solve:

Maximize:
htrggolf q(t) (32)
Subject to:

Jim [3,(6) ~ m(6)] =0 Vi € {1,..., N} (33)

lim inf (1) — w ()] >0Vie{l,...,N},Vs€S; (34)

at) e AVt (35)
0 <i(t) <u"™ vt,Vie{l,...,N} (36)

For intuition, suppose all limits exist, so that constraint (33)
is equivalent to 7, = ;. This together with Jensen’s inequality
(31)) ensures the optimal value of the objective function in the
above problem is less than or equal to that of the problem (28)-
(30). On the other hand, the optimal value of 28)-(30) can be
achieved by choosing ~;(t) = u; for all ¢, where (a7, ..., uy)
are optimal time average utilities for problem (28)-(30). The

problems (28)-(30) and (32)-(36) are equivalent.

B. The drift-plus-penalty algorithm

The problem (32)-(36€) can be solved via the drift-plus-
penalty algorithm of [[7]]. To enforce the constraints (34), define
a virtual queue QES)(t) forallie {1,...,N} and all s € S,
with update equation:

QW (t+1) = max[Q\V (1) + ul” (1) — w;(1),0]  (37)
The above looks like a slotted time queueing equation with
arrival process ugs) (t) and service process u;(t). The intuition

is that if a control algorithm is constructed that makes these
queues mean rate stable, so that:

E[Q” )]

lim —— =0
t— o0
then constraint is satisfied [7]. Likewise, to enforce
the constraints (33), define a virtual queue Z;(¢) for all
i€ {1,..., N}, with update equation:
Zi(t+1) = Z;(t) + v(t) — u;(¢) (38)

For simplicity, assume all virtual queues are initialized to 0.

Define L(t) as a sum of squares of all virtual queues
(divided by 2 for convenience):

LOEESN Y s, @) + 10N Z,(t)?

This is called a Lyapunov function. Define A(t)2L(t+ 1) —
L(t), called the Lyapunov drift on slot t. The drift-plus-penalty
algorithm is defined by choosing control actions greedily every
slot to minimize a bound on the drift-plus-penalty expression
A(t) — Vg(t). Here, —g(t) is a “penalty” and V is a non-
negative constant that affects a tradeoff between convergence
time and proximity to the optimal solution.

Lemma 4: For all slots ¢ one has:

At)—-Vg(t) < B-Vg(t)
N
£33 QP00 — wile)
1;71 sES;
+ Z Zi()[i(t) — ui(t)] (39)
where:

N N
Bé% Dzt 25681 (uf*)? + % Zi:l(“zmax)Q

Proof: The result follows immediately from the fact that
max[z, 0] < 22 (see details in [16])). [}
Greedily minimizing the right-hand-side of every slot
leads to the following algorithm: Every slot ¢, the game
manager observes the queues and the current w(t). Then:
« Auxiliary variables: Choose ~;(t) € [0, uf***] for all i €
{1,..., N} to maximize:

Vo(r(t), ..., () — SN Zi(t)v(t)

» Suggested actions: Choose a(t) € Ay x ---
minimize:

X Ay to

N
_ Z Zi(®) i (a(t), w(t))

N
+3° 3 QP M)l (@(t), w(t) — di(e(t), w(t))]

i=1 s€S;

Then send suggested actions «;(t) to each (participating)
player i € {1,...,N}.
 Update virtual queues via and (38).
This is an online algorithm that does not require knowledge
of the probabilities 7[w].

C. Performance analysis

Define ¢* as the optimal value of the objective function for
problem 23)-(27), and note by equivalence of the transforma-
tions that this is also the optimal value for the problem —
(36). Define 0(t) as the vector of all virtual queues Qf (t)
and Z;(t), and define ||@||2\/2L(t).

Theorem 1: If the above algorithm is implemented using a
fixed value V > 0, then:

(a) For all slots ¢ > 0 one has:

¢t AN (1) = ¢" = B/V

(b) All virtual queues QZ(-S) (t) and Z;(t) are mean rate stable,
so that the constraints (33)-(36) are satisfied.

(c) BOWI < J2BE2V ez =) for all slots ¢ > 0,

where ¢4, is the maximum possible value for g(t), being

the maximum of ¢(v1,...,7yn) over v; € [0,u*"] for all
ie{l,...,N}.
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Proof: The algorithm minimizes the right-hand-side of
every slot ¢, and so:

Alt)=Vg(t) < B-=Vo(yi(t),....75())

N
+3°3 QW )l (t) — up (1))

i=1 s€S;

N
+ Z Zi(t)ly; (8) — uf ()] (40)

for all alternative decisions a*(t) € A and v*(t) that satisfy
0 < ~f(t) < ul"**, where:

u; () i (1), w(t))

w0 2 a (0 @), ) w)

Now randomly choose a*(t) as a function of w(t) (and
independently of queue backlog) according to the probabilities
Prla|w] that solve (23)-27). Let u;} be the expected utility
of player ¢ under this distribution, and note that:

d(ul,...,uy) ="

Choose v;(t) = ul for i € {1,..., N}. Taking expectations
of then gives:

E[A®) —Vg(?)]

Il

< B-Vy¢"
Fix a slot T > 0. Summing the above over slots ¢ €
{0,1,2,...,T — 1} and using L(0) = 0 gives:

T—1

E[L(T) -V Y E[g(t)] < BT - V¢'T
t=0

(41)

Rearranging (4T)) and using the definition of g(t) gives:

B ElLT)

T-1
7 2 Bloln(0) (@] 2 6" = G+ S

Using Jensen’s inequality and E [L(T)] > 0 proves part (a).
Again rearranging (1)) gives:

E[[I0(T)II°] < 2BT +2VT (gmaz — &)
Using the fact that E [||0(T)[]* < E [||0(T)||]. dividing by
T2, and taking square roots proves part (c). Part (b) follows
immediately from part (c). ]
Define ¢ = 1/V. Theorem |1 shows that average utility is
within O(e) of optimality. Part (c) of the theorem implies that
constraint violation is within O(e) after time O(1/€®). If a
Slater condition holds, this convergence time is improved to
O(1/€2) [). Similar bounds can be shown for infinite horizon
time averages (rather than time average expectations) [7].

D. Discussion

The online algorithm ensures the constraints (34) are satis-
fied. This shows that average utility of each player 7 is greater
than or equal to the achievable utility if the player were to
constantly use some other pure strategy. This corresponds to
the constraint in (T3). If an algorithm makes random decisions
independently every slot according to a conditional probability

mass function Praw], then constraint implies player ¢
cannot do better under any alternative decisions, possibly those
that mix pure strategies with different mixing probabilities
every slot. A subtlety is that the online algorithm does not
make stationary and randomized decisions. Thus, it is not clear
if a player with knowledge of the algorithm could improve
average utility by making alternative decisions that do not
correspond to a pure strategy. Of course, the online algorithm
yields time averages that correspond to a desired Pra|w].
Thus, a potential fix is to run the online algorithm in the
background and make «(t) decisions according to the time
averages that emerge. A faster method might be to modify the
action choice selection by using time averages of the Z;(t)
and Qgs) (t) values, rather than their instantaneous values.
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