
PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

A Primal-Dual Type Algorithm with the O(1/t) Convergence Rate for
Large Scale Constrained Convex Programs

Hao Yu and Michael J. Neely

Abstract— This paper considers large scale constrained con-
vex programs. These are often difficult to solve by interior point
methods or other Newton-type methods due to the prohibitive
computation and storage complexity for Hessians or matrix
inversions. Instead, large scale constrained convex programs are
often solved by gradient based methods or decomposition based
methods. The conventional primal-dual subgradient method,
also known as the Arrow-Hurwicz-Uzawa subgradient method,
is a low complexity algorithm with the O(1/

√
t) convergence

rate, where t is the number of iterations. If the objective
and constraint functions are separable, the Lagrangian dual
type method can decompose a large scale convex program into
multiple parallel small scale convex programs. The classical
dual gradient algorithm is an example of Lagrangian dual
type methods and has convergence rate O(1/

√
t). Recently,

the authors of the current paper proposed a new Lagrangian
dual type algorithm with faster O(1/t) convergence. However,
if the objective or constraint functions are not separable, each
iteration requires to solve a large scale unconstrained convex
program, which can have huge complexity. This paper proposes
a new primal-dual type algorithm, which only involves simple
gradient updates at each iteration and has O(1/t) convergence.

I. INTRODUCTION

Fix positive integers n and m, which are typically large.
Consider the general constrained convex program:

minimize: f(x) (1)
such that: gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m} (2)

x ∈ X (3)

where set X ⊆ Rn is a compact convex set; func-
tion f(x) is convex and smooth on X ; and functions
gk(x),∀k ∈ {1, 2, . . . ,m} are convex, smooth and Lip-
schitz continuous on X . Denote the stacked vector of
multiple functions g1(x), g2(x), . . . , gm(x) as g(x) =[
g1(x), g2(x), . . . , gm(x)

]T
. The Lipschitz continuity of

each gk(x) implies that g(x) is Lipschitz continuous on X .
Throughout this paper, we use ‖·‖ to represent the Euclidean
norm and have the following assumptions on convex program
(1)-(3):

Assumption 1 (Basic Assumptions):

• There exists a (possibly non-unique) optimal solution
x∗ ∈ X that solves convex program (1)-(3).

• There exists Lf ≥ 0 such that ‖∇f(x) − ∇f(y)‖ ≤
Lf‖x− y‖ for all x,y ∈ X , i.e., f(x) is smooth with
modulus Lf . For each k ∈ {1, 2, . . . ,m}, there exists
Lgk ≥ 0 such that ‖∇gk(x)−∇gk(y)‖ ≤ Lgk‖x− y‖

The authors are with the Electrical Engineering department at the
University of Southern California, Los Angeles, CA.

for all x,y ∈ X , i.e., gk(x) is smooth with modulus
Lgk . Denote Lg = [Lg1 , . . . , Lgm]T .

• There exists β ≥ 0 such that ‖g(x)− g(y)‖ ≤ β‖x−
y‖,∀x,y ∈ X , i.e., g(x) is Lipschitz continuous with
modulus β.

• There exists C ≥ 0 such that ‖g(x)‖ ≤ C,∀x ∈ X .
• There exists R ≥ 0 such that ‖x−y‖ ≤ R,∀x,y ∈ X .

Note that the existence of C follows from the continuity
of g(x) and the compactness of set X . The existence of R
follows from the compactness of set X .

Assumption 2 (Existence of Lagrange multipliers): There
exists a Lagrange multiplier vector λ∗ = [λ∗1, λ

∗
2, . . . , λ

∗
m] ≥

0 attaining the strong duality for problem (1)-(3), i.e.,

q(λ∗) = min
x∈X
{f(x) : gk(x) ≤ 0,∀k ∈ {1, 2, . . . ,m}} ,

where q(λ) = min
x∈X
{f(x) +

∑m
k=1 λkgk(x)} is the La-

grangian dual function of problem (1)-(3).
Assumption 2 is a mild condition. For example, it is

implied by the Slater condition for convex programs [1].

A. Large Scale Convex Programs

In general, convex program (1)-(3) can be solved via
interior point methods (or other Newton type methods) which
involve the computation of Hessians and matrix inversions
at each iteration. The associated computation complexity and
memory space complexity at each iteration is between O(n2)
and O(n3), which is prohibitive when n is extremely large.
For example, if n = 105 and each floating point number
uses 4 bytes, then 40 Gbytes of memory is required even to
save the Hessian at each iteration. Thus, large scale convex
programs are usually solved by gradient based methods or
decomposition based methods.

B. The Primal-Dual Subgradient Method

The primal-dual subgradient method, also known as the
Arrow-Hurwicz-Uzawa Subgradient Method, applied to con-
vex program (1)-(3) is described in Algorithm 1. The updates
of x(t) and λ(t) only involve the computation of gradient
and simple projection operations, which are much simpler
than the computation of Hessians and matrix inversions
for extremely large n. Thus, compared with the interior
point methods, the primal-dual subgradient algorithm has
lower complexity computations at each iteration and hence is
more suitable to large scale convex programs. However, the

PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

convergence rate1 of Algorithm 1 is only O(1/
√
t), where t

is the number of iterations [2].

Algorithm 1 The Primal-Dual Subgradient Algorithm
Let c > 0 be a constant step size. Choose any x(0) ∈
X . Initialize Lagrangian multipliers λk(0) = 0,∀k ∈
{1, 2, . . . ,m}. At each iteration t ∈ {1, 2, . . .}, observe
x(t− 1) and λ(t− 1) and do the following:
• Choose x(t) = PX

[
x(t − 1) − c

∑m
k=1 λk(t −

1)∇gk(x(t − 1))
]
, where PX [·] is the projection onto

convex set X .
• Update Lagrangian multipliers λk(t) =

[λk(t− 1) + cgk(x(t− 1))]
λmax
k

0 ,∀k ∈ {1, 2, . . . ,m},
where λmax

k > λ∗k and [·]max
0 is the projection onto

interval [0, λmax
k].

• Update the running averages x(t+1) = 1
t

∑t
τ=0 x(τ) =

x(t) t
t+1 + x(t) 1

t+1 .

C. Lagrangian Dual Type Methods
The classical dual subgradient algorithm is a Lagrangian

dual type iterative method that approaches optimality for
strictly convex programs [3]. A modification of the classi-
cal dual subgradient algorithm that averages the resulting
sequence of primal estimates can solve general convex
programs and has an O(1/

√
t) convergence rate [4], [5],

[6]. The dual subgradient algorithm with primal averaging is
suitable to large scale convex programs because the updates
of each component xi(t) are independent and parallel if
functions f(x) and gk(x) in convex program (1)-(3) are
separable with respect to each component (or block) of x,
e.g., f(x) =

∑n
i=1 fi(xi) and gk(x) =

∑n
i=1 gk,i(xi).

Recently, a new Lagrangian dual type algorithm with
convergence rate O(1/t) for general convex programs is
proposed in [7]. This algorithm can solve convex program
(1)-(3) following the steps described in Algorithm 2.

Similar to the dual subgradient algorithm with primal
averaging, Algorithm 2 can decompose the updates of x(t)
into smaller independent subproblems if functions f(x) and
gk(x) are separable. Moreover, Algorithm 2 has O(1/t)
convergence, which is faster than the primal-dual subgradient
or the dual subgradient algorithm with primal averaging.

However, if f(x) or gk(x) are not separable, each update
of x(t) requires to solve a set constrained convex program.
If the dimension n is large, such a set constrained convex
program should be solved via a gradient based method
instead of a Newton method. However, the gradient based
method for set constrained convex programs is an iterative
technique and involves at least one projection operation at
each iteration.

1In this paper, we say that the primal dual subgradient algorithm and the
dual subgradient algorithm have an O(1/

√
t) convergence rate in the sense

that they achieve an ε-approximate solution with O(1/ε2) iterations by
using an O(ε) step size. The error of those algorithms does not necessarily
continue to decay after the ε-approximate solution is reached. In contrast,
the algorithm in the current paper has a faster O(1/t) convergence and this
holds for all time t, so that error goes to zero as the number of iterations
increases.

Algorithm 2 Algorithm 1 in [7]
Let α > 0 be a constant parameter. Choose any
x(−1) ∈ X . Initialize virtual queues Qk(0) =
max{0,−gk(x(−1))},∀k ∈ {1, 2, . . . ,m}. At each iteration
t ∈ {0, 1, 2, . . .}, observe x(t − 1) and Q(t) and do the
following:

• Choose x(t) = argminx∈X

{
f(x) + [Q(t) + g(x(t −

1))]Tg(x) + α‖x− x(t− 1)‖2
}

.
• Update virtual queue vector Q(t) via Qk(t +

1) = max{−gk(x(t)), Qk(t) + gk(x(t))},∀k ∈
{1, 2, . . . ,m}.

• Update the running averages via x(t + 1) =
1
t+1

∑t
τ=0 x(τ) = x(t) t

t+1 + x(t) 1
t+1 .

D. New Algorithm

Consider large scale convex programs with non-separable
f(x) or gk(x), e.g., f(x) = ‖Ax−b‖2. In this case, Algo-
rithm 1 has convergence rate O(1/

√
t) using low complexity

iterations; while Algorithm 2 has convergence rate O(1/t)
using high complexity iterations.

This paper proposes a new algorithm described in Algo-
rithm 3 which combines the advantages of Algorithm 1 and
Algorithm 2. The new algorithm modifies Algorithm 2 by
changing the update of x(t) from a minimization problem
to a simple projection. Meanwhile, the O(1/t) convergence
rate of Algorithm 2 is preserved in the new algorithm.

Algorithm 3 New Algorithm
Let γ > 0 be a constant step size. Choose any
x(−1) ∈ X . Initialize virtual queues Qk(0) =
max{0,−gk(x(−1))},∀k ∈ {1, 2, . . . ,m}. At each iteration
t ∈ {0, 1, 2, . . .}, observe x(t − 1) and Q(t) and do the
following:
• Define d(t) = ∇f(x(t−1))+

∑m
k=1[Qk(t)+gk(x(t−

1))]∇gk(x(t − 1)), which is the gradient of function
φ(x) = f(x) + [Q(t) + g(x(t − 1))]Tg(x) at point
x = x(t − 1). Choose x(t) = PX [x(t− 1)− γd(t)],
where PX [·] is the projection onto convex set X .

• Update virtual queue vector Q(t) via Qk(t +
1) = max{−gk(x(t)), Qk(t) + gk(x(t))},∀k ∈
{1, 2, . . . ,m}.

• Update the running averages x(t + 1) =
1
t+1

∑t
τ=0 x(τ) = x(t) t

t+1 + x(t) 1
t+1 .

II. PRELIMINARIES AND BASIC ANALYSIS

This section presents useful preliminaries on convex anal-
ysis and important facts of Algorithm 3.

A. Preliminaries

Definition 1 (Lipschitz Continuity): Let X ⊆ Rn be a
convex set. Function h : X → Rm is said to be Lipschitz
continuous on X with modulus L if there exists L > 0 such
that ‖h(y)− h(x)‖ ≤ L‖y − x‖ for all x,y ∈ X .

PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

Definition 2 (Smooth Functions): Let X ⊆ Rn and func-
tion h(x) be continuously differentiable on X . Function h(x)
is said to be smooth on X with modulus L if ∇h(x) is
Lipschitz continuous on X with modulus L.

Note that linear function h(x) = aTx is smooth with
modulus 0. If a function h(x) is smooth with modulus L,
then ch(x) is smooth with modulus cL for any c > 0.

Lemma 1 (Descent Lemma, Proposition A.24 in [3]):
If h is smooth on X with modulus L, then
h(y) ≤ h(x) + ∇h(x)T (y − x) + L

2 ||y − x||2 for all
x,y ∈ X .

Definition 3 (Strongly Convex Functions): Let X ⊆ Rn
be a convex set. Function h is said to be strongly convex
on X with modulus α if there exists a constant α > 0 such
that h(x)− 1

2α‖x‖
2 is convex on X .

If h(x) is convex and α > 0, then h(x) + α‖x− x0‖2 is
strongly convex with modulus 2α for any constant x0.

Lemma 2: Let X ⊆ Rn be a convex set. Let function h
be strongly convex with modulus α and xopt be a global
minimum of h on X . Then, h(xopt) ≤ h(x) − α

2 ‖x
opt −

x‖2,∀x ∈ X .
Proof: A special case when h is differentiable and X =

Rn is Theorem 2.1.8 in [8]. The proof for general strongly
convex function h and general convex set X is in [7].

B. Basic Properties

This subsection presents preliminary results related to
the virtual queue update (Lemmas 3-6) that are proven for
Algorithm 2 in [7].

Lemma 3 (Lemma 3 in [7]): In Algorithm 3, we have
1) At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) ≥ 0 for all

k ∈ {1, 2, . . . ,m}.
2) At each iteration t ∈ {0, 1, 2, . . .}, Qk(t) + gk(x(t −

1)) ≥ 0 for all k ∈ {1, 2 . . . ,m}.
3) At iteration t = 0, ‖Q(0)‖2 ≤ ‖g(x(−1))‖2. At each

iteration t ∈ {1, 2, . . .}, ‖Q(t)‖2 ≥ ‖g(x(t− 1))‖2.
Lemma 4 (Lemma 7 in [7]): Let Q(t), t ∈ {0, 1, . . .} be

the sequence generated by Algorithm 3. For any t ≥ 1,

Qk(t) ≥
t−1∑
τ=0

gk(x(τ)),∀k ∈ {1, 2, . . . ,m}.

Let Q(t) =
[
Q1(t), . . . , Qm(t)

]T
be the vector of virtual

queue backlogs. Define L(t) = 1
2‖Q(t)‖2. The function L(t)

shall be called a Lyapunov function. Define the Lyapunov
drift as ∆(t) = L(t+1)−L(t) = 1

2 [‖Q(t+1)‖2−‖Q(t)‖2].
Lemma 5 (Lemma 4 in [7]): At each iteration t ∈

{0, 1, 2, . . .} in Algorithm 3, an upper bound of the Lyapunov
drift is given by

∆(t) ≤ QT (t)g(x(t)) + ‖g(x(t))‖2. (4)
Lemma 6 (Lemma 8 in [7]): Let x∗ be an optimal solu-

tion and λ∗ be defined in Assumption 2. Let x(t),Q(t), t ∈
{0, 1, . . .} be sequences generated by Algorithm 3. Then,∑t−1
τ=0 f(x(τ)) ≥ tf(x∗)− ‖λ∗‖‖Q(t)‖ for all t ≥ 1.

III. CONVERGENCE RATE ANALYSIS OF ALGORITHM 3
This section analyzes the convergence rate of Algorithm

3 for problem (1)-(3).

A. Upper Bounds of the Drift-Plus-Penalty Expression
Lemma 7: Let x∗ be an optimal solution. For all t ≥ 0 in

Algorithm 3, we have ∆(t) + f(x(t)) ≤ f(x∗) + 1
2γ [‖x∗ −

x(t−1)‖2−‖x∗−x(t)‖2]+ 1
2 [‖g(x(t))‖2−‖g(x(t−1))‖2]+

1
2

[
β2 +Lf +‖Q(t)‖‖Lg‖+C‖Lg‖− 1

γ

]
‖x(t)−x(t−1)‖2,

where β, Lf , Lg and C are defined in Assumption 1.
Proof: Fix t ≥ 0. Recall that φ(x) = f(x) + [Q(t) +

g(x(t − 1))]Tg(x) as defined in Algorithm 3. Note that
part 2 in Lemma 3 implies that Q(t) + g(x(t − 1)) is
component-wise nonnegative. Hence, φ(x) is convex. Since
d(t) = ∇φ(x(t − 1)), the projection operator in Algorithm
3 can be reinterpreted as an optimization problem:

x(t) =PX [x(t− 1)− γd(t)]

(a)
= argmin

x∈X

[
φ(x(t− 1)) +∇Tφ(x(t− 1))[x− x(t− 1)]

+
1

2γ
‖x− x(t− 1)‖2

]
, (5)

where (a) follows by removing the constant term φ(x(t−1))
in the minimization, completing the square, and using the fact
that the projection of a point onto a set is equivalent to the
minimization of the Euclidean distance to this point over the
same set. (See [9] for the detailed proof.)

Since 1
2γ ‖x−x(t−1)‖2 is strongly convex with respect to

x with modulus 1
γ , it follows that φ(x(t− 1)) +∇Tφ(x(t−

1))[x − x(t − 1)] + 1
2γ ‖x − x(t − 1)‖2 is strongly convex

with respect to x with modulus 1
γ .

Since x(t) is chosen to minimize the above strongly
convex function, by Lemma 2, we have

φ(x(t− 1)) +∇Tφ(x(t− 1))[x(t)− x(t− 1)]

+
1

2γ
‖x(t)− x(t− 1)‖2

≤φ(x(t− 1)) +∇Tφ(x(t− 1))[x∗ − x(t− 1)]

+
1

2γ
‖x∗ − x(t− 1)‖2 − 1

2γ
‖x∗ − x(t)‖2

(a)

≤φ(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

(b)
=f(x∗) + [Q(t) + g(x(t− 1))]Tg(x∗)︸ ︷︷ ︸

≤0

+
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

(c)

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2], (6)

where (a) follows from the convexity of φ(x); (b) follows
from the definition of φ(x); and (c) follows by using the fact
that gk(x∗) ≤ 0 and Qk(t) + gk(x(t − 1)) ≥ 0 (i.e., part 2
in Lemma 3) for all k ∈ {1, 2, . . . ,m} to eliminate the term
marked by an underbrace.

Recall that f(x) is smooth on X with modulus Lf by
Assumption 1. By Lemma 1, we have

f(x(t)) ≤f(x(t− 1)) +∇T f(x(t− 1))[x(t)− x(t− 1)]

+
Lf
2
‖x(t)− x(t− 1)‖2. (7)

PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

Recall that each gk(x) is smooth on X with modulus Lgk
by Assumption 1. Thus, [Qk(t) + gk(x(t − 1))]gk(x) is
smooth with modulus [Qk(t)+gk(x(t−1))]Lgk . By Lemma
1, we have [Qk(t) + gk(x(t − 1))]gk(x(t)) ≤ [Qk(t) +
gk(x(t−1))]gk(x(t−1))+[Qk(t)+gk(x(t−1))]∇T gk(x(t−
1))[x(t)−x(t−1)]+

[Qk(t)+gk(x(t−1))]Lgk

2 ‖x(t)−x(t−1)‖2.
Summing this inequality over k ∈ {1, 2, . . . ,m} yields

[Q(t) + g(x(t− 1))]Tg(x(t))

≤[Q(t) + g(x(t− 1))]Tg(x(t− 1))+
m∑
k=1

[Qk(t) + gk(x(t− 1))]∇T gk(x(t− 1))[x(t)− x(t− 1)]

+
[Q(t) + g(x(t− 1))]TLg

2
‖x(t)− x(t− 1)‖2. (8)

Summing up (7) and (8) together yields

f(x(t)) + [Q(t) + g(x(t− 1))]Tg(x(t))

(a)

≤φ(x(t− 1)) +∇Tφ(x(t− 1))[x(t)− x(t− 1)]

+
Lf + [Q(t) + g(x(t− 1))]TLg

2
‖x(t)− x(t− 1)‖2,

(9)

where (a) follows from the definition of φ(x).
Substituting (6) into (9) yields

f(x(t)) + [Q(t) + g(x(t− 1))]Tg(x(t))

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2] +

1

2

[
Lf

+ [Q(t) + g(x(t− 1))]TLg −
1

γ

]
‖x(t)− x(t− 1)‖2.

(10)

Note that uT1 u2 = 1
2 [‖u1‖2 + ‖u2‖2 − ‖u1 − u2‖2] for

any u1,u2 ∈ Rm. Thus, we have [g(x(t − 1))]Tg(x(t)) =
1
2 [‖g(x(t−1))‖2 +‖g(x(t))‖2−‖g(x(t−1))−g(x(t))‖2].

Substituting this into (10) and rearranging terms yields

f(x(t)) + QT (t)g(x(t))

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2] +

1

2

[
Lf

+ [Q(t) + g(x(t− 1))]TLg −
1

γ

]
‖x(t)− x(t− 1)‖2

+
1

2
‖g(x(t− 1))− g(x(t))‖2 − 1

2
‖g(x(t− 1))‖2

− 1

2
‖g(x(t))‖2

(a)

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2] +

1

2

[
β2+

Lf + [Q(t) + g(x(t− 1))]TLg −
1

γ

]
‖x(t)− x(t− 1)‖2

− 1

2
‖g(x(t− 1))‖2 − 1

2
‖g(x(t))‖2

where (a) follows from ‖g(x(t−1))−g(x(t))‖ ≤ β‖x(t)−
x(t − 1)‖, which further follows from the assumption that
g(x) is Lipschitz continuous with modulus β.

Summing (4) with this inequality yields

∆(t) + f(x(t))

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

+
1

2
[‖g(x(t))‖2 − ‖g(x(t− 1))‖2] +

1

2

[
β2 + Lf

+ [Q(t) + g(x(t− 1))]TLg −
1

γ

]
‖x(t)− x(t− 1)‖2

(a)

≤f(x∗) +
1

2γ
[‖x∗ − x(t− 1)‖2 − ‖x∗ − x(t)‖2]

+
1

2
[‖g(x(t))‖2 − ‖g(x(t− 1))‖2] +

1

2

[
β2 + Lf

+ ‖Q(t)‖‖Lg‖+ C‖Lg‖ −
1

γ

]
‖x(t)− x(t− 1)‖2,

where (a) follows from [Q(t) + g(x(t − 1))]TLg ≤
‖Q(t) + g(x(t− 1))‖‖Lg‖ ≤ [‖Q(t)‖+ ‖g(x(t))‖]‖Lg‖ ≤
‖Q(t)‖‖Lg‖ + C‖Lg‖, where the first step follows from
Cauchy-Schwartz inequality, the second follows from the
triangular inequality and the third follows from ‖g(x)‖ ≤ C
for all x ∈ X , i.e., Assumption 1.

Lemma 8: Let x∗ be an optimal solution and λ∗ be de-
fined in Assumption 2. Define D = β2+Lf +2‖λ∗‖‖Lg‖+
2C‖Lg‖, where β, Lf , Lg and C are defined in Assumption
1. If γ > 0 in Algorithm 3 satisfies

D + ‖Lg‖
R
√
γ
− 1

γ
≤ 0, (11)

where R is defined in Assumption 1, e.g.,

0 < γ ≤ 1/(‖Lg‖R+
√
D)2, (12)

then at each iteration t ∈ {0, 1, 2, . . .}, we have
1) ‖Q(t)‖ ≤ 2‖λ∗‖+ R√

γ + C.
2) ∆(t)+f(x(t)) ≤ f(x∗)+ 1

2γ [‖x∗−x(t−1)‖2−‖x∗−
x(t)‖2] + 1

2 [‖g(x(t))‖2 − ‖g(x(t− 1))‖2].
Proof: Before the main proof, we verify that γ given

by (12) satisfies (11). Need to choose γ > 0 such that

D + ‖Lg‖
R
√
γ
− 1

γ
≤ 0⇔ Dγ + ‖Lg‖R

√
γ − 1 ≤ 0

⇔√γ ≤
−‖Lg‖R+

√
‖Lg‖2R2 + 4D

2D

=
2

‖Lg‖R+
√
‖Lg‖2R2 + 4D

.

Note that 2

‖Lg‖R+
√
‖Lg‖2R2+4D

(a)

≥ 2
2‖Lg‖R+2

√
D

=

1
‖Lg‖R+

√
D

, where (a) follows from
√
a+ b ≤

√
a +

√
b,∀a, b ≥ 0. Thus, if

√
γ ≤ 1

‖Lg‖R+
√
D

, i.e., 0 < γ ≤
1

(‖Lg‖R+
√
D)2

, then inequality (11) holds. Next, we prove
this lemma by induction.
• Consider t = 0. ‖Q(0)‖ ≤ 2‖λ∗‖ + R√

γ + C follows

from the fact that ‖Q(0)‖
(a)

≤ ‖g(x(−1))‖
(b)

≤ C, where
(a) follows from part 3 in Lemma 3 and (b) follows

PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

from Assumption 1. Thus, the first part in this lemma
holds at iteration t = 0. Note that

β2 + Lf + ‖Q(0)‖‖Lg‖+ C‖Lg‖ − 1/γ

(a)

≤β2 + Lf +
(
2‖λ∗‖+

R
√
γ

+ C
)
‖Lg‖+ C‖Lg‖ −

1

γ

(b)
=D + ‖Lg‖

R
√
γ
− 1

γ

(c)

≤ 0, (13)

where (a) follows from ‖Q(0)‖ ≤ 2‖λ∗‖+ R√
γ +C; (b)

follows from the definition of D; and (c) follows from
(11), i.e., the selection rule of γ.
Applying Lemma 7 at iteration t = 0 yields

∆(0) + f(x(0))

≤f(x∗) +
1

2γ
[‖x∗ − x(−1)‖2 − ‖x∗ − x(0)‖2]

+
1

2
[‖g(x(0))‖2 − ‖g(x(−1))‖2] +

1

2

[
β2 + Lf

+ ‖Q(0)‖‖Lg‖+ C‖Lg‖ −
1

γ

]
‖x(0)− x(−1)‖2

(a)

≤f(x∗) +
1

2γ
[‖x∗ − x(−1)‖2 − ‖x∗ − x(0)‖2]

+
1

2
[‖g(x(0))‖2 − ‖g(x(−1))‖2],

where (a) follows from (13). Thus, the second part in
this lemma holds at iteration t = 0.

• Assume ∆(τ) + f(x(τ)) ≤ f(x∗) + 1
2γ [‖x∗ − x(τ −

1)‖2−‖x∗−x(τ)‖2]+ 1
2 [‖g(x(τ))‖2−‖g(x(τ−1))‖2]

holds for all 0 ≤ τ ≤ t and consider iteration t+ 1.
Summing this inequality over τ ∈ {0, 1, . . . , t} yields∑t
τ=0 ∆(τ) +

∑t
τ=0 f(x(τ)) ≤ (t + 1)f(x∗) +

1
2γ

∑t
τ=0[‖x∗ − x(τ − 1)‖2 − ‖x∗ − x(τ)‖2] +

1
2

∑t
τ=0[‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2].

Recalling that ∆(τ) = L(τ + 1) − L(τ) and sim-
plifying the summations yields L(t + 1) − L(0) +∑t
τ=0 f(x(τ)) ≤ (t + 1)f(x∗) + 1

2γ ‖x
∗ − x(−1)‖2 −

1
2γ ‖x

∗ − x(t)‖2 + 1
2‖g(x(t))‖2 − 1

2‖g(x(−1))‖2 ≤
(t + 1)f(x∗) + 1

2γ ‖x
∗ − x(−1)‖2 + 1

2‖g(x(t))‖2 −
1
2‖g(x(−1))‖2. Rearranging terms yields

t∑
τ=0

f(x(τ))

≤(t+ 1)f(x∗) +
1

2γ
‖x∗ − x(−1)‖2 +

1

2
‖g(x(t))‖2

− 1

2
‖g(x(−1))‖2 + L(0)− L(t+ 1)

(a)
= (t+ 1)f(x∗) +

1

2γ
‖x∗ − x(−1)‖2 +

1

2
‖g(x(t))‖2

− 1

2
‖g(x(−1))‖2 +

1

2
‖Q(0)‖2 − 1

2
‖Q(t+ 1)‖2

(b)

≤(t+ 1)f(x∗) +
R2

2γ
+
C2

2
− 1

2
‖Q(t+ 1)‖2, (14)

where (a) follows from L(0) = 1
2‖Q(0)‖2 and L(t +

1) = 1
2‖Q(t+ 1)‖2; (b) follows from ‖x−y‖ ≤ R for

all x,y ∈ X , i.e., Assumption 1, ‖g(x(t))‖ ≤ C, i.e.,
Assumption 1, and ‖Q(0)‖2 ≤ ‖g(x(−1))‖2, i.e., part
3 in Lemma 3.
Applying Lemma 6 at iteration t + 1 yields∑t
τ=0 f(x(τ)) ≥ (t+ 1)f(x∗)− ‖λ∗‖‖Q(t+ 1)‖.

Combining this inequality with (14) and cancelling the
common term (t+ 1)f(x∗) on both sides yields

1

2
‖Q(t+ 1)‖2 − ‖λ∗‖‖Q(t+ 1)‖ − R2

2γ
− C2

2
≤ 0

⇒(‖Q(t+ 1)‖ − ‖λ∗‖)2 ≤ ‖λ∗‖2 +
R2

γ
+ C2

⇒‖Q(t+ 1)‖ ≤ ‖λ∗‖+
√
‖λ∗‖2 +R2/γ + C2

(a)⇒‖Q(t+ 1)‖ ≤ 2‖λ∗‖+R/
√
γ + C,

where (a) follows from the basic inequality√
a+ b+ c ≤

√
a+
√
b+
√
c for any a, b, c ≥ 0. Thus,

the first part in this lemma holds at iteration t+ 1.
Note that

β2 + Lf + ‖Q(t+ 1)‖‖Lg‖+ C‖Lg‖ −
1

γ
(a)

≤β2 + Lf + (2‖λ∗‖+
R
√
γ

+ C)‖Lg‖+ C‖Lg‖ −
1

γ

(b)
=D + ‖Lg‖

R
√
γ
− 1

γ

(c)

≤ 0, (15)

where (a) follows from ‖Q(t+1)‖ ≤ 2‖λ∗‖+ R√
γ +C;

(b) follows from the definition of D; and (c) follows
from (11), i.e., the selection rule of γ.
Applying Lemma 7 at iteration t+ 1 yields

∆(t+ 1) + f(x(t+ 1))

≤f(x∗) +
1

2γ
[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2]

+
1

2
[‖g(x(t+ 1))‖2 − ‖g(x(t))‖2] +

1

2

[
β2 + Lf+

‖Q(t+ 1)‖‖Lg‖+ C‖Lg‖ −
1

γ

]
‖x(t+ 1)− x(t)‖2

(a)

≤f(x∗) +
1

2γ
[‖x∗ − x(t)‖2 − ‖x∗ − x(t+ 1)‖2]

+
1

2
[‖g(x(t+ 1))‖2 − ‖g(x(t))‖2],

where (a) follows from (15). Thus, the second part in
this lemma holds at iteration t+ 1.

Thus, both parts in this lemma follow by induction.
Remark 1: Recall that if each gk(x) is a linear function,

then Lgk = 0 for all k ∈ {1, 2, . . . ,m}. In this case, equation
(12) reduces to 0 < γ ≤ 1/(β2 + Lf).

B. Objective Value Violations

Theorem 1 (Objective Value Violations): Let x∗ be an op-
timal solution. If we choose γ according to (12) in Algorithm
3, then for all t ≥ 1, we have f(x(t)) ≤ f(x∗)+ 1

t
R2

2γ , where
R is defined in Assumption 1.

Proof: Fix t ≥ 1. By part 2 in Lemma 8, we
have ∆(τ) + f(x(τ)) ≤ f(x∗) + 1

2γ [‖x∗ − x(τ − 1)‖2 −

PROC. IEEE CONFERENCE ON DECISION AND CONTROL, 2016

‖x∗ − x(τ)‖] + 1
2 [‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2] for all

τ ∈ {0, 1, 2, . . .}.
Summing over τ ∈ {0, 1, . . . , t− 1} yields

∑t−1
τ=0 ∆(τ) +∑t−1

τ=0 f(x(τ)) ≤ tf(x∗) + 1
2γ

∑t−1
τ=0[‖x∗ − x(τ − 1)‖2 −

‖x∗ − x(τ)‖2] + 1
2

∑t−1
τ=0[‖g(x(τ))‖2 − ‖g(x(τ − 1))‖2].

Recalling that ∆(τ) = L(τ+1)−L(τ) and simplifying the
summations yields L(t)−L(0)+

∑t−1
τ=0 f(x(τ)) ≤ tf(x∗)+

1
2γ ‖x

∗−x(−1)‖2− 1
2γ ‖x

∗−x(t−1)‖2+ 1
2‖g(x(t−1))‖2−

1
2‖g(x(−1))‖2 ≤ tf(x∗) + 1

2γ ‖x
∗ − x(−1)‖2 + 1

2‖g(x(t−
1))‖2 − 1

2‖g(x(−1))‖2. Rearranging terms yields

t−1∑
τ=0

f(x(τ))

≤tf(x∗) +
1

2γ
‖x∗ − x(−1)‖2 +

1

2
‖g(x(t− 1))‖2

− 1

2
‖g(x(−1))‖2 + L(0)− L(t)

(a)
= tf(x∗) +

1

2γ
‖x∗ − x(−1)‖2 +

1

2
‖g(x(t− 1))‖2

− 1

2
‖g(x(−1))‖2 +

1

2
‖Q(0)‖2 − 1

2
‖Q(t)‖2

(b)

≤tf(x∗) +
1

2γ
‖x∗ − x(−1)‖2

(c)

≤ tf(x∗) +
R2

2γ
,

where (a) follows from the definition that L(0) = 1
2‖Q(0)‖2

and L(t) = 1
2‖Q(t)‖2; (b) follows from the fact that

‖Q(0)‖2 ≤ ‖g(x(−1))‖2 and ‖Q(t)‖2 ≥ ‖g(x(t − 1))‖2
for t ≥ 1, i.e., part 3 in Lemma 3; and (c) follows from the
fact that ‖x− y‖ ≤ R for all x,y ∈ X , i.e., Assumption 1.

Dividing both sides by factor t yields 1
t

∑t−1
τ=0 f(x(τ)) ≤

f(x∗) + 1
t
R2

2γ . Finally, since x(t) = 1
t

∑t−1
τ=0 x(τ) and f(x)

is convex, By Jensen’s inequality it follows that f(x(t)) ≤
1
t

∑t−1
τ=0 f(x(τ)).

C. Constraint Violations

Theorem 2 (Constraint Violations): Let x∗ be an optimal
solution and λ∗ be defined in Assumption 2. If we choose
γ according to (12) in Algorithm 3, then for all t ≥ 1, the
constraints satisfy gk(x(t)) ≤ 1

t

(
2‖λ∗‖ + R√

γ + C
)
,∀k ∈

{1, 2, . . . ,m}, where R and C are defined in Assumption 1.
Proof: Fix t ≥ 1 and k ∈ {1, 2, . . . ,m}. Recall that

x(t) = 1
t

∑t−1
τ=0 x(τ). Thus,

gk(x(t))
(a)

≤ 1

t

t−1∑
τ=0

gk(x(τ))
(b)

≤ Qk(t)

t
≤ ‖Q(t)‖

t

(c)

≤ 1

t

(
2‖λ∗‖+

R
√
γ

+ C
)
,

where (a) follows from the convexity of gk(x) and Jensen’s
inequality; (b) follows from Lemma 4; and (c) follows from
part 1 in Lemma 8.

Theorems 1 and 2 show that Algorithm 3 ensures error
decays like O(1/t) and provides an ε-approximiate solution
with convergence time O(1/ε).

D. Practical Implementations

By Theorems 1 and 2, it suffices to choose γ according
to (12) to guarantee the O(1/t) convergence rate of Algo-
rithm 3. If all constraint functions are linear, then (12) is
independent of ‖λ∗‖ by Remark 1. For general constraint
functions, we need to know the value of ‖λ∗‖, which is
typically unknown, to select γ according to (12). However,
it is easy to observe that an upper bound of ‖λ∗‖ is sufficient
for us to choose γ satisfying (12). To obtain an upper bound
of ‖λ∗‖, the next lemma is useful if problem (1)-(3) has an
interior feasible point, i.e., the Slater condition is satisfied.

Lemma 9 (Lemma 1 in [5]): Consider convex program

min f(x)

s.t. gk(x) ≤ 0, k ∈ {1, 2, . . . ,m}
x ∈ X ⊆ Rn

and define the Lagrangian dual function as q(λ) =
infx∈X {f(x) + λTg(x)}. If the Slater condition holds, i.e.,
there exists x̂ ∈ X such that gj(x) < 0,∀j ∈ {1, 2, . . . ,m},
then the level sets Vλ̂ = {λ ≥ 0 : q(λ) ≥ q(λ̂)} are
bounded for any λ̂. In particular, we have maxλ∈Vλ̂ ‖λ‖ ≤

1
min1≤j≤m{−gj(x̂)} (f(x̂)− q(λ̂)).

By Lemma 9, if convex program (1)-(3) has a feasible
point x̂ ∈ X such that gk(x̂) < 0,∀k ∈ {1, 2, . . . ,m},
then we can take an arbitrary λ̂ ≥ 0 to obtain the value
q(λ̂) = infx∈X {f(x) + λ̂

T
g(x)} and conclude that ‖λ∗‖ ≤

1
min1≤j≤m{−gj(x̂)} (f(x̂) − q(λ̂)). Since f(x) is continuous
and X is a compact set, there exists constant F > 0 such
that |f(x)| ≤ F for all x ∈ X . Thus, we can take λ̂ = 0
such that q(λ̂) = minx∈X {f(x)} ≥ −F . It follows from
Lemma 9 that ‖λ∗‖ ≤ 1

min1≤j≤m{−gj(x̂)} (f(x̂) − q(λ̂)) ≤
2F

min1≤j≤m{−gj(x̂)} .

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[2] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point
problems,” Journal of Optimization Theory and Applications, vol. 142,
no. 1, pp. 205–228, 2009.

[3] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[4] M. J. Neely, “Distributed and secure computation of convex programs
over a network of connected processors,” in DCDIS Conference Guelph,
July 2005.

[5] A. Nedić and A. Ozdaglar, “Approximate primal solutions and rate
analysis for dual subgradient methods,” SIAM Journal on Optimization,
vol. 19, no. 4, pp. 1757–1780, 2009.

[6] M. J. Neely, “A simple convergence time analysis of drift-plus-penalty
for stochastic optimization and convex programs,” arXiv:1412.0791,
2014.

[7] H. Yu and M. J. Neely, “A simple parallel algorithm with an O(1/t)
convergence rate for general convex programs,” arXiv:1512.08370,
2015.

[8] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Springer Science & Business Media, 2004.

[9] H. Yu and M. J. Neely, “A primal-dual type algorithm with the
O(1/t) convergence rate for large scale constrained convex programs,”
arXiv:1604.02216, 2016.

