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Dynamic Optimization and Learning for Renewal
Systems
Michael J. Neely

Abstract— We consider the problem of optimizing time av-
erages in systems with independent and identically distributed
behavior over renewal frames. This includes scheduling and
task processing to maximize utility in stochastic networks with
variable length scheduling modes. Every frame, a new policy is
implemented that affects the frame size and that creates a vector
of attributes. An algorithm is developed for choosing policies
on each frame in order to maximize a concave function of the
time average attribute vector, subject to additional time average
constraints. The algorithm is based on Lyapunov optimization
concepts and involves minimizing a “drift-plus-penalty” ratio
over each frame. The algorithm can learn efficient behavior
without a-priori statistical knowledge by sampling from the
past. Our framework is applicable to a large class of problems,
including Markov decision problems.

I. INTRODUCTION

Consider a stochastic system that regularly experiences
times when the system state is refreshed, called renewal times.
The goal is to develop a control algorithm that maximizes the
time average of a reward process associated with the system,
subject to time average constraints on a collection of penalty
processes. The renewal-reward theorem is a simple and elegant
technique for computing time averages in such systems (see,
for example, [1][2]). However, the renewal-reward theorem
requires random events to be independent and identically
distributed (i.i.d.) over each renewal frame. While this i.i.d.
assumption may hold if a single control law is implemented
repeatedly, it is often difficult to choose in advance a single
control law that optimizes the system subject to the desired
constraints. This paper investigates the situation where the
control policies used may differ from frame to frame, and
are designed to dynamically solve the problem of interest.

This renewal problem arises in many different applications.
One application of interest is a task processing network. For
example, consider a network of wireless devices that repeat-
edly collaborate to accomplish tasks (such as reporting sensor
data to a destination, or performing distributed computation on
data). Tasks are performed one after the other, and for each
task we must decide what modes of operation and communi-
cation to use, possibly allowing some nodes of the network
to remain idle to save power. It is then important to make
decisions that maximize the time average utility associated
with task processing, subject to time average power constraints
at each node. Alternatively, one may want to minimize time
average power, subject to constraints on utility and on the
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“left-over” communication rates available for data that is not
associated with the task processing.

This paper develops a general framework for solving such
problems. To do so, we extend the theory of Lyapunov opti-
mization from [3]. Specifically, work in [3] considers discrete
time queueing networks and develops a simple drift-plus-
penalty rule for making optimal decisions. These decisions are
made in a greedy manner every slot based only on the observed
traffic and channel conditions for that slot, without requiring
a-priori knowledge of the underlying probability distribution.
However, the work in [3] assumes all slots have fixed length,
the random network condition is observed at the beginning of
each slot and does not change over the slot, and this condition
is not influenced by control actions. The general renewal
problem treated in the current paper is more complex because
each frame may have a different length and may contain a
sequence of random events. The frame length and the random
event sequence may depend on the control decisions made
over the course of the frame. Rather than making a single
decision every slot, every frame we must specify a policy,
being a contingency plan for making decisions over the course
of the frame in reaction to the resulting system events.

This paper solves the general problem with a conceptually
simple technique that chooses a policy to minimize a drift-
plus-penalty ratio every frame. We first develop algorithms
for minimizing the time average of a penalty process subject
to a collection of time average constraints. We then consider
maximization of a concave function of a vector of time
average attributes subject to similar constraints. This utility
maximization problem is challenging because of the variable
frame length. We overcome this challenge with a novel trans-
formation together with a variation of Jensen’s inequality.

While this paper focuses on task processing applications,
we note that our renewal framework can also handle Markov
decision problems. Specifically, suppose the system operates
according to either a continuous or discrete time Markov chain
with control-dependent transition probabilities. If the chain has
a recurrent state, then renewals can be defined as re-visitations
to this state, and the same drift-plus-penalty ratio technique
can be applied. However, the drift-plus-penalty ratio may be
difficult to optimize for Markov decision problems with high
dimension (see also [4]).

Prior work on learning algorithms for Markov decision
problems is in [5], and related work in [6][7][8][9] considers
learning for optimization of energy and delay in queueing
systems. The works [5]-[9] use stochastic approximation the-
ory and two-timescale convergence analysis. The Lagrange
multiplier updates in [5]-[9] are analogous to the virtual queue
updates we use in this paper. However, the Lyapunov optimiza-
tion framework we use is different and does not require a two-
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Fig. 1. A timeline illustrating renewal frames for the system.

timescale approach. It also provides more explicit bounds on
convergence times and deviations from optimality, and allows
a broader class of problems such as task processing problems.

The Lyapunov optimization technique that we use in this
paper is based on our previous work in [3][10][11][12] that de-
velops the drift-plus-penalty method for stochastic network op-
timization, including opportunistic scheduling for throughput-
utility maximization [3][10][12] and average power minimiza-
tion [11] (see also [13]). Alternative “fluid-based” stochastic
optimization techniques for queueing networks are developed
in [14][15][16][17], and dual and primal-dual algorithms for
systems without queues, based on tracking a corresponding
static optimization problem, are in [18][19][20]. Our current
paper considers the more complex renewal problem, and
leverages ideas in [4][21], where [4] considers a frame-based
Lyapunov framework for Markov decision problems involving
network delay, and [21] develops a ratio rule for utility
optimization in wireless systems with variable length frames
and time-correlated channels.

Recent work in [22] considers a task processing system
where multiple wireless “reporting nodes” select data formats
(e.g., “voice” or “video”) in which to deliver sensed informa-
tion. The work [22] also uses a renewal structure. However, it
assumes a single random event occurs at the beginning of each
renewal frame, and the event and frame size are not influenced
by control actions. More general problems can be treated using
the theory developed in the current paper.

II. RENEWAL SYSTEM MODEL

Consider a system that operates over renewal frames.
Specifically, consider the timeline of non-negative real times
t ≥ 0, and suppose this timeline is segmented into successive
frames of duration {T [0], T [1], T [2], . . .}, as shown in Fig. 1.
Define t[0] = 0, and for each positive integer r define t[r] as
the rth renewal time:

t[r]M=
∑r−1
i=0 T [i]

The interval of all times t such that t[r] ≤ t < t[r + 1]
is defined as the rth renewal frame, defined for each r ∈
{0, 1, 2, . . .}.

At the beginning of each renewal frame r, the controller
selects a policy π[r] from an abstract policy space P , and
implements the policy over the duration of the frame. There
may be random events that arise over the renewal frame
(with distributions that are possibly dependent on the pol-
icy), and the policy specifies a contingency plan for react-
ing to these events. The policy incurs a vector of penal-
ties y[r] = (y0[r], y1[r], . . . , yL[r]) and attributes x[r] =
(x1[r], . . . , xM [r]) for some integers L ≥ 0, M ≥ 0 (where

L = 0 corresponds to problems without y[r] penalties, and
M = 0 corresponds to problems without x[r] attributes).
The policy may also affect the renewal frame duration T [r].
Formally, the values T [r], yl[r], xm[r] are determined by
random functions T̂ (·), ŷl(·), x̂m(·) of the policy π[r]:

T [r] M= T̂ (π[r]) (1)
yl[r] M= ŷl(π[r]) ∀l ∈ {0, 1, . . . , L} (2)
xm[r] M= x̂m(π[r]) ∀m ∈ {1, . . . ,M} (3)

We assume the values of [T̂ (π[r]), (ŷl(π[r])), (x̂m(π[r]))]
for frame r are conditionally independent of events in previous
frames given the particular policy π = π[r], and are identically
distributed over all frames that use the same policy π.

Consider now a particular control algorithm that chooses
policies π[r] ∈ P every frame r according to some well
defined (possibly probabilistic) rule, and define the following
frame-average expectations, defined for integers R > 0:

T [R]M=
1
R

R−1∑
r=0

E {T [r]} , yl[R]M=
1
R

R−1∑
r=0

E {yl[r]} (4)

where we recall that T [r], yl[r], xm[r] depend on the policy
π[r] by (1)-(3). Define xm[R] similarly, and define the infinite
horizon frame-average expectations T , yl, xm by:

(T , yl, xm) = lim
R→∞

(T [R], yl[R], xm[R])

where we temporarily assume the limits are well defined.

A. Optimization Objective

The first type of problem we consider uses only penalties
y[r]: We must choose a policy π[r] ∈ P every frame r to
minimize the ratio y0/T subject to constraints on yl/T :

Minimize: y0/T (5)
Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L} (6)

π[r] ∈ P ∀r ∈ {0, 1, 2, . . .} (7)

where cl for l ∈ {1, . . . , L} are a given collection of real-
valued (possibly negative) constants.

The motivation for looking at the ratio yl/T is that it defines
the time average penalty associated with the yl[r] process. To
see this, suppose the following limits converge to constants
yavl and T av with probability 1:

lim
R→∞

1
R

R−1∑
r=0

yl[r] = yavl , lim
R→∞

1
R

R−1∑
r=0

T [r] = T av (w.p.1)

Under very mild conditions, the existence of the limits yavl
and T av implies the frame-average expectations also have well
defined limits, with yl = yavl and T = T av . This holds,
for example, whenever yl[r] and T [r] are deterministically
bounded by finite constants, or when more general conditions
hold that allow the Lebesgue dominated convergence theorem
to be applied [23]. Then the time average penalty per unit
time associated with yl[r] (sampled only at renewal times for
simplicity) satisfies with probability 1:

lim
R→∞

∑R−1
r=0 yl[r]∑R−1
r=0 T [r]

= lim
R→∞

1
R

∑R−1
r=0 yl[r]

1
R

∑R−1
r=0 T [r]

=
yl
T
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Therefore, the value yl/T indeed represents the limiting
penalty per unit time associated with the process yl[r].

The problem (5)-(7) seeks only to minimize a time average
subject to time average constraints. The second problem we
consider, more general than the first, seeks to maximize a con-
cave and entrywise non-decreasing function φ(γ) of the time
average attribute vector ratio x/T , where x = (x1, . . . , xM ):

Maximize: φ(x/T ) (8)
Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L} (9)

π[r] ∈ P ∀r ∈ {0, 1, 2, . . .} (10)

where φ(γ) is a given concave and entrywise non-decreasing
utility function defined over γ = (γ1, . . . , γM ) ∈ RM .

B. Boundedness Assumptions

We assume xm[r], T [r], and y0[r] have bounded conditional
expectations, regardless of the policy. That is, there are finite
constants xminm , xmaxm , Tmin, Tmax, ymin0 , ymax0 such that for
all π[r] ∈ P and all m ∈ {1, . . . ,M} we have:

ymin0 ≤ E {ŷ0(π[r])|π[r]} ≤ ymax0

0 < Tmin ≤ E
{
T̂ (π[r])|π[r]

}
≤ Tmax

xminm ≤ E {x̂m(π[r])|π[r]} ≤ xmaxm

Define γminm and γmaxm by:

γminm
M= min[xminm /Tmin, xminm /Tmax]

γmaxm
M= max[xmaxm /Tmax, xmaxm /Tmax]

Define the hyper-rectangle R by:

RM={γ ∈ RM |γminm ≤ γm ≤ γmaxm ∀m ∈ {1, . . . ,M}} (11)

Then for any algorithm that chooses policies π[r] ∈ P for all
frames r, it is not difficult to show that xm[R]/T [R] ∈ R
for all R ∈ {1, 2, 3, . . .}, where T [R], xm[R], T [R] are frame
average expectations over the first R frames, as defined by (4).

Finally, we assume the conditional second moments of T [r],
xm[r], and yl[r] (for l 6= 0) are finite, regardless of the policy.
That is, there is a finite constant σ1 such that for all π[r] ∈ P:

E
{
T̂ (π[r])2|π[r]

}
≤ σ1

E
{
ŷl(π[r])2|π[r]

}
≤ σ1 ∀l ∈ {1, . . . , L}

E
{
x̂m(π[r])2|π[r]

}
≤ σ1 ∀m ∈ {1, . . . ,M}

C. Optimality of i.i.d. Algorithms

We now state the problem (5)-(7) more precisely, using
lim sups which do not require existence of a well defined limit:

Minimize: lim supR→∞
y0[R]

T [R]
(12)

Subject to: lim supR→∞
yl[R]

T [R]
≤ cl ∀l ∈ {1, . . . , L} (13)

π[r] ∈ P ∀r ∈ {0, 1, 2, . . .} (14)

Assume that the constraints (13)-(14) are feasible, and define
ratioopt as the infimum ratio in (12) over all algorithms that
satisfy these constraints.

Define an i.i.d. algorithm as one that, at the beginning of
each new frame r ∈ {0, 1, 2, . . .}, chooses a policy π[r] by
independently and probabilistically selecting π ∈ P according
to some distribution that is the same for all frames r. Let π∗[r]
represent such an i.i.d. algorithm. Then the random variables
{T̂ (π∗[r])}∞r=0 are independent and identically distributed
(i.i.d.) over frames, as are {ŷl(π∗[r])}∞r=0. Thus, by the law
of large numbers, these have well defined time averages T

∗

and y∗l with probability 1, where the averages are equal to the
expectations over one frame.

Lemma 1: (Optimality over i.i.d. algorithms) If the con-
straints (13)-(14) are feasible, then for any δ > 0, there exists
an i.i.d. algorithm π∗[r] that satisfies:

E {ŷ0(π∗[r])} ≤ E
{
T̂ (π∗[r])

}
(ratioopt + δ) (15)

E {ŷl(π∗[r])} ≤ E
{
T̂ (π∗[r])

}
(cl + δ) ∀l ∈ {1, . . . , L} (16)

Proof: The proof is similar to results in [11][13], and is
omitted for brevity.

III. OPTIMIZING TIME AVERAGES

Here we develop an algorithm to treat the problem (5)-(7).
To treat the constraints yl/T ≤ cl, which are equivalent to
the constraints yl ≤ clT , we define virtual queues Zl[r] for
l ∈ {1, . . . , L}, with finite initial condition and with update
equation:

Zl[r+1] = max[Zl[r]+yl[r]−clT [r], 0]∀l ∈ {1, . . . , L} (17)

The intuition is that if we can stabilize the queue Zl[r], then
the time average of the “service process” clT [r] is greater than
or equal to the time average of the “arrival process” yl[r] (see
also [11] for application to virtual power queues for meeting
time average power constraints).

Let Z[r] = (Z1[r], . . . , ZL[r]) be the vector of virtual
queues, and define the following quadratic Lyapunov function
L(Z[r]):

L(Z[r])M= 1
2

∑L
l=1 Zl[r]

2

The value L(Z[r]) is a scalar measure of the size of the
queue backlogs. The intuition is that if we can take actions
that consistently push this value down, then queues can be
stabilized. Define the frame-based conditional Lyapunov drift
∆(Z[r]) by:

∆(Z[r])M=E {L(Z[r + 1])− L(Z[r])|Z[r]}

Lemma 2: Under any control decision for choosing π[r] ∈
P , we have for all r and all possible Z[r]:

∆(Z[r]) ≤ B +
L∑
l=1

Zl[r]E {yl[r]− clT [r]|Z[r]} (18)

where B is a constant that satisfies for all r and all possible
Z[r]:

B ≥ 1
2

L∑
l=1

E
{

(yl[r]− clT [r])2|Z[r]
}

(19)

Such a constant B exists by the boundedness assumptions in
Section II-B.
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Proof: Squaring (17) yields:

Zl[r + 1]2 ≤ (Zl[r] + yl[r]− clT [r])2

= Zl[r]2 + (yl[r]− clT [r])2

+2Zl[r](yl[r]− clT [r])

Taking conditional expectations, dividing by 2, and summing
over l ∈ {1, . . . , L} yields the result.

A. The Drift-Plus-Penalty Ratio Algorithm

Our Drift-Plus-Penalty Ratio Algorithm is designed to min-
imize a sum of the variables on the right-hand-side of the drift
bound (18) and a penalty term, divided by an expected frame
size, as in [21]. The penalty term uses a non-negative constant
V that will be shown to affect a performance tradeoff:
• (Policy Selection) Every frame r ∈ {0, 1, 2, . . .}, observe

the virtual queues Z[r] and choose a policy π[r] ∈ P to
minimize the following expression:

E
{
V ŷ0(π[r]) +

∑L
l=1 Zl[r]ŷl(π[r])|Z[r]

}
E
{
T̂ (π[r])|Z[r]

} (20)

• (Queue Update) Observe the resulting y[r] and T [r]
values, and update virtual queues Zl[r] by (17).

Details on minimizing (20) are given in Section V. Rather
than assuming we achieve the exact infimum of (20) over all
policies π[r] ∈ P , it is useful to allow our decisions to come
within an additive constant C of the infimum.

Definition 1: A policy π[r] is a C-additive approximation
for the problem (20) if for a given constant C ≥ 0 we have:

E
{
V ŷ0(π[r]) +

∑L
l=1 Zl[r]ŷl(π[r])|Z[r]

}
E
{
T̂ (π[r])|Z[r]

} ≤

C + inf
π∈P

E
{
V ŷ0(π) +

∑L
l=1 Zl[r]ŷl(π)|Z[r]

}
E
{
T̂ (π)|Z[r]

}


In Section V-B it is shown that the infimum of (20) over
π ∈ P is the same as the infimum over the extended class
of probabilistically mixed strategies that choose a random
π ∈ P according to some distribution (exactly what i.i.d.
policies do every frame). Thus, if policy π[r] is a C-additive
approximation, then:

E
{
V ŷ0(π[r]) +

∑L
l=1 Zl[r]ŷl(π[r])|Z[r]

}
≤

E
{
T̂ (π[r])|Z[r]

}[
C +

E{V ŷ0(π∗[r])+
PL

l=1 Zl[r]ŷl(π
∗[r])}

E{T̂ (π∗[r])}

]
(21)

where π∗[r] is any i.i.d. algorithm. Note that conditional
expectations given Z[r] are the same as unconditional ex-
pectations under i.i.d. algorithms, because their decisions are
independent of system history.

Theorem 1: (Algorithm Performance) Assume the con-
straints of problem (12)-(14) are feasible. Fix constants C ≥ 0,
V ≥ 0, and assume the above algorithm is implemented using
any C-additive approximation every frame r for the minimiza-
tion in (20). Assume initial conditions satisfy E {L(Z[0])} <
∞. Then:

a) For all l ∈ {1, . . . , L} we have:

lim sup
R→∞

yl[R]/T [R] ≤ cl ∀l ∈ {1, . . . , L} (22)

lim sup
R→∞

∑R−1
r=0 yl[r]∑R−1
r=0 T [r]

≤ cl (w.p.1) (23)

where “w.p.1” stands for “with probability 1.”
b) For all integers R > 0 we have:

y0[R]
T [R]

≤ ratioopt +
(B/T [R] + C)

V
+

E {L(Z[0])}
V RT [R]

(24)

and hence:

lim sup
R→∞

y0[R]/T [R] ≤ ratioopt + (B/Tmin + C)/V (25)

where B is defined in (19), and ratioopt is the optimal solution
to (12)-(14).

Thus, the algorithm satisfies all constraints, and the value
of V can be chosen appropriately large to make (B/Tmin +
C)/V arbitrarily small, ensuring that the time average penalty
is arbitrarily close to its optimal value ratioopt. The tradeoff
in choosing a large value of V comes in the size of the Zl[r]
queues and the number of frames required for E {Zl[R]} /R
to approach zero (which affects convergence time of the
algorithm, see (33) in the proof). In particular, it can be shown
from (30) that there are constants F1, F2 such that (see [24]):

E {Zl[R]}
R

≤

√
F1 + V F2

R
+
∑L
l=1 E {Zl[0]2}

R2

Proof: (Theorem 1) Consider any frame r ∈ {0, 1, 2, . . .}.
Combining (18) and (21) yields:

∆(Z[r]) + V E {ŷ0(π[r])|Z[r]} ≤ B +

E
{
T̂ (π[r])|Z[r]

}[
C +

E{V ŷ0(π∗[r])+
PL

l=1 Zl[r]ŷl(π
∗[r])}

E{T̂ (π∗[r])}

]
−
∑L
l=1 Zl[r]clE

{
T̂ (π[r])|Z[r]

}
(26)

In the above inequality, π[r] represents the C-additive approx-
imate decision actually made, and π∗[r] is from any alternative
i.i.d. algorithm. Fixing any δ > 0, plugging the i.i.d. algorithm
π∗[r] from (15)-(16) into the right-hand-side of (26), and
letting δ → 0 yields:

∆(Z[r]) + V E {ŷ0(π[r])|Z[r]} ≤ B
+E

{
T̂ (π[r])|Z[r]

}
[C + V ratioopt] (27)

Taking expectations of the above yields:

E {L(Z[r + 1])} − E {L(Z[r])}+ V E {ŷ0(π[r])} ≤
B + E

{
T̂ (π[r])

}
[C + V ratioopt] (28)

Summing the above over r ∈ {0, . . . , R−1} for some integer
R > 0 and dividing by R yields:

E {L(Z[R])} − E {L(Z[0])}
R

+ V y0[R] ≤

B + T [R][C + V ratioopt] (29)

Rearranging terms in the above and using the fact that
E {L(Z[R])} ≥ 0 yields the result of part (b).
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To prove part (a), from (27) there is a constant F such that:

∆(Z[r]) ≤ F (30)

Thus, the drift of a quadratic Lyapunov function is bounded
by a constant. Further, the second moments of per-frame
changes in Zl[r] are bounded because of the second moment
assumptions on yl[r] and T [r]. It follows that (see [24]):

lim
R→∞

E {Zl[R]} /R = 0 (31)

lim
R→∞

Zl[R]/R = 0 (w.p.1) (32)

Now from the queue update (17) we have for any frame r:

Zl[r + 1] ≥ Zl[r] + yl[r]− clT [r]

Summing the above over r ∈ {0, . . . , R−1} for some integer
R > 0 yields:

Zl[R]− Zl[0] ≥
∑R−1
r=0 [yl[r]− clT [r]]

Taking expectations, dividing by R, and using E {Zl[0]} ≥ 0
yields for all integers R > 0:

E {Zl[R]}
R

≥ yl[R]− clT [R]

Thus:
yl[R]
T [R]

≤ cl +
E {Zl[R]}
RT [R]

≤ cl +
E {Zl[R]}
RTmin

(33)

Taking limits of the above and using (31) proves (22). A
similar argument uses (32) to prove (23).

Under a mild “Slater-type” assumption that ensures the
constraints (13) are achievable with “ε-slackness,” the queues
Zl[R] can be shown to be strongly stable, in the sense that
the time average expectation is bounded by O(V ). If further
mild fourth moment boundedness assumptions hold for yl[r]
and T [r] then the same bound (25) can be shown to hold for
pure time averages with probability 1 [24].

IV. UTILITY OPTIMIZATION

Consider now the problem (8)-(10), which seeks to max-
imize φ(x/T ) subject to yl/T ≤ cl for all l ∈ {1, . . . , L}.
We transform this problem of maximizing a function of a
time average ratio into a problem of the type (5)-(7). The
following variation on Jensen’s inequality is crucial in this
transformation:

Lemma 3: (Variation on Jensen’s Inequality) Let φ(γ) be
any continuous and concave function defined over γ ∈ R for
some closed and bounded hyper-rectangle R. Let (T [r],γ[r])
be a sequence of arbitrarily correlated random vectors for r ∈
{0, 1, 2, . . .}. Assume that T [r] > 0, γ[r] ∈ R for all r, and:

0 < Tmin ≤ E {T [r]} ≤ Tmax <∞ ∀r ∈ {0, 1, 2, . . .}

Then for any R > 0:
1
R

∑R−1
r=0 E {T [r]φ(γ[r])}

1
R

∑R−1
r=0 E {T [r]}

≤ φ

(
1
R

∑R−1
r=0 E {T [r]γ[r]}

1
R

∑R−1
r=0 E {T [r]}

)
Furthermore, assuming that the limits Tφ(γ) and Tγ defined
below exist, we have:

Tφ(γ)/T ≤ φ(Tγ/T ) (34)

where:

Tφ(γ) M= lim
R→∞

1
R

R−1∑
r=0

E {T [r]φ(γ[r])}

Tγ M= lim
R→∞

1
R

R−1∑
r=0

E {T [r]γ[r]}

Proof: See [13].
Now define an auxiliary vector γ[r] = (γ1[r], . . . , γM [r]),

to be chosen in the set R defined in (11) on every frame r.
Lemma 4: (Equivalent Transformation) The problem (8)-

(10) is equivalent to the following transformed problem:

Maximize: Tφ(γ)/T (35)
Subject to: xm ≥ Tγm ∀m ∈ {1, . . . ,M} (36)

yl/T ≤ cl ∀l ∈ {1, . . . , L} (37)
γ[r] ∈ R ∀r ∈ {0, 1, 2, . . .} (38)
π[r] ∈ P ∀r ∈ {0, 1, 2, . . .} (39)

Proof: We briefly sketch the proof: Let π∗[r], γ∗[r] be
a policy that optimally solves the above transformed prob-
lem, and assume for simplicity it yields well defined time
averages T

∗
, y∗l , x∗m, T ∗φ(γ∗), T ∗γ∗, and optimal utility

util∗ = T ∗φ(γ∗)/T
∗
. Then the policy π∗[r] also satisfies all

constraints of problem (8)-(10), and yields:

φ(x∗/T
∗
) ≥ φ(T ∗γ∗/T ∗) ≥ T ∗φ(γ∗)/T

∗ M=util∗

where the first inequality above holds by (36) and the entry-
wise non-decreasing property of φ(γ), and the second holds
by (34). Thus, the optimal utility of problem (8)-(10) is greater
than or equal to that of the transformed problem. A similar
argument shows it is also less than or equal to the optimal
utility of the transformed problem.

The transformed problem (35)-(39) has the structure of the
problem (5)-(7) if we define y0[r]M= − T [r]φ(γ[r]), write the
constraints (36) as Tγm − xm ≤ 0, and define policy decision
π′[r]M=(π[r],γ[r]) ∈ P × R. The resulting algorithm is thus
the same as that given in Section III-A, and for this context
it is given as follows: For the constraints (37), use the same
virtual queues Zl[r] defined in (17). For the constraints (36),
define virtual queues Gm[r] for m ∈ {1, . . . ,M} by:

Gm[r + 1] = max[Gm[r] + T [r]γm[r]− xm[r], 0] (40)

Define G[r]M=(G1[r], . . . , GM [r]). The drift-plus-penalty ratio
to minimize every frame r is then:

E
{
−V T̂ (π[r])φ(γ[r]) +

∑L
l=1 Zl[r]ŷl(π[r])|Z[r]

}
E
{
T̂ (π[r])|Z[r]

}
+

E
{∑M

m=1Gm[r][T̂ (π[r])γm[r]− x̂m(π[r])]|Z[r]
}

E
{
T̂ (π[r])|Z[r]

}
It is easy to see that the above can be minimized by separately
choosing γ[r] ∈ R and π[r] ∈ P to minimize their respective
terms, and that T̂ (π[r]) cancels out of the auxiliary variable
decisions. The resulting algorithm is thus to observe Z[r] and
G[r] every frame r ∈ {0, 1, 2, . . .} and perform the following:
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• (Auxiliary Variables) Choose γ[r] ∈ R to maximize:

V φ(γ[r])−
∑M
m=1Gm[r]γm[r]

• (Policy Selection) Choose π[r] ∈ P to minimize:

E
{∑L

l=1 Zl[r]ŷl(π[r])−
∑M
m=1Gm[r]x̂m(π[r])|Z[r]

}
E
{
T̂ (π[r])|Z[r]

}
• (Virtual Queue Update) Update Z[r] by (17) and G[r]

by (40).
The auxiliary variable update is a simple deterministic maxi-
mization of a concave function over a hyper-rectangle, and can
be separated into M optimizations of single-variable concave
functions over an interval if the utility function has the form
φ(γ) =

∑M
m=1 φm(γm). The policy selection step is again

an optimization of a ratio of expectations and can be done as
described in Section V.

V. OPTIMIZING THE RATIO OF EXPECTATIONS

Here we show how to minimize the ratio of expectations
given in (20) (and also in the policy selection stage of
the previous section). These problems can be written more
generally as choosing a policy π[r] ∈ P to minimize the ratio:

E {a(π)}
E {b(π)}

where a(π), b(π) are random functions of π ∈ P , and b(π) is
strictly positive with Tmax ≥ E {b(π)|π} ≥ Tmin > 0 for all
π ∈ P . The function b(π) is equal to T̂ (π). The function a(π)
depends on Z[r], and the above expectations are implicitly
conditioned on Z[r], although we suppress this notation for
simplicity. Define θ∗ as the optimal ratio:

θ∗ M= inf
π∈P

[
E {a(π)}
E {b(π)}

]
If the expectation E {b(π)} is the same for all π ∈ P (such
as when the frame size is independent of the policy), then
θ∗ is obtained by infimizing the numerator E {a(π)}. This is
typically easier (often involving learning for stochastic shortest
path computations [25][4]). Otherwise, the following simple
lemma is useful.

Lemma 5: We have:

inf
π∈P

E {a(π)− θ∗b(π)} = 0 (41)

Further, for any real number θ, we have:

inf
π∈P

E {a(π)− θb(π)} < 0 if θ > θ∗ (42)

inf
π∈P

E {a(π)− θb(π)} > 0 if θ < θ∗ (43)
Proof: See [13].

A. The Bisection Algorithm

Lemma 5 immediately leads to the following simple bi-
section algorithm: Suppose we have upper and lower bounds
θmin and θmax, so that we know θmin ≤ θ∗ ≤ θmax. Then
we can define θ = (θmin + θmax)/2, and compute the value
of infπ∈P E {a(π)− θb(π)}. If the result is 0, then θ = θ∗.

If positive, then θ < θ∗, and otherwise θ > θ∗. We can then
refine our upper and lower bounds. This leads to a simple
iterative algorithm where the distance between the upper and
lower bounds decreases by a factor of 2 on each iteration. It
thus approaches the optimal θ∗ value exponentially fast. Each
step of the iteration involves minimizing an expectation, rather
than a ratio of expectations.

B. Optimizing over Pure Policies

Note that for any set of policies S, Lemma 5 implies
that infπ∈S E {a(π)− θb(π)} = 0 if and only if θ =
infπ∈S E {a(π)} /E {b(π)}. Now suppose we have a set of
policies Ppure that we call pure policies, and that the policy
space P consists of all pure policies as well as all “mixtures”
(or convex combinations) of pure policies, being policies that
choose a pure policy in Ppure with some particular probability
distribution. More generally, define Ω as the set of all vectors
(E {a(π)} ,E {b(π)}) achievable over π ∈ Ppure, and suppose
the set of all (E {a(π)} ,E {b(π)}) achievable over π ∈ P is
equal to the convex hull of Ω. Recall that θ∗ is the infimum
ratio of E {a(π)} /E {b(π)} over π ∈ P . Then:

0 = inf
π∈P

E {a(π)− θ∗b(π)} = inf
(a,b)∈Conv(Ω)

[a− θ∗b]

= inf
(a,b)∈Ω

[a− θ∗b]

= inf
π∈Ppure

E {a(π)− θ∗b(π)}

where the third inequality holds because the infimum of a
linear function over the convex hull of a set is equal to the
infimum over the set itself. It follows that θ∗ is also the
infimum ratio of E {a(π)} /E {b(π)} over π ∈ Ppure.

This means that to achieve the infimum ratio over policies
π ∈ P , it suffices to restrict our search to pure policies.

C. Optimizing with Initial Information

Suppose at the beginning of each frame, we observe a
vector η[r] of initial information that can affect the penalties
and frame size. Suppose that {η[r]}∞r=0 is i.i.d. over frames.
Each policy π ∈ P first observes η[r] and then chooses a
sub-policy π′ ∈ Pη[r], where Pη[r] is a space that possibly
depends on η[r]. To minimize E {a(π)}, it suffices to observe
η[r] and choose π′ ∈ Pη[r] to minimize the conditional
expectation E {a(π′)|η[r]}. However, this is not necessarily
true for minimizing the ratio E {a(π)} /E {b(π)}.

A correct approach is the following: If θ∗ is known, we can
simply choose π′ ∈ Pη[r] to minimize:

E {a(π′)− θ∗b(π′)|η[r]}

If θ∗ is unknown, we can carry out the bisection routine. Let
θ be the midpoint in the current iteration. We must compute:

inf
π∈P

E {a(π)− θb(π)} = E
{

inf
π′∈Pη[r]

E {a(π′)− θb(π′)|η[r]}
}

(44)
The infimizing decision π′ can be made by observing η[r],
without requiring knowledge of its probability distribution.
However, the value in (44) cannot be computed without
knowledge of this distribution. Instead, suppose we have W
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i.i.d. samples {ηw}Ww=1. We can then approximate the value
in (44) by the function val(θ) defined below:

val(θ)M=
1
W

W∑
w=1

inf
π′∈Pηw

E {a(π′)− θb(π′)|ηw} (45)

By the law of large numbers, val(θ) approaches the exact
value of (44) with a large choice of W . The bisection routine
can be carried out using the val(θ) approximation, being sure
to use the same samples at each step of the iteration (but
different samples on each frame r). Note that val(θ) is non-
increasing in θ, so the bisection will converge provided that
it is initialized so that val(θmin) ≥ 0 and val(θmax) ≤ 0. If
we cannot independently generate W samples, we use the W
past observed values of η[r] from previous frames. There is a
subtle issue here, as these past values have influenced system
performance and are thus correlated with the current a(π) and
b(π) functions. However, a delayed queue argument similar to
that given in [26] shows these past values can still be used.

D. Alternative Formulation

Note that constraints of the form yl ≤ 0 are equivalent to
yl/T ≤ cl in the special case cl = 0, and thus can be handled
using the framework of this paper. Now consider the following
problem structure:

Minimize: y0

Subject to: yl/T ≤ cl ∀l ∈ {1, . . . , L}
π[r] ∈ P ∀r ∈ {0, 1, 2, . . .}

Such a problem has a different structure than the problem (5)-
(7), and is easier to solve as it does not require a ratio of
expectations. It can be solved using the same virtual queues
Zl[r] in (17), but every frame r observing Z[r] and selecting
a policy π[r] ∈ P to minimize the following expression:

E{V ŷ0(π[r]) +
∑L
l=1 Zl[r][ŷl(π[r])− clT̂ (π[r])]|Z[r]}

Analysis is omitted for brevity (see Exercise 7.3 in [13]).

E. Alternative Algorithm

The following is an alternative algorithm for the original
problem (5)-(7) that does not require a ratio minimization (and
hence does not require a bisection step): Use the same virtual
queues Zl[r] in (17). Define θ[0] = 0, and define θ[R] for
R ∈ {1, 2, 3, . . .} by:

θ[R]M=
∑R−1
r=0 y0[r]/

∑R−1
r=0 T [r] (46)

Every frame r, observe Z[r] and θ[r] and select a policy π[r] ∈
P to minimize the following expression:

E{V [ŷ0(π[r])− θ[r]T̂ (π[r])]|Z[r], θ[r]} (47)

+E{
∑L
l=1 Zl[r][ŷl(π[r])− clT̂ (π[r])]|Z[r], θ[r]}

It is shown in Exercise 7.5 of [13] that all constraints are met,
and that if θ[r] converges to a constant with probability 1, then
with probability 1:

limR→∞
∑R−1
r=0 y0[r]/

∑R−1
r=0 T [r] ≤ ratioopt +O(1/V )

The disadvantage is that the convergence time is not as clear
as that given in part (b) of Theorem 1. Further, use of the time
average (46) makes it difficult to adapt to changes in system
parameters, so that it may be better to approximate (46) with
a moving average or an exponentially decaying average.

VI. SIMULATIONS FOR A TASK PROCESSING NETWORK

Control 
Phase Transmission Idle

0.5 Ttran[r] Idle[r]

Fig. 2. An illustration of the 3 phases of a renewal frame r ∈ {0, 1, 2, . . .}.

Here we provide a simple task processing example. An
infinite sequence of tasks must be processed one at a time
with the help of a network of 5 wireless devices. This applies,
for example, in scenarios similar to [22] where each new task
represents an event that is sensed by the wireless devices (each
at different sensing qualities [27]), and we must select which
device reports the event information. The renewal structure
is shown in Fig. 2. At the beginning of each new task r, a
period of 0.5 time units is expended to communicate control
information about the task. Each of the 5 devices expends 0.5
units of energy in this control phase. At the end of this phase,
the network controller obtains a vector η[r] of parameters for
task r. The vector η[r] has the form:

η[r] = [(qual1[r], T tran1 [r]), . . . , (qual5[r], T tran5 [r])]

where for each l ∈ {1, . . . , 5}, quall[r] is a real number
representing the information quality if device l is chosen to
process task r, and T tranl [r] is the transmission time required
for device l to transmit the corresponding information to a
receiving station. The controller must choose one of the 5
devices to process the task, and must also choose the amount
of idle time at the end of the frame (chosen within the interval
[0, 5]), so that the policy decision π[r] has the form:

π[r] = (l[r], Idle[r]) ∈ {1, 2, 3, 4, 5} × {I ∈ R|0 ≤ I ≤ 5}

Define P tran as the power expenditure associated with
wireless transmission. The chosen device l[r] expends P tran×
T tranl[r] units of energy in the transmit phase, while all other
devices l 6= l[r] expend no energy in this phase. None of the
devices expend energy in the idle phase, which helps to limit
the average power expenditure in the system.

The goal is to maximize the quality of information (q.o.i)
per unit time subject to an average power constraint of 0.25 at
each device. Define ŷ0(π[r]) as −1 times the q.o.i. obtained
for task r, ŷl(π[r]) as the energy expended by device l on task
r, and T̂ (π[r]) as the frame duration for task r:

ŷ0(π[r]) M= −quall[r][r]
ŷl(π[r]) M= 0.5 + P tranT tranl [r]1{l[r]=l} ∀l ∈ {1, . . . , 5}
T̂ (π[r]) M= 0.5 + T tranl[r] [r] + Idle[r]

where 1{l[r]=l} is an indicator function that is 1 if l[r] = l
and 0 else. The problem is then to minimize y0/T subject to
yl/T ≤ 0.25 for all l ∈ {1, . . . , 5}.
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Fig. 3. Utility for the drift-plus-penalty ratio algorithm (with bisection) and
the time-averaged alternative.

We simulate the drift-plus-penalty ratio algorithm for 106

frames, using the bisection method with W past samples of
η[r] as in (45) of Section V-C. We use P tran = 1.0. The
vectors {η[r]}∞r=0 are assumed to be i.i.d. with independently
chosen components, where T tranl [r] is uniformly distributed
in [0.5, 2.5] for all l, and quall[r] is uniformly distributed in
[0, l] for l ∈ {1, 2, 3, 4, 5} (so that device 5 tends to have the
highest quality, while device 1 tends to have the lowest). We
initialize θmin = −5V , θmax M=

∑5
l=1 Zl[r]3. Each step of the

bisection computes val(θ) according to a simple deterministic
optimization, and the bisection routine is run for each frame
until θmax−θmin < 0.001. Using V = 100, the resulting q.o.i
per unit time is plotted in Fig. 3. This increases to its optimal
value as W is increased. However, in this example, W does
not need to be very large for accurate results: Even W = 1
produces a value that is near optimal (note that the y-axis in
Fig. 3 distinguishes utility only in the 3rd significant digit).

All average power constraints are met in all simulations
(for each W ). Results for W = 10 are: q.o.i/T = 0.852950,
T = 3.180275, Idle = 1.421260, y0 = −2.712615, and:

y1/T = 0.182335 ≤ 0.25
y2/T = 0.249547 ≤ 0.25 , y3/T = 0.250018 ≤ 0.25
y4/T = 0.250032 ≤ 0.25 , y5/T = 0.250046 ≤ 0.25

It can be seen that devices {2, . . . , 5} are utilized to their
maximum power constraints because these tend to give the
highest quality, while average power for device 1 is slack.

The alternative algorithm of Section V-E, which does not
require a bisection routine and amounts to a simple deter-
ministic optimization for (47) every frame, achieves similar
time average power expenditures to the above. It also achieves
utility as shown in Fig. 3, being the constant that does not
depend on W (as no sampling from the past is needed). Its
utility is slightly larger than that of the bisection algorithm,
and is approached by the bisection algorithm as W increases.
It appears that this algorithm is simpler and yields “automatic
learning” by using the time average value θ[r], but it might
have trouble adapting if system parameters change.
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