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Abstract—We investigate opportunistic cooperation between
secondary (femtocell) users and primary (macrocell) users in
cognitive femtocell networks. We consider two models for such
cooperation. In the first model, called the Cooperative Relay
Model, a secondary user cannot transmit its own data concur-
rently with a primary user. However, it can employ cooperative
relaying of primary user data in order to improve the latter’s
effective transmission rate. In the second model, called the
Interference Model, a secondary user is allowed to transmit its
data concurrently with a primary user. However, the secondary
user can “cooperate” by deferring its transmissions when the
primary user is busy. In both models, the secondary users must
make intelligent cooperation decisions as they seek to maximize
their own throughput subject to average power constraints. The
decision options are different during idle and busy periods of the
primary user, and the decisions in turn influence the durations
of these periods according to a controllable infinite state Markov
chain. Such problems can be formulated as constrained Markov
decision problems, and conventional solution techniques require
either extensive knowledge of the system dynamics or learning
based approaches that suffer from large convergence times.
However, using a generalized Lyapunov optimization technique,
we design a novel greedy and online control algorithm that
overcomes these challenges. Remarkably, this algorithm does
not require any knowledge of the network arrival rates and is
provably optimal.

Index Terms—Resource Allocation, Opportunistic Coopera-
tion, Optimal Control, Cognitive Femtocell

I. INTRODUCTION

We consider a cognitive radio network with one primary
user and multiple secondary users. Packets randomly arrive
at the primary user and are queued for transmission. The
primary user transmits on every slot that it has packets. The
success probability is determined by the cooperation decisions
made by the secondary users. We consider two models for
cooperation: (i) Cooperative Relay Model, and (ii) Interference
Model. In the first model, a secondary user cannot transmit
its own data when the primary user is busy. However, it
can employ cooperative relaying of primary user data in
order to improve the latter’s effective success probability. In
the second model, a secondary user is allowed to transmit
its own data in any slot. However, the secondary user can
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“cooperate” by deferring its transmissions when the primary
user is busy, thereby reducing interference and increasing
the primary user’s success probability. In both models, the
incentive for cooperation is that it reduces the busy periods of
the primary user, and allows more idle slots under which the
secondary users can transmit without interference. However,
such cooperation decisions must be made by the secondary
users in an intelligent fashion in order to maximize their own
throughput subject to average power constraints.

The decision options and success probabilities are different
during idle and busy periods of the primary user. The size of
these periods is in turn affected by the cooperation decisions
that are made. This creates a non-trivial constrained Markov
decision problem (MDP) with infinite state space [1], [2],
where the state is the number of packets in the primary
user queue. Conventional solution techniques for constrained
MDPs have several drawbacks. For example, when the state
transition probabilites are known, dynamic programming [4]
can be used. However, it is known to suffer from the “curse of
dimensionality”. In the absense of such knowledge of system
dynamics, learning based schemes such as Q-learning may
be used [3]. For example, Q-learning based approaches are
used in [5], [6] for problems of delay-constrained wireless
transmission scheduling and [7] studies distributed Q-learning
for interference control in multiuser cognitive femtocell net-
works. Q-learning algorithms are general solutions for MDPs
that involve learning over time. However, they can suffer from
long convergence times [1]–[3]. In this work, we use a novel
alternative approach that overcomes these limitations. We first
transform the problem into a sequence of online unconstrained
stochastic shortest path problems, using a ratio rule for Lya-
punov optimization. This ratio rule is similar to those used
in a different context in [8]–[10] for restless bandit and
renewal theory problems. Remarkably, we show that for our
cognitive radio scenario, the transformed stochastic shortest
path problems can be solved exactly, and can be implemented
without knowledge of the arrival rates of the users. Further,
the resulting algorithm does not require any explicit learning
phase. This approach is powerful and can likely be applied
to other constrained Markov decisions problems with similar
structure.

Much prior work on resource allocation in cognitive radio
networks has focused on the dynamic spectrum access model
[11], [12] in which the secondary users seek transmission
opportunities for their packets on vacant primary channels
in frequency, time, or space. Under this model, the primary
users are assumed to be oblivious of the presence of the
secondary users and transmit whenever they have data to send.
Secondly, a collision model is assumed for the physical layer
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in which if a secondary user transmits on a busy primary
channel, then there is a collision and both packets are lost.
We considered a similar model in our prior work [13] where
the objective is to design an opportunistic scheduling policy
for the secondary users that maximizes their throughput utility
while providing tight reliability guarantees on the maximum
number of collisions suffered by a primary user over any given
time interval. We note that this formulation does not consider
the possibility of any cooperation between the primary and
secondary users. Further, it assumes that the secondary user
activity does not affect the primary user channel occupancy
process. This allowed [13] to use a greedy “drift-plus-penalty”
technique of Lyapunov optimization theory. Our current prob-
lem has a more complex Markov decision structure, and the
same Lyapunov optimization techniques cannot be used.

There is a growing body of work that investigates alternate
models for the interaction between the primary and secondary
users in a cognitive radio network. In particular, the idea
of cooperation at the physical layer has been considered
from an information-theoretic perspective in many works (see
the survey paper [14] and the references therein). These are
motivated by the work on the classical interference and relay
channels [15]. The main idea in these works is that the
resources of the secondary user can be utilized to improve
the performance of the primary transmissions. In return, the
secondary user can obtain more transmission opportunities for
its own data when the primary channel is idle. These works
mainly treat the problem from a physical layer/information-
theoretic perspective and do not consider upper layer issues
such as queueing, higher priority for primary user, etc.

Recent work that addresses some of these issues includes
[16]–[20]. Specifically, [16] considers the scenario where the
secondary user acts as a relay for those packets of the primary
user that it receives successfully but which are not received
by the primary destination. It derives the stable throughput of
the secondary user under this model. [17], [18] use a Stack-
elberg game framework to study spectrum leasing strategies
in cooperative cognitive radio networks where the primary
users lease a portion of their licensed spectrum to secondary
users in return for cooperative relaying. [19], [20] study and
compare different physical layer strategies for relaying in such
cognitive cooperative systems. An important consequence of
this interaction between the primary and secondary users is
that the secondary user activity can now potentially influence
the primary user channel occupancy process. However, there
has been little work in studying this scenario. Exceptions
include the work in [21] that considers a two-user setting
where collisions caused by the opportunistic transmissions of
the secondary user result in retransmissions by the primary
user. This works uses a conventional linear programming
approach to Markov decision problems that requires finite state
space and complete knowledge of the system probabilities. Our
current paper develops a new dynamic approach that does not
require knowledge of the primary user arrival rate.

The rest of the paper is organized as follows. In Section
II, we introduce the problem for the case of a single pri-
mary user and a single secondary user. This is extended to
multiple secondary users in Section VI. We describe the two
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Fig. 1. Example femtocell network with primary and secondary users.

cooperation models in Section II-B and formulate the problem
of maximizing the secondary user throughput subject to time
average power constraints under these models in Section II-D.
In Sections III and IV, we present a solution to this problem
using a novel approach based on a generalized Lyapunov
optimization technique. Finally, we present simulation results
in Section VII, where we also illustrate that our algorithm is
adaptive to changes in the arrival rates.

II. BASIC MODEL

We consider a network with one primary user, one sec-
ondary user and their respective receivers (this is extended to
treat multiple secondary users in Section VI). The primary
user is the licensed owner of the channel and transmits to
its receiver whenever it has data to send. The secondary user
does not have any licensed spectrum and seeks transmission
opportunities on the primary channel. This model can capture
a femtocell scenario [22], [23] where the primary user is a
legacy mobile user that communicates with the macro base
station over licensed spectrum while the secondary user is the
femtocell user that does not have any licensed spectrum of
its own (Fig. 1). Within this setting, we consider two models
for secondary user transmissions: (i) Cooperative Relay Model,
and (ii) Interference Model. In both models, the secondary user
can use cooperation to effectively increase the primary user
transmission rate. This can then create more opportunities for
the secondary user to transmit its own data when the primary
user is idle. These models and their cooperation mechanisms
are discussed in detail in Section II-B.

A. Timeslot Structure

We consider a time-slotted model. We assume that the
system operates over a frame-based structure. Specifically,
the timeline can be divided into successive non-overlapping
frames of duration T [k] slots where k ∈ {1, 2, 3, . . .} repre-
sents the frame number (see Fig. 2). The start time of frame
k is denoted by tk with t1 = 0. The length of frame k is
given by T [k]M=tk+1 − tk. For each k, the frame length T [k]
is a random function of the control decisions taken during that
frame. Each frame can be further divided into two periods: PU
Idle and PU Busy. The “PU Idle” period corresponds to the
slots when the primary user does not have any packet to send
to its receiver and is idle. The “PU Busy” period corresponds
to the slots when the primary user is transmitting its packets
to its receiver over the licensed spectrum. As shown in Fig. 2,
every frame starts with the “PU Idle” period which is followed
by the “PU Busy” period and ends when the primary user
becomes idle again.
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Fig. 2. Frame-based structure of the problem under consideration. Each
frame consists of two periods: PU Idle and PU Busy.

We assume that the primary user receives new packets every
slot according to an i.i.d. Bernoulli arrival process Apu(t) with
rate λpu packets/slot. This means that the length of the “PU
Idle” period of any frame is a geometric random variable with
parameter λpu. However, the length of the “PU Busy” period
depends on the secondary user control decisions as discussed
in the next section. In any slot t, if the primary user has a non-
zero queue backlog, it transmits one packet to its base station.
We assume that the transmission of each packet takes one slot.
If the transmission is successful, the packet is removed from
the primary user queue. However, if the transmission fails, the
packet is retained in the queue for future retransmissions.

B. Cooperation Mechanisms and Incentives

In the Cooperative Relay Model, the secondary user cannot
transmit its packets when the channel is being used by the
primary user. It can transmit its packets only during the “PU
Idle” period of the frame and must stop its transmissions
whenever the primary user becomes active again. This could
be because the interference generated at the primary receiver
by secondary transmissions is unacceptable. However, in the
“PU Busy” period , the secondary user can employ cooperative
relaying to improve the success probability of the primary
transmissions. This has the effect of decreasing the expected
length of the “PU Busy” period.

In order to cooperate, the secondary user must allocate its
power resources to help relay the primary user packet. This
cooperation can take place in several ways depending on the
cooperative protocol being used (see [19] for some examples).
For example, suppose the Amplify-and-Forward protocol is
used for cooperative relaying. Then, the slot is divided into two
parts. In the first part, the primary user transmits its packet to
both the secondary user and the primary receiver. In the second
part, the secondary user transmits an amplified version of the
signal that it received in the first part. Finally, the primary
receiver uses both the signals jointly to decode the packet. A
Decode-and-Forward approach would work similarly. In our
model, these details are captured by the resulting probability
of successful transmission.

In the Interference Model, the secondary user can transmit
its packets concurrently with the primary user. However, the
resulting interference reduces the success probability of the
primary transmission. Further, the primary transmission also
causes interference at the secondary receiver reducing the
success probability of the secondary transmission. However, if
the secondary user defers its transmission, then this again has
the effect of decreasing the expected length of the “PU Busy”
period. Note that this cooperation model does not require any
changes in terms of advanced physical layer mechanisms and

is consistent with the traditional FCC view of cognitive radio
networks.

In both models, the reason why the secondary user may
want to cooperate is because this can potentially increase
the number of time slots in the future in which the primary
user does not have any data to send as compared to a non-
cooperative strategy. In the Cooperative Relay Model, this
creates more opportunities for the secondary user to transmit
its own packets. In case of the Interference Model, this creates
better opportunities for the secondary user to transmit its
own packets (due to reduced primary interference). However,
the trivial strategy of cooperating whenever possible is not
necessarily optimal. For example, in the Cooperative Relay
Model, this may lead to a scenario where the secondary user
does not have enough power left for its own data transmission.
Similarly, in the Interference Model, this may not maximize
the secondary user throughput. Thus, the secondary user needs
to make intelligent decisions about cooperation.

C. Control Decisions and Queueing Dynamics

Let Qpu(t), Qsu(t) ∈ {0, 1, 2, . . .} represent the primary
and secondary user queues respectively in slot t. New packets
arrive at the secondary user according to an i.i.d. process
Asu(t) of rate λsu packets/slot respectively. We assume that
there exists a finite constant Amax such that Asu(t) ≤ Amax
for all t. Every slot, an admission control decision determines
Rsu(t), the number of new packets to admit into the secondary
user queue. Further, every slot, depending on the cooperation
model, resource allocation decisions are made as follows.
When the primary user is busy (i.e., Qpu(t) > 0), the
secondary user makes a decision about cooperation. Under
the Cooperative Relay Model, this represents the secondary
user decision on cooperative relaying and the corresponding
power allocation Psu(t). Under the Interference Model, this
represents the secondary user decision on deferring its trans-
mission (so that Psu(t) = 0) or continuing its transmission and
the corresponding power allocation Psu(t). When the primary
user is idle (i.e., Qpu(t) = 0), the secondary user makes a
decision about its own transmission and the corresponding
power allocation Psu(t). We assume that in each slot, the
secondary user can choose its power allocation Psu(t) from
a set P of possible options. Further, this power allocation is
subject to a long-term average power constraint Pavg and an
instantaneous peak power constraint Pmax. For example, P
may contain only two options {0, Pmax} which represents
“Remain Idle” and “Cooperate/Transmit at Full Power”. As
another example, P = [0, Pmax] such that Psu(t) can take
any value between 0 and Pmax.

Suppose the primary user is active in slot t and the sec-
ondary user allocates power P (t) for cooperative relaying
under the Cooperative Relay Model. Then the random suc-
cess/failure outcome of the primary transmission is given by
an indicator variable µpu(P (t)) and the success probability is
given by Φcr(P (t)) = E {µpu(P (t))}. The function Φcr(P )
is known to the network controller and is assumed to be non-
decreasing in P . However, the value of the random outcome
µpu(P (t)) may not be known beforehand. Note that setting
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P (t) = 0 corresponds to the secondary user not employing
any cooperative relaying in this model.

Similarly, under the Interference Model, if the secondary
user allocates power P (t) to transmit concurrently with the
primary user, then the success probability of the primary
transmission is given by Φin(P (t)) = E {µpu(P (t))}. The
function Φin(P ) is known to the network controller and is
assumed to be non-increasing in P . Note that setting P (t) = 0
in this model corresponds to a cooperation from the secondary
user (by deferring its own transmission).

We assume that λpu is such that it can be supported even
when the secondary user never cooperates, i.e., λpu < Φcr(0)
in the Cooperative Relay Model and λpu < Φin(Pmax) in
the Interference Model. This means that the primary user
queue is stable even if there is no cooperation. Further, for
all k, the frame length T [k] ≥ 1 and there exist finite
constants Tmin, Tmax such that under all control policies,
we have 1 ≤ Tmin ≤ E {T [k]} ≤ Tmax. For example,
in the Cooperative Relay Model, Tmin can be chosen to be
the expected frame length when the secondary user always
cooperates with full power while Tmax can be chosen to be
the expected frame length when the secondary user never
cooperates. Using Little’s Theorem, we have Tmin

Tmin+1/λpu
=

λpu

Φcr(Pmax) . Similarly, we have Tmax

Tmax+1/λpu
= λpu

Φcr(0) . Using
these, we have:

Tmin
M=

Φcr(Pmax)
(Φcr(Pmax)− λpu)λpu

, Tmax
M=

Φcr(0)
(Φcr(0)− λpu)λpu

Finally, there exists a finite constant D such that the expecta-
tion of the second moment of a frame size, E

{
T 2[k]

}
, satisfies

the following for all k, regardless of the policy1:

E
{
T 2[k]

}
≤ D (1)

This follows from the assumption that the primary user queue
is stable even if there is no cooperation.

If the primary user is idle in slot t and the secondary user
allocates power P (t) for its own transmission, the random
success/failure outcome of the transmission is given by an
indicator variable µsu(P (t)) and the success probability is
given by Ψidle(P (t)) = E {µsu(P (t))}. Recall that under the
Cooperative Relay Model, the secondary user can transmit its
data only when the primary user is idle. However, under the In-
terference Model, the secondary user can transmit concurrently
with the primary user. In this case, the success probability of
the secondary transmission is given by Ψbusy(P (t)). Since
primary transmission can interfere at the secondary receiver,
we assume that Ψbusy(P ) ≤ Ψidle(P ) for all P . The func-
tions Ψidle(P ) and Ψbusy(P ) are also known to the network
controller and are assumed to be non-decreasing in P .

Given these control decisions, the primary and secondary
user queues evolve as follows:

Qpu(t+ 1) = [Qpu(t)− µpu(P (t)), 0]+ +Apu(t) (2)
Qsu(t+ 1) = [Qsu(t)− µsu(P (t)), 0]+ +Rsu(t) (3)

where [a, b]+ M= max[a, b] and Rsu(t) ≤ Asu(t).

1In [27], we exactly compute such a D that satisfies (1).

D. Control Objective

Consider any control algorithm that makes admission con-
trol decision Rsu(t) and power allocation P (t) every slot
subject to the constraints described in Section II-C. Define the
time-average rate of the secondary user’s admitted traffic under
this algorithm as follows: Rsu M= limt→∞

1
t

∑t−1
τ=0 E {Rsu(τ)},

where the expectation is with respect to the potential random-
ness of the control algorithm. Define the time-average power
allocation P su and service rate µsu similarly. Assuming for the
time being that these limits exist, our goal is to design a joint
admission control and power allocation policy that stabilizes
the secondary user queue and maximizes its throughput subject
to its average and peak power constraints and the scheduling
constraints imposed by the model. Formally, this can be stated
as a stochastic optimization problem as follows:

Maximize: Rsu
Subject to: 0 ≤ Rsu(t) ≤ Asu(t) ∀t

Rsu ≤ µsu, P su ≤ Pavg, P (t) ∈ P ∀t
Scheduling Constraints (4)

where the constraint Rsu ≤ µsu ensures rate stability of the
secondary user queue.

It will be useful to define the primary queue backlog Qpu(t)
as the “state” for this control problem. This is because the
state of this queue (being zero or nonzero) affects the control
options as described before. Note that the control decisions
on cooperation affect the dynamics of this queue. Therefore,
problem (4) is an instance of a constrained Markov decision
problem [1]. It is well known that in order to obtain an optimal
control policy, it is sufficient to consider only the class of
stationary, randomized policies that take control actions only
as a function of the current system state (and independent
of past history). A general control policy in this class is
characterized by a stationary probability distribution over the
control action set for each system state. Let υ∗ denote the
optimal value of the objective in (4). Then using standard
results on constrained Markov decision problems [1]–[3], we
have the following:

Lemma 1: (Optimal Stationary, Randomized Policy): There
exists a stationary, randomized policy STAT that takes feasible
control decisions Rstatsu (t), P statsu (t) every slot purely as a (pos-
sibly randomized) function of the current state Qpu(t) while
satisfying the constraints Rstatsu (t) ≤ Asu(t), P statsu (t) ∈ P for
all t and provides the following guarantees:

R
stat

su = υ∗ (5)

R
stat

su ≤ µstatsu (6)

P
stat

su ≤ Pavg (7)

where R
stat

su , µstatsu , P
stat

su denote the time-averages under this
policy.

We note that the conventional techniques to solve (4)
that are based on dynamic programming [4] require either
extensive knowledge of the system dynamics or learning
based approaches that suffer from large convergence times.
Motivated by the recently developed extension to the technique
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of Lyapunov optimization in [8]–[10], we take an different
approach to this problem in the next section.

III. SOLUTION USING THE “DRIFT-PLUS-PENALTY”
RATIO METHOD

Recall that the start of the kth frame, tk, is defined as the
first slot when the primary user becomes idle after the “PU
Busy” period of the (k − 1)th frame. Let Qsu(tk) denote
the secondary user queue backlog at time tk. Also let P (t)
be the power expenditure incurred by the secondary user in
slot t. For notational convenience, in the following we will
denote µsu(P (t)) by µsu(t) noting the dependence on P (t)
is implicit. Then the queueing dynamics of Qsu(tk) satisfies
the following:

Qsu(tk+1) ≤ [Qsu(tk)−
tk+1−1∑
t=tk

µsu(t), 0]+ +
tk+1−1∑
t=tk

Rsu(t)

(8)

where Rsu(t) denotes the number of new packets admitted in
slot t and tk+1 denotes the start of the (k + 1)th frame. The
above expression has an inequality because it may be possible
to serve the packets admitted in the kth frame during that
frame itself.

In order to meet the time average power constraint, we make
use of a virtual power queue Xsu(tk) [25] which evolves over
frames as follows:

Xsu(tk+1) = [Xsu(tk)− T [k]Pavg +
tk+1−1∑
t=tk

P (t), 0]+ (9)

where T [k] = tk+1− tk is the length of the kth frame. Recall
that T [k] is a (random) function of the control decisions taken
during the kth frame.

In order to construct an optimal dynamic control policy,
we use the technique of [8]–[10] where a ratio of “drift-
plus-penalty” is maximized over every frame. Specifically, let
Q(tk) = (Qsu(tk), Xsu(tk)) denote the queueing state of
the system at the start of the kth frame. As a measure of
the congestion in the system, we use a Lyapunov function
L(Q(tk))M= 1

2 [Q2
su(tk) + X2

su(tk)]. Define the drift ∆(tk) as
the conditional expected change in L(Q(tk)) over frame k:

∆(tk)M=E {L(Q(tk+1))− L(Q(tk))|Q(tk)} (10)

Then, using (8) and (9), we can bound ∆(tk) as follows:

∆(tk) ≤ B −Qsu(tk)E

{
tk+1−1∑
t=tk

[µsu(t)−Rsu(t)]|Q(tk)

}

−Xsu(tk)E

{
T [k]Pavg −

tk+1−1∑
t=tk

P (t)|Q(tk)

}
(11)

where B is a finite constant that satisfies the following for all
k and Q(tk) under any control algorithm:

B ≥ 1
2

E

{( tk+1−1∑
t=tk

µsu(t)
)2

+
( tk+1−1∑

t=tk

Rsu(t)
)2

+
( tk+1−1∑

t=tk

P (t)− T [k]Pavg
)2

|Q(tk)

}

Using the fact that µsu(t) ≤ 1, P (t) ≤ Pmax for all t,
and using the fact (1), it follows that choosing B as follows
satisfies the above:

B =
D[1 +A2

max + (Pmax − Pavg)2]
2

(12)

Adding a penalty term −V E
{∑tk+1−1

t=tk
Rsu(t)|Q(tk)

}
(where V > 0 is a control parameter that affects a utility-
delay trade-off as shown in Theorem 1) to both sides of the
above and rearranging yields:

∆(tk)− V E

{
tk+1−1∑
t=tk

Rsu(t)|Q(tk)

}
≤ B + (Qsu(tk)− V )×

E

{
tk+1−1∑
t=tk

Rsu(t)|Q(tk)

}
−Xsu(tk)E {T [k]Pavg|Q(tk)}−

E

{
tk+1−1∑
t=tk

(
Qsu(tk)µsu(t)−Xsu(tk)P (t)

)
|Q(tk)

}
(13)

Minimizing the ratio of an upper bound on the right hand
side of the above expression and the expected frame length
over all control options leads to the following Frame-Based-
Drift-Plus-Penalty-Algorithm. In each frame k ∈ {1, 2, 3, . . .},
do the following:

1) Admission Control: For all t ∈ {tk, tk+1, . . . , tk+1−1},
choose Rsu(t) as follows:

Rsu(t) =
{
Asu(t) if Qsu(t) ≤ V
0 else (14)

2) Resource Allocation: Choose a policy that maximizes the
following ratio:

E
{∑tk+1−1

t=tk

(
Qsu(tk)µsu(t)−Xsu(tk)P (t)

)
|Q(tk)

}
E {T [k]|Q(tk)}

(15)

Specifically, every slot t of the frame, the policy observes
the queue values Qsu(tk) and Xsu(tk) at the beginning
of the frame and selects a secondary user power P (t)
subject to the constraint P (t) ∈ P and the scheduling
constraints of the cooperation model being used. For
example, under the Cooperative Relay Model, this cor-
responds to the constraint on transmitting own data vs.
cooperation depending on whether slot t is in the “PU
Idle” or “PU Busy” period of the frame. The objective is
to maximize the above frame-based ratio of expectations.
Recall that the frame size T [k] is influenced by the policy
through the success probabilities that are determined by
secondary user power selections. Further recall that these
success probabilities are different during the “PU Idle”
and “PU Busy” periods of the frame. An explicit policy
that maximizes this expectation under both cooperation
models is given in the next section.

3) Queue Update: After implementing this policy, update the
queues as in (3) and (9).

From the above, it can be seen that the admission control
part (14) is a simple threshold-based decision that does not
require any knowledge of the arrival rates λsu or λpu. In the
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next section, we present an explicit solution to the maximizing
policy for the resource allocation in (15) under both coopera-
tion models and show that, remarkably, it also does not require
knowledge of λsu or λpu and can be computed easily. We
then analyze the performance of the Frame-Based-Drift-Plus-
Penalty-Algorithm in Section V.

IV. THE MAXIMIZING POLICY OF (15)

Under both cooperation models, the policy that maximizes
(15) uses only two numbers that we call P ∗0 and P ∗1 , defined
as follows. P ∗0 is given by the solution to the following
optimization problem:

Maximize: Qsu(tk)Ψidle(P0)−Xsu(tk)P0

Subject to: P0 ∈ P (16)

Let θ∗ M=Qsu(tk)Ψidle(P ∗0 ) −Xsu(tk)P ∗0 denote the value of
the objective of (16) under the optimal solution. Then, under
the Cooperative Relay Model, P ∗1 is given by the solution to
the following optimization problem:

Minimize:
θ∗ +Xsu(tk)P1

Φcr(P1)
Subject to: P1 ∈ P (17)

Under the Interference Model, P ∗1 is given by the solution to
the following optimization problem:

Minimize:
θ∗ −Qsu(tk)Ψbusy(P1) +Xsu(tk)P1

Φin(P1)
Subject to: P1 ∈ P (18)

Note that (16), (17), and (18) are simple optimization
problems in a single variable and can be solved efficiently.
Given P ∗0 and P ∗1 , on every slot t of frame k, the policy that
maximizes (15) chooses power P (t) as follows:

P (t) =
{
P ∗0 if Qpu(t) = 0
P ∗1 if Qpu(t) > 0 (19)

That is, the secondary user uses the constant power P ∗0 for
its own transmission during the “PU Idle” period of the frame,
and uses constant power P ∗1 for cooperative relaying (under the
Cooperative Relay Model) or its own transmission (under the
Interference Model) during all slots of the “PU busy” period
of the frame. Note that P ∗0 and P ∗1 can be computed easily
based on the weights Qsu(tk), Xsu(tk) associated with frame
k, and do not require knowledge of the arrival rates λsu, λpu.

Our proof that the above decisions maximize (15) has
the following parts: First, we show that the decisions that
maximize the ratio of expectations in (15) are the same as
the optimal decisions in an equivalent infinite horizon Markov
decision problem (MDP). Next, we show that the solution to
the infinite horizon MDP uses fixed power Pi for each queue
state Qpu(t) = i (for i ∈ {0, 1, 2, . . .}). Then, we show that
Pi are the same for all i ≥ 1. Finally, we show that the
optimal powers P ∗0 and P ∗1 are given as above. The detailed
proof is given in the next section. For brevity, we focus on
the Cooperative Relay Model in the following noting that the
proof technique applies to the Interference Model as well.

A. Proof Details

Here we examine how to solve (15) in detail under the
Cooperative Relay Model. First, define the state i in any slot
t ∈ {tk, tk + 1, . . . , tk+1−1} as the value of the primary user
queue backlog Qpu(t) in that slot. Note that the state at time tk
is 0 since every frame k starts with the “PU Idle” period. Now
letR denote the class of stationary, randomized policies where
every policy r ∈ R chooses a power allocation Pi(r) ∈ P in
each state i according to a stationary distribution. It can be
shown that it is sufficient to only consider policies in R to
maximize (15). Now suppose a policy r ∈ R is implemented
on a separate virtual system with fixed Qsu(tk) and Xsu(tk)
and with the same state dynamics as our model. Specifically,
this system is a Markov Chain with the same state space and
control actions per state. However, instead of a single frame,
this system is run over an infinite horizon. Then, by basic
renewal theory [26], we have that maximizing the ratio of
expectations in (15) over the course of the frame is identical to
maximizing the infinite horizon time-average cost in the virtual
system. Using the fact that µsu(t) = 0 for all t when the state
i ≥ 1, this can be expressed as the following unconstrained
MDP problem:

Maximize: Qsu(tk)E {Ψidle(P0(r))}π0(r)

−Xsu(tk)
∑
i≥0

E {Pi(r)}πi(r)

Subject to: r ∈ R (20)

where πi(r) is the resulting steady-state probability of being in
state i in the virtual system under the stationary, randomized
policy r and where the expectations above are with respect to
r. Note that well-defined steady-state probabilities πi(r) exist
for all r ∈ R because we have assumed that λpu < Φcr(0) so
that even if no cooperation is used, the primary queue is stable
and the system is recurrent. Thus, solving (15) is equivalent to
solving the unconstrained time-average maximization problem
(20) over the class of stationary, randomized policies. We study
this problem in the following.

Consider the optimal stationary, randomized policy that
maximizes the objective in (20). Let χi denote the probability
distribution over P that is used by this policy to choose a
power allocation Pi in state i. Let µi denote the resulting
effective probability of successful primary transmission in
state i ≥ 1. Then we have that µi = Eχi

{Φcr(Pi)} where
Φcr(Pi) denotes the probability of successful transmission in
state i when the secondary user spends power Pi in cooperative
transmission with the primary user. Since the system is stable
and has a well-defined steady-state distribution, we can write
down the detail equations for the Markov Chain that describes
the state transitions of the system as follows (See Fig. 3):

π0λpu = π1(1− λpu)µ1

π1λpu(1− µ1) = π2(1− λpu)µ2

...
πiλpu(1− µi) = πi+1(1− λpu)µi+1 ∀i ≥ 1

where πi denotes the steady-state probability of being in state
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Fig. 3. Birth-Death Markov Chain over the system state where the system
state represents the primary user queue backlog.

i under this policy. Summing over all i yields:

λpu =
∑
i≥1

πiµi (21)

The average power incurred in cooperative transmissions under
this policy is given by:

P =
∑
i≥1

πiEχi
{Pi} (22)

Now consider an alternate stationary policy that uses the
following fixed distribution χ′ for choosing control action P ′

in all states i ≥ 1:

χ′ M=



χ1 with probability π1P
j≥1 πj

χ2 with probability π2P
j≥1 πj

...
χi with probability πiP

j≥1 πj

...

(23)

Let µ′ denote the resulting effective probability of a suc-
cessful primary transmission in any state i ≥ 1. Note that this
is same for all states by the definition (23). Then, we have
that:

µ′ =
∑
i≥1

µi
πi∑
j≥1 πj

(24)

Let π′i denote the steady-state probability of being in state i
under this alternate policy. Note that the system is stable under
this alternate policy as well. Thus, using the detail equations
for the Markov Chain that describes the state transitions of the
system under this policy yields

λpu =
∑
k≥1

π′kµ
′ =

∑
k≥1

π′k

(∑
i≥1

µi
πi∑
j≥1 πj

)
=
∑
k≥1

π′k

(∑
i≥1 µiπi∑
j≥1 πj

)
=
∑
k≥1

π′k

( λpu∑
j≥1 πj

)
(25)

where we used (21) in the last step. This implies that∑
k≥1 π

′
k =

∑
j≥1 πj and therefore π′0 = π0. Also, the

average power incurred in cooperative transmissions under this
alternate policy is given by:

P
′

=
∑
k≥1

π′kEχ′{P ′} =
∑
k≥1

π′k

(∑
i≥1

Eχi{Pi}
πi∑
j≥1 πj

)
=
∑
k≥1

π′k

( P∑
j≥1 πj

)
= P (26)

where we used (22) in the second to last step and
∑
k≥1 π

′
k =∑

j≥1 πj in the last step.

Thus, if we choose χ′ = χ0 in state i = 0 and choose
χ′ as defined in (23) in all other states, it can be seen that
the alternate policy achieves the same time-average value of
the objective (20) as the optimal policy. This implies that to
maximize (20), it is sufficient to optimize over the class of
stationary policies that use the same distribution for choosing
Pi for all states i ≥ 1. Denote this class by R′. Then for all
i > 1, we have that E {Pi(r)} = E {P1(r)} for all r ∈ R′.
Using this and the fact that 1−π0(r) =

∑
i≥1 πi(r), (20) can

be simplified as follows:

Max: (Qsu(tk)E{Ψidle(P0(r))} −Xsu(tk)E {P0(r)})π0(r)
−Xsu(tk)E {P1(r)} (1− π0(r))

Subject to: r ∈ R′ (27)

where π0(r) is the resulting steady-state probability of being
in state 0 and where E {P1(r)} is the average power incurred
in cooperative transmission in state i = 1 (same for all states
i ≥ 1). Next, note that the control decisions taken by the
secondary user in state i = 0 do not affect the length of the
frame and therefore π0(r). Further, the expectations can be
removed. Therefore the first term in the problem above can be
maximized separately as follows:

Maximize: Qsu(tk)Ψidle(P0)−Xsu(tk)P0

Subject to: P0 ∈ P (28)

This is the same as (16). Let P ∗0 denote the optimal solution
to (28) and let θ∗ = Qsu(tk)Ψidle(P ∗0 ) −Xsu(tk)P ∗0 denote
the value of the objective of (28) under the optimal solution.
Note that we must have that θ∗ ≥ 0 because the value of the
objective when the secondary user chooses P0 = 0 (i.e., stays
idle) is 0. Then, (27) can be written as:

Maximize: θ∗π0(r)−Xsu(tk)E {P1(r)} (1− π0(r))
Subject to: r ∈ R′ (29)

The effective probability of a successful primary transmission
in any state i ≥ 1 is E{Φcr(P1(r))}. Using Little’s Theorem,
we have π0(r) = 1− λpu

E{Φcr(P1(r))} . Using this and rearranging
the objective in (29) and ignoring the constant terms, we have
the following equivalent problem:

Minimize:
θ∗ +Xsu(tk)E{P1(r)}

E{Φcr(P1(r))}
Subject to: r ∈ R′ (30)

It can be shown that it is sufficient to consider only determin-
istic power allocations to solve (30) (see, for example, [10,
Section 7.3.2]). This yields the following problem:

Minimize:
θ∗ +Xsu(tk)P1

Φcr(P1)
Subject to: P1 ∈ P (31)

This is the same as (17). Note that solving this problem does
not require knowledge of λpu or λsu and can be solved easily
for general power allocation options P . We present an example
that admits a particularly simple solution to this problem.

Suppose P = {0, Pmax} so that the secondary user can
either cooperate with full power Pmax or not cooperate (with
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power expenditure 0) with the primary user. Then, the optimal
solution to (31) can be calculated by comparing the value of
its objective for P1 ∈ {0, Pmax}. This yields the following
simple threshold-based rule:

P ∗1 =

{
0 if Xsu(tk) ≥ θ∗(Φcr(Pmax)−Φcr(0))

PmaxΦcr(0)

Pmax else
(32)

We also note that this threshold can be computed without any
knowledge of the input rates λpu, λsu.

To summarize, the overall solution to (15) is given by the
pair (P ∗0 , P

∗
1 ) where P ∗0 denotes the power allocation used by

the secondary user for its own transmission when the primary
user is idle and P ∗1 denotes the power used by the secondary
user for cooperative transmission (under the Cooperative Relay
Model) or its own transmission (under the Interference Model).
Note that these values remain fixed for the entire duration of
frame k. However, these can change from one frame to another
depending on the values of the queues Qsu(tk), Xsu(tk). The
computation of (P ∗0 , P

∗
1 ) can be carried out using a two-step

process as follows:

1) First, compute P ∗0 by solving problem (16). Let θ∗ be the
value of the objective of (16) under the optimal solution
P ∗0 .

2) Then compute P ∗1 by solving problem (17) for the Coop-
erative Relay Model or (18) for the Interference Model.

It is interesting to note that in order to implement this
algorithm, the secondary user does not require knowledge of
the current queue backlog value of the primary user. Rather, it
only needs to know the values of its own queues and whether
the current slot is in the “PU Idle” or “PU Busy” part of the
frame. This is quite different from the conventional solution to
the MDP (4) which is typically a different randomized policy
for each value of the state (i.e., the primary queue backlog).

V. PERFORMANCE ANALYSIS

To analyze the performance of the Frame-Based-Drift-Plus-
Penalty-Algorithm, we compare its Lyapunov drift with that of
the optimal stationary, randomized policy STAT of Lemma 1.

Theorem 1: (Performance Theorem) Suppose the Frame-
Based-Drift-Plus-Penalty-Algorithm is implemented over all
frames k ∈ {1, 2, 3, . . .} with initial condition Qsu(0) =
0, Xsu(0) = 0 and with a control parameter V > 0.
Let µfabsu (t), P fabsu (t) denote the resource allocation decisions
under this algorithm. Then, we have:

1) The secondary user queue backlog Qsu(t) is upper
bounded for all t:

Qsu(t) ≤ Qmax M=Amax + V (33)

2) The virtual power queue Xsu(tk) is mean rate stable, i.e.,

lim
K→∞

E {Xsu(tK)}
K

= 0 (34)

Further, we have:

lim sup
K→∞

(
1
K

K∑
k=1

E

{
tk+1−1∑
t=tk

(P fabsu (t)− Pavg)

})
≤ 0

(35)

lim sup
K→∞

1
K

∑K
k=1 E

{∑tk+1−1
t=tk

P fabsu (t)
}

1
K

∑K
k=1 E {T [k]}

≤ Pavg (36)

3) The time-average secondary user throughput (defined
over frames) satisfies the following bound for all K > 0:∑K

k=1 E
{∑tk+1−1

t=tk
Rfabsu (t)

}
∑K
k=1 E {T [k]}

≥ υ∗ − B + C

V Tmin
(37)

where B = D[1+A2
max+(Pmax−Pavg)2]

2 and C =
D(Amax+1)Amax

2 .
Theorem 1 shows that the time-average secondary user
throughput can be pushed to within O(1/V ) of the optimal
value with a trade-off in the worst case queue backlog. By
Little’s Theorem, this leads to an O(1/V, V ) utility-delay
tradeoff.

Proof: Omitted for brevity. See [27] for full proof.

VI. EXTENSIONS TO MULTIPLE SECONDARY USERS

Consider the scenario with one primary user as before, but
with N > 1 secondary users. For brevity, we only consider
the Cooperative Relay Model. The primary user channel
occupancy process evolves as before where the secondary
users can transmit their own data only when the primary user
is idle. However, they may cooperatively transmit with the
primary user to increase its transmission success probability. In
general, multiple secondary users may cooperatively transmit
with the primary in one timeslot. However, for simplicity, here
we assume that at most one secondary user can take part in
a cooperative transmission per slot. Further, we also assume
that at most one secondary user can transmit its data when the
primary user is idle. Our formulation can be easily extended to
this scenario. Let Pi denote the set of power allocation options
for secondary user i. Suppose each secondary user i is subject
to average and peak power constraints Pavg,i and Pmax,i
respectively. Let Φcr,i(P ) denote the success probability of
the primary transmission when secondary user i spends power
P in cooperative transmission. Also, let Ψidle,i(P ) denote the
success probability of the secondary user i when it spends
power P for its own transmission in the “PU Idle” phase. Now
consider the objective of maximizing the sum total throughput
of the secondary users subject to each user’s average and peak
power constraints and the scheduling constraints of the model.
In order to apply the “drift-plus-penalty” ratio method, we use
the following queues:

Qi(tk+1) ≤ [Qi(tk)−
tk+1−1∑
t=tk

µi(t), 0]+ +
tk+1−1∑
t=tk

Ri(t) (38)

Xi(tk+1) = [Xi(tk)− T [k]Pavg,i +
tk+1−1∑
t=tk

Pi(t), 0]+ (39)
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where Qi(tk) is the queue backlog of secondary user i at
the beginning of the kth frame, µi(t) is the service rate of
secondary user i in slot t, Ri(t) and Pi(t) denote the number
of new packets admitted and the power expenditure incurred
by the secondary user i in slot t. Finally, tk+1 denotes the
start of the (k+1)th frame and T [k] = tk+1− tk is the length
of the kth frame as before.

Let Q(tk) = (Q1(tk), . . . , QN (tk), X1(tk), . . . , XN (tk))
denote the queueing state of the system at the
start of the kth frame. Using a Lyapunov function
L(Q(tk))M= 1

2

[∑N
i=1Q

2
i (tk) +

∑N
i=1X

2
i (tk)

]
and following

the steps in Section III yields the following Multi-User
Frame-Based-Drift-Plus-Penalty-Algorithm. In each frame
k ∈ {1, 2, 3, . . .}, do the following:

1) Admission Control: For all t ∈ {tk, tk+1, . . . , tk+1−1},
for each secondary user i ∈ {1, 2, . . . , N}, choose Ri(t)
as follows:

Ri(t) =
{
Ai(t) if Qi(t) ≤ V
0 else (40)

where Ai(t) is the number of new arrivals to secondary
user i in slot t.

2) Resource Allocation: Choose a policy that maximizes the
following ratio:∑N

i=1 E
{∑tk+1−1

t=tk
(Qi(tk)µi(t)−Xi(tk)Pi(t))|Q(tk)

}
E {T [k]|Q(tk)}

(41)

3) Queue Update: After implementing this policy, update the
queues as in (38) and (39).

Similar to the basic model, this algorithm can be implemented
without any knowledge of the arrival rates λi or λpu. Further,
using the techniques developed in Section IV, it can be shown
that the solution to (41) can be computed in two steps as
follows. First, we solve the following problem for each i ∈
{1, 2, . . . , N}:

Maximize: Qi(tk)Ψidle,i(P )−Xi(tk)P
Subject to: P ∈ Pi (42)

Let P ∗0 denote the optimal solution to (42) achieved by user i∗

and let θ∗ denote the optimal objective value. This means user
i∗ transmits on all idle slots of frame k with power P ∗0 . Next,
to determine the optimal cooperative transmission strategy, we
solve the following problem for each i ∈ {1, 2, . . . , N}:

Minimize:
θ∗ +Xi(tk)P

Φcr,i(P )
Subject to: P ∈ Pi (43)

Let P ∗1 denote the optimal solution to (43) achieved by user
j∗. This means user j∗ cooperatively relays on all busy slots
of frame k with power P ∗1 , while all others are idle.

VII. SIMULATIONS

In this section, we evaluate the performance of the
Frame-Based-Drift-Plus-Penalty-Algorithm using simulations.
We consider the Cooperative Relay Model of Section II with
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one primary and one secondary user. The set P consists of
only two options {0, Pmax}. We assume that Pavg = 0.5 and
Pmax = 1. We set Φcr(0) = 0.6 and Φcr(Pmax) = 0.8. For
simplicity, we assume that Ψidle(Pmax) = 1.

In the first set of simulations, we fix the input rates
λpu = λsu = 0.5 packets/slot. For these parameters, we can
compute the optimal offline solution by linear programming.
This yields the maximum secondary user throughput as 0.25
packets/slot. We now simulate the Frame-Based-Drift-Plus-
Penalty-Algorithm for different values of the control parameter
V over 1000 frames. In Fig. 4(a), we plot the average
throughput achieved by the secondary user over this period.
It can be seen that the average throughput increases with V
and converges to the optimal value 0.25 packets/slot, with
the difference exhibiting a O(1/V ) behavior as predicted by
Theorem 1. In Fig. 4(b), we plot the average queue backlog
of the secondary user over this period. It can be see that the
average queue backlog grows linearly in V , again as predicted
by Theorem 1. Also, for all V , the average secondary user
power consumption over this period was found not to exceed
Pavg = 0.5 units/slot.

For comparison, we also simulate three alternate algorithms.
In the first algorithm “No Cooperation”, the secondary user
never cooperates with the primary user and only attempts to
maximize its throughput over the resulting idle periods. The
secondary user throughput under this algorithm was found to
be 0.166 packets/slot as shown in Fig. 4(a). Note that using
Little’s Theorem, the resulting fraction of time the primary
user is idle is 1 − λpu/Φcr(0) = 1 − 0.5/0.6 = 0.166. This
limits the maximum secondary user throughput under the “No
Cooperation” case to 0.166 packets/slot.

In the second algorithm, we consider the “Always Cooper-
ate” case where the secondary user always cooperates with the
primary user. For the example under consideration, this uses
up all the secondary user power and thus, the secondary user
achieves zero throughput.

In the third algorithm “Counter Based Policy”, a running
average of the total secondary user power consumption so
far is maintained. In each slot, the secondary user decides
to transmit/cooperate only if this running average is smaller
than Pavg . The maximum secondary user throughput under
this algorithm was found to be 0.137 packets/slot. This demon-
strates that simply satisfying the average power constraint is
not sufficient to achieve maximum throughput. For example,
it may be the case that under the “Counter Based Policy”, the
running average condition is usually satisfied when the primary
user is busy. This causes the secondary user to cooperate.
However, by the time the primary user next becomes idle, the
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running average exceeds Pavg so that the secondary user does
not transmit its own data. In contrast, the Frame-Based-Drift-
Plus-Penalty-Algorithm is able to find the opportune moments
to cooperate/transmit optimally.

In the second set of simulations, we fix the input rate
λsu = 0.8 packets/slot, V = 500, and simulate the Frame-
Based-Drift-Plus-Penalty-Algorithm over 1000 frames. At the
start of the simulation, we set λpu = 0.4 packets/slot. The
values of the other parameters remain the same. However,
during the course of the simulation, we change λpu to 0.2
packets/slot after the first 350 frames and then again to 0.55
packets/slot after the first 700 frames. In Figs. 4(c) and 4(d),
we plot the running average (over 100 frames) of the secondary
user throughput and the average power used for coopera-
tion. These show that the Frame-Based-Drift-Plus-Penalty-
Algorithm automatically adapts to the changes in λpu. Further,
it quickly approaches the optimal performance corresponding
to the new λpu by adaptively spending more or less power (as
required) on cooperation. For example, when λpu reduces to
0.2 packets/slot after frame number 350, the fraction of time
the primary is idle even with no cooperation is 1− 0.2/0.6 =
0.66. With Pavg = 0.5, there is no need to cooperate anymore.
This is precisely what the Frame-Based-Drift-Plus-Penalty-
Algorithm does as shown in Fig. 4(d). Similarly, when when
λpu increases to 0.55 packets/slot after frame number 700,
the Frame-Based-Drift-Plus-Penalty-Algorithm starts to spend
more power on cooperative transmissions.
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VIII. CONCLUSIONS

In this paper, we studied the problem of opportunistic
cooperation in a cognitive femtocell network. Specifically, we
considered two models for such cooperation. In both models, a
secondary user can cooperate with the primary user to increase
the latter’s transmission success probability. In return, the
secondary user can get more opportunities for transmitting
its own data when the primary user is idle. A key feature
of this problem is that here, the evolution of the system
state depends on the control actions taken by the secondary
user. This dependence makes it a constrained Markov decision
problem (MDP). Traditional MDP solutions require either
extensive knowledge of the system dynamics or learning based
approaches that suffer from large convergence times. However,
using the technique of Lyaunov optimization, we designed
a novel greedy and online control algorithm that overcomes
these challenges and is provably optimal.

REFERENCES

[1] E. Altman. Constrained Markov Decision Processes. Boca Raton, FL:
Chapman and Hall/CRC Press, 1999.

[2] M. L. Puterman. Markov Decision Processes. John Wiley & Sons, 2005.
[3] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.

Belmont, MA: Athena Scientific, 1996.
[4] D. P. Bertsekas. Dynamic Programming and Optimal Control, vols. 1 &

2, Belmont, MA: Athena Scientific, 2007.
[5] N. Salodkar, A. Bhorkar, A. Karandikar, and V. S. Borkar. An on-line

learning algorithm for energy efficient delay constrained scheduling over
a fading channel. IEEE Journal on Selected Areas in Communications,
26(4):732-742, May 2008.

[6] F. Fu and M. van der Schaar. Decomposition principles and online
learning in cross-layer optimization for delay-sensitive applications.
IEEE Trans. Signal Processing, 58(3):1401-1415, March 2010.

[7] A. Galindo-Serrano, L. Giupponi, and M. Dohler. Cognition and docition
in OFDMA-based femtocell networks. Proc. GLOBECOM, Dec. 2010.

[8] C. Li and M. J. Neely. Network utility maximization over partially
observable markovian channels. arXiv:1008.3421v1, Aug. 2010.

[9] M. J. Neely. Dynamic optimization and learning for renewal systems.
Proc. Asilomar Conference, Nov. 2010.

[10] M. J. Neely. Stochastic Network Optimization with Application to
Communication & Queueing Systems. Morgan&Claypool, 2010.

[11] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty. NeXt gen-
eration/dynamic spectrum access/cognitive radio wireless networks: A
survey. Comput. Netw., 50:2127-2159, Sept. 2006.

[12] Q. Zhao and B. Sadler. A survey of dynamic spectrum access. IEEE
Signal Processing Magazine, 24(3):79-89, May 2007.

[13] R. Urgaonkar and M. J. Neely. Opportunistic scheduling with reliability
guarantees in cognitive radio networks. IEEE Trans. Mobile Computing,
8(6):766-777, June 2009.

[14] A. J. Goldsmith, S. A. Jafar, I. Maric, and S. Srinivasa. Breaking
spectrum gridlock with cognitive radios: An information theoretic per-
spective. Proc. of the IEEE, 97(5):894-914, May 2009.

[15] T. M. Cover and J. A. Thomas. Elements of Information Theory. New
York: John Wiley & Sons, Inc., 1991.

[16] O. Simeone, Y. Bar-Ness, and U. Spagnolini. Stable throughput of
cognitive radios with and without relaying capability. IEEE Trans.
Communications, 55(12):2351-2360, Dec. 2007.

[17] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and R.
Pickholtz. Spectrum leasing to cooperating secondary ad hoc networks.
IEEE JSAC Special Issue on Cognitive Radio: Theory and Applications,
26(1):203-213, Jan. 2008.

[18] J. Zhang and Q. Zhang. Stackelberg game for utility-based cooperative
cognitive radio networks. Proc. ACM MobiHoc, May 2009.

[19] I. Krikidis, J. N. Laneman, J. Thompson, and S. McLaughlin. Protocol
design and throughput analysis for multi-user cognitive cooperative
systems. IEEE Trans. Wireless Commun., 8(9):4740-4751, Sept. 2009.

[20] B. Rong, I. Krikidis, and A. Ephremides. Network-level cooperation with
enhancements based on the physical layer. IEEE Information Theory
Workshop, Cairo, Egypt, Jan. 2010.

[21] M. Levorato, U. Mitra, and M. Zorzi. Cognitive interference manage-
ment in retransmission-based wireless networks. Proc. 47th Allerton
Conference on Communication, Control, and Computing, Sept. 2009.

[22] G. Gur, S. Bayhan, and F. Alagoz. Cognitive femtocell networks:
An overlay architecture for localized dynamic spectrum access. IEEE
Wireless Communications, 17(4):62-70, Aug. 2010.

[23] Z. Bharucha, H. Haas, A. Saul, and G. Auer. Throughput enhancement
through femto-cell deployment. European Transactions on Telecommu-
nications, 21(5):469-477, Aug. 2010.

[24] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, 1(1):1-149, 2006.

[25] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Trans. Inform. Theory, 52(7):2915-2934, July 2006.

[26] R. Gallager. Discrete Stochastic Processes. Kluwer Academic Publish-
ers, Boston, 1996.

[27] R. Urgaonkar and M. J. Neely. Opportunistic cooperation in cognitive
femtocell networks. arXiv:1103.1401, March 2011.


