
PROC. IEEE INT. CONF. ON COMMUNICATIONS (ICC), JUNE 2012 1

Quality of Information Maximization in Two-Hop
Wireless Networks

Sucha Supittayapornpong, Michael J. Neely
Department of Electrical Engineering

University of Southern California
Los Angeles, California

Email: supittay@usc.edu, mjneely@usc.edu

Abstract—An information collection problem in a wireless
network with random events is considered. Wireless nodes report
on each event using one of multiple reporting formats. Each
format has a different quality and uses a different number of
bits. Delivering all data in the highest quality format can overload
system resources. The goal is to make intelligent format selection
and routing decisions to maximize time-averaged information
quality subject to network stability. Lyapunov optimization
theory can be used to solve such a problem by repeatedly
minimizing the linear terms of a quadratic drift-plus-penalty
expression. To reduce delays, a novel extension of this technique
that preserves the quadratic nature of the drift minimization
while maintaining a separable decision structure is proposed.
Also, paths are restricted to 1 or 2 hops to avoid high queuing
delay. The resulting algorithm can push average information
quality arbitrarily close to optimum, with a trade-off in average
delay. The algorithm compares favorably to the basic drift-plus-
penalty scheme in terms of backlog and delay.

I. I NTRODUCTION

This paper investigates dynamic scheduling and data format
selection in a network where multiple wireless devices, such
as smart phones, report information to a receiver station.
The devices together act as a pervasive pool of information
about the network environment. Such scenarios have been
recently considered, for example, in applications of social
sensing [1] and personal environment monitoring [2], [3].
Sending all information in the highest quality format can
quickly overload network resources. Thus, it is often more
important to optimize thequality of information, as defined
by the end-user, rather than the raw number of bits that are
sent. The case for quality-aware consideration is made in [4],
[5], [6]. Network management with quality of information
awareness for wireless sensor networks is considered in [7].
More recently, quality metrics of accuracy and credibilityare
considered in [8], [9] using simplified models that do not
consider the actual dynamics of a wireless network.

In this paper, we extend the quality-aware format selection
problem in [9] to a dynamic network setting. We particularly
focus on distributed algorithms for routing, scheduling, and
format selection that jointly optimize quality of information.
Specifically, we assume that random events occur over time
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in the network environment, and these can be sensed by
one or more of the wireless devices, perhaps at different
sensing qualities. At the transport layer, each device selects
one of multiple reporting formats, such as a video clip at
one of several resolution options, an audio clip, or a text
message. Information quality depends on the selected format.
For example, higher quality formats use messages with larger
bit lengths. The resulting bits are handed to the network layer
at each device and must be delivered to the receiver station
over possibly time-varying channels. This delivery can be a
direct transmission from a device to the receiver station via
an uplink channel, or can take a 2-hop path that utilizes another
device as relay (we restrict paths to at most 2-hops for tight
control over network delays). An example is a single-cell
wireless network with multiple smart phones and one base
station, where each smart phone has 3G capabilities for uplink
transmission and Wi-Fi capabilities for device-to-devicerelay
transmission.

Such a problem can be cast as a stochastic network opti-
mization and solved using Lyapunov optimization theory. A
“standard” method is to minimize a linear term in a quadratic
drift-plus-penalty expression [10], [11]. This can be shown to
yield algorithms that converge to optimal average utility with
a trade-off in average queue size. The linearization is useful
for enabling decisions to be separated at each node. However,
it can lead to larger queue sizes and delays. In this work, we
propose a novel method that uses a quadratic minimization for
the drift-plus-penalty expression, yet still allows separability
of the decisions. This results in an algorithm that maintains
distributed decisions across all nodes for format selection and
routing, similar to the standard (linearized) drift-plus-penalty
approach, but reduces overall queue size.

For the derived algorithm, each device observes its input
queue length and then selects a format to report an event
according to a simple rule. The routing decision for each group
of bits is determined at each device by considering its input,
uplink, and relay queues. Then, allocation of channel resources
for direct transmission is determined from a base station
after observing current uplink queues and channel conditions.
For the relay transmission, an optimization problem involving
relay queues and channel conditions are solved at the base
station to determined an optimal transmission decision. This
process can be decentralized if all channels are orthogonal.

Our analysis shows that the standard drift-plus-penalty
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Fig. 1. An example network, illustrating the internal queuesKn(t), Qn(t),
Jn(t) for each noden.

algorithm and our new algorithm both converge to the optimal
quality-of-information. The simulation also shows that the new
algorithm has a significant savings in queue size and delay.

Thus, our contributions are twofold: (i) We formulate an
important quality-of-information problem for reporting infor-
mation in wireless systems. This problem is of recent interest
and can be used in other contexts where “data deluge” issues
require selectivity in reporting of information. (ii) We extend
Lyapunov optimization theory by presenting a new algorithm
that uses a quadratic minimization to reduce queue sizes while
maintaining separability across decisions. This new technique
is general and can be used to reduce queue sizes in other
Lyapunov optimization problems.

In the next section we formulate the problem. Section III
derives the novel quadratic algorithm. Section IV analyzesits
performance. Section V presents simulation results.

II. SYSTEM MODEL

Consider a network withN wireless devices, called nodes,
that report information to a single base station. LetN =
{1, . . . , N} be the set of wireless nodes, and denote the base
station by node0. A network with N = 3 nodes is shown
in Fig. 1. The system operation has two stages, theformat
selectionstage and thenetwork routing and schedulingstage.

A. Format Selection Stage

Time is slotted tot ∈ {0, 1, 2, . . .}. In every slott, an event
occurs with probabilityθ, where0 < θ ≤ 1. Each noden ∈ N
on slot t selects formatfn(t) from a set of available formats
F = {0, 1, . . . , F}, where format selection affects quality and
bit length for the reported information about the event. The
quality can also depend on proximity of each node to the
location of the event. To model this, the event on slott is de-
scribed by a vector ofevent characteristics{(r(f)n (t), d

(f)
n (t))}

for n ∈ N and f ∈ F . Formatf ∈ F for a noden on slot
t corresponds to message lengthdn(t) = d

(f)
n (t) and quality

rn(t) = r
(f)
n (t). The(r(f)n (t), d

(f)
n (t)) values may be different

on each slot. For example, they are identically(0, 0) for all
formats at nodesn that do not observe the current event (such
as when the event is close to only a subset of the nodes), and
are(0, 0) for all nodes and formats on slots in which no event
occurs. To allow a noden not to report on an event, there is
a “blank format” 0 ∈ F such thatd(0)n (t) = r

(0)
n (t) = 0 for

all t. On each slott, the vector{(r(f)n (t), d
(f)
n (t))} is assumed

to be arbitrarily correlated overn and f , but is independent

and identically distributed (i.i.d.) across slots. Note that values
(r

(f)
n (t), d

(f)
n (t)) have arbitrary relationships, sor(f1)n (t) is not

necessarily greater thanr(f2)n (t) when d
(f1)
n (t) > d

(f2)
n (t).

Generally, it is possible to viewr(f)n (t) as the value or benefit
of choosing formatf . The i.i.d. assumption can be extended
to a Markov model using techniques from [10], but we omit
this for brevity. We assume that0 ≤ dn(t) ≤ d

(max)
n and

0 ≤ rn(t) ≤ r
(max)
n for all t, for some positive real-valued

constantsd(max)
n andr(max)

n .

B. Network Routing and Scheduling

At each noden ∈ N , the dn(t) bits of data generated by
format selection are put intoinput queueKn(t), as shown in
Fig. 1. Each node has two orthogonal communication capabili-
ties, calleduplink transmissionandad-hoc relay transmission.
The uplink transmission capability allows each node to com-
municate to the base station directly via an uplink channel.
The relay capability allows communication between a node
and its neighboring nodes. All transmissions are assumed to
be successful by some feedback and forward error correction
mechanisms. Choice of how many bits are used for each type
of transmission is done at noden by internally moving data
from queueKn(t) to eitheruplink queueQn(t) or relay queue
Jn(t). This is conceptually similar to the hop-count based
queue architecture in [12].

In each slott, let decision variabless(q)n (t) and s
(j)
n (t)

represent the amount of bits in queueKn(t) that can be
internally moved toQn(t) andJn(t) (under the condition that
enough bits are available inKn(t)), as illustrated in Fig. 1.
These bits can also be considered along with the remaining
bits in the Qn(t) and Jn(t) queues for uplink and relay
transmission on slott, since internal moving of bits is assumed
to be done before transmissions start reading bits from the
queues. Let{0, 1, . . . , s(q)(max)

n } and {0, 1, . . . , s
(j)(max)
n } be

the feasible ranges ofs(q)n (t) and s
(j)
n (t), where constants

s
(q)(max)
n ands(j)(max)

n are assumed to be greater than or equal
to the maximum number of bits that can be transmitted out of
Qn(t) andJn(t), respectively, on one slot. Then the dynamics
of input queueKn(t) are:

Kn(t+1) = max
(

Kn(t)− s(q)n (t)− s(j)n (t), 0
)

+dn(t). (1)

As a minor technical detail that is useful later, themax(·, 0)

operation above allows thes(q)n (t) ands(j)n (t) decisions to sum
to more thanKn(t). Theactuals(q)(act)

n (t) ands(j)(act)
n (t) bits

moved from queueKn(t) thus satisfy:

s(q)(act)
n (t) + s(j)(act)

n (t) = min(Kn(t), s
(q)
n (t) + s(j)n (t)) (2)

0 ≤ s(q)(act)
n (t) ≤ s(q)n (t) (3)

0 ≤ s(j)(act)
n (t) ≤ s(j)n (t). (4)

At node n ∈ N , bits in relay queueJn(t) wait to be
transmitted to one of noden’s neighbors, which is denoted
by set Hn ⊆ N . Node n ∈ N is capable of transmitting
anm(t) bits to nodem ∈ Hn at time t, while this capability
depends onrelay channel conditionγnm(t) and the resource
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allocation policy. We assume that0 ≤ anm(t) ≤ a
(max)
nm for all

t. Then the dynamic of queueJn(t) is

Jn(t+ 1) = max
(

Jn(t)−
∑

m∈Hn
anm(t) + s(j)(act)

n (t), 0
)

.

(5)
As before, theactual numbers of bitsa(act)

nm (t) for each node
n ∈ N satisfy:
∑

m∈Hn
a(act)
nm (t) = min

(

Jn(t) + s(j)(act)
n (t),

∑

m∈Hn
anm(t)

)

(6)

0 ≤ a(act)
nm (t) ≤ anm(t) for m ∈ Hn. (7)

We restrict all paths to at most 2 hops, and so all relayed
bits that arrive to a noden must be transmitted on the uplink
channel at noden, and are thus put in the uplink queueQn(t).

On each slott, each noden ∈ N chooses to transmitun(t)
bits to the base station on its uplink channel. This decision
depends onuplink channel conditionγn0(t) and on the re-
source allocation policy. We assume that0 ≤ un(t) ≤ u

(max)
n

for some positive real-valuedu(max)
n . Then the dynamic of the

uplink queue is:

Qn(t+ 1) = max
(

Qn(t)− un(t) + s(q)(act)
n (t), 0

)

+
∑

m∈Hn
a(act)
mn (t). (8)

The queuing equations (5) and (8) involve the actual amounts
of data, but they can be bounded using (3), (4) and (7) as

Jn(t+ 1) ≤ max
(

Jn(t)−
∑

m∈Hn
anm(t) + s(j)n (t), 0

)

(9)

Qn(t+1) ≤ max
(

Qn(t)−un(t)+s(q)n (t), 0
)

+
∑

m∈Hn
amn(t).

(10)
The queue dynamics (1), (9), (10) do not require the actual
variabless(j)(act)

n , s
(q)(act)
n (t), a(act)

nm (t), and are the only ones
needed in the rest of the paper.

To simplify notation, let an(t) = (anm(t) : m ∈ Hn)
be a vector of outgoing relay transmission decisions from
node n, and a(t) = (an(t) : n ∈ N ). Also, let u(t) =
(un(t) : n ∈ N ) be a vector of all uplink transmission de-
cisions. Their channel conditions are denoted byγ(t) =
(γnm(t) : n ∈ N ,m ∈ Hn ∪ {0}). Then in each slott, define
the feasible sets of decision variablesa(t) andu(t) by Aγ(t)

andUγ(t) respectively. In the literature, these capabilities are
generally presented by abstracting an underlying technology
into the feasible sets [10], [13], [14]. Note that if all channels
are orthogonal, the feasible sets of both transmission decisions
are separable across links.

C. Stochastic Network Optimization

Here we define the problem of maximizing time-averaged
quality of information subject to queue stability. We use the
following definitions:

Definition 1: A queue{X(t) : t ≥ 0} is strongly stable if

lim sup
t→∞

1
t

∑t−1
τ=0E {X(τ)} < ∞

Definition 2: A network of queues is strongly stable if every
queue in the network is strongly stable.

In words, definition 1 means that a queue is strongly stable
if its average queue length is finite.

Let y0(t) ,
∑

n∈N rn(t) be the total quality of information

from format selection on slott, andy(max)
0 ,

∑

n∈N r
(max)
n is

its upper bound. The time average total information qualityis

ȳ0 , lim inf
t→∞

1
t

∑t−1
τ=0E {y0(τ)}.

It is our objective to solve:

max ȳ0 (11)

s. t. Network is strongly stable.

This problem is always feasible because stability is trivially
achieved if all nodes always select the blank format.

III. D YNAMIC ALGORITHM

This section derives a novel “quadratic policy” to solve
problem (11). The policy gives faster convergence and smaller
total queue backlog as compared to the “standard” drift-plus-
penalty (or “max-weight”) policy of [10], [11].

A. Lyapunov Optimization

In this system, define a quadraticLyapunov function
by L(Θ(t)) = 1

2

∑

n∈N

[

K2
n(t) +Q2

n(t) + J2
n(t)

]

, where
Θ(t) = (Kn(t), Qn(t), Jn(t) : n ∈ N ) represents all queues
in the system. Then the Lyapunov drift, the difference of
Lyapunov functions between two consecutive slots, is defined
by L(Θ(t+1))−L(Θ(t)). Intuitively, this drift is used to show
stability of a system. When queue lengths grow large beyond
certain values, then the drift becomes negative and a system
is stable because the negative drift roughly implies reduction
of queue lengths.

In order to optimizēy0 in (11), the drift-plus-penalty func-
tion1 L(Θ(t + 1)) − L(Θ(t)) − V y0(t) is considered, where
V ≥ 0 is a constant that determines a trade-off between queue
backlog and proximity to optimal utility.

Lemma 1:Given x, a, c ∈ R+ andb ∈ R,

[max(x− a+ b, 0) + c]
2

≤

{

B+,(x−a)2+(x+b)2+(x+c)2−2x2+2bc , b≥0

B−,(x−a)2+(x+b)2+(x+c)2−2x2−2ab , b≤0
(12)

In addition, the upper bounds can be loosened to

B+≤x2+2x(−a+b+c)+a2+(b+c)2 , b≥0

B−≤x2+2x(−a+b+c)+(a−b)2+c2 , b≤0
(13)

Proof: For brevity, only the case withb ≥ 0 is proved.

[max(x−a+b,0)+c]2

≤(x−a+b)2+c2+2cmax(x−a+b,0)

≤(x−a)2+b2+2b(x−a)+c2+2cmax(x+b,0)

≤(x−a)2+(x+b)2−x2+c2+2c(x+b)

=(x−a)2+(x+b)2+(x+c)2−2x2+2bc. (14)

≤x2+2x(−a+b+c)+a2+b2+c2+2bc

=x2+2x(−a+b+c)+a2+(b+c)2. (15)

1The minus sign in front ofV is because the quality of information can
be viewed as a negative penalty.
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Inequalities (14) and (15) prove respectively relation (12) and
(13) for b ≥ 0.

Using queuing dynamic (1), (9), and (10), the drift-plus-
penalty is upper bounded by (16) below. Then, using relation
(12), the bound becomes (17) below:

L(Θ(τ + 1))− L(Θ(τ))− V y0(τ)

≤ 1
2

∑

n∈N

{

[max(Kn(τ)−s(q)n (τ)−s(j)n (τ),0)+dn(τ)]
2
−Kn(τ)

2

+[max(Qn(τ)−un(τ)+s(q)n (τ),0)+
∑

m∈H(n) amn(τ)]
2
−Qn(τ)

2

+[max(Jn(τ)−
∑

m∈H(n) anm(τ)+s(j)n (τ),0)]
2
−Jn(τ)

2−2V rn(τ)
}

(16)

≤ 1
2

∑

n∈N

{

[Kn(τ)−s(q)n (τ)]
2
+[Kn(τ)−s(j)n (τ)]

2
+[Kn(τ)+dn(τ)]

2

+[Qn(τ)−un(τ)]
2+[Qn(τ)+s(q)n (τ)]

2
+[Qn(τ)+

∑

m∈Hn
amn(τ)]

2

+[Jn(τ)−
∑

m∈Hn
anm(τ)]

2
+[Jn(τ)+s(j)n (τ)]2−2V rn(τ)+Cn(τ)

}

(17)

where

Cn(τ),−3Kn(τ)
2+2s(q)n (τ)s(j)n (τ)−3Qn(τ)

2

+2s(q)n (τ)
∑

m∈Hn
amn(τ)−2Jn(τ)

2.

Minimizing the actual drift-plus-penalty term (16) is com-
putationally expensive. In this paper, we propose a novel
quadratic policy, derived from (17), that preserves the
quadratic nature of the actual minimization while keeping
decisions separable. As a result, the policy leads to a separated
control algorithm in Section III-B.

Definition 3: Every time slot t, the quadratic policy
observes current queue backlogsΘ(t), random vectors
{(r

(f)
n (t), d

(f)
n (t))}n∈N ,f∈F and γ(t). Then it makes a de-

cision according to the following minimization problem.

min
∑

n∈N

{

[Kn(t)−s(q)n (t)]
2
+[Kn(t)−s(j)n (t)]

2
+[Kn(t)+dn(t)]

2

+[Qn(t)−un(t)]
2+[Qn(t)+s(q)n (t)]

2
+[Qn(t)+

∑

m∈Hn
amn(t)]

2

+[Jn(t)−
∑

m∈Hn
anm(t)]

2
+[Jn(t)+s(j)n (t)]

2
−2V rn(t)

}

s. t. s(q)n (t)∈{0,1,2,...,s(q)(max)
n }, s(j)n (t)∈{0,1,2,...,s(j)(max)

n } ∀n∈N

fn(t)∈F,dn(t)=d(fn(t))
n (t), rn(t)=r(fn(t))

n (t) ∀n∈N

a(t)∈Aγ(t), u(t)∈Uγ(t)

B. Separability

The control algorithm can be derived from the quadratic
policy in Definition 3. The whole minimization can be done
separately due to a unique structure of the quadratic policy.
This leads to five subproblems, as described below.

At every slot t each noden ∈ N observes input queue
Kn(t) and options(r(f)n (t), d

(f)
n (t)) and chooses a format

fn(t) according to theadmission-control problem:

min
fn(t)∈F

(Kn(t) + d(f(t))n (t))2 − 2V r(fn(t))n (t) (18)

This is solved easily by comparing each optionf ∈ F .
Each noden moves data from its input queue to uplink and

relay queues according to theuplink routing problem

min
s
(q)
n (t)∈{0,1,...,s

(q)(max)
n }

(Kn(t)− s(q)n (t))2 +(Qn(t)+ s(q)n (t))2

(19)

and relay routing problem

min
s
(j)
n (t)∈{0,1,...,s

(j)(max)
n }

(Kn(t)− s(j)n (t))2 + (Jn(t) + s(j)n (t))2

(20)
These two subproblems can be solved in closed forms. Let
D+

Q(t) ,
⌈

Kn(t)−Qn(t)
2

⌉

, D−
Q(t) ,

⌊

Kn(t)−Qn(t)
2

⌋

and
gQ(x, t) = (Kn(t)− x)2 + (Qn(t) + x)2. Then choose

s(q)n (t) = (21)










s(q)(max)
n , Kn(t)−Qn(t)≥2s(q)(max)

n

argmin
x∈{D

+
Q

(t),D
−
Q

(t)} gQ(x,t) , 0<Kn(t)−Qn(t)<2s(q)(max)
n

0 , Kn(t)−Qn(t)≤0

Also, let D+
J (t) ,

⌈

Kn(t)−Jn(t)
2

⌉

, D−
J (t) ,

⌊

Kn(t)−Jn(t)
2

⌋

andgJ(x, t) = (Kn(t)− x)2 + (Jn(t) + x)2. Then choose

s(j)n (t) = (22)






s(j)(max)
n , Kn(t)−Jn(t)≥2s(j)(max)

n

argmin
x∈{D+

J
(t),D

−
J

(t)}
gJ (x,t) , 0<Kn(t)−Jn(t)<2s(j)(max)

n

0 , Kn(t)−Jn(t)≤0

Note that the solutions from the quadratic policy are
“smoother” as compared to the solutions from the max-weight
policy that would choose “bang-bang” decisions of either0 or
s
(q)(max)
n for s(q)n (t) (and0 or s(j)(max)

n for s(j)n (t)).
The uplink allocationproblem is

min
u(t)∈Uγ(t)

∑

n∈N (Qn(t)− un(t))
2, (23)

and therelay allocationproblem is

min
a(t)∈Aγ(t)

∑

n∈N

(

Qn(t) +
∑

m∈Hn
amn(t)

)2

+
(

Jn(t)−
∑

m∈Hn
anm(t)

)2

. (24)

The setsUγ(t) andAγ(t) depend on a considered interference
model and transmission technology. If these sets are convex,
the corresponding problems are convex. If channels are orthog-
onal so the sets have a product form (as discussed in Section
II-B), then the decisions are separable across nodes.

C. Algorithm

Each time slott:
• Each noden ∈ N , knowing itsKn(t), Qn(t) andJn(t)
- Observes{(r(f)n (t), d

(f)
n (t))}f∈F and solves (18) to obtain

fn(t).
- Choosess(q)n (t), s

(j)
n (t) via (21), (22).

- Moves data from Kn(t) to Qn(t) and Jn(t) with
s
(q)(act)
n (t), s

(j)(act)
n (t) satisfying (2)-(4) and (6)-(7) with

values ofs(q)n (t), s
(j)
n (t).

• Base station, with knowledge ofQn(t) andJn(t) n ∈ N
- Observesγ(t)
- Solves (23) to obtainu(t).
- Solves (24) to obtaina(t).
- Signals nodesn ∈ N to make transmissions.

After this process, queuesKn(t+1), Qn(t+1) andJn(t+1)
are updated via (1), (5), (8).
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IV. STABILITY AND PERFORMANCEBOUNDS

Compare the quadratic policy with any other policy.
Let (s

(q)
n (τ), s

(j)
n (τ), fn(τ) : n ∈ N ),u(τ),a(τ) and

rn(t) , r
(fn(t))
n (t), dn(t) , d

(fn(t))
n (t) be the deci-

sion from the quadratic policy in Definition 3. Then, let
(ŝ

(q)
n (τ), ŝ

(j)
n (τ), f̂n(τ) : n ∈ N ), û(τ), â(τ) and r̂n(t) ,

r
(f̂n(t))
n (t), d̂n(t) , d

(f̂n(t))
n (t) be decision variables from any

other policy. From (17) and definition 3, the drift-plus-penalty
under quadratic policy is bounded by (25) and is further
bounded by (26) under any other policy as

L(Θ(τ + 1))− L(Θ(τ))− V y0(t)(τ)

≤ 1
2

∑

n∈N

{

[Kn(τ)−s(q)n (τ)]
2
+[Kn(τ)−s(j)n (τ)]

2
+[Kn(τ)+dn(τ)]

2

+[Qn(τ)−un(τ)]
2+[Qn(τ)+s(q)n (τ)]

2
+[Qn(τ)+

∑

m∈Hn
amn(τ)]

2

+[Jn(τ)−
∑

m∈Hn
anm(τ)]

2
+[Jn(τ)+s(j)n (τ)]2−2V rn(τ)+Cn(τ)

}

(25)

≤ 1
2

∑

n∈N

{

[Kn(τ)−ŝ(q)n (τ)]
2
+[Kn(τ)−ŝ(j)n (τ)]

2
+[Kn(τ)+d̂n(τ)]

2

+[Qn(τ)−ûn(τ)]
2+[Qn(τ)+ŝ(q)n (τ)]

2
+[Qn(τ)+

∑

m∈Hn
âmn(τ)]

2

+[Jn(τ)−
∑

m∈Hn
ânm(τ)]

2
+[Jn(τ)+ŝ(j)n (τ)]2−2V r̂n(τ)+Ĉn(τ)

+Cn(τ)−Ĉn(τ)
}

(26)

where

Ĉn(τ),−3Kn(τ)
2+2ŝ(q)n (τ)ŝ(j)n (τ)−3Qn(τ)

2

+2ŝ(q)n (τ)
∑

m∈Hn
âmn(τ)−2Jn(τ)

2

From the second set of bounds (13), it follows that

L(Θ(τ + 1))− L(Θ(τ))− V y0(τ)

≤
∑

n∈N

{

Kn(τ)[d̂n(τ)−ŝ(q)n (τ)−ŝ(j)n (τ)]

+Qn(τ)[ŝ(q)n (τ)+
∑

m∈Hn
âmn(τ)−ûn(τ)]

+Jn(τ)[ŝ(j)n (τ)−
∑

m∈Hn
ânm(τ)]

−V r̂n(τ)
}

+A(τ) (27)

where

A(τ), 1
2

∑

n∈N

{

Cn(τ)−Ĉn(τ)+(ŝ(q)n (τ)+ŝ(j)n (τ))
2
+d̂n(τ)

2+ŝ(j)n (τ)2

+ûn(τ)
2+(ŝ(q)n (τ)+

∑

m∈Hn
âmn(τ))

2
+(

∑

m∈Hn
ânm(τ))

2
}

≤A, 1
2

∑

n∈N

{

2s(q)(max)2
n +2s(j)(max)2

n +d(max)2
n +u(max)2

n

+(
∑

m∈Hn
a(max)
mn )

2
+(

∑

m∈Hn
a(max)
nm )

2

+2s(q)(max)
n s(j)(max)

n +2s(q)(max)
n

∑

m∈Hn
a(max)
mn

}

(28)

The derivations (25)–(27) show that applying the quadratic
policy to the drift-plus-penalty expression leads to the bound
(27) which is valid for every other control policy. How-
ever, this linear minimization does not resemble quadratic
minimization of the actual drift-plus-penalty term (16). The
effects of the two policies are revealed in section V where the
quadratic policy leads to a smaller queue length.

To analyze the system, a conditional expectation of drift-

plus-penalty is derived from (27) and (28) as

E {L(Θ(τ + 1))− L(Θ(τ))− V y0(τ)|Θ(τ)}

≤
∑

n∈N

{

Kn(τ)E{d̂n(τ)−ŝ(q)n (τ)−ŝ(j)n (τ)|Θ(τ)}

+Qn(τ)E{ŝ(q)n (τ)+
∑

m∈Hn
âmn(τ)−ûn(τ)|Θ(τ)}

+Jn(τ)E{ŝ(j)n (τ)−
∑

m∈Hn
ânm(τ)|Θ(τ)}

−V E{r̂n(τ)|Θ(τ)}

}

+A. (29)

Let ω(t) = (γ(t), {(r
(f)
n (t), d

(f)
n (t))}n∈N ,f∈F}) be a vec-

tor of every randomness in this system at timet. As discussed
in Section II,ω(t) is i.i.d. over slots and is assumed to have
distributionπ(ω). Define anω-only policy as one that make
a (possibly randomized) choice of decision variables based
only on the observedω(t). Then we customize an important
theorem from [10].

Theorem 1:When problem (11) with stationary distribu-
tion π(ω) is feasible, then for anyδ > 0 there ex-
ists an ω-only policy that chooses all controlled variables
(f∗

n(t), s
(q)∗
n (t), s

(j)∗
n (t) : n ∈ N ),u∗(t),a∗(t), and

E {y∗0(t)} ≤ y
(opt)
0 + δ

E

{

d∗n(t)− s
(q)∗
n (t)− s

(j)∗
n (t)

}

≤ δ n ∈ N

E

{

s
(q)∗
n (t) +

∑

m∈Hn
a∗mn(t)− u∗

n(t)
}

≤ δ n ∈ N

E

{

s
(j)∗
n (t)−

∑

m∈Hn
a∗nm(t)

}

≤ δ n ∈ N

where y
(opt)
0 is the optimal solution of problem (11). Also,

y∗0(t) ,
∑

n∈N r∗n(t) when r∗n(t) , r
(f∗

n(t))
n (t) and d∗n(t) ,

d
(f∗

n(t))
n (t).

We additionally assume all constraints of the network can
be achieved withǫ slackness [10]:

Assumption 1:There are valuesǫ > 0 and 0 ≤ y
(ǫ)
0 ≤

y
(max)
0 and anω-only policy choosing all controlled variables
(f∗

n(t), s
(q)∗
n (t), s

(j)∗
n (t) : n ∈ N ),u∗(t),a∗(t) that satisfies

E {y∗0(t)} = y
(ǫ)
0

E

{

d∗n(t)− s
(q)∗
n (t)− s

(j)∗
n (t)

}

≤ −ǫ n ∈ N

E

{

s
(q)∗
n (t) +

∑

m∈Hn
a∗mn(t)− u∗

n(t)
}

≤ −ǫ n ∈ N

E

{

s
(j)∗
n (t)−

∑

m∈Hn
a∗nm(t)

}

≤ −ǫ n ∈ N .

Theorem 2:If Assumption 1 holds, then the time average
total quality of information̄y0 is within O(1/V ) of optimality
under the quadratic policy, while all queue backlogs grows
with O(V ).

Proof: See Section IV-A and IV-B.
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A. Quality of Information vs.V

The optimality of information quality versus parameterV
under the quadratic policy can be derived from (29) as

E {L(Θ(τ + 1))− L(Θ(τ))− V y0(τ)|Θ(τ)}

≤
∑

n∈N

{

Kn(τ)E{d∗
n(τ)−s(q)∗n (τ)−s(j)∗n (τ)|Θ(τ)}

+Qn(τ)E{ s(q)∗n (τ)+
∑

m∈Hn
a∗
mn(τ)−u∗

n(τ)|Θ(τ)}

+Jn(τ)E{ s(j)∗n (τ)−
∑

m∈Hn
a∗
nm(τ)|Θ(τ)}

−V E{ r∗n(τ)|Θ(τ)}
}

+A

≤A−V
(

y
(opt)
0 +δ

)

+δ
∑

n∈N [Kn(τ)+Qn(τ)+Jn(τ)]

We have used the fact that anω-only policy does not depend
on queuesΘ(τ). The last inequality is valid for everyδ > 0.
Therefore

E {L(Θ(τ + 1)− L(Θ(τ))− V y0(τ)|Θ(τ)} ≤ A− V y
(opt)
0 .

Taking an expectation and summing fromτ = 0 to t− 1:

E

{

L(Θ(t))− L(Θ(0))− V
∑t−1

τ=0 y0(τ)
}

≤ At− V ty
(opt)
0 .

With rearrangement andL(Θ(t)) ≥ 0, it follows that
∑t−1

τ=0 E {y0(τ)} ≥ −At
V

+ ty
(opt)
0 − L(Θ(0))

V
.

Dividing by t and taking limit ast → ∞, the performance
of the quadratic policy is lower bounded by

lim inft→∞
1
t

∑t−1
τ=0 E {y0(τ)} ≥ −A

V
+ y

(opt)
0 . (30)

This shows that the system can be pushed to the optimality
y
(opt)
0 by increasingV under the quadratic policy.

B. Total Queue Backlog vs.V

Now consider the existence of anω-only policy with As-
sumption 1 to the conditional expectation of the drift-plus-
penalty (29) under the quadratic policy:

E {L(Θ(τ + 1)− L(Θ(τ))− V y0(τ)|Θ(τ)}

≤ A− V y
(ǫ)
0 − ǫ

∑

n∈N [Kn(τ) +Qn(τ) + Jn(τ)] .

Taking expectation and summing fromτ = 0 to t− 1:

E {L(Θ(t))} − E {L(Θ(0))} − V

t−1
∑

τ=0

E {y0(τ)}

≤ At−V ty
(ǫ)
0 −ǫ

∑t−1
τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

With rearrangement andL(Θ(t)) ≥ 0, it follows that
∑t−1

τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

≤ At
ǫ
+ V

ǫ

(

∑t−1
τ=0 E {y0(τ)} − ty

(ǫ)
0

)

+ E{L(Θ(0))}
ǫ

≤ At
ǫ
+ V

ǫ

(

ty
(max)
0 − ty

(ǫ)
0

)

+ E{L(Θ(0))}
ǫ

.

Dividing by t and taking limit ast → ∞, the time-averaged
total queue backlog is bounded by

lim supt→∞
1
t

∑t−1
τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

≤
A

ǫ
+

V

ǫ

(

y
(max)
0 − y

(ǫ)
0

)

. (31)

Fig. 2. Small network with independent channels with distributions shown.
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Fig. 3. Quality of Information versusV under the quadratic (QD) and max-
weight (MW) policies

This shows that overall queue backlog tends to increase as
V is increased.

The V parameter in (30) and (31) affects the performance
trade-off [O(1/V ), O(V )] between quality of information and
total queue backlog. These results are similar to those that
can be derived under the max-weight algorithm. However,
simulation in the next section shows significant reduction of
queue backlog under the quadratic policy.

V. SIMULATION EXAMPLE

Simulation under the proposed quadratic policy and the
standard max-weight policy is performed over a small network
in Fig. 2. The network contains two nodes,N = {1, 2}.
Each node has the other as its neighbor, soH(1) = {2} and
H(2) = {1}. An event occurs in every slot with probability
θ = 0.3. We assume all uplink and relay channels are
orthogonal. The uplink channel distribution for node1 is better
than that of node2 as in Fig. 2.

The constraints areun(t) ∈ {0, . . . , γn0(t)} for n ∈ N .
Also, a12(t) ∈ {0, . . . , γ12(t)} and a21(t) ∈ {0, . . . , γ21(t)}.
Then sets(q)(max)

n = s
(j)(max)
n = 30. The feasible set of

formats isF = {0, 1, 2, 3} with constant options given by
(d

(0)
n , r

(0)
n ) = (0, 0), (d

(1)
n , r

(1)
n ) = (100, 20), (d

(2)
n , r

(2)
n ) =

(50, 15), (d
(3)
n , r

(3)
n ) = (10, 10) whenever there is an event.

The simulation is performed according to the algorithm in
Section III-C. The time-averaged quality of information under
the quadratic and max-weight policies are shown in Fig. 3.
From the plot, the values of̄y0 under both policies converge
to optimality following theO(1/V ) performance bound.

Fig. 4abc reveals queue backlogs in the input, uplink, and
relay queues under the quadratic and max-weight policies.
At the sameV , the quadratic policy reduces queue backlog
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Fig. 4. Averaged backlog in queues versusV and system quality versus
backlog under the quadratic (QD) and max-weight (MW) policies

Fig. 5. Larger network with independent channels with distributions shown

by a significant constant compared to the cases under the
max-weight policy. The plot also shows the growth of queue
backlog with parameterV , which follows theO(V ) backlog
bound.

Fig. 4d shows that the quadratic policy can achieve near
optimality with significantly smaller total system backlog
compared to the case under the max-weight policy. This shows
a significant advantage, which in turn affects memory size and
packet delay.

Another larger network shown in Fig. 5 is simulated to ob-
serve convergence of the proposed algorithm. As in the small
network scenario, the same probability of event occurrence
θ = 0.3 is used. Channel distributions are configured in Fig.
5. For V = 800, the time-averaged quality of information is
25.00 after 105 time slots as shown in the upper plot of Fig.
6. The lower plot in Fig. 6 illustrates the early period of the
simulation to illustrate convergence time.

VI. CONCLUSION

We studied information quality maximization in a system
with uplink and single-hop relay capability. From Lyapunov
optimization theory, we proposed a novel quadratic policy
having a separable property. In comparison with the max-
weight policy, our policy leads to an algorithm that reduces
queue backlog by a significant constant. This reduction also
propagates and grows with the number of queues in the system.
We simulated the algorithm to verify correctness and behavior
of the new policy.
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