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Stochastic Network Optimization with Non-Convex
Utilities and Costs

Michael J. Neely

Abstract— This work considers non-convex optimization of
time averages of network attributes in a general stochastic
network. This includes maximizing a non-concave utility function
of the time average throughput vector in a time-varying wireless
system, subject to network stability and to an additional col-
lection of time average penalty constraints. We develop a simple
algorithm that meets all desired stability and penalty constraints,
and, subject to a convergence assumption, yields a time average
vector that is a local optimum of the desired utility function.
We also consider algorithms that yield “local near optimal”
solutions, where the distance to a local optimum can be made as
small as desired with a corresponding tradeoff in average delay.
Our solution uses Lyapunov optimization with a combination of
stochastic dual and primal-dual techniques. We also discuss the
relative advantages and disadvantages of these techniques.

Index Terms— Queueing analysis, opportunistic scheduling,
flow control, wireless networks

I. INTRODUCTION

We consider a queueing network that operates in discrete
time t ∈ {0, 1, 2, . . .}. Let Q(t) = (Q1(t), . . . , QK(t)) be
the vector of queue backlogs on slot t. The arrival and
service of the queues are determined by a random event
ω(t) and a network control action α(t), chosen in reaction
to this event from an abstract set of possible actions Aω(t)

that possibly depends on ω(t). The α(t) and ω(t) values
also affect two attribute vectors x(t) = (x1(t), . . . , xM (t)),
y(t) = (y0(t), y1(t), . . . , yL(t)) according to general (possibly
non-convex, discontinuous) functions x̂m(·), ŷl(·) for m ∈
{1, . . . ,M} and l ∈ {0, 1, . . . , L}:

xm(t) = x̂m(α(t), ω(t)) , yl(t) = ŷl(α(t), ω(t))

Define x = (x1, . . . , xM ) as the limiting time average
expectation of the attribute vector x(t) under a particular
policy (temporarily assumed to exist):

xM= lim
t→∞

1
t

t−1∑
τ=0

E {x(τ)}

Define time average expectations yl similarly. The goal is to
determine an algorithm for choosing actions α(t) ∈ Aω(t)
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Utility(x)

Attribute x (such as throughput)

Fig. 1. An example non-concave utility for throughput maximization.

over time to solve the following general stochastic network
optimization problem:

Minimize: y0 + f(x) (1)
Subject to: yl + gl(x) ≤ 0 ∀l ∈ {1, . . . , L} (2)

x ∈ X (3)
All queues Qk(t) are mean rate stable (4)

α(t) ∈ Aω(t) ∀t (5)

where gl(x) are continuous and convex functions of x ∈ RM
for each l ∈ {1, . . . , L}, f(x) is a continuous but possibly
non-convex function of x ∈ RM , and X is a convex subset
of RM . The definition of “mean rate stable” will be given in
Section II.

This non-convex problem has applications in network utility
maximization and in other areas of network science. For
example, suppose we desire to maximize a non-concave utility
function of throughput in a wireless network. An example
“sigmoidal-type” utility function is shown in Fig. 1, which
has a “flat” area near zero, illustrating that we earn small
utility unless throughput crosses a threshold. Constrained
optimization of a sum of such utility functions is a difficult
problem that can be shown, in some cases, to be at least
as difficult as combinatorial bin-packing. Hence, we do not
attempt to find a global solution. Such non-convex problems
are studied for non-stochastic (static) networks in [1], where
difficulties are discussed and a heuristic algorithm is derived
that has optimality properties in a limit of a large number of
users. Further treatment of non-convex optimization in a static
context, including efficient heuristics, are provided in [2].

In this paper, we consider non-convex optimization for
stochastic networks via the general problem (1)-(5). We show
that, under some convergence assumptions, we can find a
local optimum. In the special case when f(x) is convex, we
provide a stronger result that shows the global solution can
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be approached to within any desired accuracy. Our techniques
extend our prior “drift-plus-penalty” or “dual-based” approach
to stochastic network optimization in [3], which uses Lya-
punov optimization, virtual queues, and auxiliary variables.
These techniques alone would allow one to minimize (1) in
the case f(x) is convex, subject to constraints (2), (4), (5).
We introduce an abstract set constraint (3), which we believe
is new even in the convex case (we recently also used this in a
“universal scheduling” context in [4]). However, if these dual-
based techniques were employed for a non-convex function
f(x), the algorithm would approach a global optimum of the
time average of f(x(t)), which is not necessarily even a local
optimum of f(x). In this paper, we achieve local optimality
by combining these techniques with a “primal-dual based”
approach similar to that of [5][6][7].

It is known that, in the convex case, the dual approach
is robust to system changes [3][8][4] and provides direct
bounds on utility, delay, and convergence time [3][9][10][11].
Unfortunately, such properties are less clear with the primal-
dual approach, particularly for the non-convex case, and the
proof we provide in this paper for the non-convex case does
not specify the time required for convergence. This illustrates
some of the challenges involved with non-convex optimization,
even if we only want to find a local optimum. We partially
address this issue in the special case of maximizing non-
convex utility functions that are entrywise non-decreasing. In
this case, we briefly describe an alternative 3-phase algorithm
that explores the attribute space and ties all stochastic decisions
directly to the result of a static non-convex optimization. The
advantage here is that the stochastic phases are convex and
have strong convergence guarantees, while the non-convex
optimization is isolated to a static problem for which any static
solver can be employed.

The method of Lyapunov drift to solve queue stability
problems (i.e., problems that involve only the constraint (4))
was pioneered by Tassiulas and Ephremides in [12][13], where
it was shown that greedy actions that minimize a drift expres-
sion ∆(t) every slot guarantee stability whenever possible. In
[9][3][10][11], we extended this result to provide joint stability
and performance optimization (or “penalty minimization”),
using a greedy action to minimize a drift-plus-penalty metric
∆(t) + V · penalty(t) every slot, where V is a non-negative
parameter that affects a performance-delay tradeoff. Choosing
V = 0 reduces to the original Tassiulas-Ephremides approach,
while increasing V maintains network stability while pushing
the time average penalty of the problem to within O(1/V )
of optimal, with a tradeoff in average queue backlog that is
O(V ). This method can be applied to multi-hop networks
with general constraints, and is known to be related to dual
subgradient algorithms when applied to static convex programs
[3]. A related method, also of the dual type, is presented for a
wireless downlink in [14], although the fluid model arguments
there do not prove the [O(1/V ), O(V )] performance-delay
properties.

A different “primal-dual” approach is considered for the
special case of utility-optimal opportunistic scheduling in a
wireless downlink in [5][6]. This work assumes all users al-
ways have data to send, and hence does not consider randomly

arriving traffic or queue stability issues. It also uses an infinite
horizon time-average to inform scheduling decisions, which,
unlike the dual method, makes it difficult to apply to systems
with parameters that might change. Joint queue stability and
performance optimization is treated for multi-hop networks
with this primal-dual approach in [7]. This work proves that
the utility of a related fluid network is optimal, and conjectures
that the utility of the actual network will also be close to
optimal. Specifically, the infinite horizon time average of [5][6]
is replaced by an exponentially weighted average in [7], and
it is conjectured that utility approaches optimality when the
exponential decay parameter is scaled (see Section 4.9 in [7]).

In the next section we describe the system model and
the first approach to the non-convex stochastic optimization.
Section III analyzes the performance of the algorithm using
the drift-plus-penalty technique with a penalty that involves a
partial derivative (incorporating the “primal-dual” approach).
We also compare against the performance of a pure dual-based
algorithm in the special case of convex problems. Section IV
develops our second approach to the non-convex problem, for
the case of optimizing non-concave utility functions that are
entrywise non-decreasing.

II. SOLVING THE PROBLEM

A. Model Assumptions

The queueing dynamics for k ∈ {1, . . . ,K} are given by:

Qk(t+ 1) = max[Qk(t)− bk(t), 0] + ak(t) (6)

where b(t) = (b1(t), . . . , bK(t)), a(t) = (a1(t), . . . , aK(t))
are non-negative service and arrival vectors, determined as
arbitrary functions of α(t) and ω(t):

ak(t) = âk(α(t), ω(t)) , bk(t) = b̂k(α(t), ω(t))

The structure of ak(t) being outside the max[·, 0] operator in
(6) also allows treatment of multi-hop networks, where ak(t)
can be a sum of exogenous and endogenous arrivals [3][15].

We assume the random event process ω(t) is i.i.d. over slots,
with some (possibly unknown) distribution. Second moments
of the arrival, service, and attribute components are assumed
to be finite under all possible control actions. Specifically, for
all (possibly randomized) choices of α ∈ Aω(t), made based
on knowledge of ω(t), there is a finite constant σ2 > 0 such
that:

E
{
âk(α(t), ω(t))2

}
≤ σ2 , E

{
b̂k(α(t), ω(t))2

}
≤ σ2

E
{
x̂m(α(t), ω(t))2

}
≤ σ2 , E

{
ŷl(α(t), ω(t))2

}
≤ σ2

These second moment bounds also imply the first moments
of network attributes lie within a bounded region, even if the
actual realizations of these attributes are unbounded.

The set X in (3) is assumed to be a compact and convex
subset of RM . We assume the functions gl(x) are convex
(not necessarily differentiable) for all l ∈ {1, . . . , L}, and
that they are Lipschitz continuous, in the sense that for any
x = (x1, . . . , xM ), γ = (γ1, . . . , γM ) we have:

|gl(x)− gl(γ)| ≤
M∑
m=1

νl,m|xm − γm| (7)
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where νl,m are finite non-negative constants. The function
f(x) is possibly non-convex, but is assumed to be bounded,
continuously differentiable, and to have bounded partial
derivatives, so that:

|f(x)− f(γ)| ≤
M∑
m=1

βm|xm − γm| (8)

for some finite constants βm ≥ 0. Let fmin, fmax be finite
constants such that for all t we have fmin ≤ f(x(t)) ≤ fmax.

B. Queue Stability

We first define two types of queue stability. Let Q(t) be
a discrete time process defined over slots t ∈ {0, 1, 2, . . .},
assumed to take (possibly negative) real values. Negative
queue processes will be useful to meet certain constraints.

Definition 1: Q(t) is mean rate stable if:

lim
t→∞

E {|Q(t)|}
t

= 0
Definition 2: Q(t) is strongly stable if:

lim sup
t→∞

1
t

t−1∑
τ=0

E {|Q(τ)|} <∞

Under mild technical assumptions it can be shown that strong
stability implies mean rate stability, and that strong stability is
equivalent to the existence of a stationary distribution in cases
when Q(t) is defined over a countably infinite state Markov
chain.

C. Auxiliary Variables

To enable the abstract set constraint (3) to be met and to
allow optimization over the convex but possibly non-linear
functions gl(x), we introduce a vector of auxiliary variables
γ(t) = (γ1(t), . . . , γM (t)). This is an additional collection of
decision variables that must be chosen every slot, subject only
to the constraint:

γ(t) ∈ X ∀t

We transform the problem (1)-(4) into:

Minimize: y0 + f(x) (9)
Subject to: yl + gl(γ) ≤ 0 ∀l ∈ {1, . . . , L} (10)

γm = xm ∀m ∈ {1, . . . ,M} (11)
All queues Qk(t) are mean rate stable (12)
α(t) ∈ Aω(t) ∀t , γ(t) ∈ X ∀t (13)

where notation gl(γ) is defined:

gl(γ)M= lim
t→∞

1
t

t−1∑
τ=0

E {gl(γ(τ))}

The motivation for this new problem is the observation that,
assuming we (temporarily) restrict to algorithms that have well
defined limits, the new problem is equivalent to (1)-(5). Indeed,
suppose that α∗(t) is a policy that meets all constraints of the
problem (1)-(5), and that yields a cost metric in (1) of y∗0 +
f(x∗), where y∗l and x∗ represent time averages associated
with this policy. Then this policy also satisfies the constraints

of problem (9)-(13), and yields the same cost value in (9), if
we define constant auxiliary variable decisions γ∗(t) = x∗

for all t (these satisfy the required constraints (13) because of
(3)). It follows that the infimum cost metric of the problem
(1)-(5) over all policies that meet the constraints is greater
than or equal to the infimum associated with problem (9)-(13).
Conversely, by Jensen’s inequality, it can be shown that any
algorithm that solves the constraints in the problem (9)-(13)
must also satisfy the constraints of the problem (1)-(5), and
produces a cost (1) that is the same.

For simplicity of exposition, we have chosen to write the
stochastic network optimization problems (1)-(5) and (9)-(13)
with notation that implicitly assumes limits are well defined.
However, a solution need not have well defined limits, and
we can more precisely define the problem using a lim sup,
as done in future sections (for example, the constraint (2) is
written more generally as (16)).

D. Virtual Queues

To ensure the inequality constraints (10) and equality con-
straints (11) are met, we introduce virtual queues Zl(t) and
Hm(t) for l ∈ {1, . . . , L}, m ∈ {1, . . . ,M}, with update
equation:

Zl(t+ 1) = max[Zl(t) + yl(t) + gl(γ(t)), 0] (14)
Hm(t+ 1) = Hm(t) + γm(t)− xm(t) (15)

The Zl(t) queues are always non-negative. The Hm(t)
queues have a different structure because they enforce an
equality constraint, and can possibly be negative.

Lemma 1: If E {Zl(0)} < ∞ and E {|Hm(0)|} < ∞ for
all l ∈ {1, . . . , L} and m ∈ {1, . . . ,M}, and if Zl(t) and
Hm(t) are mean rate stable, then:

lim sup
t→∞

[yl(t) + gl(x(t))] ≤ 0 ∀l ∈ {1, . . . , L} (16)

lim
t→∞

|γm(t)− xm(t)| = 0 ∀m ∈ {1, . . . ,M} (17)

lim
t→∞

dist (x(t),X ) = 0 (18)

where for each t > 0, x(t) and γ(t) are defined:

x(t)M=
1
t

t−1∑
τ=0

E {x(τ)} , γ(t)M=
1
t

t−1∑
τ=0

E {γ(τ)} (19)

where yl(t) is defined similarly, and where dist (x(t),X ) is
the distance between the vector x(t) and the set X , being zero
if and only if x(t) is in the (closed) set X .

The proximity of the time averages to their required values
for all time t > 0 is provided as a function of the virtual queue
sizes in (20) and (21) of the proof.

Proof: (Lemma 1) Fix t > 0. Note by summing (15) over
τ ∈ {0, . . . , t− 1} we have:

Hm(t)−Hm(0) =
t−1∑
τ=0

γm(τ)−
t−1∑
τ=0

xm(τ)

Dividing both sides by t and taking expectations yields:

E {Hm(t)}
t

− E {Hm(0)}
t

= γm(t)− xm(t) (20)
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The above holds for all t > 0. Assuming that Hm(t) is mean
rate stable, we can take a limit of (20) as t → ∞ to yield
(17).1 Now note that γ(t) ∈ X for all t, and hence (because
X is convex), γ(t) ∈ X for all t > 0. This together with (17)
implies (18).

Finally, from (14) we have for all slots τ :

Zl(τ + 1) ≥ Zl(τ) + yl(τ) + gl(γ(τ))

Fixing t > 0 and summing over τ ∈ {0, . . . , t− 1} yields:

Zl(t)− Zl(0) ≥
t−1∑
τ=0

yl(τ) +
t−1∑
τ=0

gl(γ(τ))

Taking expectations, dividing by t and using Jensen’s inequal-
ity yields:

E {Zl(t)}
t

− E {Zl(0)}
t

≥ yl(t) + gl(γ(t))

≥ yl(t) + gl(x(t))

−
M∑
m=1

νl,m|xm(t)− γm(t)|(21)

where the last inequality is due to (7). Assuming Zl(t) is mean
rate stable, we can take the lim sup of both sides of (21) and
use (17) to yield (16).

E. Lyapunov Optimization
Define Θ(t)M=[Q(t);Z(t);H(t);xav(t)] as the collective

queue vector together with the current running time-average
of attribute vector x(τ):

xav(t)M=
1
t

t−1∑
τ=0

x(τ) (22)

Define the following non-negative function, called a Lyapunov
function:

L(Θ(t))M=
1
2

K∑
k=1

Qk(t)2+
1
2

L∑
l=1

Zl(t)2+
1
2

M∑
m=1

Hm(t)2 (23)

Define the conditional Lyapunov drift ∆(Θ(t)) by:2

∆(Θ(t))M=E {L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (24)

Lemma 2: Under any algorithm for choosing α(t) ∈ Aω(t)

and γ(t) ∈ X for all t, we have for all t and all possible Θ(t):

∆(Θ(t)) ≤ RHS(α(t),γ(t),Θ(t)) (25)

where

RHS(α(t),γ(t),Θ(t))M=

B +
K∑
k=1

Qk(t)E
{
âk(α(t), ω(t))− b̂k(α(t), ω(t))|Θ(t)

}
+

L∑
l=1

Zl(t)E {ŷl(α(t), ω(t)) + gl(γ(t))|Θ(t)}

+
M∑
m=1

Hm(t)E {γm(t)− x̂m(α(t), ω(t))|Θ(t)}

1Note that if E {|Hm(t)|} /t→ 0 then E {Hm(t)} /t→ 0.
2Strictly speaking, correct notation should be ∆(Θ(t), t), as the drift may

be non-stationary, although we use the simpler notation ∆(Θ(t)) as a formal
representation of the right hand side of (24).

where B is a finite constant that satisfies the following for all
t and all possible Θ(t):

B ≥
K∑
k=1

E
{
bk(t)2 + ak(t)2|Θ(t)

}
+

L∑
l=1

E
{

(yl(t) + gl(γ(t)))2|Θ(t)
}

+
M∑
m=1

E
{

(γm(t)− xm(t))2|Θ(t)
}

(26)

Such a finite constant B exists by the system boundedness
assumptions.

Proof: The proof follows by squaring the equations (6),
(14), (15) and is omitted for brevity (see [3]).

Our algorithm seeks to take control actions α(t) ∈ Aω(t),
γ(t) ∈ X every slot t in reaction to the observed ω(t) and
to the current queue states and xav(t) values in Θ(t), to
minimize:

RHS(α(t),γ(t),Θ(t)) + V E {ŷ0(α(t), ω(t))|Θ(t)}

+
M∑
m=1

V ∂f(xav(t))
∂xm

E {x̂m(α(t), ω(t))|Θ(t)} (27)

where xav(t) is defined in (22), and where we define xav(0)
as an initial sample x̂(α(−1), ω(−1)) under any decision
α(−1) ∈ Aω(−1) taken at some preliminary slot. The pa-
rameter V is chosen as a non-negative constant that will
affect proximity to the optimal solution, with a corresponding
tradeoff in average queue congestion, as in [3].

In the special case when there is no non-convex function, so
that f(x) = 0, we do not require the time averages xav(t). In
this case the above algorithm reduces to one that is similar to
our work in [3], with the exception that we are considering an
abstract set constraint X and the convex functions gl(x) are
not necessarily monotonic. In the case when f(x) 6= 0, our
algorithm includes a derivative multiplied by a running time
average, as in the primal-dual algorithms that do not consider
queue stability in [5][6]. This primal-dual component is also
similar to fluid limit works in [7][16], which do consider
queue stability, with the exception that our algorithm includes
auxiliary variables and does not use an exponential weighted
average.3 An advantage of our approach is that it is compatible
with non-convex objectives, ensures all convex constraints are
satisfied as t→∞, and provides explicit bounds on constraint
violation for all t > 0.

The algorithm is specified as follows: Every slot t, observe
ω(t), Θ(t) (where Θ(t) includes all current queue states and
the current xav(t)), and perform the following:

• (Auxiliary Variables) Choose γ(t) ∈ X to minimize:

L∑
l=1

Zl(t)gl(γ(t)) +
M∑
m=1

Hm(t)γm(t)

3Using an exponential weighted average would be advantagous for robust-
ness to system changes, but it is not clear if the algorithm would converge
properly in this case.
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• (Choosing α(t)) Choose α(t) ∈ Aω(t) to minimize:

K∑
k=1

Qk(t)[âk(α(t), ω(t))− b̂k(α(t), ω(t))]

+
L∑
l=1

Zl(t)ŷl(α(t), ω(t))−
M∑
m=1

Hm(t)x̂m(α(t), ω(t))

+V ŷ0(α(t), ω(t)) +
M∑
m=1

V ∂f(xav(t))
∂xm

x̂m(α(t), ω(t))

• (Queue Updates) Update the virtual queues Zl(t) and
Hm(t) according to (14), (15), and update the actual
queues Qk(t) via (6). Also update xav(t) by (22).

III. PERFORMANCE ANALYSIS

A. Optimality via ω-Only Policies

We say that the problem (1)-(5) is feasible if there is an
algorithm for choosing α(t) ∈ Aω(t) over time so that all
constraints (2)-(5) are satisfied. We assume throughout that
the problem is feasible. Define yopt0 + fopt as the infimum
value of (1) over all feasible policies.

It turns out that this infimum can be characterized by ω-only
policies. Specifically, we say that a policy α∗(t) is ω-only if for
all t it chooses α∗(t) ∈ Aω(t) as a stationary and randomized
function of the observed ω(t), i.i.d. over all slots for which the
same ω(t) value is observed. By the law of large numbers, all
time averages resulting from an ω-only policy are well defined
and are equal to their expectations over one slot. In particular,
we have for all t:

yl = E {ŷl(α∗(t), ω(t))} , x = E {x̂(α∗(t), ω(t))}

For a given ε > 0, define the set Yε as the set of all vectors
(y,x) = (y0, y1, . . . , yL, x1, . . . , xM ) that can be achieved
as time averages by some ω-only policy α∗(t) ∈ Aω(t) that
satisfies:

yl + gl(x) ≤ ε ∀l ∈ {1, . . . , L}
dist(x,X ) ≤ ε

E
{
âk(α∗(t), ω(t))− b̂k(α∗(t), ω(t))

}
≤ ε

The set Yε is bounded by the boundedness assumptions, and
can be shown to be convex and to satisfy Yε1 ⊆ Yε2 whenever
ε1 ≤ ε2. Define Cl(Yε) as the closure of Yε, and define Y as
the limit of Cl(Yε) as ε→ 0:

Y M= ∩∞i=1 Cl(Y1/i)

It can be shown that Y is non-empty whenever the problem
(1)-(5) is feasible, and is bounded, closed, and convex.

Theorem 1: (Optimality over the set Y) The set Y repre-
sents the set of all vectors (y,x) that can be achieved as a limit
point of a trajectory (y(t),x(t)) generated by a feasible policy
implemented over t ∈ {0, 1, 2, . . .}. Further, the infimum value
yopt0 + fopt is the solution to the following problem:

Minimize: y0 + f(x)
Subject to: (y0, y1, . . . , yL, x1, . . . , xM ) ∈ Y

Proof: Omitted for brevity (see, for example, [9][10]).

Theorem 2: For any vector (y∗,x∗) ∈ Y and for any ε > 0,
there is an ω-only policy α∗(t) such that:

|E {ŷl(α∗(t), ω(t))} − y∗l | ≤ ε ∀l ∈ {0, 1, . . . , L} (28)
|E {x̂m(α∗(t), ω(t))} − x∗m| ≤ ε ∀m ∈ {1, . . . ,M} (29)

E {ŷl(α∗(t), ω(t))}+ gl(E {x̂(α∗(t), ω(t))}) ≤ ε (30)
dist (E {x̂(α∗(t), ω(t))} ,X ) ≤ ε (31)

E {âk(α∗(t), ω(t))} ≤ E
{
b̂k(α∗(t), ω(t))

}
+ ε ∀k (32)

Proof: The proof follows by observing that any point in Y
can be achieved arbitrarily closely by an ω-only policy that
satisfies the required constraints to within ε.

B. The Performance Theorem

For a given constant C ≥ 0, we say that an algorithm is
a C-approximation if every slot t, given the existing Θ(t)
on slot t, it chooses α(t) ∈ Aω(t), γ(t) ∈ X to achieve a
value in (27) that is within C of the infimum over all possible
decisions given Θ(t). A 0-approximation achieves the exact
infimum and is given by the algorithm in Section II. Using
C > 0 allows for approximate implementations.

Theorem 3: Suppose V ≥ 0, ω(t) is i.i.d. over slots, the
problem (1)-(5) is feasible, and any C-approximate algorithm
is used every slot t. For simplicity, assume that all queues are
initially zero, so that Θ(0) = 0. Then:

(a) All queues are mean rate stable, and hence all required
constraints are satisfied. In particular, the equalities and in-
equalities (16)-(18) are ensured. Bounds on expected queue
sizes (and hence, constraint violations) for all t > 0 are
provided in inequality (35) of the proof.

(b) For all t > 0 and for any (y∗,x∗) ∈ Y (including the
one that optimizes the infimum cost), we have:

y0(t) +
1
t

t−1∑
τ=0

M∑
m=1

E
{
xm(τ)∂f(xav(τ))

∂xm

}
≤

y∗0 +
1
t

t−1∑
τ=0

M∑
m=1

E
{
x∗m∂f(xav(τ))

∂xm

}
+
B + C

V

where B is defined by (26).
(c) If all time averages converge, so that there are constant

vectors x, y such that xav(t)→ x with probability 1, x(t)→
x, and ym(t) → ym, then the achieved limiting point is a
near local optimum, in the sense that for any (y∗,x∗) ∈ Y
(including any local or global optimum):

y0 +
M∑
m=1

xm∂f(x)
∂xm

≤ y∗0 +
M∑
m=1

x∗m∂f(x)
∂xm

+
B + C

V

The result of part (c) can be viewed as a near-local optimum
result because of the “fudge-factor” (B+C)/V , which can be
made arbitrarily small as the V parameter is increased. Indeed,
the above result shows that the achieved cost, as measured by
a linearized version of the f(x) function about our achieved x
vector, is no more than (B+C)/V above the cost associated
with any other (y∗,x∗) ∈ Y , when measured against the same
linearized function. In particular, suppose we consider moving
from our achieved (y,x) vector towards any other (y∗,x∗) ∈
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Y by taking a small step ε(y∗ − y,x∗ − x) in this direction
(for some small value ε > 0). If ε is small, then the cost
differential ∆cost(ε) incurred satisfies:

∆cost(ε)
ε

≈ (y∗0−y0)+
M∑
m=1

(x∗m − xm)∂f(x)
∂xm

≥ − (B + C)
V

where the inequality follows by part (c) of the above theorem.
It follows that such a step cannot decrease cost by more than
approximately ε(B+C)/V (where the approximation is due to
the linearization), which can be made arbitrarily small with a
suitably large choice of V . Hence, this is a near local optimum.

The value of V affects the coefficient in the decay of
E {|Hm(t)|} /t, E {Zl(t)} /t, E {Qk(t)} /t derived in (35) of
the proof, which also affects the decay in constraint violation
via (20), (21). It can be shown that if a mild Slater-type
condition holds for the constraints (2)-(5) of the problem, then
all queues are strongly stable and have average backlog that
is O(V ) (see [3][10][9] for similar results).

Proof: (Theorem 3 part (a)) By simply adding the same
thing to both sides of (25) in Lemma 2, we have:

∆(Θ(t)) + V E {y0(t)|Θ(t)}

+
M∑
m=1

V ∂f(xav(t))
∂xm

E {xm(t)|Θ(t)} ≤ B

+
K∑
k=1

Qk(t)E {ak(t)− bk(t)|Θ(t)}

+
L∑
l=1

Zl(t)E {yl(t) + gl(γ(t))|Θ(t)}

+
M∑
m=1

Hm(t)E {γm(t)− xm(t)|Θ(t)}

+V E {y0(t)|Θ(t)}+
M∑
m=1

V ∂f(xav(t))
∂xm

E {xm(t)|Θ(t)}

Because, given the existing Θ(t) on slot t, our C-
approximation minimizes the right-hand-side of the above
expression to within C of the infimum over all policies for
choosing α(t) ∈ Aω(t), γ(t) ∈ X , we have:

∆(Θ(t)) + V E {y0(t)|Θ(t)}+
M∑
m=1

V ∂f(xav(t))
∂xm

E {xm(t)|Θ(t)} ≤ B + C

+
K∑
k=1

Qk(t)E {a∗k(t)− b∗k(t)|Θ(t)}

+
L∑
l=1

Zl(t)E {y∗l (t) + gl(γ∗(t))|Θ(t)}

+
M∑
m=1

Hm(t)E {γ∗m(t)− x∗m(t)|Θ(t)}

+V E {y∗0(t)|Θ(t)}+
M∑
m=1

V ∂f(xav(t))
∂xm

E {x∗m(t)|Θ(t)}

where α∗(t) ∈ Aω(t), γ∗(t) ∈ X are any alternative control
actions, and for all k ∈ {1, . . . ,K}, l ∈ {0, 1, . . . , L}:

a∗k(t)M=âk(α∗(t), ω(t)) , b∗k(t)M=b̂k(α∗(t), ω(t))
y∗l (t)M=ŷl(α∗(t), ω(t))

For any (y∗,x∗) ∈ Y and any ε > 0, Theorem 2 ensures
there is an ω-only algorithm α∗(t) that satisfies (28)-(32). For
simplicity, assume that (28)-(32) hold for ε = 0.4 Now plug
this algorithm into the right hand side of the above drift expres-
sion, and note that, because it is ω-only, it makes decisions
independent of backlog (so that the conditional expectation
given Θ(t) is the same as the unconditional expectation).
Further, plug decisions γ∗(t) = E {x̂(α∗(t), ω(t))} = x∗ (this
satisfies γ(t) ∈ X as required because of (31) with ε = 0 and
noting that X is closed). This simplifies the right-hand-side of
the above drift bound to:

∆(Θ(t)) + V E {y0(t)|Θ(t)}+
M∑
m=1

V ∂f(xav(t))
∂xm

E {xm(t)|Θ(t)} ≤ B + C + V y∗0

+
M∑
m=1

V x∗m∂f(xav(t))
∂xm

(33)

Because of the boundedness assumptions on the set X , the first
and second moments of the attribute vectors, and the function
f(x) and its derivatives, the above drift bound simplifies to:

∆(Θ(t)) ≤ D (34)

where D is any finite constant that satisfies for all t, Θ(t):

D ≥ B + C + V [y∗0 − E {y0(t)|Θ(t)}]

+
M∑
m=1

V βm [x∗m − E {xm(t)|Θ(t)}]

Taking an expectation of both sides and using the law of
iterated expectations yields:

E {L(Θ(t+ 1))} − E {L(Θ(t))} ≤ D

The above holds for all t. Summing over τ ∈ {0, . . . , t − 1}
and using the fact that L(Θ(0)) = 0 yields:

E {L(Θ(t))} ≤ Dt

By definition of L(Θ(t)) in (23) we have:

E
{
Qk(t)2

}
,E
{
Zl(t)2

}
,E
{
Hm(t)2

}
≤ 2Dt

Because E {|X|}2 ≤ E
{
X2
}

for any random variable X , we
have:

E {Qk(t)}2 ,E {Zl(t)}2 ,E {|Hm(t)|}2 ≤ 2Dt

Dividing by t2 and taking square roots shows that for all t > 0:

E {Qk(t)}
t

,
E {Zl(t)}

t
,
E {|Hm(t)|}

t
≤
√

2D
t

(35)

Taking a limit as t → ∞ proves mean rate stability of all
queues.

4The same result (33) can be derived without this assumption by taking a
limit as ε→ 0.
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Proof: (Theorem 3 parts (b) and (c)) We start with the
drift bound in (33) derived in the proof of part (a), which
holds for all t ≥ 0. Consider this inequality for some slot τ .
Taking expectations of both sides and using the law of iterated
expectations and the definition of ∆(Θ(τ)) in (24), we have:

E {L(Θ(τ + 1))} − E {L(Θ(τ))}+ V E {y0(τ)}

+
M∑
m=1

E
{
V xm(τ)∂f(xav(τ))

∂xm

}

≤ B + C + V y∗0 +
M∑
m=1

E
{
V x∗m∂f(xav(τ))

∂xm

}
(36)

Fix any slot t > 0. Summing the above over τ ∈ {0, . . . , t−1}
and using telescoping sums yields:

E {L(Θ(t))} − E {L(Θ(0))}+ V

t−1∑
τ=0

E {y0(τ)}

+
t−1∑
τ=0

M∑
m=1

E
{
V xm(τ)∂f(xav(τ))

∂xm

}
≤ t(B + C + V y∗0) +

t−1∑
τ=0

M∑
m=1

E
{
V x∗m∂f(xav(τ))

∂xm

}
Dividing by V t and using the fact that L(Θ(0)) = 0 and
L(Θ(t)) ≥ 0 yields:

y0(t) +
1
t

t−1∑
τ=0

M∑
m=1

E
{
xm(τ)∂f(xav(τ))

∂xm

}
≤

B + C

V
+ y∗0 +

1
t

t−1∑
τ=0

M∑
m=1

E
{
x∗m∂f(xav(τ))

∂xm

}
This proves part (b). Part (c) is an immediate consequence,
noting boundedness and continuity of derivatives of f(x).

C. Variable V for Local Optimality

As in [17], we can use an algorithm that gradually increases
the value of V while maintaining mean rate stability. This
eliminates the “fudge factor” (B+C)/V in Theorem 3 part (c).
A disadvantage is that it precludes strong stability of queues
even when a Slater condition is satisfied.

Theorem 4: Suppose that we use V (t) instead of V in the
drift expression (27), and we use any C-approximation, i.e.,
any decisions that come within C of minimizing (27) under
this variable V (t) setting on all slots t. Suppose ω(t) is i.i.d.
over slots, the problem (1)-(5) is feasible, and all queues
are initially empty. Further assume that we use the following
increasing V (t) function:

V (t)M=V0(1 + t)d

where V0 > 0 and d satisfies 0 < d < 1. Then:
(a) All queues are mean rate stable as before, and hence the

equalities and inequalities in (16)-(18) are satisfied.
(b) If all time averages converge, so that there are vectors

x, y such that xav(t)→ x with probability 1, x(t)→ x, and
ym(t) → ym, then the achieved point is a local optimum, in

the sense that for any (y∗,x∗) ∈ Y (including any local or
global optimum):

y0 +
M∑
m=1

xm∂f(x)
∂xm

≤ y∗0 +
M∑
m=1

x∗m∂f(x)
∂xm

That is, the achieved vector (y∗,x∗) globally optimizes the lin-
earized cost function. In particular, if we start at our achieved
(y,x) and move in the direction of any other (y∗,x∗) ∈ Y
by taking a small step ε(y∗ − y,x∗ − x), then:

lim
ε→0+

∆cost(ε)
ε

= (y∗0 − y0) +
M∑
m=1

(x∗m − xm)∂f(x)
∂xm

≥ 0

Thus, such a small step cannot improve cost.
While the theorem holds for any V0 > 0 and 0 < d < 1,

these values affect the manner in which the utility and virtual
queue values converge, as shown in the proof.

Proof: (Theorem 4) The proof of part (a) is similar to [17]
and is omitted for brevity. Here we prove part (b). Following
the proof of Theorem 3 almost exactly, we find that (36)
translates to the following for any slot τ ≥ 0:

E {L(Θ(τ + 1))} − E {L(Θ(τ))}+ V (τ)E {y0(τ)}

+
M∑
m=1

E
{
V (τ)xm(τ)∂f(xav(τ))

∂xm

}

≤ B + C + V (τ)y∗0 +
M∑
m=1

E
{
V (τ)x∗m∂f(xav(τ))

∂xm

}
Dividing everything by V (τ) yields:

E {L(Θ(τ + 1))}
V (τ)

− E {L(Θ(τ))}
V (τ)

+ E {y0(τ)}

+
M∑
m=1

E
{
xm(τ)∂f(xav(τ))

∂xm

}
≤

B + C

V (τ)
+ y∗0 +

M∑
m=1

E
{
x∗m∂f(xav(τ))

∂xm

}
Fix t > 0, and sum the above over τ ∈ {0, . . . , t − 1}.
Collecting terms yields:

E {L(Θ(t))}
V (t− 1)

+
t−1∑
τ=1

E {L(Θ(τ))}
[

1
V (τ − 1)

− 1
V (τ)

]

+
t−1∑
τ=0

E {y0(τ)}+
t−1∑
τ=0

M∑
m=1

E
{
xm(τ)∂f(xav(τ))

∂xm

}
≤

t−1∑
τ=0

B + C

V (τ)
+ ty∗0 +

t−1∑
τ=0

M∑
m=1

E
{
x∗m∂f(xav(τ))

∂xm

}
Because V (τ) is non-decreasing, we have for all τ :

1
V (τ − 1)

− 1
V (τ)

≥ 0
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Using this, dividing everything by t, and using non-negativity
of L(·) yields for all t > 0:

y0(t) +
1
t

t−1∑
τ=0

M∑
m=1

E
{
xm(τ)∂f(xav(τ))

∂xm

}
≤

1
t

t−1∑
τ=0

(B + C)
V (τ)

+ y∗0 +
1
t

t−1∑
τ=0

M∑
m=1

E
{
x∗m∂f(xav(τ))

∂xm

}
However, we have:

1
t

t−1∑
τ=0

(B + C)
V (τ)

=
(B + C)
V0

1
t

t−1∑
τ=0

(t+ 1)−d = O(t−d)→ 0

Thus, taking limits of the above drift bound and using the
assumption that time averages converge yields the result.

D. Convex Problems and the Pure Dual Approach
A significant limitation of the primal-dual component in

the above algorithms is that the running time average xav(t)
in (22) precludes adaptation when system conditions change.
An additional limitation is that our theorem requires vectors
xav(t), x(t), y(t) to converge, but lacks a proof of conver-
gence and a measure of how long such convergence would
take.5 For comparison, here we show that these limitations
can be solved by the drift-plus-penalty algorithm without
using partial derivatives, via the pure “dual-based” approach,
when f(x) is convex. These advantages are exploited in an
alternative algorithm for the non-convex problem in Section
IV. The analysis in this subsection is similar to [3][17], with
the exception that we include the abstract set constraint X .

Assume here that the function f(x) is continuous and con-
vex (possibly non-differentiable). Define finite bounds fmin
and fmax to satisfy for all t and all (possibly randomized)
decisions α(t) ∈ Aω(t):

fmin ≤ f(E {x̂(α(t), ω(t))}) ≤ fmax
The following algorithm is motivated by seeking to solve a

modified version of the problem (9)-(13), with the cost metric
(9) changed to minimizing y0 + f(γ), which can be shown to
still be equivalent to the original problem (1)-(5) by Jensen’s
inequality and the fact that f(γ) is convex.

Using the same virtual queues and the same Lyapunov
function L(Θ(t)) as before (with the exception that Θ(t) no
longer includes xav(t) information), we have by adding the
same thing to both sides of the drift inequality of Lemma 2:

∆(Θ(t)) + V E {y0(t) + f(γ(t))|Θ(t)} ≤ B

+
K∑
k=1

Qk(t)E {ak(t)− bk(t)|Θ(t)}

+
L∑
l=1

Zl(t)E {yl(t) + gl(γ(t))|Θ(t)}

+
M∑
m=1

Hm(t)E {γm(t)− xm(t)|Θ(t)}

+V E {y0(t) + f(γ(t))|Θ(t)} (37)

5Under an additional Slater condition, the policy is a Markov chain with
all queues strongly stable, and so convergence would follow if we had a
countably infinite state space.

Our policy is now to observe Θ(t) and ω(t) for each slot t,
and to take actions α(t) ∈ Aω(t), γ(t) ∈ X to minimize the
right hand side of the above drift bound. For a given constant
C ≥ 0, we define a C-approximation for this algorithm to be
one that, every slot t and given Θ(t), chooses α(t) ∈ Aω(t),
γ(t) ∈ X to come within C of the infimum of the right hand
side of (37). A 0-approximation would make decisions every
slot t as follows:
• (Auxiliary Variables) Choose γ(t) ∈ X to minimize:

V f(γ(t)) +
M∑
m=1

Hm(t)γm(t) +
L∑
l=1

Zl(t)gl(γ(t))

• (Choosing α(t)) Choose α(t) ∈ Aω(t) to minimize:

K∑
k=1

Qk(t)[âk(α(t), ω(t))− b̂k(α(t), ω(t))]

+
L∑
l=1

Zl(t)ŷl(α(t), ω(t))−
M∑
m=1

Hm(t)x̂m(α(t), ω(t))

+V ŷ0(α(t), ω(t))

• (Queue Update) Update virtual queues Zl(t), Hm(t) by
(14), (15), and update actual queues Qk(t) by (6).

Theorem 5: (“Pure Dual” Performance) Suppose problem
(1)-(5) is feasible, ω(t) is i.i.d. over slots, and the function
f(x) is convex. For simplicity, assume all initial queue values
are 0. If we use any C-approximation on each slot t, then:

(a) All queues are mean rate stable, and hence all re-
quired constraints are satisfied. In particular, the equalities
and inequalities (16)-(18) are ensured. Further, bounds on the
expected queue size for all t > 0 are provided in inequality
(39) of the proof.

(b) For all slots t > 0, the achieved time average expected
cost satisfies:

y0(t) + f(x(t)) ≤ yopt0 + fopt +
B + C

V

+
M∑
m=1

βm
E {|Hm(t)|}

t

where we recall that x(t) is defined in (19), and y0(t) is
defined similarly. The term E {|Hm(t)|} /t decays to zero at
least as fast as O(1/

√
t), as shown in (39) of the proof.

(c) Suppose we use any C-approximation applied to a
variable-V version of (37), with V (t) = V0(1 + t)d for any
constants V0 > 0 and 0 < d < 1. Then this maintains mean
rate stability of all queues, ensures all constraints (16)-(18),
and yields exact cost optimality:

lim
t→∞

[y0(t) + f(x(t))] = yopt0 + fopt

We note that if an additional Slater condition is satisfied,
then under the fixed V algorithm all queues can be shown to
be strongly stable with averages O(V ) (see related results in
[3][10][9]). In many flow control problems, the queues can
be shown to be deterministically bounded by a constant of
size O(V ), even without the Slater condition [10][4]. In the
variable-V scenario, queues will not be strongly stable even if
the Slater condition is satisfied, and hence the cost of achieving
exact optimality is having infinite average backlog and delay.
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Proof: (Theorem 5) Because every slot τ the C-
approximation comes within C of the infimum in the right
hand side of (37), we have:

∆(Θ(t)) + V E {y0(t) + f(γ(t))|Θ(t)} ≤ B + C

+
K∑
k=1

Qk(t)E {a∗k(t)− b∗k(t)|Θ(t)}

+
L∑
l=1

Zl(t)E {y∗l (t) + gl(γ∗(t))|Θ(t)}

+
M∑
m=1

Hm(t)E {γ∗m(t)− x∗m(t)|Θ(t)}

+V E {y∗0(t) + f(γ∗(t))|Θ(t)}

where a∗k(t), b∗k(t), y∗l (t), γ∗(t) are associated with any
alternative decisions α∗(t) ∈ Aω(t), γ∗(t) ∈ X . Fix
(yopt,xopt) ∈ Y as the optimal solution in Theorem 1,
yielding cost f(xopt) = fopt. Plug the policy of (28)-(32), and
for simplicity again assume ε = 0. Also plug γ∗(t) = xopt.
Because these decisions are independent of Θ(t), we have:

∆(Θ(t)) + V E {y0(t) + f(γ(t))|Θ(t)} ≤ B + C

+V yopt0 + V fopt (38)

Thus, ∆(Θ(t)) ≤ D̂, where D̂ is defined:

D̂M=B + C + V (yopt0 − ymin0 ) + V (fopt − fmin)

where we define ymin0 as a lower bound on E {y0(t)|Θ(t)}
over all possible α(t). This has the same structure as (34),
and hence we obtain for all t > 0 (compare with (35)):

E {Qk(t)}
t

,
E {Zl(t)}

t
,
E {|Hm(t)|}

t
≤

√
2D̂
t

(39)

Taking a limit of (39) as t → ∞ shows that all queues are
mean rate stable, proving part (a).

To prove (b), take expectations of both sides of (38) and
use iterated expectations to obtain:

E {L(Θ(t+ 1))} − E {L(Θ(t))}+ V E {y0(t) + f(γ(t))} ≤
B + C + V (yopt0 + fopt)

Fix t > 0, sum the above over τ ∈ {0, . . . , t− 1}, and divide
by t to yield:

E {L(Θ(t))} − E {L(Θ(0))}
t

+ V y0(t) + V f(γ(t)) ≤

B + C + V (yopt0 + fopt)

where we have used Jensen’s inequality in the convex function
f(γ). Noting that L(Θ(0)) = 0, L(Θ(t)) ≥ 0, and dividing
by V , we have:

y0(t) + f(γ(t)) ≤ B + C

V
+ yopt0 + fopt (40)

However, note from (8) that:

f(x(t)) ≤ f(γ(t)) +
M∑
m=1

βm|xm(t)− γm(t)|

≤ f(γ(t)) +
M∑
m=1

βmE {|Hm(t)|} /t (41)

where (41) follows from (20). Using (41) and (40) proves the
result of part (b). Part (c) is similar to Theorem 4.

Remark 1: While Theorems 3-5 assume ω(t) is i.i.d. over
slots, this assumption is not crucial, and the same policies can
be shown to yield similar results by using a T -slot Lyapunov
drift argument, under the assumption that ω(t) is ergodic with
a “decaying memory property,” so that averages over T slots
are close to the steady state average [18][19][20][3].

Remark 2: We can remove auxiliary variables γ(t) and set
Hm(t) = 0 for all t if: (i) We use the primal-dual method,
there is no abstract set constraint (3), and gl(x) = 0 for all l,
or (ii) We use the pure dual method, there is no abstract set
constraint (3), and gl(x) = f(x) = 0 for all l.

IV. AN ALTERNATIVE SEARCH METHOD

Here we provide an alternative algorithm for the non-convex
problem in the special case of utility maximization with entry-
wise non-decreasing utility functions. It involves three phases:
Two phases are convex stochastic network optimizations for
which we have stronger performance guarantees as in Section
III-D. All non-convexity is isolated to the remaining phase
that involves a deterministic non-convex problem for which
any available solver can be employed.

To begin, let f(x) = −φ(x), where φ(x) is a utility
function to be maximized. Suppose that φ(x) is possibly
non-concave, but is entrywise non-decreasing. For simplicity,
assume ŷl(·) = 0 for all l, so that the set Y consists of vectors
(0,x). Let θ1, . . . ,θN be a collection of N different search
direction vectors, being non-negative M -dimensional vectors.
Assume for simplicity that for each θn, the set Y contains a
point x such that x = ηθn for some non-negative scalar η
(this is trivially true if Y contains the origin). Define ηn as
the largest value of η for which this is true, so that xn M=ηnθn
is the largest value of x that we can push in this direction.
Our new goal is to find a feasible policy that yields a utility
φ(x) that is a local maximum over the set C defined:

C M=Conv({x1, . . . ,xN})

where Conv(·) denotes the convex hull. Because Y is convex,
any point in this convex hull is achievable. The value of each
xn depends on the value of ηn, which is unknown if the
stochastics of the network are unknown. However, suppose
we know a bound on ηn, so that 0 ≤ ηn ≤ ηmaxn . If this is not
a true bound, then we simply redefine xn M= min[ηn, ηmaxn ]θn.

Our algorithm has 3 phases:

• Phase 1: Determine the vectors {x1, . . . ,xN} by solving
N different stochastic network optimization problems,
each with auxiliary variables ηn(t):

Maximize: ηn

Subject to: x = ηnθn

x ∈ X
gl(x) ≤ 0 ∀l ∈ {1, . . . , L}

All queues Qk(t) are mean rate stable
α(t) ∈ Aω(t) , 0 ≤ ηn(t) ≤ ηmaxn ∀t
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Each of these is a simple convex stochastic network
optimization problem, and we can run the pure dual
approach to provide accurate estimates η̃n of the optimal
ηn value for each n. Note that this can be done using N
different “virtual networks” in parallel, reusing the same
ω(t) events that are observed. The equality constraints
can either be treated as additional attributes h(t) =
x(t)− ηn(t)θn with an abstract set constraint h ∈ {0},
or can simply be treated using virtual queues of the type
(15).

• Phase 2: Define estimates x̃n M=η̃nθn. Use any non-
stochastic optimizer to find a local minimum of the
following static optimization:

Maxmize: φ(x)

Subject to:
∑N
n=1 pnx̃n = x

pn ≥ 0 ∀n ∈ {1, . . . , N}∑N
n=1 pn = 1

This type of problem can be solved, for example, via
methods in [21], including Newton-type methods that do
not restrict to small step sizes.

• Phase 3: Given the optimal x∗ from phase 2, run an
algorithm to solve the following stochastic network opti-
mization problem:

Maximize: η

Subject to: x ∈ X
x = ηx∗

gl(x) ≤ 0 ∀l ∈ {1, . . . , L}
All queues Qk(t) are mean rate stable
α(t) ∈ Aω(t) , 0 ≤ ηn(t) ≤ 2 ∀t

This is again a basic convex stochastic network optimiza-
tion. It seeks to maximize the time average attribute x
in the direction of the x∗ vector obtained in phase 2
(noticing that the resulting optimum might push even past
the set C). Here we limit our search to doubling x∗, with
the intent of obtaining a vector x with utility φ(x) at
least as good as φ(x∗). The x∗ vector used in this phase
might be periodically changed as a result of periodically
running the other two phases in the background.

V. CONCLUSIONS

We have provided two approaches to constrained optimiza-
tion of non-convex functions of time average attributes in a
stochastic network. The first approach combines dual-based
and primal-dual operations. It ensures all desired (convex)
constraints are satisfied, and, provided that the algorithm
converges, it also provides either a local optimum or near-
local optimum, depending on whether we use a fixed V or
variable V algorithm. While the method provides guarantees
on the expected queue backlogs at any time t, it does not
provide such guarantees for the utility, and it is not clear
how much time is required for convergence to the local min.
It also requires an infinite horizon time average that is not
robust to system changes. This is in contrast to the “pure dual”

approach to convex problems that provide explicit backlog and
utility bounds for all time, and which are known to adapt to
system changes [4][8]. The second approach uses 3 phases,
two of which are stochastic and convex, while the remaining
phase is purely deterministic but non-convex. These algorithms
significantly extend our ability to optimize dynamic networks.
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