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Abstract

An updated version of these notes is at:
https://ee.usc.edu/stochastic-nets/docs/network-optimization-notes.pdf

These notes provide a tutorial treatment of topics of Pareto optimality, Lagrange multipliers, and computational algorithms
for multiobjective optimization, with emphasis on applications to data networks. Problems with two objectives are considered
first, called bicriteria optimization problems (treated in Sections I and II). The main concepts of bicriteria optimization naturally
extend to problems with more than two objectives, called multicriteria optimization problems. Multicriteria problems can be more
complex than bicriteria problems, and often cannot be solved without the aid of a computer. Efficient computational methods
exist for problems that have a convex structure. Convexity is formally defined in Section IV. Section V describes a general class
of multicriteria problems with a convex structure, called convex programs. A drift-plus-penalty algorithm is developed in Section
VI as a computational procedure for solving convex programs. The drift-plus-penalty algorithm extends as an online control
technique for optimizing time averages of system objectives, even when the underlying system does not have a convex structure.
An enhanced algorithm with faster convergence time is also described. Section VIII focuses on application of drift-plus-penalty
theory to multi-hop networks, including problems of network utility maximization and power-aware routing. Exercises are provided
to reinforce the theory and the applications.

HOW TO REFERENCE THESE NOTES

Sections I-V present material on optimization and Lagrange multipliers that may be newly presented in this manner, but that
is well known and/or easily derived from basic definitions (see also [1][2]). Sections VI-VIII present more advanced material
on drift-plus-penalty theory for convex programs and data networks. Readers who want to cite this material should cite the
related published works [3][4][5].

I. BICRITERIA OPTIMIZATION

Consider a system that has a collection M of different operating modes, where M is an abstract (possibly infinite) set that
contains at least one element. Each operating mode m ∈M determines a two-dimensional vector (x(m), y(m)), where x(m)
and y(m) represent distinct system objectives of interest. Suppose it is desirable to keep both objectives x(m) and y(m) as
small as possible. We want to find a mode m ∈M that “minimizes both” x(m) and y(m). Of course, it may not be possible
to simultaneously minimize both objectives. This tension motivates the study of bicriteria optimization.

Example I.1. (Distance-aware and energy-aware routing) Consider the problem of finding the best route to use for sending
a single message over a network. The network has multiple nodes, multiple links that are represented by ordered pairs (i, j)
for nodes i and j, a single source node s, and a single destination (or “termination”) node t. Let M represent the set of
all available routes, where each route m ∈ M is itself an ordered set of links (i, j) that specify a path from source s to
destination t over the network:

m = {(i0(m), i1(m)), (i1(m), i2(m)), ..., (ih(m)−1(m), ih(m)(m))}

where h(m) is the number of hops for route m; i0(m) = s is the source node; ih(m)(m) = t is the destination node. Suppose
each link (i, j) in the network has a link distance dij and a link energy expenditure eij . For each route m ∈M, let x(m) be
the total distance of the route, and let y(m) be the total energy used. Thus,

x(m) =
∑

(i,j)∈m

dij

y(m) =
∑

(i,j)∈m

cij

It is desirable to choose a route m ∈M that keeps both objectives x(m) and y(m) small.

Example I.2. (Power allocation over one wireless link) Consider the problem of transmitting over a single wireless link. Let
p be a variable that represents the amount of power used, and suppose this variable must be chosen over an interval [0, pmax]
for some positive maximum power level pmax. The power used determines the transmission rate µ(p) = log(1 + p). The goal
is to operate the system while minimizing power and maximizing transmission rate. Define set M as the interval [0, pmax].
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For each p ∈ M, define x(p) = p as the power used and y(p) = −µ(p) as −1 times the transmission rate achieved (so that
minimizing y(p) is the same as maximizing µ(p)). We want to choose p ∈M to keep both objectives x(p) and y(p) small.

Example I.3. (Rate and power over a 3-user wireless system) Consider a wireless device that transmits to three different users
over orthogonal links. The device must choose a power vector (p1, p2, p3) ∈ R3 that satisfies the following constraints:

p1 + p2 + p3 ≤ pmax (1)
pi > 0 ∀i ∈ {1, 2, 3} (2)

where pmax is a positive real number that constrains the sum power usage. For each i ∈ {1, 2, 3}, let µi(pi) = log(1 + γipi)
be the transmission rate achieved over link i as a function of the power variable pi, where γi is some known attenuation
coefficient for link i. Define M as the set of all (p1, p2, p3) ∈ R3 that satisfy the constraints (1)-(2). Define

x(p1, p2, p3) = p1 + p2 + p3

y(p1, p2, p3) = −[µ1(p1) + µ2(p2) + µ3(p3)]

Thus, x(p1, p2, p3) represents the sum power used, while y(p1, p2, p3) is −1 times the sum rate over all three links. The goal
is to choose (p1, p2, p3) ∈M to keep both x(p1, p2, p3) and y(p1, p2, p3) small.

Example I.4. (Network utility maximization) Consider the same 3-link wireless system as Example I.3. However, suppose we
do not care about power expenditure. Rather, we care about:
• Maximizing the sum rate µ1(p1) + µ2(p2) + µ3(p3).
• Maximizing the proportionally fair utility metric log(µ1(p1))+log(µ2(p2))+log(µ3(p3)). This is a commonly used notion

of fairness for rate allocation over multiple users.1

Again let M be the set of all vectors (p1, p2, p3) ∈ R3 that satisfy (1)-(2). Define

x(p1, p2, p3) = −[µ1(p1) + µ2(p2) + µ3(p3)]

y(p1, p2, p3) = −[log(µ1(p1)) + log(µ2(p2)) + log(µ3(p3))]

so that x(p1, p2, p3) is −1 times the sum rate, and y(p1, p2, p3) is −1 times the proportionally fair utility metric. The goal is
to choose (p1, p2, p3) ∈M to minimize both x(p1, p2, p3) and y(p1, p2, p3).

Example I.1 emphasizes that the set M can have any size and structure that we want, and its elements can be any type of
object that we want (in that example, M is a finite set of possible routes). Examples I.2-I.4 show that the set M can be an
infinite set of vectors (p1, p2, p3). Examples I.2-I.4 also show how a bicriteria optimization problem that seeks to maximize one
objective while minimizing another, or that seeks to maximize both objectives, can be transformed into a bicriteria minimization
problem by multiplying the appropriate objectives by −1. Hence, without loss of generality, it suffices to assume the system
controller wants both components of the vector of objectives (x, y) to be small.

A. Pareto optimality

Define A as the set of all (x, y) vectors in R2 that are achievable via system modes m ∈M:

A = {(x(m), y(m)) ∈ R2 : m ∈M}

Every (x, y) pair in A is a feasible operating point. Once the set A is known, system optimality can be understood in terms
of selecting a desirable 2-dimensional vector (x, y) in the set A. With this approach, the study of optimality does not require
knowledge of the physical tasks the system must perform for each mode of operation in M. This is useful because it allows
many different types of problems to be treated with a common mathematical framework.

The set A can have an arbitrary structure. It can be finite, infinite, closed, open, neither closed nor open, and so on. Assume
the system controller wants to find an operating point (x, y) ∈ A for which both x and y are small.

Definition I.1. A vector (x, y) ∈ A is preferred over (or dominates) another vector (w, z) ∈ A, written (x, y) ≺ (w, z), if the
following two inequalities hold
• x ≤ w
• y ≤ z

and if at least one of the inequalities is strict (so that either x < w or y < z).

Definition I.2. A vector (x∗, y∗) ∈ A is Pareto optimal if there is no vector (x, y) ∈ A that satisfies (x, y) ≺ (x∗, y∗).

1See [6] for a development of proportionally fair utility and its relation to the log(µ) function, see also Exercise IX-E.3. The constraints (2) avoid the
singularity of the log(µ) function at 0, so that log(µ1(p1)) + log(µ2(p2)) + log(µ3(p3)) is indeed a real number whenever (p1, p2, p3) satisfies (1)-(2).
An alternative is to use constraints pi ≥ 0 (which allow zero power in some channels), but to modify the utility function from log(µ) to (1/b) log(1 + bµ)
for some constant b > 0.
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A set can have many Pareto optimal points. An example set A and its Pareto optimal points are shown in Fig. 1. For each
vector (a, b) ∈ R2, define S(a, b) as the set of all points (x, y) that satisfy x ≤ a and y ≤ b:

S(a, b) = {(x, y) ∈ R2 : x ≤ a, y ≤ b}

Pictorially, the set S(a, b) is an infinite square in the 2-dimesional plane with upper-right vertex at (a, b) (see Fig. 1). If (a, b) is
a point in A, any other vector in A that is preferred over (a, b) must lie in the set S(a, b). If there are no points in A∩S(a, b)
other than (a, b) itself, then (a, b) is Pareto optimal.

Set$A	



Pareto$op*mal$$
points$

(a,b)$

S(a,b)$

Fig. 1. An example set A (in orange) that contains an irregular-shaped connected component and 7 additional isolated points. The Pareto optimal points on
the connected component are colored in green, and the two Pareto optimal isolated points are circled. The rectangle set S(a, b) is illustrated for a particular
Pareto optimal point (a, b). Note that (a, b) is Pareto optimal because S(a, b) intersects A only at the point (a, b).

B. Degenerate cases and the compact assumption

In some cases the set A will have no Pareto optimal points. For example, suppose A is the entire set R2. If we choose
any point (x, y) ∈ R2, there is always another point (x − 1, y) ∈ R2 that is preferred. Further, it can be shown that if A is
an open subset of R2, then it has no Pareto optimal points (see Exercise IX-A.6). To avoid these degenerate situations, it is
often useful to impose the further condition that the set A is both closed and bounded. A closed and bounded subset of RN
is called a compact set. If A is a finite set then it is necessarily compact.

It can be shown that if A is a nonempty compact set, then:
1) It has Pareto optimal points.
2) For every point (a, b) ∈ A that is not Pareto optimal, there is a Pareto optimal point that is preferred over (a, b).

See Exercise IX-A.12 for a proof of the above two claims. Therefore, when A is compact, we can restrict attention to choosing
an operating point (x, y) that is Pareto optimal.

II. OPTIMIZATION WITH ONE CONSTRAINT

Let A ⊆ R2 be a set of all feasible (x, y) operating points. Assume the system controller wants to make both components
of the vector (x, y) small. One way to approach this problem is to minimize y subject to the constraint x ≤ c, where c is a
given real number. To this end, fix a constant c ∈ R and consider the following constrained optimization problem:

Minimize: y (3)
Subject to: x ≤ c (4)

(x, y) ∈ A (5)

The variables x and y are the optimization variables in the above problem, while the constant c is assumed to be a given and
fixed parameter. The above problem is feasible if there exists an (x, y) ∈ R2 that satisfies both constraints (4)-(5). We identify
this problem as “Problem (3)-(5)” which means it is the problem defined by (3), (4), (5) (that is, “(3) through (5)”).

Definition II.1. A point (x∗, y∗) is a solution to the optimization problem (3)-(5) if the following two conditions hold:
• (x∗, y∗) satisfies both constraints (4)-(5).
• y∗ ≤ y for all points (x, y) that satisfy (4)-(5).

It is possible for the problem (3)-(5) to have more than one optimal solution. It is also possible to have no optimal solution,
even if the problem is feasible. This happens when there is an infinite sequence of points {(xn, yn)}∞n=1 that satisfy the
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constraints (4)-(5) with strictly decreasing values of yn, but for which the limiting value of yn cannot be achieved (see
Exercise IX-B.2). This can only happen if the set A is not compact. On the other hand, it can be shown that if A is a compact
set, then the problem (3)-(5) has an optimal solution whenever it is feasible.

A. The tradeoff function

The problem (3)-(5) uses a parameter c in the inequality constraint (4). If the problem (3)-(5) is feasible for some given
parameter c, then it is also feasible for every parameter c′ that satisfies c′ ≥ c. Thus, the set of all values c for which the
problem is feasible forms an interval of the real number line of the form either (cmin,∞) or [cmin,∞). Call this set the
feasibility interval. The value cmin is the infimum of the set of all real numbers in the feasibility interval. For each c in the
feasibility interval, define ψ(c) as the infimum value of the objective function in problem (3)-(5) with parameter c. In particular,
if (x∗, y∗) is an optimal solution to (3)-(5) with parameter c, then ψ(c) = y∗. If A is a compact set, it can be shown that the
feasibility interval has the form [cmin,∞) and that problem (3)-(5) has an optimal solution for all c ∈ [cmin,∞).

The function ψ(c) is called the tradeoff function. The tradeoff function establishes the tradeoffs associated with choosing
larger or smaller values of the constraint c. Intuitively, it is clear that increasing the value of c imposes less stringent constraints
on the problem, which allows for improved values of ψ(c). This is formalized in the next lemma.

c"

ψ(c)"

cmin"
c1" c2" c3"

Fig. 2. The set A from Fig. 1 with its (non-increasing) tradeoff function ψ(c) drawn in green. Note that ψ(c) is discontinuous at points c1, c2, c3.

Lemma II.1. The tradeoff function ψ(c) is non-increasing over the feasibility interval.

Proof. For simplicity assume A is compact. Consider two values c1 and c2 in the interval [cmin,∞), and assume c1 ≤ c2.
We want to show that ψ(c1) ≥ ψ(c2). Let (x∗1, y

∗
1) and (x∗2, y

∗
2) be optimal solutions of (3)-(5) corresponding to parameters

c = c1 and c = c2, respectively. Then:

y∗1 = ψ(c1)

y∗2 = ψ(c2)

By definition of (x∗2, y
∗
2) being optimal for the problem with parameter c = c2, we know that for any vector (x, y) ∈ A that

satisfies x ≤ c2, we have:
y∗2 ≤ y (6)

On the other hand, we know (x∗1, y
∗
1) is a point in A that satisfies x∗1 ≤ c1 ≤ c2, so (6) gives:

y∗2 ≤ y∗1
Substituting y∗1 = ψ(c1) and y∗2 = ψ(c2) gives the result.

Note that the tradeoff function ψ(c) is not necessarily continuous (see Fig. 2). It can be shown that it is continuous when
the set A is compact and has a convexity property.2 Convexity is defined in Section IV.

2In particular, ψ(c) is both continuous and convex over c ∈ [cmin,∞) whenever A is compact and convex. Definitions of convex set and convex function
are provided in Section IV.
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The tradeoff curve is defined as the set of all points (c, ψ(c)) for c in the feasibility interval. Exercise IX-A.9 shows that
every Pareto optimal point (x(p), y(p)) of A is a point on the tradeoff curve, so that ψ(x(p)) = y(p).

B. Lagrange multipliers for optimization over (x, y) ∈ A
The constrained optimization problem (3)-(5) may be difficult to solve because of the inequality constraint (4). Consider the

following related problem, defined in terms of a real number µ ≥ 0:

Minimize: y + µx (7)
Subject to: (x, y) ∈ A (8)

The problem (7)-(8) is called the unconstrained optimization problem because it has no inequality constraint. Of course, it
still has the set constraint (8). The constant µ is called a Lagrange multiplier. It acts as a weight that determines the relative
importance of making the x component small when minimizing the objective function (7). Note that if (x∗, y∗) is a solution
to the unconstrained optimization problem (7)-(8) for a particular value µ, then:

y∗ + µx∗ ≤ y + µx for all (x, y) ∈ A (9)

In particular, all points of the set A are on or above the line consisting of points (x, y) that satisfy y + µx = y∗ + µx∗. This
line has slope −µ and touches the set A at the point (x∗, y∗) (see Fig. 3).

(x1*,&y1*)&

slope&=&/μ&

(x2*,&y2*)&

(x*,&y*)&

slope&=&/μ&

(b)&&(a)&&

H	

A	

A	



Fig. 3. (a) An example set A and multiplier µ. The point (x∗, y∗) is the single minimizer of y + µx over (x, y) ∈ A. (b) The same set A with a different
multiplier µ. Points (x∗1, y

∗
1) and (x∗2, y

∗
2) both minimize y + µx over (x, y) ∈ A. The set H shown in the figure contains “hidden Pareto optimal points”

that cannot be found via global minimization of x+ µy over (x, y) ∈ A, regardless of the value of µ.

The next theorem shows that if a point (x∗, y∗) solves the unconstrained problem (7)-(8) for a particular parameter µ ≥ 0,
then it must also solve the constrained problem (3)-(5) for a particular choice of the c value, namely, c = x∗.

Theorem II.1. If (x∗, y∗) solves the unconstrained problem (7)-(8), then:
a) If µ ≥ 0, then (x∗, y∗) also solves the following optimization problem (where (x, y) are the optimization variables and

x∗ is treated as a given constant):

Minimize: y (10)
Subject to: x ≤ x∗ (11)

(x, y) ∈ A (12)

b) If µ > 0, then (x∗, y∗) is Pareto optimal in A.

Proof. To prove part (a), suppose (x∗, y∗) solves the unconstrained problem (7)-(8). Then (x∗, y∗) also satisfies the constraints
of problem (10)-(12). Indeed, the constraint (11) is trivially satisfied by the vector (x∗, y∗) because the first variable of this
vector is less than or equal to x∗ (that is, x∗ ≤ x∗ is a trivially true inequality). Further, vector (x∗, y∗) also satisfies (12)
because this constraint is the same as (8). Next, we want to show that (x∗, y∗) is a solution to (10)-(12). Let (x, y) be any
other vector that satisfies (11)-(12). It suffices to show that y∗ ≤ y. Since (x, y) ∈ A we have from (9):

y∗ + µx∗ ≤ y + µx

≤ y + µx∗
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where the final inequality follows from (11) together with the fact that µ ≥ 0. Simplifying the above inequality gives y∗ ≤ y.
This proves part (a). The proof of part (b) is left as an exercise (see Exercises IX-A.10 and IX-A.11).

In summary, the above theorem implies that solving the unconstrained problem (7)-(8) for various values of µ ≥ 0 generates
points (x∗, y∗) on the tradeoff curve, and generates Pareto optimal points whenever µ > 0.

The theorem can be illuminated by the following intuitive example. Suppose we want to find a point (x, y) ∈ A to minimize
y subject to x ≤ 5.3. Imagine that we have a computer program that takes an input parameter µ ≥ 0 and outputs a particular
solution (xp, yp) to the unconstrained problem of minimizing y+µx over (x, y) ∈ A. Suppose we run the program with input
parameter µ = 1, and the program outputs (xp, yp) = (7.3, 19.4). The above theorem implies that the vector (7.3, 19.4) is the
solution to the problem of finding (x, y) ∈ A to minimize y subject to x ≤ 7.3. Unfortunately, this is not the desired problem,
and the resulting vector (7.3, 19.4) does not satisfy the desired constraint x ≤ 5.3. We need to work harder to satisfy the
desired constraint. So we decide to increase the Lagrange multiplier from 1 to 5 and try again. Suppose that plugging µ = 5
into the program generates output (xp, yp) = (4.1, 28.3). Then, (4.1, 28.3) is the solution to the problem of finding (x, y) ∈ A
to minimize y subject to x ≤ 4.1. While the vector (4.1, 28.3) satisfies our desired constraint x ≤ 5.3, it might be overly
conservative. We can look for solutions that reduce the y value below 28.3 by decreasing the Lagrange multiplier µ to some
value lower than 5 but higher than 1. It is reasonable to try again with µ = 3. If we are very lucky, the resulting output will
have an x-value exactly equal to 5.3, in which case we are assured this is an exact solution to the desired problem. Otherwise,
we can increase or decrease the Lagrange multiplier µ accordingly and keep going.

The above paragraph describes an intuitive procedure for changing the Lagrange multiplier µ to push towards a desired
constraint. It was implicitly assumed that increasing µ places more importance on constraint minimization and hence produces
solutions (x, y) with x values that are either the same or smaller. This turns out to be true, and a precise statement and proof
of this fact are worked out in Exercise IX-B.7. There are some remaining ambiguities in the above discussion. Specifically,
• How should we choose the initial value of µ?
• By how much should we increase or decrease µ at each step?
• Does the above procedure always “converge” to an answer, in the sense that the x-value gets closer and closer to the

desired constraint? If so, how many steps do we need to get close to the desired answer?
Of course, the answer to the third question is “no”: The above procedure does not always converge to an answer (x, y) ∈ A

that meets the desired constraint with equality. Indeed, there may not even exist a point in the set A with an x-value that
is close to the desired constraint. For example, suppose A consists only of points (x, y) that take integer values, while the
desired constraint is x ≤ 5.3. Furthermore, even if there is a point (x, y) ∈ A that meets the desired constraint with equality,
it might be impossible to find this point via the above procedure. It is not always possible to find all points (c, ψ(c)) on
the tradeoff curve by solving the unconstrained optimization problem (7)-(8) for some value µ ≥ 0. Specifically, there may
be some “hidden” points (c, ψ(c)) that are not solutions to (7)-(8) for any value of the Lagrange multiplier µ ≥ 0 (see Fig.
3b). If the set A is compact and has a convexity property (defined in Section IV), it can be shown that for every c such that
c > cmin, there exists a Lagrange multiplier µ ≥ 0 under which (c, ψ(c)) is a solution to the unconstrained problem (7)-(8)
(see Appendix B). A Lagrange multiplier also often exists when c = cmin, but there are some counter-examples in this case
(see Appendix B).

On the positive side, there are many constrained optimization problems for which Theorem II.1 can be used to find either
exact analytical solutions or numerical approximations. Consider the following two special cases:

1) Analytical solutions: Suppose we can analytically compute a solution (x∗(µ), y∗(µ)) to the unconstrained problem (7)-(8)
for each µ ≥ 0. That is, we determine x∗(µ) and y∗(µ) as known functions of µ. Then for each c ∈ [cmin,∞), we obtain
ψ(c) by finding a value µc ≥ 0 that satisfies the equation x∗(µc) = c (assuming this equation can be satisfied). Such a
value µc yields ψ(c) = y∗(µc). For example, suppose the desired constraint is x ≤ 5.3 (so c = 5.3), and suppose we
analytically determine that x∗(µ) = 16− 3µ. Solving the equation 16− 3µ = 5.3 gives µc = 10.7/3. The optimum point
is then (x∗(µc), y

∗(µc)) = (5.3, y∗(10.7/3)).
2) Bisection search: Suppose our computation of (7)-(8) generates points (x∗(µ), y∗(µ)) for which x∗(µ) is continuous in

the µ parameter. If we can bracket the desired constraint c by non-negative values µmin and µmax, so that x∗(µmin) ≤
c ≤ x∗(µmax), then a simple bisection procedure can be used to quickly find a value µ that satisfies x∗(µ) ≈ c, so
that y∗(µ) ≈ ψ(c). Bisection reduces the size of the search interval [µmin, µmax] by a factor of two at each step, so
convergence is exponentially fast.3

3Strictly speaking, while the µmin and µmax values converge exponentially fast to a common value µ∗, one requires the functions x∗(µ) and y∗(µ)
to satisfy a stronger form of continuity, called Lipschitz continuity, in order to ensure that exponential convergence of µ to µ∗ translates to exponential
convergence of (x∗(µ), y∗(µ)) to the optimal solution (x∗(µ∗), y∗(µ∗)).
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C. Lagrange multipliers for optimization over (x1, . . . , xN ) ∈ X
Let N be a positive integer. Let x = (x1, . . . , xN ) be a vector in RN . Consider the following constrained optimization

problem:

Minimize: f(x) (13)
Subject to: g(x) ≤ c (14)

x ∈ X (15)

where:
• X is a general subset of RN .
• f(x) and g(x) are real-valued functions defined over X .
• c is a given real number.
The tradeoff function ψ(c) associated with problem (13)-(15) is defined as the infimum objective function value over all x ∈ X

that satisfy the constraint g(x) ≤ c. In particular, if x∗ is a solution to problem (13)-(15) with parameter c, then ψ(c) = f(x∗).
The problem (13)-(15) is similar to the problem (3)-(5). In fact, it can be viewed as a special case of the problem (3)-(5) if
we define A as the set of all vectors (g, f) ∈ R2 such that (g, f) = (g(x), f(x)) for some x = (x1, . . . , xN ) ∈ X . Thus, a
Lagrange multiplier approach is also effective for the problem (13)-(15). Fix a Lagrange multiplier µ ≥ 0 and consider the
unconstrained problem:

Minimize: f(x) + µg(x) (16)
Subject to: x ∈ X (17)

As before, choosing a large value of µ for the problem (16)-(17) places more emphasis on keeping g(x) small. If x∗ =
(x∗1, . . . , x

∗
N ) is an optimal solution to the unconstrained problem (16)-(17), then

f(x∗) + µg(x∗) ≤ f(x) + µg(x) for all x ∈ X (18)

Theorem II.2. Suppose µ ≥ 0. If x∗ = (x∗1, . . . , x
∗
N ) is an optimal solution to the unconstrained problem (16)-(17), then it is

also an optimal solution to the following problem:

Minimize: f(x) (19)
Subject to: g(x) ≤ g(x∗) (20)

x ∈ X (21)

Proof. Suppose x∗ = (x∗1, . . . , x
∗
N ) solves (16)-(17). Then this vector also satisfies all constraints of problem (19)-(21). Now

suppose x = (x1, . . . , xN ) is another vector that satisfies the constraints (20)-(21). We want to show that f(x∗) ≤ f(x). Since
x ∈ X , we have from (18):

f(x∗) + µg(x∗) ≤ f(x) + µg(x)

≤ f(x) + µg(x∗)

where the final inequality holds because µ ≥ 0 and because x satisfies (20). Canceling common terms in the above inequality
proves f(x∗) ≤ f(x).

The above theorem extends easily to the case of multiple constraints (see Theorem III.1).

Example II.1. Minimize the function
∑N
i=1 aixi subject to

∑N
i=1 bix

2
i ≤ 4 and (x1, . . . , xN ) ∈ RN , where (a1, . . . , aN ) and

(b1, . . . , bN ) are given real numbers such that bi > 0 for all i.
Solution: Fix µ ≥ 0. We minimize

∑N
i=1 aixi + µ

∑N
i=1 bix

2
i over (x1, . . . , xN ) ∈ RN . This is a separable minimization of

aixi + µbix
2
i for each variable xi ∈ R. When µ > 0, the result is xi = −ai/(2µbi) for i ∈ {1, . . . , N}. Choosing µ to satisfy

the constraint with equality gives 4 =
∑N
j=1 bjx

2
j =

∑N
j=1 bj(−aj/(2µbj))2. Thus:

µ∗ =
1

4

√√√√ N∑
j=1

a2j/bj

and x∗i = −ai/(2µ∗bi) for all i ∈ {1, . . . , N}. This is optimal by Theorem II.2.
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D. Critical points for unconstrained optimization

If a real-valued function f(x) of a multi-dimensional vector x = (x1, . . . , xN ) is differentiable at a point x = (x1, . . . , xN ) ∈
RN , its gradient is the vector of partial derivatives:

∇f(x) =

[
∂f(x)

∂x1
,
∂f(x)

∂x2
, . . . ,

∂f(x)

∂xN

]
The problem (16)-(17) seeks to find a global minimum of the function f(x) + µg(x) over all vectors x = (x1, . . . , xN ) in

the set X . Recall from basic calculus that, if a global minimum exists, it must occur at a critical point. Specifically, a point
x∗ = (x∗1, . . . , x

∗
N ) is a critical point for this problem if x∗ ∈ X and if x∗ satisfies at least one of the following three criteria:4

• x∗ is on the boundary of X .
• ∇f(x∗) + µ∇g(x∗) does not exist as a finite vector in RN .
• ∇f(x∗) + µ∇g(x∗) = 0 (where the “0” on the right-hand-side represents the all-zero vector).

The condition ∇f(x∗) + µ∇g(x∗) = 0 is called the stationary equation. While this condition arises in the search for a
global minimum of f(x) + µg(x), it can also find local minima or local maxima. It turns out that such critical points are
often important. In particular, for some non-convex problems, a search for solutions that solve the stationary equation can
reveal points (g(x), f(x)) that lie on the tradeoff curve (c, ψ(c)), even when it is impossible to find such points via a global
minimization (see Appendix A for a development of this idea).

Example II.2. Define X as the set of real numbers in the interval [0, 1]. Define f(x) = x2 and g(x) = −x. Given µ ≥ 0, we
want to minimize f(x) + µg(x) over x ∈ [0, 1]. Find the critical points. Then find the optimal x∗.

Solution: The boundary points of [0, 1] are x = 0 and x = 1. The function f(x) + µg(x) is differentiable for all x. The
stationary equation is f ′(x) +µg′(x) = 2x−µ = 0. This produces a critical point x = µ/2. However, this point is only valid
if 0 ≤ µ ≤ 2 (since if µ > 2 then x = µ/2 > 1, which is out of the desired interval [0, 1]).

Thus, for µ ∈ [0, 2] we test the critical points x ∈ {0, 1, µ/2}:

x x2 − µx for µ ∈ [0, 2]

0 0
1 1− µ
µ/2 −µ

2

4

It can be shown that −µ2/4 ≤ 1− µ for all µ ∈ R. Thus, x∗ = µ/2 whenever µ ∈ [0, 2]. If µ > 2 then the critical points
occur at x = 0 and x = 1 (with x2 − µx values of 0 and 1 − µ, respectively). Since 1 − µ < 0 whenever µ > 2, it follows
that x∗ = 1 whenever µ > 2. In summary:

x∗ =

{
µ/2 if µ ∈ [0, 2]
1 if µ > 2

(22)

A simpler method for obtaining (22) uses convexity theory together with Lemma IV.5 (given in a later section). See also Exercise
IX-E.22.

Example II.3. Define X as the set of real numbers in the interval [0, 1]. Define f(x) = |x − 1/2| and g(x) = x2. Given
µ = 2, we want to minimize f(x) + 2g(x) over x ∈ [0, 1]. Find the critical points. Then find the optimal x∗.

Solution: The boundary points of [0, 1] are x = 0 and x = 1. The point where f(x) + 2g(x) is not differentiable is x = 1/2.
If x ∈ (1/2, 1] then f(x) + 2g(x) = x− 1/2 + 2x2 and f ′(x) + 2g′(x) = 0 only when x = −1/4, which is not in the interval
[0, 1]. If x ∈ [0, 1/2) then f(x) + 2g(x) = 1/2− x+ 2x2 and f ′(x) + 2g′(x) = 0 when x = 1/4. Thus, the critical points to
test are x ∈ {0, 1, 1/2, 1/4}.

x |x− 1/2|+ 2x2

0 1/2
1 5/2

1/2 1/2
1/4 3/8

Thus, the optimal point is x∗ = 1/4, which achieves the minimum of f(x∗) + 2g(x∗) = 3/8.

4A boundary point of a set X ⊆ RN is a point x ∈ RN that is arbitrarily close to points in X and also arbitrarily close to points not in X . The set RN
has no boundary points. A set is closed if and only if it contains all of its boundary points. A set is open if and only if it contains none of its boundary
points. A point in X is an interior point if and only if it is not a boundary point.
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E. Rate allocation example

Consider three devices that send data over a common link of capacity C bits/second. Let (r1, r2, r3) be the vector of data
rates selected for the three devices. Define X as the set of all non-negative rate vectors in R3:

X = {(r1, r2, r3) ∈ R3 : r1 ≥ 0, r2 ≥ 0, r3 ≥ 0}

Consider the following weighted proportionally fair rate allocation problem:

Maximize: log(r1) + 2 log(r2) + 3 log(r3)

Subject to: r1 + r2 + r3 ≤ C
(r1, r2, r3) ∈ X

The weights imply that higher indexed devices have higher priority in the rate maximization. To solve, turn this into a
minimization problem as follows:

Minimize: (−1)[log(r1) + 2 log(r2) + 3 log(r3)]

Subject to: r1 + r2 + r3 ≤ C
(r1, r2, r3) ∈ X

The corresponding unconstrained problem (which uses a Lagrange multiplier µ ≥ 0) is:

Minimize: −[log(r1) + 2 log(r2) + 3 log(r3)] + µ[r1 + r2 + r2]

Subject to: (r1, r2, r3) ∈ X

Since X is the set of all (r1, r2, r3) that satisfy r1 ≥ 0, r2 ≥ 0, r3 ≥ 0, the above problem is separable and can be solved by
separately minimizing over each ri:
• Choose r1 ≥ 0 to minimize − log(r1) + µr1. Thus, r1 = 1/µ (assuming µ > 0).
• Choose r2 ≥ 0 to minimize −2 log(r2) + µr2. Thus, r2 = 2/µ (assuming µ > 0).
• Choose r3 ≥ 0 to minimize −3 log(r3) + µr3. Thus, r3 = 3/µ (assuming µ > 0).
Since we have a solution parameterized by µ, we can choose µ > 0 to meet the desired constraint with equality:

C = r1 + r2 + r2 = 6/µ

Thus µ = 6/C, which is indeed non-negative. Thus, Theorem II.2 ensures that this rate allocation is optimal for the original
constrained optimization problem:

(r∗1 , r
∗
2 , r
∗
3) = (C/6, C/3, C/2)

F. Routing example

1"

2"

3"

C"

C"

C"
1"

r"

x1"
x2"

x3"

Fig. 4. A 3-queue network routing example for Subsection II-F.

Consider sending data of rate r over a choice of three parallel queues, each with a processing rate of C. The data is split
into separate streams of rates x1, x2, x3, where data of rate xi is sent into queue i (see Fig. 4). The first two queues have no
additional traffic, while the third queue serves an additional traffic stream of rate 1. Suppose the average number of packets
in queue i is equal to fi/(C − fi), where fi is the total arrival rate to the queue.5 We want to choose x1, x2, x3 to minimize
total average number of packets in the system. That is, we want to solve:

5This is an M/M/1 approximation for the average number of packets in each queue.
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Minimize: x1

C−x1
+ x2

C−x2
+ x3+1

C−(x3+1) (23)
Subject to: r ≤ x1 + x2 + x3 (24)

x1 ∈ [0, C), x2 ∈ [0, C), x3 ∈ [0, C − 1) (25)

Assume that C > 1 and r + 1 < 3C, so that the above problem is feasible. Since the objective function (23) is increasing
in the xi values, it is clear that an optimal solution should satisfy constraint (24) with equality (otherwise, the solution could
be improved by reducing one or more values of xi). Thus, the solution to (23)-(25) is the same as the solution to a modified
problem that replaces constraint (24) with the equality constraint r = x1 +x2 +x3. This equality constraint is more natural for
the problem. However, we have used the inequality constraint (24) because it conforms to the inequality structure of Theorem
II.2 (a related theorem that specifically deals with equality constraints is given in Theorem II.3 of Section II-H).

To solve the problem (23)-(25), define X as the set of all (x1, x2, x3) that satisfy (25). Next, note that the constraint (24)
has an inverted inequality. This can be put in the standard form:

−(x1 + x2 + x3) ≤ −r

Now fix a Lagrange multiplier µ > 0 and consider the unconstrained problem:

Minimize: x1

C−x1
+ x2

C−x2
+ x3+1

C−(x3+1) − µ(x1 + x2 + x3) (26)

Subject to: x1 ∈ [0, C), x2 ∈ [0, C), x3 ∈ [0, C − 1) (27)

The approach is to obtain a solution (x∗1, x
∗
2, x
∗
3) as a function of µ, and then to choose µ to meet the inequality constraint

(24) with equality: x∗1 + x∗2 + x∗3 = r. If this can be done, then Theorem II.2 ensures the result is optimal for the original
constrained problem (23)-(25).

The variables x1, x2, x3 can be optimized separately in the unconstrained problem (26)-(27):
• Choose x1 ∈ [0, C) to minimize x1/(C − x1)− µx1.
• Choose x2 ∈ [0, C) to minimize x2/(C − x2)− µx2.
• Choose x3 ∈ [0, C − 1) to minimize (x3 + 1)/(C − (x3 + 1))− µx3.

First look for critical points that correspond to derivatives of zero:

d

dx

[
x1

C − x1
− µx1

]
= 0 =⇒ C

(C − x1)2
= µ =⇒ x1 = C −

√
C/µ

d

dx

[
x2

C − x2
− µx2

]
= 0 =⇒ C

(C − x2)2
= µ =⇒ x2 = C −

√
C/µ

d

dx

[
x3 + 1

C − (x3 + 1)
− µx3

]
= 0 =⇒ C

(C − (x3 + 1))2
= µ =⇒ x3 = C − 1−

√
C/µ

The intuition behind the above solution is that the derivatives of the individual link cost functions should be equalized to a
common value of µ. However, one must also ensure that the x1, x2, x3 values are non-negative. It can be shown that the true
solution to the individual minimization problems is found by simply projecting the above values onto the non-negative real
numbers:

x∗1 =
[
C −

√
C/µ

]+
(x∗1 > 0 whenever µ > 1/C)

x∗2 =
[
C −

√
C/µ

]+
(x∗2 > 0 whenever µ > 1/C)

x∗3 =
[
C − 1−

√
C/µ

]+
(x∗3 > 0 whenever µ > C/(C − 1)2)

Thus, there are two different regimes: The first regime is when 1/C < µ ≤ C/(C − 1)2 and has x∗1 = x∗2 > 0 and x∗3 = 0.
The second regime is when µ > C/(C − 1)2 and has x∗1 = x∗2 > 0, x∗3 > 0. The transition between these two regimes occurs
when µ = C/(C − 1)2.

In the first regime, choosing µ to satisfy the desired constraint with equality ensures that x∗1 + x∗2 + 0 = r, and so
x∗1 = x∗2 = r/2. This implies that r/2 = C −

√
C/µ. The transition point µ = C/(C − 1)2 gives rise to the transition rate

r that satisfies r/2 = C −
√

(C − 1)2 = 1 (so that the transition rate is r = 2). This transition rate is intuitive: It is exactly
when the derivative of the cost function of paths 1 and 2 (evaluated when x1 = x2 = 1) is equal to the derivative of the cost
function of path 3 (when x3 = 0):

d

dx1

[
x1

C − x1

]
x1=1

=
d

dx2

[
x2

C − x2

]
x2=1

=
d

dx3

[
x3 + 1

C − (x3 + 1)

]
x3=0

Thus, when 0 < r ≤ 2, the optimal solution is x∗1 = x∗2 = r/2, x∗3 = 0.
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On the other hand, when 2 < r < 3C − 1, the optimal solution has r = x∗1 +x∗2 +x∗3 = 2(C −
√
C/µ) + (C − 1−

√
C/µ).

This means that:

µ∗ = C

(
3

3C − 1− r

)2

and the optimal solution is:

x∗1 = x∗2 = C −
√
C/µ∗ = (r + 1)/3

x∗3 = C − 1−
√
C/µ∗ = (r − 2)/3

This solution is intuitive because it equalizes the total input rate on each path, and hence also equalizes the individual path
derivatives:

d

dx1

[
x1

C − x1

]
x1=x∗

1

=
d

dx2

[
x2

C − x2

]
x2=x∗

2

=
d

dx3

[
x3 + 1

C − (x3 + 1)

]
x3=x∗

3

In summary, the solution to (23)-(25) is:

(x∗1, x
∗
2, x
∗
3) =

{ (
r
2 ,

r
2 , 0
)

if 0 < r ≤ 2(
r+1
3 , r+1

3 , r−23
)

if 2 < r < 3C − 1

G. Power allocation example

Consider a collection of N orthogonal channels. A wireless transmitter can send simultaneously over all channels using
a power vector p = (p1, . . . , pN ). For each channel i, let fi(pi) be the transmission rate over the channel. The goal is to
maximize the sum transmission rate subject to a sum power constraint of pmax (for some given value pmax > 0):

Maximize:
∑N
i=1 fi(pi) (28)

Subject to:
∑N
i=1 pi ≤ pmax (29)

pi ≥ 0 ∀i ∈ {1, . . . , N} (30)

For this example, assume that each function fi(p) is increasing over the interval p ∈ [0, pmax]. Further assume the function is
differentiable and has a decreasing derivative, so that if p1, p2 are in the interval [0, pmax] and if p1 < p2, then f ′(p1) > f ′(p2).
Such a function fi(p) has a diminishing returns property with each incremental increase in p, and can be shown to be a strictly
concave function (a formal definition of strictly concave is given in Section IV). An example is:

fi(p) = log(1 + γip)

where γi is a positive attenuation parameter for each channel i ∈ {1, . . . , N}.
Converting to a minimization problem gives:

Minimize: −
∑N
i=1 fi(pi) (31)

Subject to:
∑N
i=1 pi ≤ pmax (32)

pi ≥ 0 ∀i ∈ {1, . . . , N} (33)

The set X is considered to be the set of all (p1, . . . , pN ) that satisfy (33). The corresponding unconstrained problem, with
Lagrange multiplier µ ≥ 0, is:

Minimize: −
∑N
i=1 fi(pi) + µ

∑N
i=1 pi

Subject to: pi ≥ 0 ∀i ∈ {1, . . . , N}

This problem separates into N different minimization problems: For each i ∈ {1, . . . , N}, solve the following:

Maximize: fi(pi)− µpi (34)
Subject to: pi ≥ 0 (35)

where the minimization has been changed to a maximization for simplicity. Each separate problem is a simple maximization
of a function of one variable over the interval pi ∈ [0,∞). The optimal pi is either a critical point (being either the endpoint
pi = 0 or a point with zero derivative), or is achieved at pi =∞. Because the functions fi(p) are assumed to have decreasing
derivatives, it can be shown that a solution to (34)-(35) is as follows:
• If f ′i(0) ≤ µ then pi = 0.
• Else, if f ′i(z) = µ for some z > 0 then pi = z.
• Else, if f ′i(∞) ≥ µ then pi =∞.
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Assume the channels are rank ordered so that:

f ′1(0) ≥ f ′2(0) ≥ f ′3(0) ≥ · · · ≥ f ′N (0) (36)

Assume that µ is large enough so that f ′i(∞) < µ for all i, and small enough so that f ′1(0) > µ. Define K as the largest
integer such that f ′i(0) > µ for all i ∈ {1, . . . ,K}. Then an optimal solution to (34)-(35) has:
• f ′i(pi) = µ for i ∈ {1, . . . ,K}.
• pi = 0 for i ∈ {K + 1, . . . , N}.

The value of µ is shifted appropriately until the above solution satisfies the power constraint
∑N
i=1 pi = pmax with equality.

By Theorem II.2, that value µ yields a power vector (p∗1, . . . , p
∗
N ) that is an optimal solution to the original constrained

optimization problem. An illustration of the solution is given in Fig. 5. The arrows in the figure show how the (p∗1, . . . , p
∗
N )

values move to the right as µ is pushed down.

f1’(0)'

f2’(0)'

f3’(0)'
μ'

Power'p'p1' p2'

f1’(p1)'

f2’(p2)'

f3’(p3)'

Fig. 5. An illustration of the derivative requirement for optimality in the problem (28)-(30). As the value µ is pushed down, the p1 and p2 values increase
along their respective curves. Currently p3 = 0. Pushing µ below the f ′3(0) threshold activates the third curve with p3 > 0.

For a specific example, when the fi(p) = log(1 + γip) for all i, and when µ > 0, the problem (34)-(35) becomes:

Maximize: log(1 + γipi)− µpi
Subject to: pi ≥ 0

The solution is:

pi =

[
1

µ
− 1

γi

]+
(37)

where [x]+ = max[x, 0]. That is, pi > 0 if and only if 1/µ > 1/γi. In this case, the parameter 1/µ should be increased,
starting from 0, until:

N∑
i=1

[
1

µ
− 1

γi

]+
= pmax (38)

When such a value µ is found, it follows from Theorem II.2 that the resulting powers pi given by (37) are optimal. The rank
ordering (36) implies:

γ1 ≥ γ2 ≥ · · · ≥ γN

Intuitively, this means that better channels come first in the rank ordering. For some integer K ∈ {1, . . . , N} the optimal
solution has pi > 0 for i ∈ {1, . . . ,K} and pi = 0 for i > K. One way to solve this is to consider all potential values of K,
starting with K = N :
• Assume K = N . Then pi > 0 for all i, and so 1/µ ≥ 1/γi for all i ∈ {1, . . . , N}. The equation (38) becomes:

N∑
i=1

(
1

µ
− 1

γi

)
= pmax
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and so:
1

µ
=
pmax +

∑N
i=1 1/γi

N

If this 1/µ value indeed satisfies 1/µ ≥ 1/γi for all i ∈ {1, . . . , N}, we are done. Else go to the next step.
• Assume K = N − 1, so that pi > 0 for i ∈ {1, . . . , N − 1} and pN = 0. Then 1/µ ≥ 1/γi for all i ∈ {1, . . . , N − 1}

and 1/µ < 1/γN . The equation (38) becomes:
N−1∑
i=1

(
1

µ
− 1

γi

)
= pmax

and so:
1

µ
=
pmax +

∑N−1
i=1 1/γi

N − 1

If this 1/µ value indeed satisfies 1/µ ≥ 1/γi for all i ∈ {1, . . . , N − 1}, we are done. Else go to the next step.
• and so on.
The above procedure involves at most N steps. One can speed up the procedure by performing a bisection like search, rather

than a sequential search, which is helpful when N is large.

H. Equality constraints

Consider a problem where the inequality constraint is replaced with an equality constraint:

Minimize: f(x) (39)
Subject to: g(x) = c (40)

x ∈ X (41)

where x = (x1, . . . , xN ), X ⊂ RN , and f(x) and g(x) are real-valued functions over X . The Lagrange multiplier approach
considers the unconstrained problem defined by a parameter λ ∈ R:

Minimize: f(x) + λg(x) (42)
Subject to: x ∈ X (43)

The only difference is that for equality constraints, the Lagrange multiplier λ can possibly be a negative value.

Theorem II.3. If x∗ is a solution to (42)-(43), then x∗ is also a solution to:

Minimize: f(x)

Subject to: g(x) = g(x∗)

x ∈ X

Proof. The proof is almost identical to that of Theorem II.2 and is left as an exercise (see Exercise IX-B.4).

As before, in the special case when f(x) and g(x) are differentiable over the interior of X , solutions to the stationary
equation ∇f(x) + λ∇g(x) = 0 are often useful even if they do not correspond to a global minimum of f(x) + λg(x) over
x ∈ X (see Appendix A).

III. LAGRANGE MULTIPLIERS FOR MULTIPLE CONSTRAINTS

Lagrange multiplier theory extends naturally to the case of multiple constraints. Fix N and K as positive integers. Let X
be a subset of RN . Let f, g1, . . . , gK be real-valued functions over x ∈ X . Let c = (c1, . . . , cK) be a given vector in RN . The
constrained problem is:

Minimize: f(x) (44)
Subject to: gk(x) ≤ ck, ∀k ∈ {1, . . . ,K} (45)

x ∈ X (46)

The unconstrained problem uses Lagrange multipliers µ1, . . . , µK , where µk ≥ 0 for all k ∈ {1, . . . ,K}:

Minimize: f(x) +
∑K
k=1 µkgk(x) (47)

Subject to: x ∈ X (48)

As in the one-constraint case, there is a connection between the constrained and unconstrained problems.
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Theorem III.1. (Lagrange multipliers for multiple constraints) If x∗ is a solution to the unconstrained problem (47)-(48)
corresponding to a nonnegative Lagrange multiplier vector µ = (µ1, . . . , µK), then it also solves the constrained problem
(44)-(46) whenever (c1, . . . , cK) is such that gk(x∗) ≤ ck for all k ∈ {1, . . . ,K} and gk(x∗) = ck whenever µk > 0.

Proof. Suppose x∗ solves the unconstrained problem and (c1, . . . , cK) is such that gk(x∗) ≤ ck for all k, and gk(x∗) = ck
whenever µk > 0. Then x∗ clearly satisfies all constraints of the constrained problem, and:

µkgk(x∗) = µkck, ∀k ∈ {1, . . . ,K} (49)

Indeed, the equality (49) can be verified by considering cases µk = 0 and µk > 0. Suppose x is another vector that satisfies
all constraints of the constrained problem (so x ∈ X and gk(x) ≤ ck for all k). We want to show that f(x∗) ≤ f(x). Since
x∗ solves the unconstrained problem and x ∈ X , we have:

f(x∗) +

K∑
k=1

µkgk(x∗)
(a)

≤ f(x) +

K∑
k=1

µkgk(x)

(b)

≤ f(x) +

K∑
k=1

µkck

(c)
= f(x) +

K∑
k=1

µkgk(x∗)

where (a) holds by definition of x∗ being optimal for the the unconstrained problem, (b) holds because µk ≥ 0 and gk(x) ≤ ck
for all k, and (c) holds by (49). Canceling the common term on both sides proves that f(x∗) ≤ f(x).

Unfortunately, the above theorem for multiple constraints is more difficult to apply than the corresponding theorem for one
constraint. Why? Let us suppose there is indeed a nonnegative vector µ∗ = (µ∗1, . . . , µ

∗
K) such that the optimal solution to

the unconstrained problem for this vector µ∗ is a point x∗ such that gk(x∗) = ck for all k ∈ {1, . . . ,K}.6 In that case, the
above theorem ensures this point x∗ also solves the desired constrained optimization problem. However, how can we find this
Lagrange multiplier vector (µ∗1, . . . , µ

∗
K)? Even if we knew a bound µmax on the maximum component, so that 0 ≤ µ∗k ≤ µmax

for all k ∈ {1, . . . ,K}, we would still need to search over the entire K-dimensional hypercube [0, µmax]K . Suppose we try a
particular vector (µ1, . . . , µK) in this hypercube, and the resulting solution to the unconstrained problem is a vector x∗. How
do we change our Lagrange multiplier vector to improve on this solution in the next try?

For example, suppose K = 2 and we want to solve:

Minimize: f(x)

Subject to: g1(x) ≤ 5

g2(x) ≤ 8

x ∈ X

Let’s start with a guess Lagrange multiplier vector (µ1, µ2) = (1, 1). Suppose the resulting solution to the unconstrained
problem of minimizing f(x) + µ1g1(x) + µ2g2(x) over x ∈ X is a vector x∗µ that satisfies g1(x∗µ) = 6 and g2(x∗µ) = 9. How
should we change µ? We need to bring both constraints down. So, should we increase both µ1 and µ2? Will such an increase
surely reduce both constraints? Not necessarily (see Exercise IX-B.8). In contrast, problems with only one constraint have only
one Lagrange multiplier µ, and it is easy to determine whether we should increase or decrease µ to improve a solution (recall
the discussion after Theorem II.1 in Section II-B). A simple bisection search can be done in the one-constraint case, whereas
that does not seem possible with multiple constraints.

Fortunately, there are systematic ways of adaptively changing the Lagrange multiplier vector (µ1, . . . , µK) to converge
to a desired vector. However, those methods require further structure on the problem and further analytical development. A
drift-plus-penalty method is developed in Section VI for this purpose. For intuition, it is useful to understand more deeply how
changes in the Lagrange multipliers impact multi-dimensional constraints. Such intuition is given in the following theorem.

Theorem III.2. (Changing Lagrange multipliers) Fix N and K as positive integers. Let X be a subset of RN . Let f, g1, . . . , gK
be real-valued functions over x ∈ X . Define g : RN → RK as the vector-valued function g(x) = (g1(x), . . . , gK(x)). Let
µ = (µ1, . . . , µK) be a given vector of real numbers, and let xµ be a solution to the following problem:

Minimize: f(x) + µT g(x)

Subject to: x ∈ X

6In fact, problems with many constraints often do not have solutions that meet all constraints with equality. Typically, an optimal solution x∗ satisfies some
constraints with equality (such as g1(x∗) = c1) and satisfies others with strict inequality (such as g2(x∗) = c2 − 1/2).
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where µT g(x) =
∑K
k=1 µkgk(x). Let λ = (λ1, . . . , λK) be another given vector, and let xλ be a solution to the following:

Minimize: f(x) + λT g(x)

Subject to: x ∈ X

Then the vectors (λ− µ) and (g(xλ)− g(xµ)) have a nonpositive inner product:

(λ− µ)T (g(xλ)− g(xµ)) ≤ 0

Proof. The proof uses only the definition of xµ and xλ being optimal for their corresponding problems (for example, you can
start with the inequality f(xµ) + µT g(xµ) ≤ f(xλ) + µT g(xλ)). Details are worked out as Exercise IX-B.8.

Start with a nonnegative vector µ. The above theorem shows that we can control the direction of change in the constraint
vector (g1(xµ), . . . , gK(xµ)) by choosing a new Lagrange multiplier vector λ such that the difference vector λ−µ is opposite
to the direction of desired change. Thus, to push a vector g(xµ) = (g1(xµ), . . . , gK(xµ)) closer to the constant vector
c = (c1, . . . , cK), it makes sense to choose λ = µ + δ(g(xµ) − c), where δ > 0 is some step size. Of course, λ must be
nonnegative to be a valid Lagrange multiplier vector. Hence, one can consider the heuristic that takes a max with 0:

λk = max[µk + δ(gk(xµ)− ck), 0], ∀k ∈ {1, . . . ,K} (50)

This heuristic for changing the Lagrange multipliers can in fact be analyzed in certain cases [1][2], and is called the dual
subgradient algorithm (with fixed step-size δ > 0). It is similar to the drift-plus-penalty algorithm described in Section VI.

IV. CONVEXITY

A. Convex sets

Let X be a subset of RN .

Definition IV.1. A set X ⊆ RN is convex if for any two points x and y in X , the line segment between those points is also
in X . That is, for any θ ∈ [0, 1], we have θx+ (1− θ)y ∈ X .

By convention, the empty set is considered to be convex. Likewise, a set with only one element is convex. It can be shown
that the intersection of two convex sets is still convex. Indeed, let A and B be convex sets in RN . Let x and y be two points in
A∩B. Since both points x and y are in A, the line segment between them must also be in A (since A is convex). Similarly,
the line segment must be in B. So the line segment is in A ∩ B. By the same argument, it follows that the intersection of an
arbitrary (possibly uncountably infinite) number of convex sets is convex.

For a vector x = (x1, . . . , xN ) ∈ RN , define the norm ||x|| =
√∑N

i=1 x
2
i . The set

{
x ∈ RN such that ||x|| = 1

}
is not convex because it contains the point (1, 0, 0, . . . , 0) and (−1, 0, 0, . . . , 0), but does not contain 1

2 (1, 0, 0, . . . , 0) +
1
2 (−1, 0, 0, . . . , 0) = (0, 0, 0, . . . , 0).

Example IV.1. Let a ∈ RN . Define A =
{
x ∈ RN such that ||x− a|| ≤ 1

}
. The set A is convex.

Proof. Let x and y be points in A and let θ ∈ [0, 1]. We want to show that θx+ (1− θ)y ∈ A. We have:

||θx+ (1− θ)y − a|| = ||θ(x− a) + (1− θ)(y − a)||
≤ ||θ(x− a)||+ ||(1− θ)(y − a)|| (51)
= θ||x− a||+ (1− θ)||y − a||
≤ θ + (1− θ) (52)
= 1

where (51) is the triangle inequality, and (52) holds because x and y are both in A.

B. Convex sets contain their convex combinations

Let X be a subset of RN . A convex combination of points in X is a vector x of the form:

x =

k∑
i=1

θixi

where k is a positive integer, {x1, . . . , xk} are vectors in X , and θ1, . . . , θk are non-negative numbers that sum to 1. If X is
a convex set, then it contains all convex combinations of two of its points (by definition of convex). That is, if X is convex
and x1, x2 are in X then (by definition of convex):

θ1x1 + θ2x2 ∈ X
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whenever θ1, θ2 are non-negative and satisfy θ1 + θ2 = 1. By induction, it can be shown that if X is a convex set, then it
contains all convex combinations of its points (for any positive integer k). That is, if X is convex, if x1, . . . , xk are points in
X , and if θ1, . . . , θk are non-negative numbers that sum to 1, then:

k∑
i=1

θixi ∈ X (53)

The value
∑k
i=1 θixi can be viewed as an expectation E [X] of a random vector X that takes values in the k-element set

{x1, . . . , xk} with probabilities θ1, . . . , θk. Thus, if X is a convex set and X is a random vector that takes one of a finite
number of values in X , the expression (53) means that E [X] ∈ X . This holds true more generally for random vectors X that
can take a possibly infinite number of outcomes, where the expectation E [X] is defined either in terms of a summation over
a probability mass function or an integral over a distribution function. This is formalized in the following lemma.

Lemma IV.1. Let X be a random vector that takes values in a set X ⊆ RN . If X is convex and if E [X] is finite, then
E [X] ∈ X .

In the special case when the set X is closed and the expectation E [X] can be approached arbitrarily closely by a convex
combination of a finite number of points in X , then Lemma IV.1 holds by (53) together with the fact that closed sets contain
their boundary points. The proof for general convex sets X is nontrivial and is omitted for brevity.7 Lemma IV.1 is used to
prove an inequality called Jensen’s inequality in Exercise IX-E.17.

C. Convex functions

Let X ⊆ RN be a convex set. Let f : X → R be a real-valued function defined over x ∈ X .

Definition IV.2. A real-valued function f(x) defined over the set X is a convex function if the set X is convex and if for all
x and y in X and all θ ∈ [0, 1] we have:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

The function is said to be strictly convex if it is convex and if the above inequality holds with strict inequality whenever
θ ∈ (0, 1) and x 6= y.

Definition IV.3. A real-valued function f(x) defined over the set X is a concave function if the set X is convex and if for all
x and y in X and all θ ∈ [0, 1] we have:

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

The function is said to be strictly concave if it is concave and if the above inequality holds with strict inequality whenever
θ ∈ (0, 1) and x 6= y.

It follows that a function f(x) defined over a convex set X is a concave function if and only if −f(x) is a convex function.
Likewise, f(x) is strictly concave if and only if −f(x) is strictly convex. The set X must be convex for the definitions of a
convex function and concave function to make sense. Otherwise, the expression f(θx + (1 − θ)y) may not be defined. The
following facts can be proven directly from the definition of convex:
• Let c be a non-negative real number. If f(x) is a convex function, then cf(x) is also a convex function. Likewise, if g(x)

is a concave function, then cg(x) is concave.
• The sum of two convex functions is convex, and the sum of two concave functions is concave.
• The sum of a convex function and a strictly convex function is strictly convex.
Suppose f(x) is a convex function over x ∈ R, and define f̃(x1, . . . , xN ) = f(x1). It can be shown that f̃(x1, . . . , xN ) is

a convex function over (x1, . . . , xN ) ∈ RN . However, f̃(x1, . . . , xN ) is not strictly convex over RN , regardless of whether
or not f(x1) is strictly convex over R (see Exercise IX-E.6). A function of the type f(x) = b+ c1x1 + c2x2 + · · ·+ cNxN ,
where b, c1, . . . , cN are given real numbers, is called an affine function. It can be shown that an affine function defined over
a convex set X ⊆ RN is both a convex function and a concave function (but neither strictly convex nor strictly concave, see
Exercise IX-E.7). In particular, a constant function is both convex and concave.

7Lemma IV.1 holds for any convex set X , regardless of whether or not it is closed and/or bounded. The proof of this fact uses the hyperplane separation
theorem for RN together with induction on the dimensionality of the problem. In particular, if E [X] is finite but is not in X , then there is a (N − 1)-
dimensional hyperplane that passes through E [X] and contains X in its upper half. In particular, there is a nonzero vector γ such that γT x ≥ γTE [X] for
all x ∈ X , and hence γTX ≥ γTE [X] for all realizations of the random variable X . It follows that, with probability 1, the random vector X lies on the
(smaller dimensional) hyperplane for which it is known (by the induction hypothesis) that the expectation cannot leave the convex set. The assumption that
E [X] is finite is important. For example, one can define X = R (note that the set R is convex) and choose any random variable X with an infinite mean.
Then X ∈ R always, but E [X] =∞ /∈ R.
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Lemma IV.2. Suppose f1(x1), . . . , fN (xN ) are convex functions from R to R. Let x = (x1, . . . , xN ) and define f(x) =∑N
i=1 fi(xi).
a) The function f(x) is convex over RN .
b) The function f(x) is strictly convex if and only if all functions fi(xi) are strictly convex over R.

Proof. To prove part (a), let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be vectors in RN and let θ ∈ [0, 1]. We have:

f(θx+ (1− θ)y) =

N∑
i=1

fi(θxi + (1− θ)yi)

≤
N∑
i=1

[θfi(xi) + (1− θ)fi(yi)]

= θf(x) + (1− θ)f(y)

where the inequality holds because each function fi(xi) is convex. This proves part (a). The proof of part (b) is an exercise
(see Exercise IX-E.8).

Lemma IV.3. (Convex inequality constraints) Let x = (x1, . . . , xN ) and let g1(x), . . . , gK(x) be convex functions over a
convex set X ⊆ RN . Let c1, . . . , cK be a collection of real numbers. Define A as the set of all x ∈ X that satisfy all of the
following constraints:

gk(x) ≤ ck for all k ∈ {1, . . . ,K}

Then the set A is convex.

Proof. Exercise (see Exercise IX-E.9).

Lemma IV.4. (Differentiable functions of one variable) Suppose f(x) is a differentiable function over x ∈ R.
a) If f ′(x) is nondecreasing, then f(x) is convex.
b) If f(x) is twice differentiable and satisfies f ′′(x) ≥ 0 for all x ∈ R, then f(x) is convex.
c) If f(x) is twice differentiable and satisfies f ′′(x) > 0 for all x ∈ R, then f(x) is strictly convex.

Proof. To prove part (a), suppose f ′(x) is nondecreasing. Let x and y be real numbers such that x < y. Let θ ∈ (0, 1) and
define m = θx + (1 − θ)y. Suppose that f(m) > θf(x) + (1 − θ)f(y) (we reach a contradiction, see Fig. 6). By the mean
value theorem, there is a point x1 ∈ (x,m) such that f ′(x1) = f(m)−f(x)

m−x . Likewise, there is a point x2 ∈ (m, y) such that
f ′(x2) = f(y)−f(m)

y−m . Notice that x1 < x2. By geometry, it can be seen that the first slope is strictly greater than the second
(see Fig. 6), and so f ′(x1) > f ′(x2), contradicting the fact that f ′(x) is nondecreasing. This proves part (a). Part (b) follows
from (a) by noting that f ′′(x) ≥ 0 implies that f ′(x) is nondecreasing. Part (c) is similar and is omitted for brevity.

x" y"m"

(y,f(y))"

(x,f(x))"

(m,f(m))"

Slope"2"

Slope"1"

x1" x2"
Fig. 6. An illustration of the two slopes f ′(x1) and f ′(x2) associated with the proof of Lemma IV.4.

It follows from Lemmas IV.2 and IV.4 that the following functions are convex over R3:

f(x1, x2, x3) = e5x1 + x22 − x3
g(x1, x2, x3) = 17 + x81 + (4.2)ex1 − 6x2 + 7x3

Suppose x = (x1, . . . , xN ) and f(x) is a twice differentiable function over x ∈ RN . It can be shown that if ∇2f(x) is
a positive semidefinite matrix for all x ∈ RN , then f(x) is convex over RN (see Exercise IX-E.23). If ∇2f(x) is positive
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definite for all x ∈ RN , then f(x) is strictly convex. The following lemma is useful for minimizing convex and differentiable
functions of one variable over an interval.

Lemma IV.5. (Minimizing single-variable convex functions over an interval) Let f : R → R be convex. Suppose y∗ ∈ R
minimizes f(x) over x ∈ R. Let a and b be real numbers such that a < b and consider the problem:

Minimize: f(x) (54)
Subject to: x ∈ [a, b] (55)

The solution to this problem is x∗ = [y∗]ba, where [y∗]ba denotes the projection of y∗ onto the interval [a, b]:

[y∗]ba =

 a if y∗ < a
y∗ if a ≤ y∗ ≤ b
b if b < y∗

More generally, suppose I ⊆ R is an interval, f : I → R is a convex function, and y∗ ∈ I minimizes f(x) over x ∈ I . If
[a, b] ⊆ I then [y∗]ba minimizes f(x) over x ∈ [a, b].

Proof. See Exercise IX-E.21.

A similar result holds when minimizing a convex single-variable function over an interval of the form [a,∞) or (−∞, b],
provided the interval is in the domain of the function. For example, the minimum of the convex function f(x) = (x − 5)2

over x ∈ R is equal to y∗ = 5. Thus:
• The minimum of f(x) over the interval [0, 1] is x∗ = [5]10 = 1.
• The minimum of f(x) over the interval [3, 8] is x∗ = [5]83 = 5.
• The minimum of f(x) over the interval [6.2,∞) is x∗ = [5]∞6.2 = 6.2.
Caveat 1: The result of Lemma IV.5 does not hold for multi-dimensional problems. For example, if (x∗, y∗) minimizes

the convex function f(x, y) over (x, y) ∈ R2, then the projection of (x∗, y∗) onto the hypercube [0, 1]2 does not necessarily
minimize f(x, y) over the hypercube.

Caveat 2: Be careful to use Lemma IV.5 only for the domain over which f(x) is defined. For example, consider minimizing
the convex function f : (0,∞) → R defined by f(x) = − log(x) − 5x subject to x ∈ [1/2, 1]. Differentiating gives f ′(x) =
−1/x− 5. Setting the expression −1/x− 5 to zero gives x = −1/5. So, is the minimizer x∗ = [−1/5]11/2 = 1/2? No. Clearly
the minimum of a decreasing function over the interval [1/2, 1] occurs at x∗ = 1. The reason the projection operation failed
is that f ′(x) is only defined for x > 0; it does not make sense to use derivative information for x ≤ 0. In particular, −1/5 is
not the minimizer of f(x) over the interval x ∈ (0,∞) because −1/5 /∈ (0,∞). See also Exercise IX-F.18.

D. Jensen’s inequality
Let X be a convex subset of RN and let f(x) be a convex function defined over x ∈ X . By the definition of convexity, we

know that for any two vectors x1 and x2 in X and any probabilities θ1 and θ2 that are non-negative and sum to 1, we have:

f(θ1x1 + θ2x2) ≤ θ1f(x1) + θ2f(x2)

Now consider three vectors x1, x2, x3 in X , and three probabilities θ1, θ2, θ3 that are non-negative and sum to 1. At least one
of these probabilities must be positive. Without loss of generality assume θ3 > 0. Now define θ̃ = (θ2 + θ3) and note that
θ̃ > 0. Define:

x̃ =
θ2

θ̃
x2 +

θ3

θ̃
x3

Since X is convex, we know x̃ ∈ X . Then:

f(θ1x1 + θ2x2 + θ3x3) = f

(
θ1x1 + θ̃

[
θ2

θ̃
x2 +

θ3

θ̃
x3

])
= f(θ1x1 + θ̃x̃)

≤ θ1f(x1) + θ̃f(x̃)

≤ θ1f(x1) + θ̃

[
θ2

θ̃
f(x2) +

θ3

θ̃
f(x3)

]
= θ1f(x1) + θ2f(x2) + θ3f(x3)

where the first two inequalities hold because f(x) is convex.
Similarly (by induction), it can be shown that if x1, . . . , xk is any finite sequence of points in X and if θ1, . . . , θk are any

non-negative values that sum to 1, we have:

f

(
k∑
i=1

θixi

)
≤

k∑
i=1

θif(xi) (56)
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The above inequality is called Jensen’s inequality. A special case of Jensen’s inequality holds for time averages: Let {x(t)}∞t=0

be an infinite sequence of vectors in X . For slots t ∈ {1, 2, 3, . . .}, define the time average:

x(t) =
1

t

t−1∑
τ=0

x(τ)

Then:

f(x(t)) ≤ 1

t

t−1∑
τ=0

f(x(τ)) (57)

The inequality (57) is used in the development of the drift-plus-penalty algorithm for convex programs.
A more general form of Jensen’s inequality is as follows: Let X be a convex set and let f(x) be a convex function over X . Let

X be a random vector that takes values in the set X and that has finite mean E [X]. Then E [X] ∈ X and f(E [X]) ≤ E [f(X)].
In the special case when the random vector takes a finite number of possibilities x1, . . . , xk with probabilities θ1, . . . , θk, then
the equation f(E [X]) ≤ E [f(X)] reduces to (56). However, the equation f(E [X]) ≤ E [f(X)] holds more generally in cases
when X can take a countably or uncountably infinite number of values (see Exercise IX-E.17).

E. Convex hulls

Let X be a subset of RN . The convex hull of X , written Conv(X ), is the set of all convex combinations of points in
X (including all points in X themselves). Thus, if x ∈ Conv(X ), then x =

∑k
i=1 θixi for some positive integer k, some

non-negative values θ1, . . . , θk that sum to 1, and for some vectors x1, . . . , xk that satisfy xi ∈ X for all i ∈ {1, . . . , k}.
It can be shown that Conv(X ) is always a convex set.8 In general, it holds that X ⊆ Conv(X ). If the set X itself is convex,

then X = Conv(X ). If two sets X and Y satisfy X ⊆ Y , then Conv(X ) ⊆ Conv(Y). It can be shown that if X is a compact
set, then Conv(X ) is also a compact set.

F. Hyperplane separation

A theory of hyperplane separation for convex sets, which shows when solutions of constrained optimization problems are
also solutions of unconstrained problems with Lagrange multiplier weights, is given in Appendix B.

V. CONVEX PROGRAMS

Let N be a positive integer. A convex program is an optimization problem that seeks to find a vector x = (x1, . . . , xN ) ∈ RN
that minimizes a convex function f(x) subject to a collection of convex constraints. Specifically, it is a problem of the form:

Minimize: f(x) (58)
Subject to: gk(x) ≤ ck ∀k ∈ {1, . . . ,K} (59)

x ∈ X (60)

where c1, . . . , cK are given real numbers, X is a convex subset of RN , and f(x), g1(x), . . . , gK(x) are continuous and convex
functions from X to R. It can be shown that a convex function defined over a convex set X is continuous at every interior point
of X . Thus, the assumption that the functions f(x), g1(x), . . . , gK(x) are both convex and continuous ensures that continuity
holds at all points of X , including points on the boundary.9 The convexity assumptions allow convex programs to be solved
more easily than general constrained optimization problems. The convex program is called a linear program in the special
case when X = RN and the functions f(x), g1(x), . . . , gK(x) are affine.

The problem is feasible if there exists an x ∈ RN that satisfies all of the constraints (59)-(60). Lemma IV.3 ensures that the
set of all vectors x ∈ RN that satisfy the constraints (59)-(60) is a convex set. Specifically, a constraint of the form g(x) ≤ c
is called a convex constraint whenever c ∈ R and g(x) is a convex function over the set X of interest. That is because the set
of all x ∈ X that satisfy this constraint forms a convex set. Since the intersection of convex sets is convex, imposing more and
more convex constraints can shrink the feasible set but maintains its convexity. It can be shown that if the problem is feasible
and if X is a compact set, then there always exists an optimal solution x∗.

Without loss of generality, one can assume all constants ck in the above convex program are zero. This is because a constraint
of the form gk(x) ≤ ck is equivalent to g̃k(x) ≤ 0, where g̃k(x) is defined by g̃k(x) = gk(x)− ck. Note that g̃k(x) is convex
if and only if gk(x) is convex.

8It can be shown that Conv(X ) is the “smallest” convex set that contains X , in the sense that if A is a convex set that contains X , then Conv(X ) ⊆ A.
This property is sometimes used as an equivalent definition of Conv(X ). Since the intersection of an arbitrary number of convex sets is convex, the intersection
of all convex sets that contain X must be the “smallest” convex set that contains X , and so this intersection is Conv(X ).

9All convex functions f(x) defined over RN are continuous because the set RN has no boundary points. An example function f(x) defined over [0, 1]
that is convex but not continuous is f(x) = 0 for x ∈ [0, 1) and f(1) = 1. Of course, the point of discontinuity occurs on the boundary of [0, 1].
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A. Equivalent forms and a network flow example

The structure (58)-(60) is the standard form for a convex program. Standard form is useful for proving results about general
convex programs, and for developing and implementing algorithms that produce exact or approximate solutions. However,
standard form is not always the most natural way of writing a convex program.

For example, consider a network that supports communication of a collection of N different traffic streams. Each traffic
stream flows over its own path of links. The paths can overlap, so that some links support multiple traffic streams. Let L be
the number of links, and let Cl be the capacity of each link l ∈ {1, . . . , L}. Let x = (x1, . . . , xN ) be a vector of flow rates for
each stream. Given the link capacities, the problem is to find a vector of flow rates the network can support that maximizes
a concave utility function φ(x) =

∑N
i=1 log(1 + xi), which represents a measure of network fairness. This network utility

maximization problem is easily described as follows:

Maximize:
∑N
i=1 log(1 + xi) (61)

Subject to:
∑
i∈N (l) xi ≤ Cl ∀l ∈ {1, . . . , L} (62)

xi ≥ 0 ∀i ∈ {1, . . . , N} (63)

where N (l) is the set of streams in the set {1, . . . , N} that use link l (defined for each link l ∈ L).
While the above optimization problem is not in standard form, it is correct to call it a convex optimization problem. This

is because the problem can easily be put in standard form by changing the maximization to a minimization, bringing all
non-constant terms of the inequality constraints to the left-hand-side, and/or by defining a convex set X consisting of the
intersection of one or more of the constraints:

Minimize: −
∑N
i=1 log(1 + xi)

Subject to:
∑
i∈N (l) xi ≤ Cl ∀l ∈ {1, . . . , L}

x ∈ X

where X is defined as the set of all vectors x = (x1, . . . , xN ) that satisfy the constraints (63). To formally see that the above
is now in standard form, note that X is a convex set. Further, we can define functions f(x) and gl(x) by:

f(x) = −
N∑
i=1

log(1 + xi)

gl(x) =
∑
i∈N (l)

xi ∀l ∈ {1, . . . , L}

and note that these are convex and continuous functions over x ∈ X .
The following structures are not in standard form, but are accepted ways of writing convex programs. That is because they

are often more natural to write than the corresponding standard form, and they can easily be put into standard form by trivial
rearrangements.
• Maximizing a concave function φ(x). This is equivalent to minimizing the convex function −φ(x).
• Enforcing a constraint g(x) ≤ r(x) (where g(x) is convex and r(x) is concave). This is equivalent to the convex constraint
g(x)− r(x) ≤ 0.

• Enforcing a constraint g(x) ≥ r(x) (where g(x) is concave and r(x) is convex). This is equivalent to the convex constraint
r(x)− g(x) ≤ 0.

• Enforcing a linear equality constraint
∑N
i=1 aixi = c. This is equivalent to the following two linear (and hence convex)

inequality constraints:
N∑
i=1

aixi − c ≤ 0

c−
N∑
i=1

aixi ≤ 0

• Enforcing an interval constraint xi ∈ [a, b]. This clearly imposes a convex constraint, and is equivalent to the following
two linear inequality constraints:

−x+ a ≤ 0

x− b ≤ 0

Example V.1. Consider the network shown in Fig. 7. There are three traffic flows. Let r1, r2, r3 be the rate of each flow
(in units of bits/second). Each link can support a maximum flow rate (in units of bits/second), called the link capacity. The
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Fig. 7. A network with three flows, for Example V.1.

capacities of each link are shown in the figure. The traffic flows use paths shown in the figure. Note that the second flow is split
into two subflows with rates x and y. The goal is to find a vector of flow rates (r1, r2, r3), together with rates x and y, that
can be supported over the network and that maximize the utility function φ(r1, r2, r3) = log(1+r1)+log(1+r2)+log(1+r3).
Define X as the set of all (r1, r2, r3, x, y) ∈ RN such that ri ≥ 0 for all i ∈ {1, 2, 3} and x ≥ 0 and y ≥ 0. The resulting
convex program is:

Maximize:
∑3
i=1 log(1 + ri)

Subject to: r1 ≤ 3

r1 + x ≤ 4

r1 ≤ 4

x ≤ 2

x ≤ 4

y ≤ 4

y + x+ r3 ≤ 4

x+ y = r2

(r1, r2, r3, x, y) ∈ X

The above problem includes some redundant constraints. For example, the constraint r1 ≤ 4 is implied by the constraint r1 ≤ 3.
Similarly, the constraint r1 ≤ 4 is implied by the constraints r1 + x ≤ 4 and x ≥ 0. Removing this redundancy gives:

Maximize:
∑3
i=1 log(1 + ri) (64)

Subject to: r1 ≤ 3 (65)
r1 + x ≤ 4 (66)
x ≤ 2 (67)

y + x+ r3 ≤ 4 (68)
x+ y = r2 (69)

(r1, r2, r3, x, y) ∈ X (70)

There are other ways of representing this same problem. For example, one can define a set X̃ as the union of X with the set
of all (r1, r2, r3, x, y) such that x+ y = r2. Then the last two constraints above can be replaced by (r1, r2, r3, x, y) ∈ X̃ .

Example V.2. (Unhelpful representations) Some ways of representing a problem are correct but unhelpful. For example, the
problem (64)-(70) can be equivalently written by introducing utility variables ui = log(1 + ri):

Maximize: u1 + u2 + u3

Subject to: r1 ≤ 3

r1 + x ≤ 4

x ≤ 2

y + x+ r3 ≤ 4

x+ y = r2

(r1, r2, r3, x, y) ∈ X
ui = log(1 + ri) ∀i ∈ {1, 2, 3} (71)

ui ≥ 0 ∀i ∈ {1, 2, 3}
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However, the above representation is not a convex program because the constraints (71) are not convex (recall that equality
constraints are convex only when both sides are affine functions of the optimization variables). One can fix the problem, while
still keeping the ui variables, by changing the non-convex constraints (71) to the convex constraints ui ≤ log(1 + ri) for
all i ∈ {1, 2, 3}. This does not change the set of solutions because an optimal solution must meet the inequality constraints
ui ≤ log(1 + ri) with equality. Indeed, any candidate solution that satisfies all constraints but has ui < log(1 + ri) for some
i ∈ {1, 2, 3} can be strictly improved, without violating the constraints, by increasing ui to log(1 + ri).

B. Linear programs

When X = RN and the functions f(x), g1(x), . . . , gK(x) are affine, the convex program (58)-(60) has the form:

Minimize: c0 +
∑N
i=1 cixi

Subject to:
∑N
i=1 aikxi ≤ bk ∀k ∈ {1, . . . ,K}

(x1, . . . , xN ) ∈ RN

for some given real numbers c0, c1, . . . , cN , aik for i ∈ {1, . . . , N} and k ∈ {1, . . . ,K}, and bk for k ∈ {1, . . . ,K}. Of
course, c0 does nothing but shift up the value of the objective function by a constant, and so the solution to the above problem
is the same as the solution to a modified problem where c0 is removed:

Minimize:
∑N
i=1 cixi

Subject to:
∑N
i=1 aikxi ≤ bk ∀k ∈ {1, . . . ,K}

(x1, . . . , xN ) ∈ RN

It is often easier to represent the above problem in matrix form: Let c = (c1, . . . , cN ) be a column vector, let b = (b1, . . . , bK) be
a column vector, and let A = (aik) be a K×N matrix. Let the variables be represented by a column vector x = (x1, . . . , xN ).
The problem is then:

Minimize: cTx

Subject to: Ax ≤ b
x ∈ RN

where cTx is the inner product of c and x, and the inequality Ax ≤ b is taken row-by-row.

VI. THE DRIFT-PLUS-PENALTY ALGORITHM FOR CONVEX PROGRAMS

A. Convex programs over compact sets

Let x = (x1, . . . , xN ) represent a vector in RN . Consider the following convex program:

Minimize: f(x) (72)
Subject to: gk(x) ≤ ck ∀k ∈ {1, . . . ,K} (73)

x ∈ X (74)

where:10

• X is a convex and compact subset of RN . Recall that a subset of RN is said to be compact if it is closed and bounded.
• Functions f(x), g1(x), . . . , gK(x) are continuous and convex functions over x ∈ X .
• ck values are given real numbers (possibly 0).
The only significant difference between the above problem and a general convex program is that the set X here is assumed

to be both convex and compact, rather than just convex. The compactness assumption ensures that an optimal solution exists
whenever the problem is feasible (that is, whenever it is possible to satisfy all constraints (73)-(74)). Compactness is also
useful because it restricts the search for an optimal solution to a bounded region of RN .

Assume the constraints are feasible. Define x∗ as an optimal solution to the above problem. Define f∗ = f(x∗) as the
optimal objective function value. A vector x̃ ∈ X is called an ε-approximation of the solution if:

f(x̃) ≤ f∗ + ε

gk(x̃) ≤ ck + ε ∀k ∈ {1, . . . ,K}

We say that x̃ is an O(ε)-approximation if the “ε” values in the above inequalities are replaced by a constant multiple of ε.
The following subsections develop an algorithm that produces an O(ε)-approximation to the convex program, for any desired

10There is no loss of generality in assuming that the ck values are all zero, since the gk(x) functions can simply be modified to g̃k(x) = gk(x)− ck .
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value ε > 0. The convergence time of the algorithm is O(1/ε3) in general cases, and is O(1/ε2) under the mild assumption
that a Lagrange multiplier vector exists (see Section VI-G). A modified algorithm with a delayed start mechanism has O(1/ε)
convergence time under additional assumptions [7].

Exercises IX-F.15-IX-F.16 require only the definition of ε-approximation above, together with Jensen’s inequality, to examine
convergence time issues related to a drift-plus-penalty algorithm developed in this section and an enhanced algorithm developed
in the next section.

B. Virtual queues
The drift-plus-penalty algorithm is a method for choosing values x(t) = (x1(t), . . . , xN (t)) ∈ X over a sequence of time

slots t ∈ {0, 1, 2, . . .} so that the time average x(t) = (x1(t), . . . , xN (t)) converges to a close approximation of the solution
to a particular optimization problem. The algorithm is developed in [3] for more general stochastic problems, and has close
connections to optimization for queueing networks. These notes consider the drift-plus-penalty algorithm in the special case
of the (non-stochastic) convex program (72)-(74).

Recall that the time average x(t) is defined for all t ∈ {1, 2, 3, . . .} by:

x(t) =
1

t

t−1∑
τ=0

x(τ)

For each constraint k ∈ {1, . . . ,K}, define a virtual queue Qk(t) with update equation:

Qk(t+ 1) = max[Qk(t) + gk(x(t))− ck, 0] (75)

with initial condition Qk(0) = 0 for all k ∈ {1, . . . ,K}. The value gk(x(t)) acts as a virtual arrival to the queue, and the value
ck acts as a virtual service rate (per slot). In a physical queueing system the arrivals and service rate are always non-negative.
However, in this virtual queue, these values gk(x(t)) and ck might be negative. If the queue Qk(t) is “stable,” so that the long
term departure rate is equal to the long term arrival rate, then the time average of the arrival process gk(x(t)) must be less
than or equal to the service rate ck. By Jensen’s inequality, this implies that the limiting value of gk(xk(t)) is also less than
or equal to ck. Thus, stabilizing the virtual queue ensures that the desired inequality constraint is satisfied. This observation is
formalized in the following lemma.

Lemma VI.1. (Virtual queues) Under the queue update (75) we have for every slot t > 0 and for all k ∈ {1, . . . ,K}:

gk(x(t)) ≤ ck +
Qk(t)

t
Proof. Fix k ∈ {1, . . . ,K}. The equation (75) for a given slot τ implies:

Qk(τ + 1) ≥ Qk(τ) + gk(x(τ))− ck
Rearranging terms gives:

Qk(τ + 1)−Qk(τ) ≥ gk(x(τ))− ck
Summing the above inequality over τ ∈ {0, 1, . . . , t− 1} (for some slot t > 0) gives:

Qk(t)−Qk(0) ≥
t−1∑
τ=0

gk(x(τ))− ckt

Dividing by t and using the fact that Qk(0) = 0 gives:

Qk(t)

t
≥ 1

t

t−1∑
τ=0

gk(x(τ))− ck

Using Jensen’s inequality (57) gives:
Qk(t)

t
≥ gk(x(t))− ck

The value Qk(t)/t can be viewed as a bound on the constraint violation of constraint k up to slot t. The above lemma
implies that if we control the system to ensure that limt→∞Qk(t)/t = 0 for all k ∈ {1, . . . ,K}, then all desired constraints
are asymptotically satisfied:11

lim
t→∞

gk(x(t)) ≤ ck

A queue that satisfies Qk(t)/t→ 0 is called rate stable. Thus, the goal is to make all queues rate stable. More importantly, if
we can control the system to maintain a finite worst-case queue size Qmax, then the constraint violations decay like Qmax/t
as time progresses.

11More formally, the result is that lim supt→∞ gk(x(t)) ≤ ck .
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C. Lyapunov optimization

Define L(t) = 1
2

∑K
k=1Qk(t)2 as the sum of squares of all virtual queues (divided by 2 for convenience). This is called a

Lyapunov function. The value L(t) is a scalar measure of the current queue backlogs. To ensure rate stability of all queues, it is
desirable to make decisions that push L(t) down as much as possible from one slot to the next. Define ∆(t) = L(t+1)−L(t)
as the Lyapunov drift, being the difference in L(t) over one slot. The drift-plus-penalty algorithm chooses x(t) ∈ X every slot
t to minimize a bound on the following drift-plus-penalty expression [3]:

∆(t) + V f(x(t))

where V is a non-negative parameter that affects the amount to which we consider minimization of the penalty term f(x(t)).
Intuitively, we want to make ∆(t) small to ensure low queue backlogs. On the other hand, we also want to make f(x(t)) small to
ensure a small value of the objective function. These two goals are managed by minimizing the weighted sum ∆(t)+V f(x(t)).
It will be shown that the parameter V affects a performance tradeoff between distance to the optimal objective function value
and the convergence time required to satisfy the desired constraints.

The first step is to compute a bound on ∆(t). We have for each queue k ∈ {1, . . . ,K}:

Qk(t+ 1)2 = max[Qk(t) + gk(x(t))− ck, 0]2

≤ (Qk(t) + gk(x(t))− ck)2

= Qk(t)2 + (gk(x(t))− ck)2 + 2Qk(t)(gk(x(t))− ck)

Therefore:
1

2
[Qk(t+ 1)2 −Qk(t)2] ≤ 1

2
(gk(x(t))− ck)2 +Qk(t)(gk(x(t))− ck)

Summing the above over k ∈ {1, . . . ,K} gives:

∆(t) ≤ 1

2

K∑
k=1

(gk(x(t))− ck)2 +

K∑
k=1

Qk(t)(gk(x(t))− ck)

Define B as an upper bound on the worst-case value of 1
2

∑K
k=1(gk(x(t))− ck)2. This value B is finite because the set X is

assumed to be compact and the functions gk(x) are continuous. Then:

∆(t) ≤ B +

K∑
k=1

Qk(t)(gk(x(t))− ck)

Adding V f(x(t)) to both sides gives the following important drift-plus-penalty inequality:

∆(t) + V f(x(t)) ≤ B + V f(x(t)) +

K∑
k=1

Qk(t)[gk(x(t))− ck] (76)

The drift-plus-penalty algorithm is designed to operate as follows: Every slot t, all queues Qk(t) are observed. Then, the
controller makes a greedy decision by selecting x(t) ∈ X to minimize the right-hand-side of (76).

Drift-plus-penalty algorithm (DPP): Every slot t ∈ {0, 1, 2, . . .}, observe Q1(t), . . . , QK(t) and perform the following:
• Choose x(t) ∈ X to minimize:

V f(x(t)) +
∑K
k=1Qk(t)gk(x(t)) (77)

• Update the virtual queues Qk(t) via (75), that is, for all k ∈ {1, . . . ,K}:

Qk(t+ 1) = max[Qk(t) + gk(x(t))− ck, 0] (78)

• Update the time average vector x(t) = 1
t

∑t−1
τ=0 x(τ) by:

x(t+ 1) =
1

t+ 1

t∑
τ=0

x(τ) = x(t)

(
t

t+ 1

)
+ x(t)

(
1

t+ 1

)
It is important to emphasize that, on slot t, the values Q1(t), . . . , QK(t) are treated as known constants that act as weights in

the expression (77). Given these weights for slot t, the expression is minimized by searching over all x(t) ∈ X . The minimizer
x(t) is used in the queue update equation to compute the new weights Q1(t+ 1), . . . , QK(t+ 1) for the next slot.

The relationship between the above algorithm and the dual subgradient algorithm (50) is as follows. Assume V > 0 and
define scaled virtual queues Q̃k(t) = Qk(t)/V . The DPP algorithm can be written in terms of Q̃k(t) by dividing (77)-(78) by
V :
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• Choose x(t) ∈ X to minimize:

f(x(t)) +

K∑
k=1

Q̃k(t)gk(x(t))

• Update Q̃k(t) for each k ∈ {1, . . . ,K} by:

Q̃k(t+ 1) = max[Q̃k(t) + (1/V )(gk(x(t))− ck), 0] (79)

With the above notation, the variables (Q̃1(t), . . . , Q̃K(t)) can be viewed as Lagrange multiplier estimates (µ1, . . . , µK) at
each step t, and the update equation (79) is the same as the dual subgradient update (50) with a step size δ = 1/V . The
main difference is that the dual subgradient algorithm does not traditionally take a time average and requires certain strict
convexity properties to converge. The time averaging operation in the DPP algorithm allows optimization of time averages for
more general problems, including general convex programs as well as nonconvex and stochastic problems [3]. In fact, a more
general version of the DPP algorithm was first developed for nonconvex and stochastic problems and was later shown to have
the form given above in the special case of deterministic convex programs. Since the main steps (77)-(78) of the above (convex
and deterministic) version of the DPP algorithm are the same as the dual subgradient algorithm, it is also correct to simply
call this the dual subgradient algorithm (augmented by the final step that takes a time average of the “primal” variables x(t)).

D. Example convex program

Consider the following example convex program, stated in terms of optimization variables x and y:

Minimize: ex + y2 (80)
Subject to: x+ y ≥ 4 (81)

x+ 3y ≥ 6 (82)
x ∈ [0, 5], y ∈ [0, 5] (83)

While this problem can easily be solved by hand, it is instructive to show the steps of the drift-plus-penalty algorithm. The
problem is equivalent to the following problem that inverts the inequality constraints (81)-(81):

Minimize: ex + y2 (84)
Subject to: −x− y ≤ −4 (85)

−x− 3y ≤ −6 (86)
x ∈ [0, 5], y ∈ [0, 5] (87)

Let X be the set of all (x, y) that satisfy constraints (87) (this set is a square and is indeed a convex and compact set).
There are two additional constraints (85)-(86), each will receive its own virtual queue. Notice that all non-constant terms of
the constraints (85)-(86) have been shifted to the left-hand-side, as required. The drift-plus-penalty algorithm reduces to the
following:

Virtual queues: Define Q1(0) = Q2(0) = 0. Variables x(t), y(t) are used in the following queue update equations every slot
t ∈ {0, 1, 2, . . .}:

Q1(t+ 1) = max[Q1(t)− x(t)− y(t) + 4, 0] (88)
Q2(t+ 1) = max[Q2(t)− x(t)− 3y(t) + 6, 0] (89)

Variable selection: Every slot t ∈ {0, 1, 2, . . .}, observe Q1(t), Q2(t) and choose (x(t), y(t)) ∈ X to minimize:

V (ex(t) + y(t)2) +Q1(t)(−x(t)− y(t)) +Q2(t)(−x(t)− 3y(t))

This is a correct answer, but not complete. That is because a complete answer should exploit separable optimization in the
variable selection whenever possible. By rearranging terms, the variable selection decision corresponds to the following:

Minimize:
(
V ex(t) − (Q1(t) +Q2(t))x(t)

)
+
(
V y(t)2 − (Q1(t) + 3Q2(t))y(t)

)
Subject to: x(t) ∈ [0, 5], y(t) ∈ [0, 5]

It is apparent that x(t) and y(t) can be optimized separately:
• x(t) selection: Choose x(t) ∈ [0, 5] to minimize V ex(t) − (Q1(t) +Q2(t))x(t). Thus:

x(t) =

[
log

(
Q1(t) +Q2(t)

V

)]5
0

(90)

where [a]50 represents a projection of the real number a onto the interval [0, 5].
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• y(t) selection: Choose y(t) ∈ [0, 5] to minimize V y(t)2 − (Q1(t) + 3Q2(t))y(t). Thus:

y(t) =

[
Q1(t) + 3Q2(t)

2V

]5
0

(91)

Deterministic queue bounds: Exercise IX-G.7 shows that, in this example, there are constants β1, β2, C1, C2 such that
Q1(t) ≤ β1V + C1 and Q2(t) ≤ β2V + C2 for all t. Substituting this deterministic queue bound into Lemma VI.1 implies
that for all t ∈ {1, 2, 3, . . .}:

−x(t)− y(t) ≤ −4 + (β1V + C1)/t

−x(t)− 3y(t) ≤ −6 + (β2V + C2)/t

Thus, the vector (x(t), y(t)) is very close to satisfying the desired constraints when t is large relative to V .
Discussion: Choosing the set X as the square corresponding to constraints (87) was convenient as it led to a simple separable

optimization for x(t) and y(t). To produce the simplest algorithm for multi-dimensional problems, a rule of thumb is to set X
as a multi-dimensional hyper-rectangle so that each variable is restricted to a particular interval. However, this is not necessary
for the algorithm, as shown in the next subsection.

E. Choosing a different set X
Consider the same problem (84)-(87). However, now define X as the set of all (x, y) that satisfy the constraints (86)-(87).

This is the intersection of the compact square [0, 5] × [0, 5] with the convex set defined by constraint −x − 3y ≤ −6. The
resulting set is still convex and compact, but is no longer a square. The only remaining constraint in the problem is (85) (being
the constraint −x− y ≤ −4). Thus, the drift-plus-penalty algorithm uses only one virtual queue:

Virtual queue: Define the virtual queue Q(t) with update equation:

Q(t+ 1) = max[Q(t)− x(t)− y(t) + 4, 0]

Variable selection: Every slot t ∈ {0, 1, 2, . . .}, observe Q(t) and choose (x(t), y(t)) ∈ X to minimize:

V (ex(t) + y(t)2) +Q(t)(−x(t)− y(t))

This reduces to the following problem every slot t:

Minimize:
(
V ex(t) −Q(t)x(t)

)
+
(
V y(t)2 −Q(t)y(t)

)
Subject to: x(t) ∈ [0, 5], y(t) ∈ [0, 5], x(t) + 3y(t) ≥ 6

While the objective function in the above minimization is still a separable sum of terms involving x(t) and y(t), the constraint
x(t) + 3y(t) ≥ 6 couples the (x(t), y(t)) selection, so that these variables cannot be chosen separately. One can obtain a
(non-separable) solution to the above problem by using a Lagrange multiplier on the constraint x(t) + 3y(t) ≥ 6.

The performance theorem of the next subsection ensures that time averages (x(t), y(t)) from both the algorithm in this
subsection and the algorithm in the previous subsection approach the same optimal solution to problem (80)-(83) as V →∞.

F. Performance theorem

Define Q(t) = (Q1(t), . . . , QK(t)), and define ||Q(t)|| =
√∑K

i=1Qi(t)
2. The following theorem is a special case of results

for more general stochastic problems in [3].

Theorem VI.1. If the convex program (72)-(74) is feasible, then the drift-plus-penalty algorithm ensures:
(a) f(x(t)) ≤ f∗ +B/V for all slots t ∈ {1, 2, 3, . . .}.

(b) limt→∞
Qk(t)
t = 0 for all k ∈ {1, . . . ,K}.

(c) lim supt→∞ gk(x(t)) ≤ ck for all k ∈ {1, . . . ,K}.12

(d) ||Q(t)||/t ≤ O(
√
V/t).

12The “lim sup” can be replaced by “lim” whenever the regular limit exists. The value lim supt→∞ h(t) exists (possibly being ∞ or −∞) for any
real-valued function h(t), and is the largest limiting value over any subsequence of times tk that increase to infinity and for which the regular limit of h(tk)
exists. For example, limt→∞ cos(t) does not exist, but lim supt→∞ cos(t) = 1. Indeed, note that no subsequence of times tk can have a limiting value of
cos(tk) that is larger than 1, but one can define the particular subsequence tk = 2πk (for positive integers k) that satisfies limk→∞ cos(tk) = 1. If h(t) is
a real valued function and if c is a real number, the statement “lim supt→∞ h(t) ≤ c” is equivalent to the statement that “for all ε > 0, there is a time Tε
such that h(t) ≤ c+ ε whenever t ≥ Tε.” It is also equivalent to the statement that “limt→∞max[h(t), c] = c.” If two functions h1(t) and h2(t) satisfy
h1(t) ≤ h2(t) for all t ≥ 0, it can be shown that lim supt→∞ h1(t) ≤ lim supt→∞ h2(t).
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Proof. (Theorem VI.1 part (a)) Since the drift-plus-penalty algorithm chooses x(τ) ∈ X to minimize the right-hand-side of
(76) on each slot τ , and the optimal solution x∗ is also a point in X , we have:

∆(τ) + V f(x(τ)) ≤ B + V f(x∗) +

K∑
k=1

Qk(τ)(gk(x∗)− ck) (92)

≤ B + V f∗ (93)

where the final inequality holds because f(x∗) = f∗ and gk(x∗) ≤ ck for all k. Summing the above over τ ∈ {0, . . . , t− 1}
gives:

L(t)− L(0) + V

t−1∑
τ=0

f(x(τ)) ≤ Bt+ V f∗t

Dividing by V t and using the fact that L(0) = 0 gives:

L(t)

V t
+

1

t

t−1∑
τ=0

f(x(τ)) ≤ B

V
+ f∗ (94)

Using L(t) ≥ 0 and Jensen’s inequality (57) gives:

f(x(t)) ≤ B

V
+ f∗

Proof. (Theorem VI.1 parts (b)-(d)) From (94) we have for all t ∈ {1, 2, 3, . . .}:
L(t)

V t
+ fmin ≤

B

V
+ f∗

where fmin = infx∈X f(x). The value fmin is finite because X is compact and f(x) is continuous. Rearranging terms gives:

L(t) ≤ Bt+ (f∗ − fmin)V t

Substituting the definition L(t) = 1
2 ||Q(t)||2 gives;

||Q(t)||2 ≤ 2[B + (f∗ − fmin)V ]t

Thus:
||Q(t)||

t
≤
√

2[B + (f∗ − fmin)V ]

t

This proves part (d). Part (d) immediately proves part (b). Part (b) with Lemma VI.1 proves part (c).

The theorem shows that V can be chosen as large as desired to ensure f(x(t)) is arbitrarily close to the optimal value f∗,
with a corresponding tradeoff in the time required for the constraints to be close to being satisfied. Choosing V = 1/ε yields an
O(ε)-approximation. The time required for the constraints to be satisfied within O(ε) is the time t such that ||Q(t)||/t ≤ O(ε).
From part (d) of the above theorem, this is ensured if

√
V/t ≤ ε. If V = 1/ε, it follows that we need time t ≥ 1/ε3. However,

the bound in part (d) is overly conservative. An improved convergence time bound of O(1/ε2) is given in the next subsection
under an assumption that a Lagrange multiplier vector exists.

The above drift-plus-penalty theorem is developed in a more general stochastic context in [3] (see also [8]). Applications to
distributed convex programming are in [9], where an improved O(1/ε2) convergence time is shown under a Slater condition.
A similar O(1/ε2) convergence time is shown in [10]. In the (deterministic) convex program context, the drift-plus-penalty
algorithm is similar to the dual subgradient algorithm [1][2]. However, the dual subgradient algorithm traditionally does not
take time averages and requires more stringent strict convexity assumptions for its mathematical analysis.

G. Improved convergence time analysis

Theorem VI.1 only requires the convex program (72)-(74) to be feasible. The following theorem provides a tighter O(1/ε2)
convergence time analysis under the additional assumption that a Lagrange multiplier vector exists. Specifically, assume there
exists a vector µ = (µ1, . . . , µK) such that µk ≥ 0 for all k ∈ {1, . . . ,K}, and:

f(x) +

K∑
k=1

µkgk(x) ≥ f(x∗) +

K∑
k=1

µkck ∀x ∈ X (95)

This Lagrange multiplier assumption is equivalent to the existence of a non-vertical hyperplane that is tangent to a certain
convex set, as discussed in detail in Appendix B. The following theorem is from [4].
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Theorem VI.2. (Improved convergence time [4]) Suppose the convex program (72)-(74) is feasible and that a Lagrange
multiplier vector µ = (µ1, . . . , µk) exists (so that (95) holds). Then the drift-plus-penalty algorithm with V ≥ 0 and initial
conditions Qk(0) = 0 for all k ∈ {1, . . . ,K} ensures:

(a) f(x(t)) ≤ f∗ + B
V for all slots t ∈ {1, 2, 3, . . .}, where B is the constant used in (76).

(b) ||Q(t)||
t ≤ V ||µ||+

√
V 2||µ||2+2Bt

t for all t ∈ {1, 2, 3, . . .}.
(c) Define V = 1/ε. Then for any integer t ≥ 1/ε2 we have:

f(x(t)) ≤ f∗ +O(ε)

gk(x(t)) ≤ ck +O(ε) ∀k ∈ {1, . . . ,K}
x(t) ∈ X

Hence, the drift-plus-penalty algorithm produces an O(ε) approximation to the solution with a convergence time of O(1/ε2).

Proof. Part (a) is already known from Theorem VI.1. Part (c) follows immediately from parts (a) and (b) together with Lemma
VI.1. Part (b) is proven in Appendix C.

Additional convergence time improvements, faster than O(1/ε2), are shown in the following references:
• Work in [7] shows that under certain linear-type assumptions, the convergence time of DPP can be further pushed to
O(1/ε) by using delayed time averages that start the averaging after some later time T > 0.

• Work in [11] shows that an algorithm equivalent to DPP has O(1/ε) convergence time under certain strong convexity
assumptions.13

• Work in [12] shows the DPP algorithm has O(1/ε) convergence time under strong convexity assumptions that are slightly
less stringent than [11]. Work [12] also considers DPP with delayed time averages: Under strong convexity assumptions
that are more stringent than [11], the algorithm is shown to have an improved convergence time of O(1/ε2/3). Further
improvements to O(log(1/ε)) are shown in [12] under even more stringent assumptions.

• Work in [5] develops a modification of DPP that achieves O(1/ε) convergence time for general convex programs (without
requiring linearity or strong convexity).

• Alternative algorithms for O(1/ε) convergence time under various assumptions are considered in [13][14][15].
The algorithms in the above bulleted list are related to the basic dual subgradient algorithm. Such algorithms typically

require a large number of iterations, but make simple decisions at each iteration. There are other classes of algorithms (such
as interior point and Newton-based algorithms) that use a small number of iterations, but make more complex decisions at
each iteration. The reader is referred to [2][1] and related literature for more details on these.

H. Choosing the set X for general problems

Consider the convex program (72)-(74), which seeks to minimize f(x) subject to gk(x) ≤ ck for all k ∈ {1, . . . ,K} and
x ∈ X (where X is a convex set and f(x), gk(x) are convex functions). Now define X̃ as the intersection of X and the set
of all x ∈ RN that satisfy gK(x) ≤ cK . Since the intersection of convex sets is convex, the set X̃ is convex. The original
problem (72)-(74) is equivalent to the following:

Minimize: f(x)

Subject to: gk(x) ≤ ck ∀k ∈ {1, . . . ,K − 1}
x ∈ X̃

The only difference is that the above convex program is written by shifting the last constraint gK(x) ≤ cK into the set constraint
x ∈ X̃ . While this does not change the underlying problem, it gives rise to a different implementation of the drift-plus-penalty
algorithm that uses one fewer virtual queue and that seeks to find x(t) ∈ X̃ to minimize:

V f(x(t)) +

K−1∑
k=1

Qk(t)gk(x(t))

The advantage of using one less virtual queue is that the constant B in Theorem VI.1 is now smaller. Intuitively, the algorithm
provides tighter performance at the cost of doing a search for x(t) over the more complex set X̃ , rather than the larger (but
typically simpler) set X . Indeed, in the extreme case, one can place all constraints gk(x) ≤ ck into an abstract set X ′. That
is, we can define X ′ as the intersection:

X ′ = X ∩
{
∩Kk=1{x ∈ RN : gk(x) ≤ ck}

}
13A function f(x) is strongly convex if f(x)−α||x||2 is convex in x for some constant α > 0. A strongly convex program has a strongly convex objective

function. This structure is restrictive because it requires all variables that appear in the constraints to also appear in the objective function. For example, this
holds in network utility maximization problems with fixed path routing, but not with multi-path routing.
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The resulting drift-plus-penalty algorithm then uses no virtual queues, and converges to the correct answer immediately on
slot 0. Of course, this is because it is forced to choose x(0) ∈ X ′ as the minimizer of f(x), which is identical to choosing
x(0) as the optimal solution to the original convex program!

One can write a single convex program in multiple ways. In practice, one should choose the abstract set X , and the
corresponding constraints gk(x) ≤ ck that are not incorporated into X , in such a way that searching over x ∈ X to minimize
V f(x) +

∑K
k=1Qk(t)gk(x) is easy. A rule of thumb is to choose X as a hyper-rectangle whenever possible, so that it has the

form:
X = {x ∈ RN : xi,min ≤ xi ≤ xi,max ∀i ∈ {1, . . . , N}}

for some real numbers xi,min and xi,max. This is especially useful when the functions f(x) and gk(x) are separable sums of
the individual xi variables. For example, suppose that:

f(x) =

N∑
i=1

fi(xi)

gk(x) =

N∑
i=1

gki(xi) ∀k ∈ {1, . . . ,K}

for some convex functions fi(xi) and gki(xi). In this case, the drift-plus-penalty algorithm of choosing x(t) ∈ X to minimize
V f(x(t)) +

∑K
k=1Qk(t)gk(x(t)) is reduced to separately choosing each variable xi(t), for each i ∈ {1, . . . , N}, to solve:

Minimize: V fi(xi(t)) +
∑K
k=1Qk(t)gki(xi(t))

Subject to: xi(t) ∈ [xi,min, xi,max]

This is a minimization of a convex function of one variable over an interval. The minimum occurs at a critical point: either a
boundary point xi,min or xi,max, a point where the derivative does not exist, or a point of zero derivative. Often, the optimal
choice of xi(t) can be solved in closed form. This is the case for linear programs, where the functions f(x) and gk(x) are
affine (see Exercise IX-G.1). This separable property is particularly useful for distributed implementation in systems where
different devices choose different xi(t) values. Separability can often be designed by creating local estimation variables to
facilitate distributed implementation (see [9] and Exercises IX-G.17-IX-G.19).

I. A small network example

dest%x1%

a%

b%

c%

x2%
Fig. 8. A small network example for Subsection VI-I.

Consider the following example exercise: A network with two flows must be optimized for maximum utility subject to
power constraints (see Fig. 8). The flow rates are x1, x2 and are chosen over intervals x1 ∈ [0, xmax] and x2 ∈ [0, xmax],
where xmax is some given positive number that bounds the maximum flow rate. The total power (summed over all links) is
ef1 +ef2 +ef3 +ef4 +ef5−5, where fl is the total flow rate over link l, defined for each l ∈ {1, . . . , 5}. We want to maximize
the utility function log(1+x1)+log(1+x2) subject to a total power constraint of ptot (where ptot is a given positive constant):

ef1 + ef2 + ef3 + ef4 + ef5 − 5 ≤ ptot

The convex optimization problem is to choose input rates x1, x2 and flow rates a, b, c to solve:

Maximize: log(1 + x1) + log(1 + x2) (96)
Subject to: a+ b+ c ≥ x1 (97)

h(x1, x2, a, b, c) ≤ ptot (98)
a, b, c, x1, x2 ∈ [0, xmax] (99)
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a) Define the convex function h(x1, x2, a, b, c) that defines total power used in the network.
b) Let X be the set described by constraint (99). State all virtual queues for this problem.
c) Using answers from parts (a)-(b), state the drift-plus-penalty algorithm for this problem. Make sure to exactly specify all

choices of the decision variables, and to exploit separable structure whenever possible. Explicitly solve in closed form for any
variables that are completely separable.

Solution:
a) We have h(x1, x2, a, b, c) = 2ea + eb + ec + ec+x2 − 5. This is indeed a convex function of (x1, x2, a, b, c).
b) Since X is the set of all (x1, x2, a, b, c) that satisfy (99), there are only two remaining constraints, namely, constraints

(97)-(98). We could label their virtual queues as Q1(t) and Q2(t). Alternatively, we could simply label the virtual queues as
Q(t) and Z(t). Using the latter notation gives:

Q(t+ 1) = max[Q(t) + x1(t)− a(t)− b(t)− c(t), 0]

Z(t+ 1) = max[Z(t) + 2ea(t) + eb(t) + ec(t) + ec(t)+x2(t) − 5− ptot, 0]

Notice that for virtual queue Q(t), we remembered to modify the constraint (97) to a less-than-or-equal-to constraint, and to
shift all non-constant terms to the left-hand-side (so the constraint is equivalent to x1 − (a+ b+ c) ≤ 0).

c) Every slot t, observe the virtual queues and choose (x1(t), x2(t), a(t), b(t), c(t)) ∈ X to minimize:

−V log(1 + x1(t))− V log(1 + x2(t)) +Q(t)(x1(t)− a(t)− b(t)− c(t))
+Z(t)(2ea(t) + eb(t) + ec(t) + ec(t)+x2(t) − 5− ptot)

This reduces to choosing:
• x1(t) ∈ [0, xmax] to maximize V log(1 + x1(t))−Q(t)x1(t). Thus, x1(t) = [V/Q(t)− 1]xmax

0 .
• (x2(t), c(t)) ∈ [0, xmax]× [0, xmax] to minimize −V log(1 +x2(t)) +Z(t)ec(t)+x2(t) +Z(t)ec(t)−Q(t)c(t). Thus, x2(t)

and c(t) must be chosen together.
• Choose a(t) ∈ [0, xmax] to minimize −a(t)Q(t) + 2Z(t)ea(t). Thus, choose a(t) =

[
log
(
Q(t)
2Z(t)

)]xmax

0
.

• Choose b(t) ∈ [0, xmax] to minimize −b(t)Q(t) + Z(t)eb(t). Thus, b(t) =
[
log
(
Q(t)
Z(t)

)]xmax

0
.

J. General time averages (without convexity)

Theorem VI.1 and Lemma VI.1 only use convexity of f(x) and gk(x) when applying Jensen’s inequality at the every end to
push a time average inside a convex function while preserving a desired inequality. No convexity assumptions are needed if one
wants to optimize the time average of a function, rather than a function of a time average. Indeed, suppose Y is a closed and
bounded (possibly non-convex) subset of RK+1 (possibly non-convex). Consider the following time average problem: Every
time slot t ∈ {0, 1, 2, . . .}, choose a vector y(t) = (y0(t), y1(t), . . . , yK(t)) ∈ Y so that the resulting time averages solve:

Minimize: limt→∞ y0(t)

Subject to: limt→∞ yk(t) ≤ ck ∀k ∈ {1, . . . ,K}
x(t) ∈ X ∀t ∈ {0, 1, 2, . . .}

The general algorithm for this is as follows [3]: For each k ∈ {1, . . . ,K}, define virtual queues Qk(t) by:

Qk(t+ 1) = max[Qk(t) + yk(t)− ck, 0] (100)

Every slot t, observe Q1(t), . . . , QK(t) and choose y(t) ∈ Y to minimize:

V y0(t) +

K∑
k=1

Qk(t)yk(t)

Then update the queues via (100). See Exercise IX-G.14 for a simple example.

K. Equality constraints

Again let X be a general (possibly non-convex) set and suppose x(t) ∈ X for all t ∈ {0, 1, 2, . . .}. Define y0(t) = f(x(t)),
yk(t) = gk(x(t)), and wm(t) = hm(x(t)) for some bounded functions f(x), gk(x), hm(x) over x ∈ X for all k ∈ {1, . . . ,K}
and m ∈ {1, . . . ,M} (where K and M are some non-negative integers. Consider the problem:

Minimize: limt→∞ y0(t)

Subject to: limt→∞ yk(t) ≤ 0 ∀k ∈ {1, . . . ,K}
limt→∞ wm(t) = 0 ∀m ∈ {1, . . . ,M}

x(t) ∈ X ∀t ∈ {0, 1, 2, . . .}
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The drift-plus-penalty algorithm in this context uses queues Qk(t) and Zm(t) with updates [3]:

Qk(t+ 1) = max [Qk(t) + yk(t), 0]

Zm(t+ 1) = Zm(t) + wm(t)

Every slot t ∈ {0, 1, 2, . . .}, the algorithm observes Q1(t), . . . , QK(t) and Z1(t), . . . , ZM (t) and chooses x(t) ∈ X to minimize:

V y0(t) +

K∑
k=1

Qk(t)yk(t) +

M∑
m=1

Zm(t)wm(t)

That is, choose x(t) ∈ X to minimize the following:

V f(x(t)) +

K∑
k=1

Qk(t)gk(x(t)) +

M∑
m=1

Zm(t)hm(x(t))

If the f(x) and gk(x) functions are continuous and convex, the hm(x) functions are affine, and the set X is convex, then
Jensen’s inequality ensures this procedure provides an O(ε)-approximation to the convex program of minimizing f(x) subject
to gk(x) ≤ 0 for all k ∈ {1, . . . ,K} and hm(x) = 0 for all m ∈ {1, . . . ,M} (where ε = 1/V ).

L. Stochastic problems

See [3] for a development of the drift-plus-penalty algorithm in more general scenarios, including stochastic scenarios.

VII. AN ENHANCED ALGORITHM WITH O(1/t) CONVERGENCE

The following recent numerical algorithm from [5] uses drift-plus-penalty concepts with three modified steps to speed up
the convergence time of the original DPP algorithm. Again fix positive integers N,K and consider the convex program

Minimize: f(x) (101)
Subject to: gi(x) ≤ 0 ∀i ∈ {1, . . . ,K} (102)

x ∈ X (103)

where X ⊆ RN is a convex set and f : X → R, gi : X → R are convex functions. The enhanced algorithm requires the set
X to be closed but no longer requires it to be bounded (however, it will require the gi functions to be Lipschitz continuous,
defined later).

Enhanced algorithm of [5]: Fix α > 0 as an algorithm parameter. Initialize an arbitrary x(−1) ∈ X . Initialize virtual
queues Qi(0) = max{0,−gi(x(−1))} for all i ∈ {1, . . . ,K}. For all t ∈ {0, 1, 2, . . .} do
• Observe Qi(t), x(t− 1), gi(x(t− 1)) for all i ∈ {1, . . . ,K}. Choose x(t) ∈ X to minimize the expression:

f(x(t)) +

K∑
i=1

[Qi(t) + gi(x(t− 1))]gi(x(t)) + α||x(t)− x(t− 1)||2 (104)

where ||z|| denotes the standard Euclidean norm of a vector z, so ||z||2 =
∑N
i=1 z

2
i .

• Update virtual queues for each i ∈ {1, . . . ,K} by

Qi(t+ 1) = max{Qi(t) + gi(x(t)),−gi(x(t))} (105)

• Update the time average x(t) ∈ RN by

x(t+ 1) =

(
t

t+ 1

)
x(t) +

(
1

t+ 1

)
x(t)

There are three main differences between the above algorithm and the DPP algorithm of the previous section: (i) The virtual
queue update (105) replaces the usual max{·, 0} with max{·,−g(x(t))};14 (ii) The expression (104) includes a new term
α||x(t)− x(t− 1)||2 that is called a prox function because it encourages x(t) to be chosen in close proximity to x(t − 1);
(iii) The weight Qi(t) that multiplies the constraint functions gi(x(t)) in the DPP algorithm is augmented to a new weight
Qi(t) + gi(x(t− 1)). A fourth difference is that the f(x(t)) term in (104) no longer is multiplied by V , equivalently, we use
V = 1.

14It can be shown that a modified version of this enhanced algorithm can be implemented with the usual max{·, 0} virtual queue update, while maintaining
the fast convergence times of the enhanced algorithm, in the special case when all constraint functions gi are affine (see also [16]). The max{·,−gi(x(t))}
update is used to ensure that the weight Qi(t) + gi(x(t − 1)) in (104) is nonnegative so that (104) remains a convex optimization over x(t) ∈ X . This
weight can be negative, without affecting convexity, in the special case when gi(x) is affine in x.
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A. Performance of enhanced algorithm

Define g : X → RK by g(x) = (g1(x), . . . , gK(x)). Assume that g is β-Lipschitz continuous so that

||g(x)− g(y)|| ≤ β||x− y|| ∀x, y ∈ X (106)

Suppose x∗ is an optimal solution to problem (101)-(103). The Lagrange multiplier assumption (95) in this context is equivalent
to existence of a nonnegative vector µ = (µ1, . . . , µK) that satisfies

f(x) +

K∑
k=1

µkgk(x) ≥ f(x∗) ∀x ∈ X (107)

Theorem VII.1. Suppose problem (101)-(103) has at least one optimal solution x∗; the constraint functions gi satisfy the
Lipschitz property (106); and the Lagrange multiplier assumption (107) holds for some (nonnegative) Lagrange multiplier
vector µ = (µ1, . . . , µK). If the enhanced algorithm uses parameter α > 1

2β
2 then for all T > 0 we have x(T ) ∈ X and

f(x(T )) ≤ f(x∗) +
α

T
||x∗ − x(−1)||2

gi(x(T )) ≤ 2||µ||
T

+
1

T

√
2α||x∗ − x(−1)||2 +

2α

2α− β2
||g(x∗)||2 ∀i ∈ {1, . . . ,K}

Proof. See [5].

Theorem VII.1 shows that x(T ) has a constraint violation gap and utility optimality gap that decays like O(1/T ). This means
we can keep running the algorithm and the resulting time averages converge to optimality as T →∞. A backpressure-based
algorithm is developed in [16] using this enhanced drift-plus-penalty framework that ensures O(1) queue size with utility that
deviates from optimality by O(1/T ), where T is the number of slots the algorithm is in operation.

VIII. NETWORK OPTIMIZATION VIA DRIFT-PLUS-PENALTY

This section applies the drift-plus-penalty (DPP) algorithm to general network optimization problems. It emphasizes DPP
only for simplicity: Similar techniques can be used for application of the (typically faster) enhanced algorithm of Section VII.
Recall that the drift-plus-penalty algorithm is as follows: To solve the convex program of finding x ∈ X to minimize f(x)
subject to gk(x) ≤ ck for all k ∈ {1, . . . ,K}, first define virtual queues:

Qk(t+ 1) = max[Qk(t) + gk(x(t))− ck, 0] ∀k ∈ {1, . . . ,K} (108)

Assume that Qk(0) = 0 for all k ∈ {1, . . . ,K}. Every slot t ∈ {0, 1, 2, . . .}, observe the virtual queues Qk(t) and choose
x(t) ∈ X to minimize the expression:

V f(x(t)) +

K∑
k=1

Qk(t)gk(x(t))

Then update the virtual queues for slot t+ 1 via (108) using the vector x(t) that was chosen on slot t.

A. Flow-based optimization

Consider a network with L links and N traffic flows. Let Cl be the capacity of link l ∈ {1, . . . , L}, taking units of bits/slot
(where a time slot is selected as a convenient unit of time). Assume each flow uses a pre-determined path that consists of a
subset of links. Define P(i) as the subset of links used by flow i, defined for each i ∈ {1, . . . , N}. Let N (l) denote the set
of flows in {1, . . . , N} that use link l. Let x = (x1, . . . , xN ) be the vector of flow rates, so that xi is the traffic rate of flow i
(in bits/slot). We want to choose x ∈ RN to solve the following network utility maximization problem:

Maximize:
∑N
i=1 φi(xi) (109)

Subject to:
∑
i∈N (l) xi ≤ Cl ∀l ∈ {1, . . . , L} (110)

xi ∈ [0, xmax] ∀i ∈ {1, . . . , N} (111)

where xmax is some maximum flow rate, and φi(x) are concave functions over x ∈ [0, xmax] for each i ∈ {1, . . . , N}. This
problem is similar to (61)-(63) with the exception that a general concave utility function is used (not necessarily φi(x) =
log(1 + x)) and the constraint xi ≥ 0 is changed to xi ∈ [0, xmax]. This change is important to ensure the optimization
variables x are chosen in a compact set X . In this case, the set X is the set of all x ∈ RN that satisfy (111).

Virtual queues: For each constraint l ∈ {1, . . . , L}, define a virtual queue Ql(t) with dynamics:

Ql(t+ 1) = max

Ql(t) +
∑
i∈N (l)

xi(t)− Cl, 0

 (112)
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Drift-plus-penalty algorithm: Every slot t, the network controller observes Q1(t), . . . , QL(t) and chooses x(t) ∈ X to
minimize:

−V
N∑
i=1

φi(xi(t)) +

L∑
l=1

Ql(t)

 ∑
i∈N (l)

xi(t)


Separable implementation: The algorithm reduces to the following: Each node i ∈ {1, . . . , N} chooses xi(t) ∈ [0, xmax] to

maximize:

V φi(xi(t))−

 ∑
l∈P(i)

Ql(t)

xi(t)
Define:

Wi(t) =
∑
l∈P(i)

Ql(t) (113)

Then xi(t) is chosen in [0, xmax] to maximize V φi(xi(t))−Wi(t)xi(t).
Special case: In the special case when φi(x) = (θi/b) log(1 + bx) for all i, the decision at flow i is:

x∗i (t) =

[
V θi/Wi(t)− 1

b

]xmax

0

Under this algorithm, it is not difficult to show that:

Ql(t) ≤ V θmax/b+ xmax ∀t ∈ {0, 1, 2, . . .} (114)

where θmax = maxi∈{1,...,N} θi, provided that Ql(0) satisfies this inequality.15 Since deviation from optimal utility is like
O(1/V ), the deviation from optimality can be pushed arbitrarily small by increasing the V parameter, with a corresponding
O(V ) tradeoff in queue size.

Interpretation: The virtual queueing equation (112) looks like an actual queue for link l that receives arrivals
∑
i∈N (l) xi(t)

on slot t, and that has a service rate Cl. This is an approximation to the actual network queueing dynamics because it assumes
all new arrivals are placed immediately and simultaneously on all links of the path. Of course, the actual arrivals would
traverse the path one link at a time. Nevertheless, the approximation is useful and is typically a good approximation of network
performance.

The weight Wi(t) is the sum of the current queue values along the path P(i). It is difficult to obtain the exact value of
Wi(t). The value Wi(t) can be approximated by having each packet observe the queue contents in each queue of its path, and
store the accumulating sum in a header field. The resulting sum is passed as a delayed feedback message to the source of each
flow i. This provides an approximation of Wi(t) that is typically within an additive constant C from the true value, called a
C-additive approximation. It can be shown that the drift-plus-penalty algorithm still works optimally with such approximations
(see Exercise IX-G.13). However, the queue bounds increase with C, and the resulting value of V typically needs to increase
to achieve the same performance as the case C = 0.

The above algorithm is similar to the algorithms of [17][18], which use an alternative dual subgradient method for its
derivation, and to the “Fast-TCP” implementation in [19] that bases decisions on a path price. The dual subgradient algorithm
in that context uses a “step size” parameter δ, and requires updates to be performed every δ units of time (optimality is
approached only when δ → 0). In contrast, the drift-plus-penalty algorithm is implemented over fixed size slots that do not
need to shrink down to zero. This allows a fixed amount of time for network decisions to be made and implemented, which
is important in practical situations when decisions cannot be made arbitrarily rapidly. However, the resulting decisions are
identical to those of the dual subgradient algorithm under the change of variables V = 1/δ (so V can be viewed abstractly as
an inverse step size parameter). There is another advantage of using a small slot size, even with the drift-plus-penalty algorithm.
Indeed, if one assumes that the maximum per-slot arrivals and service are proportional to the slot size, it is not difficult to
show that shrinking the slot size can maintain the same network utility with proportionally smaller queue sizes (see Exercise
IX-G.16). In practice, one should use a slot size that is as small as possible, but no smaller than that which is physically
practical.

The traditional dual subgradient algorithm analysis does not involve a time average, and hence requires more stringent strict
convexity assumptions on the objective function. In particular, it does not support additional routing variables for extended
problems of multi-path routing, since those variables appear in the constraints but not in the objective function. The time
averaging analysis in the drift-plus-penalty algorithm does not require strict convexity, and hence it can handle any convex
programs, including those with multi-path routing (see Exercise IX-G.8). Further, the time averages often have a direct physical
meaning, such as average throughput or power.

15More generally, it can be shown that Ql(t) ≤ O(V ) for all t whenever the utility functions have a bounded maximum right-derivative [3]. Defining
ε = 1/V and noting that Ql(t)/t is a bound on the constraint l violation implies that Ql(t)/t ≤ O(ε) for all t ≥ Ω(1/ε2).
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It can be shown that using link weights that are a constant multiple of Ql(t) will still give a correct operation. That is,
instead of using Wi(t), one can use W̃i(t) =

∑
l∈P(i) γlQl(t) for some arbitrary (but fixed) values γl > 0. This is because each

constraint l in (110) is equivalent to the corresponding constraint when both sides are multiplied by γl (see Exercise IX-G.12).
This observation is of practical importance because it implies that any weight that is proportional to Ql(t) (such as the observed
average delay on link l) will work as a useful proxy for Ql(t). Implementations such as TCP-Vegas and TCP-Reno can use
weights of this form [18][19]. Indeed, packets can be marked in proportion to the queue size and/or delay experienced over
each link, or a “round trip time” can be used to estimate the sum of delays. Such values can be used as proxies for W̃i(t).
A more accurate proxy is the sum weight over a “half-trip-time” (using only links from source to destination) rather than a
round trip time. Nevertheless, variations of TCP that control flow rates as a function of such weights can often be understood
as approximate implementations of the (optimal) drift-plus-penalty algorithm (and hence, also the optimal dual subgradient
algorithm in the special case when strict convexity holds). Another practical consideration is that transport layers often use a
window-based admission structure, so that admission of a precise amount of data xi(t) can only be approximated.16

B. Power constraints
Consider the same network scenario as the previous section. Thus, there are N traffic flows, each using a fixed path through

the network. However, for each l ∈ {1, . . . , L}, assume the link transmission rate is a function of a power allocation variable:
Cl = µl(pl), where µl is a concave increasing function over pl ≥ 0. Suppose the network has K nodes, and let Out(k) be
the set of links that transmit out of node k. The goal is to maximize utility subject to the additional constraints that each node
k ∈ {1, . . . ,K} must maintain an average power constraint. That is, we choose flow rates x1, . . . , xN and powers p1, . . . , pL
to solve:

Maximize:
∑N
i=1 φi(xi) (115)

Subject to:
∑
i∈N (l) xi ≤ µl(pl) ∀l ∈ {1, . . . , L} (116)∑
l∈Out(k) pl ≤ pavk ∀k ∈ {1, . . . ,K} (117)

xi ∈ [0, xmax] ∀i ∈ {1, . . . , N} (118)
pl ∈ [0, pmax] ∀l ∈ {1, . . . , L} (119)

for some given values xmax, pmax, and some desired average power constraints pavk .
Solution: To solve this, define X as the set of all (x1, . . . , xN , p1, . . . , pL) vectors that satisfy (118)-(119).
Virtual queues: For each constraint l ∈ {1, . . . , L} in (116), define a virtual queue Ql(t) with update:

Ql(t+ 1) = max

Ql(t) +
∑
i∈N (l)

xi(t)− µl(pl(t)), 0

 (120)

For each constraint k ∈ {1, . . . ,K} in (117), define a virtual queue Zk(t) with update:

Zk(t+ 1) = max

Zk(t) +
∑

l∈Out(k)

pl(t)− pavk , 0

 (121)

Drift-plus-penalty algorithm: Every slot t, observe the queues Q1(t), . . . , QL(t) and Z1(t), . . . , ZK(t) and choose xi(t) and
pl(t) variables to minimize:

−V
N∑
i=1

φi(xi(t)) +

L∑
l=1

Ql(t)

 ∑
i∈N (l)

xi(t)− µl(pl(t))

+

K∑
k=1

Zk(t)

 ∑
l∈Out(k)

pl(t)


This reduces to the following separable algorithm:
• (Flow control) Each flow i chooses xi(t) ∈ [0, xmax] to maximize:

V φi(xi(t))−Wi(t)xi(t)

where Wi(t) is defined in (113).
• (Power allocation) Each node k chooses powers pl(t) ∈ [0, pmax] for all l ∈ Out(k) to minimize:

−Ql(t)µl(pl(t)) + Zk(t)pl(t)

• (Queue updates) Each link l updates Ql(t) via (120). Each node k updates Zk(t) via (121).
16For example, the drift-plus-penalty analysis assumes arrivals xi(t) are chosen as any real number in the interval [0, xmax], whereas a practical system

often must admit data in packetized units. One way to address this is to use auxiliary variables [3], which maintain packetized admissions without loss of
optimality. Another way is to maintain virtual queues with virtual admissions equal to the real numbers xi(t), but admit actual data as packets x̃i(t) so that∑t
τ=0 xi(t) ≤

∑t
τ=0 x̃i(t) ≤

∑t
τ=0 xi(t) + xmax for all t, where xmax is the bit size of the largest packet. This idea can also be useful for matching

idealized admission rates to actual transport layer admissions in a system that uses a window-based packet admission structure.
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C. Backpressure routing

The previous examples of flow allocation assume flows take fixed paths. The resulting convex programs were written to
optimize flow rates subject to link capacity constraints. This does not include an optimization over all possible network routes.
In general, a network might send data from the same traffic session over multiple paths. Since the number of paths between two
nodes in a network is typically exponential in the size of the network, it is not obvious how to optimize over all possibilities.
Nevertheless, this can be done according to a simple convex program that involves a number of variables and constraints that is
polynomial in the network size. The key is to write flow conservation equations at each node. This is a node based approach,
rather than a link based approach.

Consider a network with N nodes. The nodes are connected by directional links with capacities Cab, where (a, b) denotes
a link from node a to node b. Define Cab = 0 if there is no link. Let L be the set of all links (a, b). Suppose there are M
different traffic flows, with flow rates x1, . . . , xM . For each m ∈ {1, . . . ,M}, define source(m) and dest(m) as the source and
destination of flow m. Different flows are said to have the same commodity if they have the same destination. That is, for each
node c ∈ {1, . . . , N}, we say that commodity c data is data that is destined for node c. Let f (c)ij be a variable that represents
the amount of commodity c data that is sent over link (i, j). The goal is to choose routing variables f (c)ij that represent a
feasible way of delivering commodity c data. This holds when the f (c)ij variables satisfy the following flow conservation, link
capacity, nonnegativity, and flow efficiency constraints:∑

m∈A(n,c)

xm +

N∑
a=1

f (c)an =

N∑
b=1

f
(c)
nb ∀n ∈ {1, . . . , N},∀c 6= n (122)

N∑
c=1

f
(c)
ab ≤ Cab ∀(a, b) ∈ L (123)

f (c)aa = 0, f (c)ca = 0 ∀a, c ∈ {1, . . . , N} (124)

f
(c)
ab ≥ 0 ∀a, b, c ∈ {1, . . . , N} (125)

where A(n, c) is defined as the set of all flows m ∈ {1, . . . ,M} such that source(m) = n and dest(m) = c. Constraints
(122) are the flow conservation constraints and ensure that the total commodity c flow into a node that is not the destination
is equal to the total commodity c flow out. Constraints (123) are the link capacity constraints and ensure that the sum flow
rate over a given link (a, b) does not exceed the link capacity Cab. Constraints (124) are the flow efficiency constraints and
ensure that the network does not use a link (a, a), and does not reinject data that has already arrived to its destination back
into the network.

For each flow m ∈ {1, . . . ,M} define xmaxm as a positive value that bounds the maximum flow rate, so that xm ∈ [0, xmaxm ].
Let φm(x) be a concave and increasing function over x ∈ [0, xmaxm ]. The resulting convex program is:

Maximize:
∑M
m=1 φm(xm) (126)

Subject to:
∑
m∈A(n,c) xm +

∑N
a=1 f

(c)
an =

∑N
b=1 f

(c)
nb ∀n ∈ {1, . . . , N},∀c 6= n (127)

xm ∈ [0, xmaxm ] ∀m ∈ {1, . . . ,M} (128)
Constraints (123)-(125) (129)

It can be shown that the above convex program is unchanged if the equality constraint (127) is replaced by an inequality
≤, meaning that the flow rate in is less than or equal to the flow rate out. This is because node n can generate fake bits that
transmit out more than what comes in.

Queues: Define X as the set of all (xm) and (f
(c)
ab ) variables that satisfy (127)-(129). To treat the constraints (127), for each

pair (n, c) such that n 6= c define virtual queue Q(c)
n (t) with update equation:

Q(c)
n (t+ 1) = max

Q(c)
n (t) +

∑
m∈A(n,c)

xm(t) +

N∑
a=1

f (c)an (t)−
N∑
b=1

f
(c)
nb , 0


It can be shown that the algorithm works just as well with the following modified queueing equation, which is more physically
practical for multihop networks:17

Q(c)
n (t+ 1) = max

[
Q(c)
n (t)−

N∑
b=1

f
(c)
nb , 0

]
+

∑
m∈A(n,c)

xm(t) +

N∑
a=1

f (c)an (t) (130)

17The work in [20] starts with (130), defines a Lyapunov function, and shows that the resulting drift-plus-penalty expression still satisfies an inequality of
the form (76).
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This equation ensures that the exogenous arrivals on slot t, and the endogenous arrivals from other nodes, cannot be transmitted
out on the same slot in which they arrive.

Drift-plus-penalty decisions: Every slot t, the network controller observes the queues and chooses variables xm(t) and
f
(c)
ab (t) in the set X to minimize:

−V
M∑
m=1

φm(xm) +
∑
(n,c)

Q(c)
n (t)

 ∑
m∈A(n,c)

xm(t) +

N∑
a=1

f (c)an (t)−
N∑
b=1

f
(c)
nb (t)


By simple rearrangements and switching the sums, the above expression becomes:

M∑
m=1

[
−V φm(xm) + xm(t)Q

(dest(m))
source(m)(t)

]
+

∑
(a,b)∈L

N∑
c=1

f
(c)
ab (t)

[
Q(c)
a (t)−Q(c)

b (t)
]

The value Q(c)
a (t) − Q(c)

b (t) is called the differential backlog of commodity c between nodes a and b. If this value is large,
there is a pressure gradient associated with commodity c data on the (a, b) link. Define:

W
(c)
ab (t) = Q(c)

a (t)−Q(c)
b (t)

The above expression is minimized by the following separable decisions:
• (Flow control) Each flow m ∈ {1, . . . ,M} chooses xm(t) ∈ [0, xmaxm ] to maximize:

V φm(xm)− xm(t)Q
(dest(m))
source(m)(t)

This is a simple decision about flow allocation at the source that only requires knowledge of the queue backlog in the
source queue. Unlike the link-based algorithm, summing weights along a path is not required.

• (Commodity selection) Each link (a, b) observes the differential backlog W (c)
ab (t) for all of its commodities c ∈ {1, . . . , N}.

It then chooses the single commodity c∗ab(t) that maximizes W (c)
ab (t) (breaking ties arbitrarily). This is a simple decision

that is made in a distributed way at each node.
• (Transmission) Each link (a, b) does the following: If maxc∈{1,...,N}W

(c)
ab (t) > 0, then choose f (c

∗
ab(t))

ab (t) = Cab and
f
(c)
ab (t) = 0 for all c 6= c∗ab(t). That is, the link sends the single commodity c∗ab(t) with the largest differential backlog

over the link, using the full link capacity Cab. If there is not enough data of commodity c∗ab(t) to fill up the link capacity,
then fake bits are transmitted.18

The first backpressure algorithm was developed in [21] in the special case V = 0, so there was no utility optimization, no
flow control, and the flow rates xm were given constants that were assumed to be supportable over the network. This was
done using a “pure drift” approach of minimizing the Lyapunov drift ∆(t). Treatment of joint flow control and backpressure
was done in [20] [22] using a V parameter to minimize the drift-plus-penalty expression ∆(t)− V

∑M
m=1 φm(xm(t)).

A simple single-commodity backpressure example is given in Exercise IX-G.15.
Experimental improvements: Note that the above algorithm achieves optimal network utility (over all possible routing

algorithms) in a distributed way and without knowing a routing table. The reason is that the backlog gradients build up,
much like pressure gradients when water flows through a system of pipes, and these gradients eventually push the data in
optimal directions. However, this basic algorithm can introduce large network delay, particularly when data wanders around
circuitous paths before gradients build up. Two standard improvements have been observed to experimentally reduce delay
dramatically:
• Using augmented weights W (c)

ab (t) = Q
(c)
a (t)−Q(c)

b (t)+θ(G
(c)
a −G(c)

b ), where G(c)
a is an estimate of the distance between

nodes a and c, and θ is some non-negative constant. It can be shown mathematically that any non-negative values θ and
G

(c)
a can be used without affecting throughput utility of the algorithm (provided that V is sufficiently large). However,

it is observed experimentally that choosing G
(c)
a according to distance estimates provides a significant delay reduction

[3][8][23][24].
• Using Last-in-First-Out (LIFO) implementation instead of First-in-First-Out (FIFO) implementation [25][26]. This can

dramatically reduce delay of 98% of the data, at the cost of incurring a large (possibly infinite) delay of the remaining 2%
of the data.19 Intuitively, the reason is that the network has a transient phase where backpressure gradients are built out
of data itself. Under LIFO, the early data that create these gradients tend to stay in the same nodes for a long (possibly
infinite) time, while the majority of the data that arrives after this transient phase speedily traverses the network using the
backpressure gradients as a form of routing table.

18Intuitively, this does not limit optimality because such a situation occurs only when a queue is not in danger of instability.
19There is nothing fundamental about the number 0.98 in this context. For any δ > 0, the V parameter can be chosen sufficiently large to ensure the rate

of packets with large delay is at most δ.
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D. Flow-based multi-path routing

As an alternative to backpressure routing, one can use the flow-based approach of Section VIII-A, without considering
variables for all of the exponentially many paths, by taking advantage of the fact that finding a shortest path in a directed
graph can be done in polynomial time (using, for example, a Dijkstra or Bellman-Ford algorithm). This section develops such
an approach. The analysis of this section uses the time-average optimization framework of Section VI-J, and was originally
developed in a more general stochastic context in Chapter 4.1 of [3].

As in Section VIII-A, consider a network with L links (with link capacities C1, . . . , CL) and N traffic flows. Every slot
t ∈ {0, 1, 2, . . .}, each traffic flow i ∈ {1, . . . , N} chooses an amount of data xi(t) ∈ [0, xmax] and a route matrix (1il(t)).
The value xi(t) represents the amount of data (in units such as bits or packets) injected into the network layer from flow i on
slot t. The route matrix (1il(t)) is a matrix that specifies the particular path used for this newly injected data, so that 1il(t) is
an indicator function that is 1 if the path uses link l, and is 0 else. Thus, every slot, each session can choose a new path for its
data. Let Pi be the set of valid paths through the network from the source of flow i to its destination. The set Pi might contain
only one or two path options, or might contain all possible paths from source to destination. For each link l ∈ {1, . . . , L},
define yl(t) as the amount of data injected into the network layer on slot t that will eventually use link l:

yl(t) =

N∑
i=1

1il(t)xi(t)

Define time averages for all slots t > 0:

xi(t) =
1

t

t−1∑
τ=0

xi(τ) ∀i ∈ {1, . . . , N}

yl(t) =
1

t

t−1∑
τ=0

yl(τ) ∀l ∈ {1, . . . , L}

Each link capacity constraint can be specified in a time average sense:

lim
t→∞

yl(t) ≤ Cl ∀l ∈ {1, . . . , L}

For each i ∈ {1, . . . , N}, let φi(xi) be a concave and non-decreasing utility function defined over [0, xmax]. The time-average
optimization problem is:

Maximize: limt→∞
∑N
i=1 φi(xi(t)) (131)

Subject to: limt→∞ yl(t) ≤ Cl ∀l ∈ {1, . . . , L} (132)
xi(t) ∈ [0, xmax] ∀i ∈ {1, . . . , N} (133)

(1il(t)) ∈ Pi ∀i ∈ {1, . . . N} (134)

The above problem is almost in the form of the general time average optimization problem of Section VI-J. However, the
objective (131) seeks to maximize a concave function of a vector of time averages (x1(t), . . . , xN (t)), rather than maximize
the time average of a function y0(t). Fortunately, a redundant constraint can be added to the problem to make it exactly fit
the framework of Section VI-J, without changing the underlying optimal solution. This is done using the auxiliary variable
method of [3]. For each i ∈ {1, . . . , N}, let γi(t) be an auxiliary variable chosen in the set [0, xmax] for each slot t. Define:

y0(t) =

N∑
i=1

φi(γi(t)) (135)

Consider the modified problem:

Maximize: limt→∞ y0(t) (136)
Subject to: limt→∞ yl(t) ≤ Cl ∀l ∈ {1, . . . , L} (137)

γi(t) ≤ xi(t) ∀i ∈ {1, . . . , N} (138)
xi(t) ∈ [0, xmax] ∀i ∈ {1, . . . , N} (139)

(1il(t)) ∈ Pi ∀i ∈ {1, . . . N} (140)
γi(t) ∈ [0, xmax] ∀i ∈ {1, . . . , N} (141)

It can be shown that the optimal solution to this modified problem uses decisions xi(t) and (1il(t)) that are also op-
timal for the original problem (131)-(134).20 Moreover, this new problem (136)-(141) is in the exact form required for

20The key step in the proof uses Jensen’s inequality to conclude y0(t) ≤
∑N
i=1 φi(γi(t)) for all slots t > 0. This, together with (138) and the non-decreasing

assumption on φi(·), implies lim inft→∞ y0(t) ≤ lim inft→∞
∑N
i=1 φi(xi(t)).
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the time average optimization procedure of Section VI-J. Indeed, one can define w(t) as a concatenated vector w(t) =
(y0(t), y1(t), . . . , yL(t), γ1(t) − x1(t), . . . , γN (t) − xN (t)), and define W as the set of all w(t) vectors possible under the
constraints (139)-(141). The resulting setW is non-convex, but this does not matter in the time averaging framework of Section
VI-J. Intuitively, this is because the time averaging operation produces a mixture of points in W that enables optimization over
the convex hull of W .

Applying the drift-plus-penalty procedure of Section VI-J to the problem (136)-(141) gives the following algorithm: For
each constraint in (137) define a virtual queue Ql(t):

Ql(t+ 1) = max[Ql(t) + yl(t)− Cl, 0]

= max

[
Ql(t) +

N∑
i=1

1il(t)xi(t)− Cl, 0

]
∀l ∈ {1, . . . , L} (142)

For each constraint in (138) define a virtual queue Zi(t):

Zi(t+ 1) = max[Zi(t) + γi(t)− xi(t), 0] ∀i ∈ {1, . . . , N} (143)

The virtual queues Ql(t) can be interpreted the same way as in Section VIII-A. They represent an approximate network layer
queue for link l, where arrivals are the newly admitted data on slot t (that eventually passes through link l) and service is the
value Cl. The virtual queues Zi(t) also have a physical interpretation: They can be viewed as transport layer queues, where
γi(t) is the amount of of data added to the transport layer queue on slot t, and xi(t) is the amount shifted from this queue to
the network layer.

Every slot t ∈ {0, 1, 2, . . .}, observe the virtual queues (Q1(t), . . . , QL(t)) and (Z1(t), . . . , ZN (t)) and choose decision
variables xi(t), γi(t), and (1il(t)) subject to (139)-(141) to minimize:

−V y0(t) +

L∑
l=1

Ql(t)

[
N∑
i=1

1il(t)xi(t)

]
+

N∑
i=1

Zi(t)(γi(t)− xi(t))

Substituting the definition of y0(t) in (135) into the above expression and rearranging terms gives the following expression to
be minimized:

L∑
i=1

[−V φi(γi(t)) + Zi(t)γi(t)] +

N∑
i=1

xi(t)

[
L∑
l=1

1il(t)Ql(t)− Zi(t)

]
Notice that the expression

∑L
l=1 1il(t)Ql(t) is the sum of link weights Ql(t) over all links on the path chosen by flow i for

its data injected into the network layer at time slot t. Minimization of the above expression results in the following separable
algorithm that is implemented every slot t ∈ {0, 1, 2, . . .}:
• Choose auxiliary variables γi(t) (transport layer decisions): Each flow i observes Zi(t) and separately chooses γi(t) ∈

[0, xmax] to minimize:
− V φi(γi(t)) + Zi(t)γi(t) (144)

• Choose routing variables (1il(t)) (network layer decisions): Each flow i observes the queues Ql(t) in the network, and
chooses a path from source to destination in Pi that minimizes

∑L
l=1 1il(t)Ql(t). This is equivalent to finding a shortest

path using link weights equal to the virtual queue values Ql(t). If the set of paths Pi for flow i contains all paths from
the flow i source to the flow i destination, the shortest path can found via Bellman-Ford, Dijkstra, or any other shortest
path finder. Let Wi(t) represent the resulting sum weight along the shortest path for flow i.

• Choose flow control variables xi(t) (transport layer decisions): Each flow i observes Zi(t) and also observes the weight
Wi(t) computed from the slot t routing decision specified above. Then:

xi(t) =

{
xmax if Wi(t) ≤ Zi(t)
0 otherwise (145)

• Queue updates: Update Ql(t) and Zi(t) for l ∈ {1, . . . , L}, i ∈ {1, . . . , N} via (142)-(143).
Overall, the above algorithm uses shortest-path routing with link weights equal to virtual queue values Ql(t). Each flow i

admits xi(t) = xmax units of data into the network layer whenever the sum link weight along the shortest path is sufficiently
small. However, if the sum link weight is too large (due to congestion in the links), the algorithm switches the transport layer
variables xi(t) to 0. This restricts new arrivals from flow i until some of the queue backlog is reduced. The resulting algorithm
produces flow rates that have total network utility within O(1/V ) of optimality. If the utility functions φi(x) have bounded
right-derivatives over the interval [0, xmax], then it can be shown that the Qi(t) and Zi(t) queues are deterministically bounded
with worst case queue size that is proportional to V (see [3] and Exercise IX-G.20). Thus, the algorithm exhibits an O(1/V )
approximation to optimal utility with a corresponding O(V ) tradeoff in queue size.

The most difficult parts of the above algorithm are the determination of link weights Ql(t) across the network, and the
implementation of the shortest-path solver with respect to these weights. As before, any link weights within an additive constant
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of the true weights Ql(t) can be used, since this results in a C-additive approximation. Furthermore, as V gets large, it can
be shown that the weights Ql(t) stay relatively close to a Lagrange multiplier vector associated with the problem [27][28], so
that past estimates of these weights are accurate approximations to the current weights.

The above algorithm approximates the network layer queue via (142), whereas the backpressure approach of the previous
subsection uses an actual queueing equation. Backpressure is also easier to implement in a distributed fashion, since its routing
decisions are based on weights of neighboring nodes (with no need for a shortest-path computation). However, backpressure
requires maintaining network layer queues Q(c)

n (t) for each node n and each traffic flow c, whereas the above algorithm requires
only one network layer queue Ql(t) for each link l ∈ {1, . . . , L}. An early version of this shortest-path based algorithm was
developed in [29] for the special case with no utility maximization. Specifically, [29] assumes data arrives to the network
according to a fixed rate vector that is in the “network capacity region” (so that the network can support all arrival rates),
and used a Lyapunov-based min-drift policy to achieve network stability. The above algorithm for joint stability and utility
maximization was developed [3] using Lyapunov optimization and the drift-plus-penalty technique.

IX. EXERCISES

A. Pareto optimality exercises

Exercise IX-A.1. (Pareto optimality over 5 points) Define A = {(1, 4), (2.8, 4.1), (2.5, 2.9), (3.5, 1.5), (3, 1)}.
a) Plot these points, and find all the ones that are Pareto optimal.
b) Find cmin and plot the tradeoff function ψ(c) for all c ∈ [cmin,∞).

Exercise IX-A.2. (Pareto optimal over noncompact sets)
We know that all nonempty compact sets have Pareto optimal points. This a sufficient condition but not necessary, as this

exercise shows.
a) Give an example of a closed but unbounded set A ⊆ R2 that has a Pareto optimal point.
b) Give an example of a bounded set A ⊆ R2 that is not closed but has at least one Pareto optimal point.

Exercise IX-A.3. (Lagrange multipliers for a finite set) Define A = {(1, 4), (2.8, 4.1), (2.5, 2.9), (3.5, 1.5), (3, 1)}, as in
Exercise IX-A.1.

a) Plot the points in A together with the line y + 2x = b for b = 1, b = 3, b = 5. What is the largest value of b for which
all points of A are on or above the line?

b) Find an optimal solution of (7)-(8) for µ = 2. Repeat for µ = 3.
c) Find an optimal solution of (7)-(8) for µ = 0. Call your answer (x∗, y∗). For what range of µ values is (x∗, y∗) a

solution to (7)-(8)?
d) Are there any Pareto optimal points in A that do not have Lagrange multipliers? That is, are there any Pareto optimal

points (x, y) that are not solutions to (7)-(8) for any µ ≥ 0?

(2,$5)$$

(2.5,$3)$$
(4.5,$2.7)$$

(5.1,$0.9)$$

(6,$2.6)$$

(5.5,$3.9)$$

(5.1,$5.1)$$

(4,$5.9)$$

x$

y$

Fig. 9. A set A of 8 different operating points (x, y) for Exercise IX-A.4.

Exercise IX-A.4. Consider the set A of 8 different operating points (x, y) in Fig. 9. We want to make both x and y small.
a) Specify all Pareto optimal points.
b) Suppose we run an algorithm to find a point (x∗, y∗) ∈ A that minimizes y + µx. If there are ties, the algorithm breaks

the ties arbitrarily in a way that is beyond our control. State a value of µ > 0 that will surely find the point (2.5, 3).



UPDATED SPRING 2023 40

Exercise IX-A.5. Consider a triangular region with vertices at (x, y) = (1, 1), (x, , y) = (1, 2), and (x, y) = (4, 1). Let A be
the set of all points inside and on this triangle.

a) Suppose we want to make the x coordinate small, and also the y coordinate small. List all Pareto optimal points.
b) Suppose we want to make the x coordinate big and the y coordinate big. Define a new set Ã that turns this into a

bicriteria minimization problem. Draw the set A and the set Ã. Give all Pareto optimal points for Ã.
c) Suppose we want to make the x coordinate big and the y coordinate small. What are the Pareto optimal points?

Exercise IX-A.6. (Open sets have no Pareto optimal points) Define A as the open ball of radius 1 about the point (5, 3):

A = {(x, y) ∈ R2 :
√

(x− 5)2 + (y − 3)2 < 1}

a) Let (a, b) be a point in A. Find a point (p, q) ∈ A that satisfies (p, q) ≺ (a, b). Your values of p and q should be functions
of a and b.

b) Explain why this means that A has no Pareto optimal points (the proof for general open sets is similar).

Exercise IX-A.7. (No entry of a Pareto optimal point can be improved without making the other entry worse) Prove that a
point (x∗, y∗) ∈ A is Pareto optimal if and only if every other distinct point (x, y) ∈ A satisfies the following two conditions:
• If x < x∗ then y > y∗.
• If y < y∗ then x > x∗

Exercise IX-A.8. (Pareto optimality in more than 2 dimensions) Generalize the definition of x ≺ y to N -dimensional vectors
x = (x1, . . . , xN ), y = (y1, . . . , yN ). Give a definition of Pareto optimality for sets A ⊆ RN .

Exercise IX-A.9. (Pareto optimal points are on the tradeoff curve) Suppose that (x∗, y∗) is Pareto optimal in A. This problem
shows that (x∗, y∗) must solve the following optimization problem (defined in terms of optimization variables x and y):

Minimize: y (146)
Subject to: x ≤ x∗ (147)

(x, y) ∈ A (148)

where x∗ is treated as a fixed parameter in the above optimization problem.
a) Show that (x∗, y∗) satisfies the constraints (147)-(148).
b) Show that y∗ ≤ y whenever (x, y) is a vector that satisfies (147)-(148). This proves (x∗, y∗) is a solution to (146)-(148).
c) Argue that ψ(x∗) = y∗, so that (x∗, y∗) is a point on the tradeoff curve (c, ψ(c)).

Exercise IX-A.10. (Why µ > 0 is needed for Pareto optimality) Give a counterexample that shows the result of part (b) of
Theorem II.1 does not necessarily hold when µ = 0.

Exercise IX-A.11. (Proof of part (b) of Theorem II.1) Prove part (b) of Theorem II.1.

Exercise IX-A.12. (Existence of Pareto optimal points) Let A be a nonempty compact subset of R2. We want to show that
A has a Pareto optimal point. A theorem of real analysis states that a continuous function defined over a compact set must
have a (possibly non-unique) minimizer. In particular, if f(x, y) is a continuous function defined over the compact set A, then
there is a point (x∗, y∗) ∈ A such that f(x∗, y∗) ≤ f(x, y) for all (x, y) ∈ A.

a) Define f(x, y) = x+ y. Prove that its minimizer (x∗, y∗) ∈ A is Pareto optimal in A.
b) Consider any point (a, b) ∈ A. Show there exists a point (x∗, y∗) that is Pareto optimal in A and that satisfies x∗ ≤

a, y∗ ≤ b. Hint: The set S(a, b) is closed, and the intersection of a compact set and a closed set is compact.

Exercise IX-A.13. (Randomizing between the two best Pareto optimal points) Fix A ⊆ R2. We solve the unconstrained
minimization of y + µx over (x, y) ∈ A for different µ ≥ 0 to find: For µ1 = 1 we have solution (x∗1, y

∗
1) = (100, 82); for

µ2 = 0.1 we have solution (x∗2, y
∗
2) = (200, 40). We then try µ3 = 0.42 and find (x∗3, y

∗
3) = (100, 82).

a) What constrained optimization problems do the Pareto optimal points (x∗1, y
∗
1) and (x∗2, y

∗
2) solve?

b) Draw a picture. Why did we try µ3 = 0.42, and what can we conclude from this information? Specifically, draw the line
of slope −0.42 that passes through (x∗1, y

∗
1). Argue that there can be no point in A that lies below this line.

c) Suppose we want to minimize y over all (x, y) ∈ A that satisfy x ≤ 150. Consider a randomized solution that chooses
between the two options (x∗1, y

∗
1) and (x∗2, y

∗
2) equally likely, so we get the random vector

(X,Y ) =

{
(x∗1, y

∗
1) with prob 1/2

(x∗2, y
∗
2) with prob 1/2

Argue that (i) (X,Y ) ∈ A surely; (ii) E [X] = 150; (iii) E [Y ] ≤ y for every (x, y) ∈ A such that x ≤ 150. In particular, the
randomized solution meets the desired constraint in an expected sense, and has an expected cost that is at least as good or
better than the cost of any deterministic point (x, y) ∈ A that satisfies the desired constraint.

d) Are we guaranteed to have (E [X] ,E [Y ]) ∈ A? Hint: Consider a simple example where A is a finite set.
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B. Optimization and Lagrange multiplier theory exercises

 

(1,5)

(1.5,4)

y

Fig. 10. A set A ⊆ R2 with a piecewise linear lower boundary.

Exercise IX-B.1. (Solutions to the unconstrained optimization) Let A ⊆ R2 be the set shown in Fig. 10. For each µ ≥ 0 let
Sµ denote the set of all solutions to the unconstrained problem of minimizing y + µx over all (x, y) ∈ A. For example, when
µ = 8.3 there is a single solution and so Sµ = {(1, 5)}.

a) Find the sets Sµ for all µ ≥ 0. Hint: You will need to seperate this into several cases. Some cases will have only one
solution while other cases will have more than one solution.

b) Find the set of all hidden Pareto optimal points in A (being Pareto optimal points in A that will never be found as the
solution to an unconstrained minimization of y + µx over (x, y) ∈ A, regardless of the value of µ ≥ 0).

Exercise IX-B.2. (Problems with no optimal solution) Consider the problem of minimizing y subject to the constraints x ≤ 1
and (x, y) ∈ A.

a) Suppose A = R2. Show that there is no optimal solution. Is the set A compact?
b) Suppose A = {(x, y) ∈ R2 : 0 ≤ x ≤ 2, 0 < y ≤ 2}. Show that there is no optimal solution. Is the set A compact?

Exercise IX-B.3. (Pareto optimal points are on the boundary) Fix A ⊆ R2 and let (x∗, y∗) be Pareto optimal in A. Show that
(x∗, y∗) is on the boundary of A. Hint: Recall that a point is on the boundary of A if either it is in A but arbitrarily close to
points in Ac, or is in Ac but arbitrarily close to points in A. For this problem you need to show the first condition holds by
constructing an infinite sequence of points in Ac that converge to (x∗, y∗).

Exercise IX-B.4. (Lagrange multiplier for equality constraint) Prove Theorem II.3.

Exercise IX-B.5. (If g(x∗) < c then ∇f(x∗) = 0) Suppose x∗ is an interior point of X that is also a solution to (13)-(15).
Suppose g(x∗) < c. Assume that g(x) is continuous and f(x) is differentiable at the point x∗.

a) Show that if ∇f(x∗) 6= 0, then defining v = −∇f(x∗) ensures that there is a δmax > 0 such that x∗ + δv ∈ X and
f(x∗ + δv) < f(x∗) for all δ ∈ (0, δmax]. Hint: Use Lemma IX.1 in Appendix A.

b) Use continuity of g(x) to show that if δ is chosen sufficiently small in the interval (0, δmax], then g(x∗ + vδ) < c.
c) Conclude from parts (a) and (b) that ∇f(x∗) = 0.

Exercise IX-B.6. (Separable minimization) Fix N as a positive integer, and fix positive constants a1, . . . , aN and b1, . . . , bN .
Find x ∈ RN to minimize: (

N∑
i=1

eaixi

)
−

(
N∑
i=1

bixi

)
Exercise IX-B.7. (Increasing the Lagrange multiplier µ) Let A be a nonempty subset of R2. Consider the unconstrained
problem:

Minimize: y + µx

Subject to: (x, y) ∈ A

where µ is a given nonnegative real number. Intuitively, we understand that increasing the value of µ places more emphasis
on keeping the x-value small. This problem is designed to make that intuition precise. Fix real numbers µ1 and µ2 such that
0 ≤ µ1 < µ2. Let (x∗1, y

∗
1) be an optimal solution to the unconstrained problem for the case µ = µ1. Let (x∗2, y

∗
2) be an

optimal solution to the unconstrained problem for the case µ = µ2.
a) Prove that x∗2 ≤ x∗1.
b) Give an example where x∗2 = x∗1.
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Exercise IX-B.8. (Changing multiple Lagrange multipliers) Fix N and K as positive integers. Let X be a subset of RN .
Let f(x), g1(x), . . . , gK(x) be real-valued functions over x ∈ X . Define g : RN → RK as the vector-valued function
g(x) = (g1(x), . . . , gK(x)). Let µ = (µ1, . . . , µK) be a given vector of real numbers. Consider the problem:

Minimize: f(x) + µT g(x)

Subject to: x ∈ X

where µT g(x) =
∑K
k=1 µkgk(x). Let xµ be a solution to the above minimization problem. Let λ = (λ1, . . . , λK) be another

vector. Let xλ be a solution to the modified minimization problem that arises by replacing the vector µ with the vector λ.
a) Show that (λ− µ)T (g(xλ)− g(xµ)) ≤ 0 (see hint in proof of Theorem III.2).
b) Use (a) to show that if λ1 > µ1 but λk = µk for k ≥ 2, then g1(xλ) ≤ g1(xµ).
c) Give an example problem with N = 1,K = 2, and vectors µ = (1, 0), λ = (2, 1) such that g1(xλ) > g1(xµ). In this

example, both Lagrange multipliers are increased, but the value of g1 increases. Do the same for µ = (1, 1), λ = (2, 2).

Exercise IX-B.9. (Weak duality) Fix N and K as positive integers. Let X ⊆ RN . Let f, g1, . . . , gK be real-valued functions
over x ∈ X . Consider the problem:

Minimize: f(x) (149)
Subject to: gk(x) ≤ 0, ∀k ∈ {1, . . . ,K} (150)

x ∈ X (151)

a) Argue that this problem structure can be used to model all problems of the form (44)-(46).
b) Define RN+ = {(x1, . . . , xN ) ∈ RN : xk ≥ 0 for all k}. For nonnegative vectors µ ∈ RK+ , the dual function for the above

problem is defined:
d(µ) = infx∈X

[
f(x) +

∑K
k=1 µkgk(x)

]
where d(µ) is allowed to take the value −∞. Show that if x∗ is an optimal solution to (149)-(151), then d(µ) ≤ f(x∗) for all
nonnegative vectors µ = (µ1, . . . , µK). This is called weak duality: The dual function of a constrained optimization problem is
less than or equal to its optimal objective value. Hint: The infimum of a function is less than or equal to the function evaluated
at any particular point.

c) Define d∗ = supµ∈RN
+
d(µ). Show that d∗ ≤ f(x∗). The difference f(x∗) − d∗ is called the duality gap. We say that

strong duality holds if the duality gap is zero. Show that strong duality holds if there is a µ∗ ∈ RN+ such that d(µ∗) = f(x∗).

Exercise IX-B.10. (Strong duality and Lagrange multipliers) Consider the constrained optimization problem (149)-(151) of
the Exercise IX-B.9 (with optimal solution x∗) and define the dual function d(µ) in the same way. Further suppose the set X
is convex and the functions f, g1, . . . , gK are convex.

a) Define A = {(y0, y1, . . . , yK) ∈ RK+1 : (y0, y1, . . . , yK) ≥ (f(x), g1(x), . . . , gK(x)) for some x ∈ X}, where the vector
inequality is taken entrywise. Show that A is a convex set.

b) Show that (f(x∗), 0, 0, . . . , 0) ∈ A but (f(x∗) − δ, 0, 0, . . . , 0) /∈ A for any δ > 0. Hence, (f(x∗), 0, 0, . . . , 0) is a
boundary point of A.

c) The hyperplane separation theorem ensures there is a hyperplane that passes through the boundary point (f(x∗), 0, 0, . . . , 0)
and contains the convex set A on one side. Thus, there is a nonzero vector (a0, . . . , aK) such that:

a0y0 + a1y1 + . . . aKyk ≥ a0f(x∗) + 0 + 0 + ...+ 0, ∀(y0, y1, . . . , yK) ∈ A

Prove that all ak values are nonnegative, and akgk(x∗) = 0 for all k ∈ {1, ...,K}. Hint: Increasing any component of a
vector in A produces another vector in A.

d) If a0 6= 0, the hyperplane is said to be nonvertical. Assume the hyperplane is nonvertical and define µ∗ = (µ∗1, . . . , µ
∗
K)

by µ∗k = ak/a0 for all k ∈ {1, . . . ,K}. Then µ∗ ∈ RN+ . Use part (c) to argue that µ∗kgk(x∗) = 0 for all k ∈ {1, . . . ,K}, and

f(x) +
∑K
k=1 µ

∗
kgk(x) ≥ f(x∗), ∀x ∈ X

Conclude that d(µ∗) = f(x∗). Thus, if the hyperplane is nonvertical, then strong duality holds and there exists a Lagrange
multiplier vector (µ∗1, . . . , µ

∗
K) for which x∗ is a solution to the unconstrained problem of finding an x ∈ X to minimize

f(x) +
∑K
k=1 µ

∗
kgk(x). (See Fig. 22 in Appendix B for an example with one constraint where strong duality holds but where

there is no nonvertical hyperplane and hence no Lagrange multiplier µ∗. In that example, maximizing d(µ) requires µ→∞.)
e) (Slater condition) Suppose there is a value ε > 0 and a Slater vector s ∈ X such that gk(s) ≤ −ε for all k ∈ {1, . . . ,K}.

Using the properties of the (a0, . . . , aK) vector in part (c), show that a0 6= 0. (Hint: Assume a0 = 0 and use the fact that
not all of the ai values are 0). Hence, there are (nonnegative) Lagrange multipliers (µ∗1, . . . , µ

∗
K) that satisfy the properties

of part (d). Conclude that
∑K
k=1 µ

∗
k ≤

f(s)−f(x∗)
ε .
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C. Optimizing over an interval and over a simplex

The following problems can be solved from basic principles such as critical points (without convexity theory or Lagrange
multipliers). However, they are related to results for convex and concave functions in Lemma IV.5 and Exercise IX-E.1.

Exercise IX-C.1. Define f : R→ R by f(x) = 2ex. Solve each problem, or explain why no solution exists.
a) Minimize f(x) subject to x ≥ 0.
b) Minimize f(x) subject to x ∈ [−2,−1].
c) Minimize f(x) subject to x ∈ [−1, 1].
d) Minimize f(x) subject to x ∈ R.
e) Minimize f(x) subject to x ∈ (0, 1).

Exercise IX-C.2. Define f : R→ R by f(x) = 2ex − x. Solve each problem, or explain why no solution exists.
a) Minimize f(x) subject to x ≥ 0.
b) Minimize f(x) subject to x ∈ [−2,−1].
c) Minimize f(x) subject to x ∈ [−1, 1].
d) Minimize f(x) subject to x ∈ R.
e) Minimize f(x) subject to x ∈ (0, 1).

Exercise IX-C.3. Define f : R→ R by f(x) = x− 2ex. Solve each problem, or explain why no solution exists.
a) Minimize f(x) subject to x ≥ 0.
b) Minimize f(x) subject to x ∈ [−2,−1].
c) Minimize f(x) subject to x ∈ [−1, 1].
d) Minimize f(x) subject to x ∈ R.
e) Minimize f(x) subject to x ∈ (0, 1).

Exercise IX-C.4. Define f : R → R by f(x) = ax for some given a ∈ R. Solve each problem, or explain why no solution
exists. Your answers should consider the three cases a < 0, a = 0, a > 0.

a) Minimize f(x) subject to x ≥ 0.
b) Minimize f(x) subject to x ∈ [−2, 1].
c) Minimize f(x) subject to x ∈ [−1, 1].
d) Minimize f(x) subject to x ∈ R.
e) Minimize f(x) subject to x ∈ (0, 1).

Exercise IX-C.5. (Optimizing over a simplex) The following problem arises in many areas and has a simple solution that
should be recognized.21 Fix n as a positive integer. Fix c > 0. Fix real numbers ai for i ∈ {1, ..., n}. Consider the problem:

Minimize:
∑n
i=1 aixi (152)

Subject to:
∑n
i=1 xi = c (153)

xi ≥ 0 ∀i ∈ {1, ..., n} (154)

The set of all x ∈ Rn that satisfy constraints (153)-(154) is called a simplex. In the special case c = 1, this is called
the n-dimensional probability simplex because it is a set that describes all probability mass functions (PMFs) associated
with randomly choosing one of n possibilities. Let b = mini∈{1,...,n}{ai} and let m ∈ arg mini∈{1,...,n}{ai} (breaking ties
arbitrarily) so that b = am. Define x∗ = (0, 0, . . . , 0, c, 0, . . . , 0) where the nonzero entry is in dimension m. That is,

x∗i =

{
c if i = m
0 else ∀i ∈ {1, ..., n}

We want to show x∗ is one particular solution to the problem (152)-(154). To do this, define f(x) =
∑n
i=1 aixi. We want to

show x∗ is in the simplex, and f(x∗) ≤ f(x) for all x in the simplex.
a) Show that x∗ satisfies (153)-(154). Evaluate f(x∗).
b) Fix x ∈ R as a vector that satisfies the constraints (153)-(154). Show that aixi ≥ bxi for all i. Show that f(x) ≥ cb.

Conclude that x∗ is an optimal solution to problem (152)-(154).
c) Is the solution x∗ unique? Explain.

21A Lagrange multiplier approach to the simplex problem (152)-(154) can fail because the unconstrained problem of minimizing
∑n
i=1[aixi+λxi] subject

to xi ≥ 0 for all i reduces to separately minimizing xi(ai + λ) over xi ≥ 0, which has no solution if ai + λ < 0. One can modify the constraints xi ≥ 0
to xi ∈ [0, c] without changing the problem: Then an unconstrained solution is x∗i = 0 if ai + λ > 0, x∗i = c if ai + λ < 0, and x∗i is any value in [0, c]
if ai + λ = 0. This can be made to work by choosing λ = −b, but is awkward in comparison to the elegant method described in Exercise IX-C.5.
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Exercise IX-C.6. (A two dimensional problem made one dimensional) Let g : [0, 2] → R be a continuous function. Fix real
numbers a, b such that a ≤ b. Consider the problem

Maximize: g(x+ y)− ax− by
Subject to: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

Define h : [0, 1]2 → R by h(x, y) = g(x + y) − ax − by. This problem seeks to maximize the continuous function h over
all vectors (x, y) in the compact set [0, 1]2, so there is at least one optimal solution (x∗, y∗) (recall Exercise IX-A.12). This
exercise shows we can restrict our search for (x∗, y∗) to vectors of the form (t, 0) or (1, t) for 0 ≤ t ≤ 1.

a) Show that if (x, y) ∈ [0, 1]2 and x+ y ≤ 1 then h(x, y) ≤ h(x+ y, 0).
b) Show that if (x, y) ∈ [0, 1]2 and x+ y > 1 then h(x, y) ≤ h(1, x+ y − 1).
c) Suppose 0 ≤ a ≤ b and g(t) = log(1 + t) for all t ∈ [0, 2]. Find (x∗, y∗) in terms of a, b. You should consider the three

cases a = b = 0, a = 0 < b, and 0 < a ≤ b.

Exercise IX-C.7. (Mutidimensional problem made one dimensional) Fix n as a positive integer. Let g : [0,∞) → R be a
function. Fix real numbers ai for i ∈ {1, ..., n}. Assume ai ≤ ai+1 for i ∈ {1, ..., n− 1}. Consider the problem

Maximize: g (
∑n
i=1 xi)−

∑n
i=1 aixi

Subject to:
∑n
i=1 xi ≤ 1, xi ≥ 0 ∀i ∈ {1, ..., n}

a) Show we can restrict the search for an optimal solution x∗ ∈ Rn to vectors of the form (t, 0, 0, . . . , 0) for 0 ≤ t ≤ 1.
Hint: You can use the method of Exercise IX-C.6.

b) Fix β > 0. Solve for the case g(t) = log(1 + βt). You may need to consider different cases depending on the ai values.

D. Lagrange multiplier application exercises

Remember to convert maximization problems into minimization problems, and constraints “≥” into constraints “≤.”

Exercise IX-D.1. Consider the constrained problem

Minimize: ex + y2 + z2

Subject to: − x− y − 2z ≤ c
x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1]

Fix µ ≥ 0 and note that the unconstrained problem seeks to minimize ex + y2 + z2 − µ(x+ y+ 2z) subject to x, y, z ∈ [0, 1].
a) Solve the unconstrained problem for µ = 0. The resulting solution is also a solution to the constrained problem for which

value of c?
b) Solve the unconstrained problem for µ = 1/2. Remember to verify that the solution (x∗, y∗, z∗) satisfies the constraints

of the unconstrained problem. Vector (x∗, y∗, z∗) is also a solution to the constrained problem for which value of c?
c) Solve the unconstrained problem for the case µ = 2. The resulting solution is also a solution to the constrained problem

for which value of c?
d) Solve the constrained problem for the case c = −3/10.

Exercise IX-D.2. Consider the power-allocation problem:

Maximize:
∑3
i=1 log(1 + pi

i )

Subject to:
∑3
i=1 pi ≤ c

pi ∈ [0, 1] ∀i ∈ {1, 2, 3}

where c ≥ 0 is a given constant. Fix µ ≥ 0. The unconstrained problem seeks to minimize
∑3
i=1 [− log(1 + pi/i) + µpi]

subject to pi ∈ [0, 1] for all i ∈ {1, 2, 3}.
a) Solve the unconstrained problem for µ = 0. What constrained problem (value of c) does this solve?
b) Show that if µ > 0 then the solution to the unconstrained problem is x∗i = [ 1µ − i]10 for all i ∈ {1, 2, 3}, where

[z]10 = max{0,min{1, z}} is the projection of the real number z onto the unit interval [0, 1].
c) Define h(µ) =

∑3
i=1[ 1µ − i]

1
0. Our Lagrange multiplier theorem ensures that a solution to the unconstrained problem for

a given µ > 0 is also a solution to the constrained problem for c = h(µ). Plot the function h(µ) for µ ∈ (0, 2]. Is this function
continuous? For any c ∈ [0, 3], can we find a µ > 0 such that h(µ) = c?

d) Find µ > 0 such that h(µ) = 1.2. What is the solution to the constrained problem for c = 1.2?
e) Find µ > 0 such that h(µ) = 2. What is the solution to the constrained problem for c = 2?
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Exercise IX-D.3. (Power allocation over 100 channels) Consider the problem:

Maximize:
∑100
i=1 log

(
1 + pi

i

)
Subject to:

∑100
i=1 pi ≤ 28.3

pi ∈ [0, 1] ∀i ∈ {1, ..., 100}

a) Find p∗i for all i ∈ {1, ..., 100}. What is
∑100
i=1 log

(
1 +

p∗i
i

)
?

b) Repeat part (a) when the constraint pi ∈ [0, 1] for all i ∈ {1, ..., 100} is changed to pi ≥ 0 for all i ∈ {1, ..., 100}.

1

2

3

1

2

3

c

x1

x2
x3

Fig. 11. Three links for power-aware flow allocation. The power used on link k ∈ {1, 2, 3} is ek+xk − 1.

Exercise IX-D.4. (Power-aware routing) We have a network with three links (see Fig. 11). All links have the same rate-power
properties. Specifically, if a single link supports a total flow rate of r ≥ 0 then it uses power er − 1. Each link k ∈ {1, 2, 3}
supports external traffic at rate k Mbits/sec (1 Mbit/sec for link 1, 2 Mbits/sec for link 2, 3 Mbits/sec for link 3). A new user
enters the network and wants to stream video at a fixed flow rate of c Mbits/sec (where 0 < c <∞). This new user can split
its traffic over the three links. Let xk be the amount of new flow we place on link k ∈ {1, 2, 3} (so the total flow rate is k+xk
on link k ∈ {1, 2, 3}). The problem of choosing (x1, x2, x3) to minimize total power is:

Minimize:
3∑
k=1

(
ek+xk − 1

)
Subject to: x1 + x2 + x3 ≥ c

xk ≥ 0 ∀k ∈ {1, 2, 3}

Let (x∗1, x
∗
2, x
∗
3) denote an optimal solution.

a) Find the largest value of c that yields x∗2 = x∗3 = 0 (so all flow of the new user is put on link 1).
b) Suppose c = 2. Solve the problem to find (x∗1, x

∗
2, x
∗
3). Repeat for the case c = 3.5.

c) Do the answers in (a) and (b) make physical sense for this problem?
d) Argue that for any c ≥ 0, the problem has the same optimal solution if the inequality constraint is replaced by the

equality constraint x1 + x2 + x3 = c. [We use the inequality constraint only because that is the form used in the basic
Lagrange multiplier theorem (Theorem II.2). Alternatively, we could pose the problem with an equality constraint and use
Theorem II.3.]

Exercise IX-D.5. Use a Lagrange multiplier µ ≥ 0 to solve:

Minimize: x2 + y2 + z2 + w2

Subject to: 5x+ y + 3z − w ≥ 8

x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0

Exercise IX-D.6. Consider the constrained optimization problem:

Minimize: (x− 3)2 + y2 + z2

Subject to: x− 5y − z ≤ 2

x ≥ 0, y ≥ 0, z ≥ 0

a) Fix µ ≥ 0 and solve the corresponding unconstrained problem in terms of µ.
b) Solve the constrained problem.
c) If the first constraint were changed to x− 5y− z ≤ c, what values of c mark important thresholds? (Note that important

thresholds can occur when µ = 0 and/or when µ is a value that marks a structural change in the unconstrained solution.)



UPDATED SPRING 2023 46

Exercise IX-D.7. Fix c ≥ 0 and consider the problem:

Minimize: (x− 1)2 + (y − 2)2 + (z − 3)2 + (w + 2)2

Subject to: x+ y + z + w ≤ c
x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0

It can be shown that if c ≥ 0 then the problem is feasible and has a unique optimal solution (x∗, y∗, z∗, w∗).
a) What threshold value c1 yields y∗ = 0 if c ≤ c1 and y∗ > 0 if c > c1?
b) What threshold value c2 yields x∗ = 0 if c ≤ c2 and x∗ > 0 if c > c2?
c) Solve the problem when c = 1/2 to find (x∗, y∗, z∗, w∗).
d) Solve the problem when c = 2 to find (x∗, y∗, z∗, w∗).
e) Solve the problem when c = 5 to find (x∗, y∗, z∗, w∗).
f) Solve the problem when c = 7 to find (x∗, y∗, z∗, w∗).

Exercise IX-D.8. Fix N as a positive integer and fix positive constants a1, . . . , aN .
a) Find an optimal solution x∗ to the following problem:

Minimize:
∑N
i=1 e

aixi

Subject to:
∑N
i=1 xi ≥ −8

(x1, . . . , xN ) ∈ RN

You should be able to get a closed form solution as a function of a1, . . . , aN .
b) State (x∗1, x

∗
2, x
∗
3, x
∗
4) for the special case N = 4 and ai = i for i ∈ {1, 2, 3, 4}.

Exercise IX-D.9. Maximize the function log(x1) + log(x2) + log(x3) subject to the constraints x1 + 2x2 + 8x3 ≤ 1 and
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0. Hint: It makes sense to define X = {(x1, x2, x3) ∈ R3 : xi ≥ 0 ∀i ∈ {1, 2, 3}}.

Exercise IX-D.10. Minimize x21 + x22 + x23 subject to x1 + 2x2 − 3x3 ≥ 8 and (x1, x2, x3) ∈ R3.

Exercise IX-D.11. Maximize x1 + 2x2 − 3x3 subject to x21 + x22 + x23 ≤ 1.

Exercise IX-D.12. Minimize x21 + 5x22 − x3 subject to x1 + x2 − x23 ≥ 4 and (x1, x2, x3) ∈ R3. Hint: You should get a cubic
equation for µ that has a positive real solution in the interval µ ∈ [6, 7], and which can be solved numerically.

Exercise IX-D.13. (Problem with an equality constraint) Let a = (a1, . . . , aN ) and b = (b1, . . . , bN ) be nonzero vectors in
RN . Consider the problem of choosing x = (x1, . . . , xN ) ∈ RN to minimize

∑N
i=1 a

2
ix

2
i subject to

∑N
i=1 bixi = 1. Use a

Lagrange multiplier approach to compute the optimal x∗ = (x∗1, . . . , x
∗
N ) in terms of entries of the a and b vectors.

Exercise IX-D.14. (Bicriteria shortest paths)
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Fig. 12. The link weights dij and cij for Exercise IX-D.14.

Consider the 6 node network of Fig. 12. Each link (i, j) has a distance dij and an energy cost cij (given in Fig. 12). We
want to find paths to the destination 1 that have low total distance and low total cost. If we focus on a particular start node
i 6= 1, this is a bicriteria minimization problem with feasible set A consisting of all possible cost-distance pairs (ctot, dtot)
achievable over paths from node i to node 1. Let µ ≥ 0 be a real number (the value µ will act as a Lagrange multiplier). We
want to minimize dtot + µctot over all paths P to the destination. That is, we want to find a path P that minimizes:∑

(i,j)∈P

[dij + µcij ]

This is solved by a shortest path algorithm with weights d̃ij = dij +µcij . In this problem, you can use either the Bellman-Ford
or Dijkstra algorithms for finding shortest paths (either by hand or by computer).

a) Solve and draw the shortest path tree (using the weights d̃ij) for the case µ = 0. Considering the path from 6 to 1, what
point (ctot, dtot) on the tradeoff curve does this produce? What about the path from 4 to 1?

b) Fix µ = 1. Using the d̃ij weights, solve and draw the shortest path tree. Is the tree different from the previous problem?
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c) State the Pareto optimal point (ctot, dtot) achieved for your path in part (b) for:
• The path from 6 to 1.
• The path from 4 to 1.
d) Your answer in part (c) finds a path P that solves an optimization problem of the form:

Minimize:
∑

(i,j)∈P dij

Subject to:
∑

(i,j)∈P cij ≤ θ
P is a path from 6 to 1

What is the value of θ? What optimization problem does your answer in part (c) solve, considering paths from 4 to 1?

Exercise IX-D.15. (Continuing the previous problem) For the same system from Exercise IX-D.14: Solve again (either by
hand, or by computer) the cases µ = 2, µ = 5 and µ = 10:

a) For the path from 6 to 1 with µ = 5: What Pareto optimal point (ctot, dtot) do you get?
b) For the path from 6 to 1 with µ = 10: What Pareto optimal point (ctot, dtot) do you get? (Note: In this case there are two

distinct trees that are valid solutions. These lead to two distinct Pareto optimal points that have the same value of dtot+µctot.
You just need to find one of them).

c) For the path from 6 to 1 with µ = 11: What Pareto optimal point (ctot, dtot) do you get?
d) For the path from 6 to 1: Including the cases µ = 0 and µ = 1 from Exercise IX-D.14, you tested five different µ values.

This should give you 3 different points on the tradeoff curve (you will find that some of the µ values lead to the same point).
Plot the three points on a graph with x-axis cost ctot and y-axis distance dtot.

Exercise IX-D.16. (Another constrained shortest path problem)
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Fig. 13. The 5-node graph for Exercise IX-D.16 with link distances and energy costs labeled.

We want to find routes from all nodes to node e for the graph in Fig. 13. All links can go in either direction. Each link
has a distance and an energy cost, as shown in the figure (the distances and costs are the same for either direction on the
link). For i ∈ {a, b, c, d}, let Di(p) and Ci(p) be the distance and energy cost, respectively, associated with a particular path
p from node i to destination e. For a given node i, we want to solve:

Minimize: Di(p)

Subject to: Ci(p) ≤ θi
p is a path from i to e

where θi is a given bound on the energy cost.
a) Use a Lagrange multiplier µ = 2 to solve the unconstrained minimization of Di(p) + µCi(p) for each i ∈ {a, b, c, d, e}.

Use either the Bellman-Ford or Dijkstra algorithms for computing a shortest path.
b) Draw the shortest path tree corresponding to your work in part (a) for the µ = 2 case.
c) Consider the source node a. What constrained optimization problem does your answer to part (a) help you solve for this

source node?

Exercise IX-D.17. (Energy-aware shortest paths) We have a network with n nodes and a set of links L that consists of ordered
pairs (i, j). We want to transmit a single packet from a given source node s ∈ {2, ..., n} to the destination node 1. For this
we must select a path P that specifies the links to use, and a collection of energy levels θij for all (i, j) ∈ P , where θij is
the energy spent on transmitting the packet over link (i, j). Specifically, for each link (i, j) ∈ L there is a distance function
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τij : [0,∞) → [0,∞) such that τij(θij) is the time to transmit the packet over link (i, j) using energy θij . For this problem
assume that τij(θij) =∞ for all θij ≥ 0 if (i, j) /∈ L, while if (i, j) ∈ L then

τij(θij) =

{ aij
θij

if θij > 0

∞ if θij = 0

where aij is a given positive real number for each (i, j) ∈ L. The total time τ and energy θ associated with choosing path P
and energies (θij)(i,j)∈P is

τ(P, (θij)) =
∑

(i,j)∈P

τij(θij)

θ(P, (θij)) =
∑

(i,j)∈P

θij

Fix c ≥ 0. We want to solve the constrained problem:

Minimize:
∑

(i,j)∈P

τij(θij) (155)

Subject to:
∑

(i,j)∈P

θij ≤ c (156)

P is a path from s to 1 (157)
θij ∈ [0,∞) ∀(i, j) ∈ P (158)

Given a Lagrange multiplier µ ≥ 0, the corresponding unconstrained problem is

Minimize:
∑

(i,j)∈P

(τij(θij) + µθij)

Subject to:P is a path from s to 1

θij ∈ [0,∞) ∀(i, j) ∈ P

a) Explain how the problem (155)-(158) can be formulated as a constrained optimization over a set A ⊆ R2 defined by
certain modes of operation in the system.

b) If the value µ ≥ 0 and the θij values were known for each potential link choice (i, j) ∈ L then the unconstrained
optimization could be solved by any shortest-path solver (such as Bellman-Ford or Dijkstra). Fix µ > 0 and show that, without
loss of generality, we can choose θij as certain values that depend only on aij and µ.

c) Suppose we fix µ = 10 and use the specific θij values of part (b). Suppose we obtain a path P ∗ and energies (θ∗ij) with
time and energy parameters τ∗ = 18.6 and θ∗ = 21.3. What constrained optimization problem does this solve? In other words,
this is the solution to the corresponding constrained optimization for which value of c?

d) Suppose we want to solve the constrained optimization for c = 12.0. Using this unconstrained optimization approach,
should we try µ < 10 or µ > 10? Should we expect the corresponding time to be less than or equal to 18.6 or greater than
or equal to 18.6?

r"

x1"

x2"

x3"

Fig. 14. Routing over three parallel links for Exercises IX-D.18 and IX-D.19.

Exercise IX-D.18. Traffic of rate r bits/second must be split and routed over three links with rates x1, x2, x3, respectively
(see Fig. 14). The power used on each link k depends on the rate x it supports according to the function pk(x) = ekx− 1 for
k ∈ {1, 2, 3}. That is, p1(x1) = ex1 − 1, p2(x2) = e2x2 − 1, and p3(x3) = e3x3 − 1. We want to choose x1, x2, x3 to solve:

Minimize: p1(x1) + p2(x2) + p3(x3)

Subject to: x1 + x2 + x3 ≥ r
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0
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a) Fix a Lagrange multiplier µ > 0 and solve the problem of minimizing

p1(x1) + p2(x2) + p3(x3)− µ(x1 + x2 + x3)

subject to x1 ≥ 0, x2,≥ 0, x3 ≥ 0. Let x1(µ), x2(µ), x3(µ) be the result as a function of µ.
b) Find a µ value that gives x1(µ) + x2(µ) + x3(µ) = 0.5, and hence solves the original constrained optimization for the

case r = 0.5.
c) Solve the original constrained optimization for the case r = 0.9.
d) Find the smallest value r∗ such that the optimal solution to the constrained optimization problem uses all three links

whenever r > r∗. Solve for the case r = r∗ + 4.

Exercise IX-D.19. Consider the problem of optimally splitting traffic of rate r over three parallel links. Let x1, x2, x3 be the
flow rates over the links (see Fig. 14). Link costs for xi ≥ 0 are given by the following convex functions:

c1(x1) = (x1 + 1)3 − 1

c2(x2) = 2(x2 + 1)3 − 2

c3(x3) = 3(x3 + 1)3 − 3

Given rate r, we want to find x1, x2, x3 to solve:

Minimize: c1(x1) + c2(x2) + c3(x3)

Subject to: x1 + x2 + x3 ≥ r
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

Equivalently, you can replace the constraint x1 + x2 + x3 ≥ r with x1 + x2 + x3 = r.

a) Let (x∗1, x
∗
2, x
∗
3) be the optimal solution. Find the threshold rate rthresh for which x∗3 = 0 if r ≤ rthresh and x∗3 > 0 if

r > rthresh.
b) Find the optimal solution (x∗1, x

∗
2, x
∗
3) for r = rthresh + 7.

Exercise IX-D.20. (Lagrange multipliers for one link) Consider the problem of N users that send over one link of fixed
capacity C. Consider the utility function:

φ(x1, . . . , xN ) =

N∑
i=1

θi log(1 + bxi)

where θi are given positive priority weights for users i ∈ {1, . . . N}, and b is a given positive constant.22 We want to solve:

Maximize: φ(x1, . . . , xN )

Subject to:
∑N
i=1 xi ≤ C

xi ≥ 0 ∀i ∈ {1, . . . , N}

a) Fix µ > 0. Maximize φ(x1, . . . , xN )− µ
∑N
i=1 xi over xi ≥ 0. Provide a general formula for each xi in terms of µ.

b) Find (x∗1, x
∗
2, x
∗
3) and util∗ = φ(x∗1, x

∗
2, x
∗
3) for the case N = 3, b = 5, θ1 = 1, θ2 = θ3 = 2, C = 1.

c) Find (x∗1, x
∗
2, x
∗
3) and util∗ = φ(x∗1, x

∗
2, x
∗
3) for the case N = 3, b = 5, θ1 = 1, θ2 = θ3 = 5, C = 1.

dest%λ%
Flow%1%

Flow%2%
5%

a%

b%

c%

Fig. 15. A network with one destination and two traffic flows for Exercise IX-D.21.

22Using a large value of b allows approximation of the (weighted) proportional fairness utility
∑N
i=1 θi log(xi). Indeed,

∑N
i=1 θi log(1 + bxi) =∑N

i=1 θi log(b) +
∑N
i=1 θi log( 1

b
+ xi), and adding the constant

∑N
i=1 θi log(b) to the objective function does not change the solutions.
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Exercise IX-D.21. Consider the network with two traffic flows and one destination shown in Fig. 15. Flow 1 has rate λ and
has a choice of 3 paths. Flow 2 has rate 5 and has only one path that uses just one link. There are 5 identical links. There
are no link capacity constraints. However, the energy used over each link l is a function of the total flow fl over that link. The
total energy used is ef1 + ef2 + ef3 + ef4 + ef5 − 5. We want to find a, b, c to minimize total energy 2ea + eb + ec + ec+5 − 5
subject to the following constraints:

a+ b+ c ≥ λ
a ≥ 0, b ≥ 0, c ≥ 0

a) Let a∗, b∗, c∗ be an optimal solution. Using basic intuition about each of the three paths, order the values a∗, b∗, c∗ from
highest rate to lowest rate. Write one or two sentences to explain your intuition.

b) Use a Lagrange multiplier µ to set up and solve the unconstrained optimization problem. As a function of µ, state which
paths in the unconstrained problem are allocated nonzero rate.

c) Give an exact solution for the optimal flow rates a∗, b∗, c∗ as a function of λ, considering all cases and all possible
(non-negative) values of λ.

Exercise IX-D.22. (Lagrange multipliers for two constraints) Consider the problem

Minimize:
∑n
i=1(xi − bi)2

Subject to:
∑n
i=1 xi ≤ c1∑n
i=1 aixi ≤ c2

xi ∈ [0, 7.2] ∀i ∈ {1, ..., n}

where n is a given positive integer and c1, c2, ai, bi for i ∈ {1, ..., n} are given real numbers.
a) Fix µ1 ≥ 0 and µ2 ≥ 0. State the corresponding unconstrained problem using these Lagrange multipliers for the first

two inequality constraints (recall Theorem III.1).
b) Solve the unconstrained problem of part (a) in terms of µ1 and µ2.
c) What constrained problem does your solution in part (b) solve? (That is, give the appropriate values of c1 and c2).

Exercise IX-D.23. (Lagrange multipliers can solve nonconvex problems) Consider the (nonconvex) optimization problem:

Minimize: (x− 3)2 + y2 − 2z2

Subject to: x− y + z ≤ c
x, y, z ∈ [0, 1]

a) Show the problem is feasible if and only if c ≥ −1.
b) Fix µ ≥ 0. Show that the solution to the unconstrained problem is

x∗ =
[
3− µ

2

]1
0
, y∗ =

[µ
2

]1
0
, z∗ =

{
1 if µ < 2
0 if µ > 2

and z∗ can be either 0 or 1 if µ = 2. Note that the separable and unconstrained optimization for z seeks to minimize a
concave function over the interval z ∈ [0, 1] and so optimal points will be at the endpoints.

c) Important thresholds for c occur when µ ∈ {0, 2, 4, 6}. Simplify the corresponding unconstrained solutions (x∗, y∗, z∗)
when µ ∈ [0, 2), µ = 2, µ ∈ (2, 4), µ ∈ [4, 6), µ ∈ [6,∞). Verify that x∗ − y∗ + z∗ is nondecreasing in µ. Find the interval
of cost values c associated with each regime.

d) Find solutions for the constrained optimization problem when c = 1.5, when c = 0, when c = −0.5, when c = −1.
e) Show the constrained problem can be solved by this Lagrange multiplier method when c ∈ [−1, 0] ∪ [1,∞). (Due to

hidden Pareto optimal points (g(x, y, z), f(x, y, z)) for (x, y, z) ∈ [0, 1]3, there is no µ ≥ 0 that yields an unconstrained
solution that meets the constraint when c ∈ (0, 1).)

E. Convexity theory exercises

Exercise IX-E.1. (Maximizing a convex function over an interval) Let f : R → R be a convex function. Fix real numbers
a, b such that a < b. Consider the problem of maximizing f(x) subject to x ∈ [a, b]. Prove the following claim: There is an
optimal solution x∗ ∈ [a, b] that satisfies either x∗ = a or x∗ = b. Hint: If x ∈ [a, b] then x = pa+(1−p)b for some p ∈ [0, 1].

Exercise IX-E.2. Let A be a finite subset of RN that consists of K points, where K ≥ 2. Is A a convex set?

Exercise IX-E.3. (Proportional fairness guarantees) Fix n as a positive integer and let A ⊆ (0,∞)n be a convex subset of
Rn that contains only vectors with positive components. Consider the problem of choosing x = (x1, ..., xn) ∈ A to maximize
a concave, differentiable, and entrywise nondecreasing utility function φ(x). The components xi are often associated with



UPDATED SPRING 2023 51

resources allocated to a specific user i of a system (so each user i wants its xi value to be as large as possible). Let x∗ ∈ A
be an optimal solution.

a) Fix x ∈ A such that x 6= x∗. Argue that px+ (1− p)x∗ ∈ A for all p ∈ [0, 1] and that φ(px+ (1− p)x∗) ≤ φ(x∗) for
all p ∈ [0, 1].

b) It can be shown that

lim
p→0+

φ(x∗ + p(x− x∗))− φ(x∗)

p
= ∇φ(x∗)> · (x− x∗)

where ∇φ(x) = [∂φ(x)/∂x1, ..., ∂φ(x)/∂xn]. Use this to prove that ∇φ(x∗)> · (x− x∗) ≤ 0.
c) The specific function φ(x) =

∑n
i=1 log(xi) is called the proportionally fair utility function [6][30]. With this function,

use part (b) to prove the following proportionally fair property:
n∑
i=1

xi − x∗i
x∗i

≤ 0 ∀x ∈ A (159)

This is a weighted sum of the improvement xi − x∗i of each user i when changing the vector x∗ ∈ A to some other vector
x ∈ A. The weights are 1/x∗i (meaning larger weights are associated with components with smaller x∗i values, which places
more emphasis on improving these components). Since the weighted sum is less than or equal to zero, the overall change from
x∗ to x can be viewed as undesirable or “proportionally unfair.” So x∗ is called the “proportionally fair” point.

d) The function log(z) has a pesky singularity at z = 0. Consider a modified utility function φ(x) =
∑n
i=1 log(1 + βxi) for

some given β > 0. Write a corresponding inequality of the type (159) for this modified utility function. Argue that the result is
similar to (159) when β is large. [This function has no singularities at 0 so we can allow A to be a convex subset of vectors
with nonnegative entries, rather than a convex subset of vectors with positive entries.]

Exercise IX-E.4. Let X be a convex subset of RN . Let f1(x), . . . , fK(x) be a collection of convex functions from X to R.
Let c1, . . . , cK be non-negative numbers. Prove that g(x) =

∑K
i=1 cifi(x) is a convex function from X to R.

Exercise IX-E.5. (Importance of ≤ versus ≥) Define convex functions f : R→ R, g : R2 → R, h : R2 → R by

f(x) = x2

g(x, y) = x2 + y

h(x, y) = x2 − y

Plot the following sets and determine if they are convex or nonconvex:
a) A = {x ∈ R : f(x) ≤ 3}.
b) B = {x ∈ R : f(x) ≥ 1}.
c) C = {(x, y) ∈ R2 : g(x, y) ≤ 4}.
d) D = {(x, y) ∈ R2 : h(x, y) ≤ 4}.
e) E = {(x, y) ∈ R2 : h(x, y) ≥ 1}.

Exercise IX-E.6. Define a function from R3 to R by f(x1, x2, x3) = x21. Show that f(x1, x2, x3) is convex but not strictly
convex.

Exercise IX-E.7. (Affine functions are both convex and concave) Define a function from RN to R by f(x) = a0 + a1x1 +
. . .+ aNxN , where ai ∈ R for all i ∈ {0, 1, . . . , N}. Prove that f(x) is both convex and concave, but neither strictly convex
nor strictly concave.

Exercise IX-E.8. Suppose f1(x1), . . . , fN (xN ) are functions from R to R. Let x = (x1, . . . , xN ) and define f(x) =∑N
i=1 fi(xi).
a) Show that if f(x) is strictly convex over RN , then each fi(xi) function is strictly convex over R.
b) Suppose each fi(xi) function is strictly convex over R. Let x = (x1, . . . , xN ) and y = (y1, . . . , yN ) be points in RN

such that x 6= y. Fix θ ∈ (0, 1). Prove that f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y). Hint: Find an entry j such that xj 6= yj .

Exercise IX-E.9. (Convex inequality constraints) Prove Lemma IV.3.

Exercise IX-E.10. (Convexity of norms) Let a = (a1, . . . , aN ) ∈ RN and let f(x) = ||x− a||.
a) Prove that f(x) is convex over x ∈ RN .
b) Let b1, . . . , bK be points in RN and define g(x) =

∑K
i=1 ||x− bi||. Prove that g(x) is convex over x ∈ RN .

Exercise IX-E.11. Consider the function f(x) = x3.
a) Is this function convex over x ∈ R?
b) Is this function convex over the interval x ∈ [0,∞)?
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Exercise IX-E.12. Let X ⊆ RN be a convex set and let f(x), g(x) be convex functions over x ∈ X . Define A = {(u, v) ∈
R2 : (u, v) ≥ (g(x), f(x)) for some x ∈ X} (where inequality is taken entrywise). Prove that A is a convex set.

Exercise IX-E.13. (Concave functions are minimized at extreme points) Let X be a (possibly non-convex) subset of RN , and
let f(x) be a concave function defined over x ∈ Conv(X ). Suppose x∗ minimizes f(x) over all x ∈ Conv(X ).

a) Use the definition of Conv(X ) to verify that x∗ =
∑k
i=1 θixi for some positive integer k, some positive values θ1, . . . , θk

that sum to 1, and for some vectors x1, . . . , xk that satisfy xi ∈ X for all i ∈ {1, . . . , k}.
b) Use the fact that x∗ solves the minimization problem to conclude that f(x∗) ≤ f(xi) for all i ∈ {1, . . . , k}.
c) Show that f(xi) = f(x∗) for all i ∈ {1, . . . , k}. Thus, the minimum of the concave function f(x) over x ∈ Conv(X )

can be achieved by a point in the set X itself.
d) Show that if f(x) is strictly concave over x ∈ Conv(X ), then x∗ ∈ X . Thus, all solutions that minimize the strictly

concave function f(x) over x ∈ Conv(X ) must be in the set X itself.

Exercise IX-E.14. Let X be a finite set of 2-dimensional points: X = {(0, 0), (1, 2), (2, 1.5), (−1, 3), (.5, .5)}.
a) Plot Conv(X ).
b) Find the minimum of f(x, y) = 3x+ 2y over (x, y) ∈ Conv(X ) (you can use the result of Exercise IX-E.13).
c) Repeat for minimizing f(x, y) = −x+ y over (x, y) ∈ Conv(X ).

Exercise IX-E.15. Let f(y) be a convex function from R to R. Let a0, a1, . . . , aN be a collection of N + 1 real numbers. Let
x = (x1, . . . , xN ). Prove that g(x) = f

(
a0 +

∑N
i=1 aixi

)
is a convex function from RN to R.

Exercise IX-E.16. Let f(y) be a convex and nondecreasing function from R to R, so that f(y1) ≤ f(y2) whenever y1 ≤ y2.
Let X be a convex subset of RN and let g(x) be a convex function from X to R. Define h(x) = f(g(x)). Show that h(x) is
a convex function from X to R.

Exercise IX-E.17. (Proof of Jensen’s inequality) Let Z be a convex subset of RM , where M is a positive integer. Let Z be
a random vector that takes values in Z and that has finite expectation E [Z]. Lemma IV.1 ensures that E [Z] ∈ Z . This fact
is used to prove Jensen’s inequality. Let X be a convex subset of RN (where N is a positive integer). Let f(x) be a convex
function from X to R. Let X be a random vector that takes values in X . We want to show f(E [X]) ≤ E [f(X)].

a) Define Z = {(x, y) ∈ RN+1 : x ∈ X and y ≥ f(x)}. The set Z is called the epigraph of the function f(x) over x ∈ X .
Show that Z is a convex subset of RN+1.

b) Argue that (X, f(X)) ∈ Z for all realizations of the random vector X . Conclude that f(E [X]) ≤ E [f(X)].

Exercise IX-E.18. (The difference between a convex set and a convex function) Define f(x) = x2 for all x ∈ R.
a) Define A = {(x, f(x)) ∈ R2 : x ∈ R}. Is A a convex set?
b) Is f(x) a convex function over x ∈ R?
c) Define B = {(x, y) ∈ R2 : y ≥ f(x)}. Is B a convex set?

Exercise IX-E.19. (Convexity of the tradeoff function for a convex program) Let X be a convex and compact subset of RN and
let f(x), g1(x), . . . , gK(x) be convex functions over x ∈ X . Define C as the subset of all vectors c = (c1, . . . , cK) ∈ RK such
that the problem of finding x ∈ X to minimize f(x) subject to gk(x) ≤ ck for all k ∈ {1, . . . ,K} is feasible. For all c ∈ C,
define ψ(c) as the optimal value of the objective function f(x) in this convex program (with constraint constants c1, . . . , cK).

a) Show that C is a convex set.
b) Show that ψ(c) is a convex function over c ∈ C.

Exercise IX-E.20. (Comparisons via Jensen’s inequality) Let X be a convex subset of RN and let X be a random vector that
takes values in X . Use Jensen’s inequality to compare E [||X||]2, E

[
||X||2

]
, and ||E [X]||2 using a chain of inequalities of

the form a ≤ b ≤ c. Explicitly state which convex functions are used to establish each inequality.

Exercise IX-E.21. (Minimizing convex functions of one variable) This problem proves Lemma IV.5. Suppose f : R→ R is a
convex function and y∗ is a minimizer of f over x ∈ R. Consider any interval [a, b]. We want to show the projection [y∗]ba
minimizes f over x ∈ [a, b].

a) Suppose y∗ ∈ [a, b]. Prove the result in this case.
b) Suppose y∗ > b. Prove the result in this case. Hint: Suppose a minimum of f over [a, b] occurs at a point x∗ such that

x∗ < b. Draw a picture to get intuition.
c) State the remaining case. Which of the previous two cases is this remaining case similar to?

Exercise IX-E.22. (Using the above result) Fix µ ≥ 0. Use Lemma IV.5 (also stated in the above problem) to minimize
f(x) = x2 − µx over x ∈ [0, 1]. Show the result is the same as given in (22).

Exercise IX-E.23. (Positive semidefinite condition for convexity) Let f : RN → R be a twice differentiable function such that
∇2f(x) is positive semidefinite for all x ∈ X . We want to show f is convex.

a) Fix x, y ∈ RN and define h : [0, 1]→ R by h(θ) = f(θx+(1−θ)y). Show that h′′(θ) = (x−y)T∇2f(θx+(1−θ)y)(x−y).
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b) Conclude that h is convex and h(θ) ≤ θh(1) + (1− θ)h(0) for all θ ∈ [0, 1]. Conclude that f is convex.

Exercise IX-E.24. (Convexity of x2/y) Show that the function f : R × (0,∞) → R given by f(x, y) = x2/y is a convex
function. Hint: Show the second derivative matrix ∇2f is positive semidefinite for all x ∈ R, y > 0.

Exercise IX-E.25. (Convexity of linear combinations of convex sets) Let X and Y be convex subsets of RN . Let a, b be given
real numbers. Define C = {w ∈ RN : w = ax+ by for some x ∈ X , y ∈ Y}. Show that C is a convex set.

Exercise IX-E.26. (Hyperplane separation of disjoint convex sets) The hyperplane separation theorem implies that if X is a
convex set and x∗ is a point not in X , then there is a hyperplane that passes through x∗ that contains X on one side. That
is, there is a nonzero vector a such that aTx ≥ aTx∗ for all x ∈ X . We want to use this to show there is also a hyperplane
that separates any two disjoint convex sets X and Y .

a) Suppose X and Y are nonempty disjoint convex subsets of RN . Show there is a nonzero vector a ∈ RN such that
aTx ≥ aT y for all x ∈ X , y ∈ Y . Hint: Show {x− y ∈ RN : x ∈ X , y ∈ Y} is convex and does not contain the zero vector.

b) Define b = infx∈X a
Tx. Show that b is finite and aTx ≥ b, aT y ≤ b for all x ∈ X , y ∈ Y . Hence, the hyperplane

{x ∈ RN : aTx = b} separates X and Y so that all points of X are on or above, and all points of Y are on or below.

F. Convex programs

Remember: If f is a concave function then −f is a convex function; Maximization of f is the same as minimization of
−f ; The constraint f(x) ≥ 7.2 is equivalent to −f(x) ≤ −7.2; The constraint g(x) ≤ f(x) is equivalent to g(x)− f(x) ≤ 0;
Humans generally agree that an optimization problem is a convex program if it can trivially be put into standard convex
form by bringing all expressions in a constraint to the left-hand-side and/or by multiplying by −1. Humans usually find the
expression x ≥ 0 to be more readily understandable than the equivalent expression −x ≤ 0. (In contrast, computers often need
convex programs and linear programs to be in standard form).

C=1 C=1

x1 x2

x3
Fig. 16. A network with two links and three users.

Exercise IX-F.1. (NUM fairness comparison) This problem treats a simple convex program with the purpose of comparing
different fairness functions used for network utility maximization (NUM). Three different users want to communicate over the
2-link network of Fig. 16. User 1 wants to use link 1, user 2 wants to use link 3, and user 3 wants to use both links 1 and 2.
We want to allocate a rate vector (x1, x2, x3) to solve

Maximize: φ(x1, x2, x3)

Subject to: x1 + x3 ≤ 1

x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

where φ(x1, x2, x3) is a concave and entrywise nondecreasing utility function. Clearly, if we choose a particular x3 ∈ [0, 1]
then we should choose x1 = 1− x3 and x2 = 1− x3. Thus, the problem is equivalent to the following 1-variable problem:

Maximize: φ(1− x3, 1− x3, x3)

Subject to: 0 ≤ x3 ≤ 1

a) Find (x∗1, x
∗
2, x
∗
3) when φ(x1, x2, x3) = x1 + x2 + x3. This linear utility function seeks to maximize sum throughput.

b) Find (x∗1, x
∗
2, x
∗
3) when φ(x1, x2, x3) = log(x1) + log(x2) + log(x3). This sum of logarithms is called the proportionally

fair utility function (see also Exercise IX-E.3). [Strictly speaking, due to the singularity of log(x) at x = 0, the domain of φ
should be restricted to the (convex but non-closed) set of all (x1, x2, x3) ∈ R3 such that xi > 0 for i ∈ {1, 2, 3}.]

c) Find (x∗1, x
∗
2, x
∗
3) when φ(x1, x2, x3) = min{x1, x2, x3}. This concave utility function seeks to maximize the minimum

allocation.
d) Give an argument about why the answer in (c) can be viewed as the most fair. Now, give an argument about why the

answer in (b) can be viewed as the most fair. Which of the three allocations (a), (b), or (c) do you think is the most fair?

Exercise IX-F.2. (Cost-aware multihop routing)
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Fig. 17. The 7 node network for Exercise IX-F.2.

Consider the network of Fig. 17 with the capacities written on the links. There are two input streams with given rates λ1
and λ2. The rate λ1 must be split over the top and bottom paths. Let x and y be the amount used for the top and bottom paths,
respectively, so that x and y are non-negative and satisfy x + y = λ1. The problem is to route the data over the network so
that the link capacities are not exceeded and total sum cost is minimized. Assume that the cost function for the link (i, j) with
total flow rate rij is equal to Φij(rij) = erij − 1. Assume that λ1, λ2 are non-negative and satisfy λ1 + λ2 ≤ 6 and λ2 ≤ 3.

a) Write down a convex program, with the corresponding constraints, to minimize the sum of costs. The decision variables
are x and y.

b) In the 2-d plane, plot the region of all non-negative (λ1, λ2) vectors that satisfy λ1 + λ2 ≤ 6 and λ2 ≤ 3. Argue that
this region is exactly the set of all rate vectors (λ1, λ2) that the network can support, called the network capacity region.
Hint: First prove that if one of the constraints is violated, then it is impossible to support the traffic over the network. Next,
prove that if both constraints are satisfied, then there is a way to split λ1 into components x and y such that the total flow is
supportable over the network.

c) Suppose we want both λ1 and λ2 to be large. However, we require (λ1, λ2) to be in the network capacity region
specified by part (b). State the set of all Pareto optimal vectors (λ1, λ2) (where Pareto optimality here is in terms of desiring
both coordinates to be large, rather than small). Over all Pareto optimal vectors (λ1, λ2), which vector (λ∗1, λ

∗
2) maximizes

2 log(λ1) + log(λ2)? Which maximizes log(λ1) + log(λ2)?

Exercise IX-F.3. (Network fairness with three links) Consider three flows:
• Flow 1 uses links 1 and 2.
• Flow 2 uses links 2 and 3.
• Flow 3 uses link 3.

Links 1 and 3 have capacity 1, and link 2 has capacity 0.8. Let xi be the rate of flow i. The optimization problem is:

Maximize: φ1(x1) + φ2(x2) + φ3(x3) (160)
Subject to: x1 ≤ 1 (161)

x1 + x2 ≤ 0.8 (162)
x2 + x3 ≤ 1 (163)

xi ≥ 0 ∀i ∈ {1, 2, 3} (164)

where φi(xi) is a concave and non-decreasing utility function for flow i.
a) Argue that, for optimality, we can assume that x1 = 0.8− x2, x3 = 1− x2, and x2 ∈ [0, 0.8]. This reduces the problem

to a calculus problem of optimizing a function of a single variable x2 over an interval.
b) Solve for the case φi(x) = log(x) for all i ∈ {1, 2, 3}. This is proportional fairness. [Strictly speaking, to avoid the

singularity at x = 0, we should add constraints xi > 0 for all i ∈ {1, 2, 3}.]
c) Solve for the case φi(x) = x for i ∈ {1, 2, 3}. This seeks to maximize the sum rate.
d) Compare and discuss the fairness for the utility functions in parts (b) and (c).

Exercise IX-F.4. (Importance of nonnegativity constraints) Consider the same system as Exercise IX-F.3. However, suppose
that:
• We use φi(x) = x for all i ∈ {1, 3} and φ2(x) = 5x. (so we seek to maximize x1 + 5x2 + x3).
• We neglect the constraints (164).
Show that the maximum value of the objective function is infinity. That is, for any arbitrarily large number M , there are

vectors (x1, x2, x3) ∈ R3 that satisfy (161)-(163) and yield x1 + 5x2 + x3 ≥M .

Exercise IX-F.5. (Linear program for server scheduling) Consider a network with three links that operate in discrete time
t ∈ {0, 1, 2, . . .}. Only two links can be activated per slot. Every slot t, the network controller must choose which two links
to activate. An active link transmits one packet per slot. An idle link transmits no packets. Thus, the decision can be viewed
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as a selection of a transmission vector b(t) = (b1(t), b2(t), b3(t)) in the set B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Let p1 be the
fraction of time that b(t) = (1, 1, 0), let p2 be the fraction of time that b(t) = (1, 0, 1), and let p3 be the fraction of time that
b(t) = (0, 1, 1). Let bi be the time average transmission rate on link i.

a) Write a linear program (with no optimization objective, that is, with the objective of minimizing the function 0) to find
variables p1, p2, p3 to ensure bi ≥ λi, where λ1, λ2, λ3 are a given set of non-negative numbers. Be sure to include the
constraints pi ≥ 0 for all i, and p1 + p2 + p3 = 1.

b) Solve the problem by hand (by intuition and/or by trial-and-error) for the case (λ1, λ2, λ3) = (2/3, 2/3, 2/3). Then solve
for the case (λ1, λ2, λ3) = (1, 1/2, 1/2).

c) Solve the problem by hand (by intuition and/or by trial-and-error) for the case (λ1, λ2, λ3) = (3/8, 7/8, 6/8).
d) Solve the problem by hand (by intuition and/or by trial-and-error) for the case (λ1, λ2, λ3) = (0.5, 0.6, 0.7).
e) Prove that it is impossible to solve the problem if λ1 + λ2 + λ3 > 2.

Exercise IX-F.6. (Feasibility of server scheduling) For the same system as Exercise IX-F.5:
a) Prove that it is impossible to solve the linear program if there is an i ∈ {1, 2, 3} such that λi > 1.
b) Prove that it is impossible to solve the linear program if λ1 + λ2 + λ3 > 2.

Exercise IX-F.7. (Linear programs for generalized scheduling) Consider a generalized scheduling system with N links. Every
timeslot t ∈ {0, 1, 2, . . .} the system controller chooses a transmission rate vector b(t) = (b1(t), . . . , bN (t)) subject to the con-
straint b(t) ∈ B, where B is a finite set of transmission rate vector options. Specifically, assume that B = {r(1), r(2), . . . , r(K)},
where r(k) is the kth vector in the set B and has components r(k) = (r

(k)
1 , . . . , r

(k)
N ), for k ∈ {1, . . . ,K}. Let pk be the fraction

of time that r(k) is used.
a) Write a linear program with no optimization objective (that is, with the objective of minimizing the function 0) to find

values p1, . . . , pK that ensure the time average transmission rates satisfy bi ≥ λi for i ∈ {1, . . . , N}, where λ1, . . . , λN are
a given set of non-negative numbers.

b) Assume option k ∈ {1, ...,K} incurs energy ek. Write a linear program to minimize the time average energy expenditure
subject to the same constraints bi ≥ λi for all i ∈ {1, ..., N}.

Exercise IX-F.8. (Energy aware scheduling) For the same system of Exercise IX-F.7: Assume λi values are not given, but we
can choose them as any nonnegative value. Fix β > 0. Write a convex program to maximize

∑N
i=1 log(1 + βλi) subject to the

constraints that time average energy expenditure is more than a given value c and bi ≥ λi for all i ∈ {1, ..., N}.

Exercise IX-F.9. (Cloud computing with three cloud devices) We process an infinite sequence of computational tasks one at
a time. When each task is done we immediately perform a new task. Each task is processed by delivering it to one of three
different cloud computers. The choice of which cloud computer to use affects task duration, task quality, and energy expenditure.
The random duration, quality, and energy for each task is conditionally independent of the past given the computer i ∈ {1, 2, 3}
that is chosen. Using computer i ∈ {1, 2, 3} yields an average of ti time, qi quality, and ei energy. Assume we randomly and
independently choose from the three computers with probabilities p1, p2, p3. The average time, quality, and energy for each task
is E [Q] =

∑3
i=1 piqi, E [T ] =

∑3
i=1 piti, E [E] =

∑3
i=1 piei. By renewal theory, the time average energy per unit time is the

ratio of expectations E [E] /E [T ] (not the expectation of the ratio E [E/T ]). Write a linear program that chooses (p1, p2, p3)
to minimize the expected time required to process a task subject to the requirements that expected task quality is at least 9.3
and time average energy per unit time is no more than 8.2.

Exercise IX-F.10. (Proportionally fair routing to servers) We have N users that want to send data using a choice of K servers.
Let Cj be the fixed capacity of server j ∈ {1, ...K}. Let xi be the total flow rate chosen for user i ∈ {1, ...,K}. Assume each
user i ∈ {1, ..., N} can use only the servers in a given subset Ai ⊆ {1, ...,K}. Specifically, each user i ∈ {1, ..., N} can split
its flow xi over those servers j ∈ Ai via subflow rates xij . Write a convex program to maximize proportional fairness subject
to the server capacity constraints. [If you prefer you can use a utility function that sums terms of the type log(1 + βz) (for
some given β > 0) to avoid the singularity of log(z) at z = 0. That is, you can use, for example,

∑N
i=1 log(1 + βxi).]

Exercise IX-F.11. (Delay-aware routing) As in the previous problem, we have N users that want to send data using a choice
of K servers. Let Cj be the fixed capacity of server j ∈ {1, ...K}. In this problem, the flow rate of each user i is a fixed value
λi > 0 that cannot be changed. Assume each user i ∈ {1, ..., N} can use only the servers in a given subset Ai ⊆ {1, ...,K}.
Specifically, each user i ∈ {1, ..., N} can split its flow λi over those servers j ∈ Ai via subflow rates xij . Let fj be the total
flow rate into server j ∈ {1, ..,K} (summed over all users that allocate a portion of their flow to that server). Suppose the
average queue size for server j is given by the M/M/1 formula fj/Cj

1−fj/Cj
. By Little’s theorem of queueing theory, the average

delay in the system is proportional to the total average queue size.
a) (Feasibility) Ignoring average delay, write a linear program for determining if it is feasible to support a given vector of

user rates (λ1, ..., λN ) by allocating xij variables to ensure the total flow over each link j is no more than Cj . The linear
program should seek to minimize the function 0, that is, it should be a pure feasibility problem that only seeks to satisfy a
collection of linear constraints.

b) Show that h(f1, ..., fK) =
∑K
j=1

fj/Cj

1−fj/Cj
is a convex function over the domain (f1, ..., fK) ∈ ×Kj=1[0, Cj).
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c) Fix (λ1, . . . , λN ) and assume there is some ε > 0 such that (λ1 + ε, . . . , λN + ε) is feasible. Write a convex program to
choose xij to minimize average delay by minimizing

∑K
j=1

fj/Cj

1−fj/Cj
. [Your convex program does not need to use the parameter

ε > 0. The requirement that there is such an ε > 0 ensures it is possible to make the denominator nonzero for each term of
the sum. You are free to add the constraints 0 ≤ fj < Cj for all j ∈ {1, ...,K}, or if you prefer you can use 0 ≤ fj ≤ Cj − δ
for all j ∈ {1, ...,K} for some given small value δ > 0, since many convex program solvers prefer constraints of the type ≤
rather than <.]

Exercise IX-F.12. (Feasibility by maximizing a scale parameter) For the system of Exercise IX-F.11, to determine if a vector
(λ1, . . . , λN ) is feasible, write a linear program to maximize a parameter θ ≥ 0 subject to supporting (θλ1, . . . , θλN ). The
advantage of this approach is that we know the constraints can be satisfied. Explain how the resulting optimal solution can
be used to determine whether or not the original vector (λ1, . . . , λN ) can be supported by the network.

Exercise IX-F.13. (Quality-aware video over a network) Suppose a network must support N video streams. Let xi be the rate
of video stream i ∈ {1, . . . , N}. Suppose the rates can be chosen in an interval xi ∈ [0, xmax], which affects the distortion
of the video through a non-negative, non-increasing, and convex rate-distortion function di(xi) for each i ∈ {1, . . . , N}. The
goal is to minimize

∑N
i=1(di(xi))

2 subject to the rates (x1, . . . , xN ) being supportable on the network (it can be shown that
di(x)2 is a convex function of x ≥ 0). Let L be the set of network links. Assume each video i ∈ {1, . . . , N} takes a path Pi
that involves a collection of links, and the capacity available for serving video streams on a given link l is equal to Cl.

a) Write the resulting convex program that seeks to find the optimal (x∗1, . . . , x
∗
N ).

b) Now suppose the first two links l = 1 and l = 2 have capacities that depend on the power allocated to them. Let C1(p1)
and C2(p2) be the capacities, assumed to be concave functions of the non-negative power variables p1, p2. Write a new convex
program that incorporates the constraint p1 + p2 ≤ 1, to find optimal values (x∗1, . . . , x

∗
N , p

∗
1, p
∗
2).

Exercise IX-F.14. (NUM with two path options for each user) Consider a network with L links with link capacities C1, . . . , CL.
There are N users with flow rates x1, . . . , xN that are to be chosen wisely. Each user has a specific source and a specific
destination (the source-destination pair can be different for each user). Each user has a choice of two paths (the two paths
have the same source and the same destination, as appropriate for that user). Each user can split its traffic over the two paths
(so the sum flow rate of each user i ∈ {1, ..., N} over both of its paths is xi). Let (aij) and (bij) be binary path matrices
for path 1 and 2 of each user i, so that aij = 1 if and only if path 1 for user i contains link j; bij = 1 if and only if
path 2 for user i contains link j. Write a convex program for maximizing the proportionally fair utility function subject to
the constraint that the total flow on each link is no more than the capacity of that link. You may need to introduce additional
decision variables and constraints. Remember to include nonnegativity constraints when appropriate. Remember to express
constraints using appropriate index descriptions such as “∀i ∈ {1, ..., N}” and/or “∀j ∈ {1, ..., L}.” The convex program
should be similar to the NUM problem (109)-(111) with the exception that there are two paths for each user (rather than one
path for each user). [If you prefer, you can use a utility function that sums the functions φi(xi) = log(1 + βxi) (for some
given parameter β > 0). This avoids the singularity of the function φi(xi) at xi = 0.]

Exercise IX-F.15. (Convergence time for DPP) Consider the convex program of minimizing f(x) subject to gi(x) ≤ 0 for
i ∈ {1, . . . , k} and x ∈ X . Let x∗ ∈ X be an optimal solution. Fix ε > 0. Suppose we have an algorithm that chooses
x(t) ∈ X for all t ∈ {0, 1, 2, . . .} that ensures for all T > 0:

T−1∑
t=0

f(x(t)) ≤ Tf(x∗) + εT

T−1∑
t=0

gi(x(t)) ≤ 1

ε
+
√
T ∀i ∈ {1, . . . , k}

Show that x(T ) = 1
T

∑T−1
t=0 x(t) is an ε-approximation (defined in Section VI-A) whenever T ≥ a/ε2 for some real number a

that you should compute. Theorem VI.2 shows the DPP algorithm yields inequalities that are structurally similar to these.

Exercise IX-F.16. (Convergence time for enhanced algorithm) As in Exercise IX-F.15, consider minimizing f(x) subject to
gi(x) ≤ 0 for i ∈ {1, . . . , k} and x ∈ X . Let x∗ ∈ X be an optimal solution. Fix ε > 0. Suppose we have an algorithm that
chooses x(t) ∈ X for all t ∈ {0, 1, 2, . . .} that ensures for all T > 0:

T−1∑
t=0

f(x(t)) ≤ Tf(x∗) + b

T−1∑
t=0

gi(x(t)) ≤ b ∀i ∈ {1, . . . , k}
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for some constant b > 0. Compute a threshold Tthresh such that x(T ) = 1
T

∑T−1
t=0 x(t) is an ε-approximation (defined in

Section VI-A) whenever T ≥ Tthresh, where Tthresh is the convergence time. Show this convergence time is asymptotically
better than that of Exercise IX-F.15. Section VII presents an enhanced algorithm that yields inequalities similar to these.

Exercise IX-F.17. (An approximate solution that satisfies all constraints) Suppose y is an ε-approximation to (72)-(74) (defined
in Section VI-A). Fix δ > 0 and suppose there is a vector z ∈ X that satisfies the Slater condition gi(z) ≤ ci − δ for all
i ∈ {1, . . . , k}. Find a value α ∈ [0, 1] such that the vector ỹ = αz+(1−α)y satisfies ỹ ∈ X , gi(ỹ) ≤ ci for all i ∈ {1, . . . , k},
and f(ỹ) ≤ f(x∗)+dε, where d is a constant that possibly depends on δ and f(z)−f(x∗). Hence, ỹ is an O(ε) approximation
that satisfies all constraints.

Exercise IX-F.18. (Caveat on careless projections to an interval for Lemma IV.5) Fix a ∈ R and β > 0. Consider the problem
of maximizing log(1 + βx)− ax subject to x ∈ [0, 1].

a) Show that if a ≤ 0 then x∗ = 1.
b) Suppose a > 0. Use a variation on Lemma IV.5 for functions with domain (0,∞) to show x∗ = [ 1a −

1
β ]10.

c) Suppose a = −1 and β = 1. Part (a) implies x∗ = 1. However, using the formula of part (b) in this scenario gives
[ 1a −

1
β ]10 = [−2]10 = 0 6= x∗. What is going wrong? Hint: See Caveat 2 after Lemma IV.5.

G. Drift-plus-penalty applications

Recall basic optimizations over an interval (Exercises (IX-C.1)-(IX-C.4)) and over a simplex (Exercise IX-C.5).

Exercise IX-G.1. (Drift-plus-penalty for linear programs) Consider the linear program:

Minimize:
∑N
i=1 cixi∑N

i=1 akixi ≤ bk ∀k ∈ {1, . . . ,K}
xi ∈ [xi,min, xi,max] ∀i ∈ {1, . . . , N}

where ci, aki, bk, xi,min, xi,max are given constants. Define X = {x ∈ RN : xi,min ≤ xi ≤ xi,max ∀i ∈ {1, . . . , N}}.
a) Specify the virtual queues Qk(t) for k ∈ {1, . . . ,K} used by the drift-plus-penalty algorithm.
b) Specify the decisions xi(t) made by the drift-plus-penalty algorithm (with V ≥ 0). You should find that xi(t) is either

xi,min or xi,max for all t, depending on a simple threshold comparison. Theorem VI.1 ensures the time averages converge to
an O(ε)-approximation, where ε = 1/V . [The enhanced algorithm in Section VII is just as simple but has faster convergence.]

Exercise IX-G.2. (Drift-plus-penalty for server scheduling) Consider the system of 3 links and 2 servers in part (a) of
Exercise IX-F.5. There are given values λi ≥ 0 for i ∈ {1, 2, 3}. The linear program chooses a probability mass function
(PMF) (p1, p2, p3) to minimize the function 0 (so there is no objective function to minimize) subject to a collection of 3 linear
inequality constraints. Let X be the compact set all (p1, p2, p3) that satisfy the PMF constraints

∑3
i=1 pi = 1 and pi ≥ 0

for i ∈ {1, 2, 3}. Consider the drift-plus-penalty algorithm with V ≥ 0 to solve the linear program (the V parameter will not
make a difference here since the objective function is 0). Define the 3 virtual queue updates for the DPP algorithm, then state
the decisions (p1(t), p2(t), p3(t)) every slot t. This is called the max-weight algorithm [21][31].

Exercise IX-G.3. (Drift-plus-penalty for generalized server scheduling) Consider the scheduling problem of Exercise IX-F.7(b)
with N links and K scheduling modes, where each mode k ∈ {1, ...,K} corresponds to using a transmission rate vector
r(k) = (r

(k)
1 , ..., r

(K)
N ) for one slot. We want to find optimal fractions of time (p1, ..., pK) for using each mode to minimize

average energy
∑K
k=1 pkek subject to each link i ∈ {1, ..., N} supporting rate λi. Define X as the compact set of all

(p1, . . . , pK) such that pk ≥ 0 for all k ∈ {1, ...,K},
∑K
k=1 pk = 1.

a) State the drift-plus-penalty algorithm with parameter V ≥ 0 for this problem.
b) Part (a) requires us to choose a mode k ∈ {1, ...,K} every slot. Suppose we want to allow the option of being idle to

save power. Introduce a new mode K + 1 with r(K+1) = ~0 and eK+1 = 0. How does the algorithm change?

Exercise IX-G.4. (Drift-plus-penalty for quality-aware video) Consider the same network of Exercise IX-F.13b, where there
are N video streams with rates (x1, . . . , xN ) for 0 ≤ xi ≤ xmax, non-negative, non-increasing, and convex distortion functions
di(xi), paths Pi for each video i ∈ {1, . . . , N}, link capacities Cl for each link l ∈ L, and two special links 1 and 2 with
concave capacity functions C1(p1), C2(p2) with power subject to p1 + p2 ≤ 1 and p1 ≥ 0, p2 ≥ 0.

a) Write the virtual queues.
b) For V ≥ 0, state the drift-plus-penalty algorithm for the xi(t) and p1(t), p2(t) variables. Is it separable?
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Fig. 18. A network with three flows x, y, z and a power constraint p1 + p2 ≤ β, for Exercise IX-G.5.

Exercise IX-G.5. (Optimizing network flows) Consider the network with three flows with flow rates x, y, z, as shown in Fig.
18. Flow x uses link 1. Flows y and z use link 2. The transmission rates of links 1 and 2 depend on power variables p1 and
p2. There is a power constraint p1 + p2 ≤ β, for some constant β. We want to use the drift-plus-penalty algorithm to solve:

Maximize: log(x) + log(y) + log(z) (165)
Subject to: x ≤ log(1 + p1) , y + z ≤ log(1 + p2) (166)

p1 + p2 ≤ β (167)
0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , 0 ≤ z ≤ 1 (168)

0 ≤ pi ≤ β ∀i ∈ {1, 2} (169)

Assume X is the set of all (x, y, z, p1, p2) that satisfy (168)-(169).
a) Write the virtual queues.
b) State the drift-plus-penalty algorithm. Be sure to take advantage of any separable structure. Specify the exact choices for

your variables x(t), y(t), z(t), p1(t), p2(t) for each slot t ∈ {0, 1, 2, . . .}.

Exercise IX-G.6. (Choosing a different X set) Again solve Exercise IX-G.5, but use X as the set of all (x, y, z, p1, p2) that
satisfy (167)-(169). What are the advantages and disadvantages of this approach?

Exercise IX-G.7. (Deterministically bounded queues for a convex program) Consider the problem (84)-(87) and the corre-
sponding drift-plus-penalty algorithm of Section VI-D.

a) Use the y(t) selection rule in (91) to show that x(t) + y(t) ≥ 4 whenever Q1(t)/(2V ) ≥ 4. Find a threshold β1V (for
some constant β1 > 0) such that Q1(t) in (88) cannot further increase once it exceeds β1V . Conclude that Q1(t) ≤ β1V + 4
for all t.

b) Use the y(t) selection rule in (91) to show that x(t) + 3y(t) ≥ 6 whenever 9Q2(t)/(2V ) ≥ 6. Find a threshold β2V (for
some constant β2 > 0) such that Q2(t) in (89) cannot further increase once it exceeds β2V . Conclude that Q2(t) ≤ β2V + 6
for all t.

c) Substitute these deterministic queue bounds into Lemma VI.1 to show that for all t ∈ {1, 2, 3, . . .} we have:

−x(t)− y(t) ≤ −4 + (β1V + 4)/t

−x(t)− 3y(t) ≤ −6 + (β2V + 6)/t

and hence the constraints are arbitrarily close to being satisfied when t is sufficiently large relative to V .

Exercise IX-G.8. (Flow control with path options) Modify the flow control algorithm of Section VIII-A to allow each flow i to
have a choice of two paths Pai and Pbi . Assume the objective function is

∑N
i=1 log(1 +xi), where xi is the total rate achieved

by flow i. You can assume that ai and bi are the rates over path a and path b, respectively, for each flow i ∈ {1, . . . , N}.
Specifically:
a) Write the corresponding convex program.
b) State the virtual queues.
c) State the drift-plus-penalty algorithm (with parameter V > 0), emphasizing distributed and separable implementation

wherever possible.
There are two approaches to this problem that will give slightly different algorithms (you can use either one you want):
• Approach 1: Seek to maximize

∑N
i=1 log(1 + xi) subject to constraints xi ≤ ai + bi for all i, and subject to additional

network constraints on ai and bi.
• Approach 2: Seek to maximize

∑N
i=1 log(1 + ai + bi) subject to network constraints on ai and bi.

Exercise IX-G.9. (Drift-plus-penalty for one link) Derive the drift-plus-penalty algorithm to solve the problem of Exercise
IX-D.20. Specifically, we want to solve:

Maximize: φ(x1, . . . , xN )

Subject to:
∑N
i=1 xi ≤ C

0 ≤ xi ≤ C ∀i ∈ {1, . . . , N}
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where the last constraint has been modified (without affecting the solution) to ensure optimization is over the compact set
Ω = {(x1, . . . , xN ) ∈ RN : 0 ≤ xi ≤ C ∀i ∈ {1, . . . , N}}. Recall that:

φ(x1, . . . , xN ) =

N∑
i=1

θi log(1 + bxi)

where θi are given positive priority weights for users i ∈ {1, . . . N}, and b is a given positive constant.
a) Write the virtual queue equation. Argue that since xi(t) ≤ C for all t, the queue can increase by at most (N − 1)C on

any slot.
b) Give an exact formula for xi(t) for each i ∈ {1, . . . , N} in terms of V,Q(t), θi, b, C.
c) Assume Q(0) = 0. Define θmax = maxi∈{1,...,N} θi. Prove that Q(t) ≤ V bθmax + (N − 1)C for all t ∈ {0, 1, 2, . . .}.
d) Define xi(T ) = 1

T

∑T−1
τ=0 xi(τ) as the resulting time average admission rate of user i over the first T slots, where

T is a positive integer. We want to show the link capacity constraint holds asymptotically. Prove that
∑N
i=1 xi(T ) ≤ C +

V bθmax+(N−1)C
T for all T ∈ {1, 2, 3, . . .}.

e) Define util(T ) = φ(x1(T ), . . . , xN (T )). It can be shown that util(T ) ≥ utilopt −O(1/V ). Discuss the tradeoff with V
in relation to the results of parts (c)-(d).

Exercise IX-G.10. (Simulation of drift-plus-penalty) Write a computer program to simulate the above algorithm (from Exercise
IX-G.9) for N = 3, C = 1, b = 5 over T = d(V +1)105e time slots. Define Qmax(T ) = maxτ∈{0,...,T−1}Q(τ) as the maximum
observed queue size over the first T slots. In this simulation, all numbers should be written with at least 4 or 5 significant
digits.

a) Compute (x1(T ), x2(T ), x3(T )) and util(T ) for the case V = 10, θ1 = 1, θ2 = θ3 = 5. Compare to the exact answer
from Exercise IX-D.20.

b) Compute (x1(T ), x2(T ), x3(T )) and util(T ) for the case V = 10, θ1 = 1, θ2 = θ3 = 2. Compare to the exact answer
from Exercise IX-D.20.

c) Fix θ1 = 1, θ2 = θ3 = 2. Make two plots: One for Qmax(T ) versus V , another for util(T ) versus V , for data points
taken with V ∈ {0, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2, 5, 10, 20}.

Exercise IX-G.11. (Drift-plus-penalty for joint routing and power allocation)

1" 2"
3"

y"

x"

8.7" r1" r2"

r3"

Fig. 19. The 3 link network for Exercise IX-G.11. The transmission rate on each link i ∈ {1, 2, 3} is log(1 + pi), where pi is the power used on link i.

Consider the problem of joint routing and power allocation in the network of Fig. 19. Given constants Pmax, r1, r2, r3, we
want to solve find routing variables x, y and power variables pi for i ∈ {1, 2, 3} to solve:

Minimize: p1 + p2 + p3

Subject to: x+ r1 ≤ log(1 + p1)

x+ r2 ≤ log(1 + p2)

y + r3 ≤ log(1 + p3)

x+ y ≥ 8.7

0 ≤ x ≤ 10, 0 ≤ y ≤ 10, 0 ≤ pi ≤ Pmax ∀i ∈ {1, 2, 3}

a) Give the virtual queues.
b) Give the drift-plus-penalty algorithm. You must specify values chosen for each variable on each slot t.
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Exercise IX-G.12. (Link weight scaling) Consider the flow optimization problem of Section VIII-A. Let γ1, . . . , γL be positive
numbers, and consider the problem:

Maximize:
∑N
i=1 φi(xi)

Subject to:
∑
i∈N (l) γlxi ≤ γlCl ∀l ∈ {1, . . . , L}
xi ∈ [0, xmax] ∀i ∈ {1, . . . , N}

a) Argue that the above problem is equivalent to the problem (109)-(111).
b) State the drift-plus-penalty algorithm for this problem. This shows that any positive multiple of Ql(t) can be used (as

long as it is consistently used for all time).

Exercise IX-G.13. (C-additive approximation of drift-plus-penalty) Suppose that it is difficult to choose x(t) ∈ X to minimize
the right-hand-side of (76). Instead, let C be a non-negative constant, and assume that every slot t the decision x(t) ∈ X is
made to ensure:

V f(x(t)) +

K∑
k=1

Qk(t)gk(x(t)) ≤ C + V f(z) +

K∑
k=1

Qk(t)gk(z) ∀z ∈ X

If C = 0, then the x(t) decision is exactly as specified by the drift-plus-penalty algorithm. If C > 0, the decision is called a
C-additive approximation.

a) Modify equations (92)-(93) in the proof of Theorem VI.1 using this new assumption. Carry out the rest of the proof (with
these modifications) to conclude that f(x(t)) ≤ f∗ + (B + C)/V .

b) Fix ε > 0. What value of V is needed to ensure that f(x(t)) ≤ f∗ + ε?

1"

2"

3" 4"

λ1"

λ2"

a"

b"
c"

Fig. 20. The 4 node network for Exercises IX-G.14 and IX-G.15.

Exercise IX-G.14. (Time average optimization) Consider the 4 node network of Fig. 20. Traffic of rate λ1 and λ2 enters
nodes 1 and 2, respectively, and must be routed to node 4. There are three links {a, b, c}. Every timeslot t ∈ {0, 1, 2, . . .} a
transmission rate vector µ(t) = (µa(t), µb(t), µc(t)) is allocated within a finite set Γ of possible transmission rate vectors, so
that µa(t) is the service rate available on slot t over link a, µb(t) is the available service rate at link b, and so on. We want
to choose µ(t) over slots to satisfy the following time average inequality constraints:

λ1 ≤ lim
t→∞

µa(t)

λ2 ≤ lim
t→∞

µb(t)

λ1 + λ2 ≤ lim
t→∞

µc(t)

µ(t) ∈ Γ , ∀t ∈ {0, 1, 2, . . .}

Assume λ1 and λ2 are known constants. Use the drift-plus-penalty algorithm with 3 virtual queues and V = 0 to solve the
problem.

Exercise IX-G.15. (Single commodity backpressure) Consider the 4 node network of Fig. 20 with two flows that want to reach
the destination node 4. Suppose the links a, b, c have fixed capacities Ca, Cb, Cc. Let fa, fb, fc be flow variables associated
with links a, b, c. We want to allocate transport layer admission rates (λ1, λ2) and flow variables fa, fb, fc to solve:

Maximize: θ1 log(1 + λ1) + θ2 log(1 + λ2) (170)
Subject to: λ1 ≤ fa (171)

λ2 ≤ fb (172)
fa + fb ≤ fc (173)

fa ∈ [0, Ca], fb ∈ [0, Cb], fc ∈ [0, Cc] (174)
λ1 ∈ [0, Ca], λ2 ∈ [0, Cb] (175)
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where θ1 and θ2 are given positive weights. Define X as the set of all (λ1, λ2, fa, fb, fc) that satisfy (174)-(175). Use the
drift-plus-penalty algorithm with V > 0 and three virtual queues Q1(t), Q2(t), Q3(t) to solve the problem. Is your resulting
answer for fc(t) surprising? Discuss what happens with the fa(t), fb(t), fc(t) decisions in terms of the backpressure concept.

Exercise IX-G.16. (Shrinking the time slot) Consider the flow optimization example of Section VIII-A. However, suppose
timeslots are are shrunk by a factor of δ, where 0 < δ < 1, so that the per-slot capacity of each link becomes Clδ and
the admitted data is xi(t)δ. Let Q̃l(t) be the new queue values for this system. Still assume that t ∈ {0, 1, 2, . . .}, with the
understanding that the modified slot is now shorter than before. The underlying convex program is:

Maximize:
∑N
i=1 φi(xi)

Subject to:
∑
i∈N (l) xiδ ≤ Clδ ∀l ∈ {1, . . . , L}
xi ∈ [0, xmax] ∀i ∈ {1, . . . , N}

With this modification, the equation (112) is changed to the following:

Q̃l(t+ 1) = max

Q̃l(t) +
∑
i∈N (l)

xi(t)δ − Clδ, 0


Let Ṽ be the parameter of the drift-plus-penalty algorithm under this modification, so that x(t) is chosen in [0, xmax] to
maximize φi(xi(t))−xi(t)

[∑
l∈P(i) Q̃l(t)

]
. Suppose Ql(t) are the queue values under the original algorithm (without timeslot

scaling) with parameter V . Assume that Ṽ = δ2V , and Q̃l(0) = δQl(0).
a) Show that Q̃l(t) = δQl(t) for all t ∈ {0, 1, 2, . . .}, and that both algorithms make exactly the same decisions for xi(t).

Thus, the same data rates are achieved with queue values that are shrunk by a factor of δ.
b) In the special case φi(x) = (θi/b) log(1+bx), use (114) to prove that Q̃l(t) ≤ δ[V θmax/b+xmax] for all t ∈ {0, 1, 2, . . .},

so that queues are arbitrarily small as δ → 0.

Exercise IX-G.17. (Distributed optimization of a non-separable problem [9]) Consider a system with N devices. Each device
must choose its own variable xi ∈ [0, 1] to solve:

Minimize:
∑N
i=1 fi(xi, θ)

Subject to: gi(xi, θ) ≤ ci ∀i ∈ {1, . . . , N}
xi ∈ [0, 1] ∀i ∈ {1, . . . , N}

θ ∈ [0, 1]

where θ is a variable that must be collectively chosen in the interval [0, 1], and fi(xi, θ) and gi(xi, θ) are convex functions
from [0, 1]× [0, 1] to R. Suppose the devices are nodes of a directed graph, and two distinct devices i and j can communicate
if and only if (i, j) is a directed link in the graph. Let L be the set of all directed links. Consider the modified problem that
introduces estimation variables θi for each i ∈ {1, . . . , N}:

Minimize:
∑N
i=1 fi(xi, θi) (176)

Subject to: θi = θj ∀(i, j) ∈ L (177)
gi(xi, θi) ≤ ci ∀i ∈ {1, . . . , N} (178)

xi ∈ [0, 1], θi ∈ [0, 1] ∀i ∈ {1, . . . , N} (179)

a) Argue that the new problem is equivalent to the old whenever the directed graph can be changed into a connected
undirected graph by removing the directionality on all links. Hint: Show that θi = θj whenever nodes i and j can be
connected via a path in the undirected graph, regardless of the directionality of the links in the underlying directed graph.

b) Let X be the set of all (x1, θ1, . . . , xN , θN ) that satisfy (178)-(179). Define virtual queues Hij(t) for each (i, j) ∈ L, and
show that the algorithm can be implemented in a distributed manner where each device i ∈ {1, . . . , N} chooses (xi(t), θi(t))
over the set (178)-(179) to solve:

Minimize: V fi(xi(t), θi(t)) + θi(t)
[∑

j∈Nout(i)
Hij(t)−

∑
k∈Nin(i)

Hki(t)
]

Subject to: xi(t) ∈ [0, 1] , θi(t) ∈ [0, 1] , gi(xi(t), θi(t)) ≤ ci

where Nout(i) = {j ∈ {1, . . . , N} : (i, j) ∈ L} is the set of all nodes j for which node i has an outgoing link, and
Nin(i) = {k ∈ {1, . . . , N} : (k, i) ∈ L} is the set of nodes k from which node i has an incoming link. Observe that each
node i does not require knowledge of the fj(x, θ) and gj(x, θ) functions for j 6= i.
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Exercise IX-G.18. (Another distributed optimization [9]) Suppose N devices each have their own variables xi, for i ∈
{1, . . . , N}, and must choose these variables and collectively choose another variable θ to solve:

Minimize:
∑N
i=1 fi(xi, θ) (180)

Subject to:
∑N
i=1 gi(xi, θ) ≤ C (181)

xi ∈ [0, 1] ∀i ∈ {1, . . . , N}, θ ∈ [0, 1] (182)

for some constant C and some convex functions fi(x, θ), gi(x, θ). As in Exercise IX-G.17, assume the devices are nodes in a
directed graph with a link set L, and suppose that the directed graph is connected when all directional links are changed to
undirected links. Consider the modified problem:

Minimize:
∑N
i=1 fi(x

(i)
i , θi)

Subject to:
∑N
i=1 gi(x

(1)
i , θ1) ≤ C

θi = θj ∀(i, j) ∈ L
x
(m)
i = x

(n)
i ∀i ∈ {1, . . . , N},∀(m,n) ∈ L

x
(j)
i ∈ [0, 1] , θi ∈ [0, 1] ∀i, j ∈ {1, . . . , N}

Argue that the modified problem is equivalent to the original. Design a distributed drift-plus-penalty algorithm for this problem,
with virtual queues Qij(t) for all (i, j) ∈ L and H

(m,n)
i (t) for all i ∈ {1, . . . , N} and all (m,n) ∈ L. Note that node 1

will have a different decision structure than all other nodes. Argue that the problem can also be solved by (i) changing the
objective function to

∑N
i=1 fi(x

(1)
i , θi) and/or (ii) removing the constraint

∑N
i=1 gi(x

(1)
i , θ1) ≤ C from the set X and enforcing

it via a virtual queue Z(t) (these approaches would result in a different instantiation of the drift-plus-penalty algorithm).

Exercise IX-G.19. (Summing over a tree) Consider the problem (180)-(182). Assume that the functions fi(·) and gi(·) take
values in the interval [0, 1]. Suppose the set of links L form a directed tree with root node 1, so that: (i) node 1 has no outgoing
links, (ii) nodes {2, . . . , N} have exactly one outgoing link, (iii) there are no cycles. Such a graph has a single path to node
1 from all other nodes. Show that this problem is equivalent to the following modified problem:

Minimize:
∑N
i=1 fi(xi, θi)

Subject to: S1 ≤ C
gi(xi, θi) +

∑
j∈Nin(i)

Sj ≤ Si ∀i ∈ {1, . . . , N}
θi = θj ∀(i, j) ∈ L

xi ∈ [0, 1], θi ∈ [0, 1], yi ∈ [0, 1], Si ∈ [0, N ] ∀i ∈ {1, . . . , N}

State the drift-plus-penalty algorithm for this problem and show that each node i does not require knowledge of the functions
fj(x, θ) and gj(x, θ) for j 6= i.

Exercise IX-G.20. (Bounded queues for flow-based routing [3]) Consider the flow-based multi-path routing and flow control
algorithm of Section VIII-D. Suppose all utility functions φi(x) are differentiable over x ∈ [0, xmax], and note that φ′i(0) ≥
φ′i(x) ≥ φ′i(xmax) for all x ∈ [0, xmax].

a) Show from (144) that γi(t) = 0 whenever Zi(t) > V φ′i(0), and γi(t) = xmax whenever Zi(t) < V φ′i(xmax).
b) Conclude from (143) that max[V φ′i(xmax)− xmax, 0] ≤ Zi(t) ≤ V φ′i(0) + xmax for all t ∈ {0, 1, 2, . . .}, provided that

Zi(0) is in this interval.
c) Use the result of part (b) to conclude from (145) and (142) that for each link l ∈ {1, . . . , L} we have Ql(t) ≤

Nxmax + maxi∈{1,...,N} [V φ′i(0) + xmax] for all t ∈ {0, 1, 2, . . .}, provided that this holds for slot 0.

Exercise IX-G.21. (DPP with separable optimization) Fix n, k as positive integers. Consider the problem of choosing x =
(x1, . . . , xn) ∈ [0, 1]n to minimize

∑n
i=1 fi(xi) subject to

∑n
i=1 gij(xi) ≤ 0 for all j ∈ {1, . . . , k}, where fi(xi) and gij(xi)

are convex functions of one variable xi.
a) Give the virtual queues for the DPP algorithm.
b) Show the DPP algorithm with parameter V > 0 reduces to a separable optimization that chooses each variable xi(t) ∈

[0, 1] on each slot t.

Exercise IX-G.22. (Enhanced algorithm separable optimization) Redo Exercise IX-G.21 with the enhanced algorithm with
parameter α > 0 of Section VII. The result should still reduce to separately choosing xi(t) ∈ [0, 1] on each slot t.

Exercise IX-G.23. (Network flows with the enhanced algorithm) Redo Exercise IX-G.11 using the enhanced algorithm with
parameter α > 0 of Section VII.

Exercise IX-G.24. (Backpressure with enhanced algorithm) Redo Exercise IX-G.15 using the enhanced algorithm with pa-
rameter α > 0 of Section VII.
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APPENDIX A—DIFFERENTIABLE FUNCTIONS AND THE EQUATION ∇f(x) + µ∇g(x) = 0

Again consider the problem of choosing x = (x1, . . . , xN ) in a set X ⊆ RN to minimize a real valued function subject to
one constraint. That is, we have the problem:

Minimize: f(x) (183)
Subject to: g(x) ≤ c (184)

x ∈ X (185)

Assume f(x) and g(x) are real-valued functions that are continuous over x ∈ X and differentiable at all interior points of X .
That is, ∇f(x) and ∇g(x) exist whenever x is an interior point. The Lagrange multiplier approach of Theorem II.2 defines a
value µ ≥ 0 and then searches for a global minimum of f(x) +µg(x) over x ∈ X . However, this method does not necessarily
find all points (c, ψ(c)) on the tradeoff curve. A search for critical points of f(x) +µg(x) often reveals points on the tradeoff
curve that cannot be found by a global minimization. This is particularly useful when the functions f(x) and/or g(x) are
non-convex.

H. The Karush-Kuhn-Tucker necessary conditions for problems with one constraint

Suppose ∇f(x) and ∇g(x) exist for points x in the interior of X . Let x∗ = (x∗1, . . . , x
∗
N ) be an optimal solution of

(183)-(185). Then at least one of the following three necessary conditions must hold:
• x∗ is a boundary point of X .
• Else, ∇g(x∗) = 0.
• Else, ∇f(x∗) + µ∇g(x∗) = 0 for some constant µ ≥ 0 that satisfies (g(x∗)− c)µ = 0.

If X = RN then there are no boundary points. The equation ∇f(x∗) + µ∇g(x∗) = 0 is called the stationary equation. This
equation must hold if x∗ is an interior point that is a global or local minimum of f(x)+µg(x). The equation (g(x∗)−c)µ = 0
is called the complementary slackness equation and means that either g(x∗) = c or µ = 0. A proof of these conditions is
developed in the following subsections.

I. Preliminary facts

The following facts are useful for our purposes.
• Fact 1: Let x∗ be an interior point of X and let h(x) be a real-valued function defined over x ∈ X . If h(x) is differentiable

at x∗, then for any nonzero vector v = (v1, . . . , vN ) ∈ RN , there exists a value δmax > 0 such that x∗ + δv ∈ X for all
δ ∈ [0, δmax], and:

lim
δ↘0

h(x∗ + δv)− f(x∗)

δ
= ∇h(x∗) · v

where ∇f(x∗) · v is the dot product of the gradient vector ∇h(x∗) with the vector v:

∇h(x∗) · v =

N∑
i=1

∂h(x∗)

∂xi
vi

Note that the gradient ∇h(x∗) is treated as a row vector so that the transpose operation is not needed in the dot product.
• Fact 2: Suppose a and b are nonzero vectors in RN such that a is not a multiple of b. Then there is a vector v ∈ RN

such that aT · v < 0 and bT · v < 0. Specifically, this holds for v = − 1
2

(
a
||a|| + b

||b||

)
. Note that the vectors a and b are

treated as column vectors, so that the transpose aT is a row vector and the dot product is aT · v =
∑N
i=1 aivi.

The following lemma is an immediate consequence of Fact 1. It shows that if x∗ is an interior point and v is a vector such
that ∇h(x∗) · v < 0, then taking a small step in the direction of v can reduce the value of h(·).

Lemma IX.1. Let x∗ be an interior point of X and suppose h(x) is differentiable at x∗. Let v be a vector in RN that satisfies
∇h(x∗) · v < 0. Then there is a real number δmax > 0 such that x∗ + δv ∈ X for all δ ∈ (0, δmax], and:

h(x∗ + δv) < h(x∗) for all δ ∈ (0, δmax]

Proof. Define θ = −∇h(x∗) · v. Then θ > 0 and ∇h(x∗) · v = −θ. By Fact 2:

lim
δ↘0

h(x∗ + δv)− h(x∗)

δ
= −θ

It follows that there is a δmax > 0 such that for all δ ∈ (0, δmax] we have x∗ + δv ∈ X and

h(x∗ + δv)− h(x∗)

δ
≤ −θ/2 < 0

Multiplying the above inequality by δ proves the result.
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J. Proof of the necessary conditions

The next lemma shows that if x∗ is an interior point and v is a vector such that ∇f(x∗) · v < 0 and ∇g(x∗) · v < 0, then
taking a small step in the direction of v reduces the value of both f(·) and g(·), which is impossible if x∗ is optimal.

Lemma IX.2. Suppose x∗ is an optimal solution to (183)-(185). If x∗ is an interior point of X , then there is no vector v ∈ RN
that satisfies ∇g(x∗) · v < 0 and ∇f(x∗) · v < 0.

Proof. Since x∗ is an optimal solution to (183)-(185), it satisfies g(x∗) ≤ c. Suppose there is a vector v ∈ RN that satisfies
∇g(x∗) · v < 0 and ∇f(x∗) · v < 0 (we will reach a contradiction). By Lemma IX.1, it follows that there is a δmax > 0 such
that x∗ + δv ∈ X and:

f(x∗ + δv) < f(x∗)

g(x∗ + δv) < g(x∗) ≤ c

Thus, the point x∗ + δv satisfies the constraints of the problem (183)-(185) and gives a strictly better value of the objective
function than f(x∗). This contradicts the fact that x∗ is optimal for the problem (183)-(185).

Lemma IX.3. Suppose x∗ is an optimal solution to (183)-(185). If x∗ is an interior point of X and ∇g(x∗) 6= 0, then there
is a µ ≥ 0 such that (g(x∗)− c)µ = 0 and ∇f(x∗) + µ∇g(x∗) = 0.

Proof. • If ∇f(x∗) = 0, we let µ = 0. Then the equation (g(x∗)− c)µ = 0 holds, and so does ∇f(x∗) + µ∇g(x∗) = 0.
• Else, if g(x∗) < c it can be shown that ∇f(x∗) = 0 (see Exercise IX-B.5), which reduces to the previous case.
• Else, if g(x∗) = c and ∇f(x∗) 6= 0, then the condition (g(x∗) − c)µ = 0 is satisfied for all real numbers µ. It suffices

to show there is a µ ≥ 0 such that ∇f(x∗) + µ∇g(x∗) = 0. To this end, note that since both ∇f(x∗) and ∇g(x∗) are
nonzero vectors, if one is not a multiple of the other then there is a v ∈ RN such that ∇f(x∗) · v < 0 and ∇g(x∗) · v < 0
(from Fact 2), contradicting Lemma IX.2. Thus, ∇f(x∗) is a multiple of ∇g(x∗). That is, ∇f(x∗) = α∇g(x∗) for some
α ∈ R. If α > 0 then we can define v = −∇g(x∗) to get both ∇f(x∗) · v < 0 and ∇g(x∗) · v < 0, again contradicting
Lemma IX.2. Hence, α ≤ 0. Define µ = −α. Then µ ≥ 0 and ∇f(x∗) + µ∇g(x∗) = 0.

K. Equality constraints

Similar Karush-Kuhn-Tucker conditions hold for equality constraints. Here we state the result without proof (see, for example,
[32] for a proof). Suppose X ⊆ RN , and that f(x) and g(x) are real-valued functions that are differentiable on the interior of
X . Consider the problem:

Minimize: f(x)

Subject to: g(x) = c

x ∈ X

If x∗ = (x∗1, . . . , x
∗
N ) is an optimal solution to this problem, then one of the following three conditions must hold:

• x∗ is a boundary point of X .
• Else, ∇g(x∗) = 0.
• Else, ∇f(x∗) + λ∇g(x∗) = 0 for some λ ∈ R.

APPENDIX B—HYPERPLANE SEPARATION AND LAGRANGE MULTIPLIERS

This section shows that under certain convexity assumptions, all points on the tradeoff curve are also solutions to an
unconstrained problem for a particular Lagrange multiplier µ ≥ 0. In such cases, there are no “hidden” Pareto optimal points
that are not solutions to an unconstrained optimization.

L. Separation of convex sets in the 2-d plane

Consider again the problem:

Minimize: y (186)
Subject to: x ≤ c (187)

(x, y) ∈ A (188)

where A is a given nonempty subset of RN and c is a real number. Define xmin as the infimum value of x over all points
(x, y) ∈ A. Let (x∗, y∗) be an optimal solution to the above problem and assume that xmin < x∗. Define Ã as the set of all
points that are entrywise greater than or equal to some point in A. Assume the set Ã is convex (it can be shown to be convex
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Fig. 21. An example of the hyperplane separation theorem. The set A is the orange shaded region. The set Ã includes A and also includes the extended
blue region. The boundary point is (x∗, y∗).

whenever A itself is convex). It is clear that (x∗, y∗) is a boundary point of the set Ã, since (x∗, y∗ − ε) /∈ Ã for all ε > 0.
The convex set separation theorem in the 2-d plane says that if Ã is a convex subset of R2 and if (x∗, y∗) is a point on the
boundary of Ã, then there exists a line that passes through (x∗, y∗) that contains Ã on one side (see Fig. 21). This is a special
case of the hyperplane separation theorem [1]. This line cannot be vertical since then there would be points strictly on the left
with x coordinates close to xmin, and strictly on the right with x coordinates arbitrarily large. Thus, the line can be described
by the set of all (x, y) ∈ R2 that satisfy:

(y − y∗) = −µ(x− x∗)

for some value µ ∈ R. The value −µ is the slope of the line (see Fig. 21). Since the line contains the set Ã on one side, we
either have:

(y − y∗) ≥ −µ(x− x∗) ∀(x, y) ∈ Ã (189)

or
(y − y∗) ≤ −µ(x− x∗) ∀(x, y) ∈ Ã (190)

To show that (190) is impossible, let (a, b) ∈ Ã. Then (a, b + h) ∈ Ã for all h > 0, which makes (190) fail for sufficiently
large values of h. Thus, (189) holds. Similarly, it follows that µ ≥ 0 (else, if µ < 0 we could choose x arbitrarily large and
the inequality (189) would be violated). Thus, µ ≥ 0 and:

y + µx ≥ y∗ + µx∗

for all (x, y) ∈ Ã. In particular, the above holds for all (x, y) ∈ A. It follows that the optimal solution (x∗, y∗) to problem
(186)-(188) is also a global minimum of y + µx over the set (x, y) ∈ A.

M. A counter-example when x∗ = xmin

Consider the same problem (186)-(188). For simplicity, assume A is a convex and compact set. Again suppose (x∗, y∗) is
an optimal solution to (186)-(188), but that x∗ = xmin (where xmin is the minimum value of x over all points (x, y) ∈ A).
In this case, there may or may not be a (finite) Lagrange multiplier µ ≥ 0 such that (x∗, y∗) minimizes y + µx over all
(x, y) ∈ A. Such non-existence happens when the only tangent line to set A that passes through the point (x∗, y∗) has infinite
slope. A simple example is:

A = {(x, y) : 0 ≤ x ≤ 1, |y| ≤
√
x}

The set A is shown in Fig. 22. Clearly xmin = 0. The point (x∗, y∗) = (0, 0) solves the problem:

Minimize: y

Subject to: x ≤ 0

(x, y) ∈ A

However, x∗ = xmin = 0, and the only tangent line to set A that passes through (0, 0) is the y-axis itself, which has infinite
slope (see Fig. 22). The previous section shows that such an example can only arise if x∗ = xmin. Further, it can be shown
that such an example can only arise if the set A is not the convex hull of a finite set of points (else, the set A has a finite
number of linear edges, and one can intuitively see that a tangent line of finite slope exists).
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Fig. 22. An example convex set A for which (x∗, y∗) = (0, 0) is a solution to a constrained optimization problem, but there is no corresponding Lagrange
multiplier µ ≥ 0. Such an example can only arise if x∗ = xmin.

N. Hyperplanes

A hyperplane in RN is defined by a nonzero vector γ = (γ1, . . . , γN ) and a scalar b. The hyperplane consists of all points
(x1, . . . , xN ) ∈ RN that satisfy:

γT · (x1, . . . , xN ) = b

That is:
N∑
i=1

γixi = b

A hyperplane slices RN into two halves. The upper half is the set of all points x ∈ RN that satisfy:
N∑
i=1

γixi ≥ b

The lower half is the set of all points x ∈ RN that satisfy:
N∑
i=1

γixi ≤ b

The hyperplane separation theorem says that if A is a convex subset of RN and x∗ is a point on the boundary of A, then
there exists a hyperplane that passes through x∗ and that contains the set A on one side [1]. A hyperplane that passes through
the point x∗ = (x∗1, . . . , x

∗
N ) must have the form:

N∑
i=1

γixi =

N∑
i=1

γix
∗
i

Indeed, note that this hyperplane certainly passes through the point x∗. Since there exists such a hyperplane that contains the
convex set A on one side, we have one of the two possibilities. Either it contains A in its upper half:

N∑
i=1

γiai ≥
N∑
i=1

γix
∗
i ∀(a1, . . . , aN ) ∈ A (191)

or it contains A in its lower half:
N∑
i=1

γiai ≤
N∑
i=1

γix
∗
i ∀(a1, . . . , aN ) ∈ A

Multiplying the previous equation by −1 gives an equation of the form (191). Hence, it suffices to assume that the hyperplane
contains the set A on its upper half.
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O. Hyperplane separation for problems with multiple constraints

Let N and K be positive integers. Let X be a subset of RN and let f(x), g1(x), . . . , gK(x) be real-valued functions over
x ∈ X . Consider the following problem:

Minimize: f(x) (192)
Subject to: gk(x) ≤ ck ∀k ∈ {1, . . . ,K} (193)

x ∈ X (194)

where c1, . . . , cK are a given set of real numbers. Theorem III.1 motivates a Lagrange multiplier approach to this problem by
solving the unconstrained problem f(x)+

∑K
k=1 µkgk(x) over x ∈ X for a given collection of real numbers µ1 ≥ 0, . . . , µK ≥

0.
Now consider the special case when the set X is convex, and the functions f(x), g1(x), . . . , gK(x) are convex over x ∈ X .

Let A be the set of all points (g1, . . . , gK , f) ∈ RK+1 such that (g1, . . . , gK , f) ≥ (g1(x), . . . , gK(x), f(x)) for some x ∈ X .
Similar to Exercise IX-E.12, it can be shown that this set A is convex. If x∗ is a solution to the above constrained optimization
problem (192)-(194), then the point (c1, c2, . . . , cK , f(x∗)) is in A, since:

(c1, c2, . . . , cK , f(x∗)) ≥ (g1(x∗), g2(x∗), . . . , gK(x∗), f(x∗))

Furthermore, this point (c1, c2, . . . , cK , f(x∗)) must be on the boundary of A, since it is in A, but for any ε > 0 we have
(c1, c2, . . . , cK , f(x∗) − ε) /∈ A (else, f(x∗) would not be the optimal objective function value). The hyperplane separation
theorem in RN implies that there exists a hyperplane in RK+1 that passes through the point (f(x∗), c1, . . . , cK) and that
contains A on one side. That is, there is a nonzero (K + 1)-dimensional vector γ = (γ1, . . . , γK , γK+1) that defines the
hyperplane of all (g1, . . . , gK , f) ∈ RK+1 that satisfy:

γT · (g1, . . . , gK , f) = γT · (c1, . . . , cK , f(x∗))

That is:

γK+1f +

K∑
k=1

γkgk = γK+1f(x∗) +

K∑
k=1

γkck

Since this hyperplane contains the set A in its upper half, we have for all (a1, . . . , aK , aK+1) ∈ A:

γK+1aK+1 +

K∑
k=1

γkak ≥ γK+1f(x∗) +

K∑
k=1

γkck (195)

If a point (a1, . . . , aK+1) is in A, then all points that are entrywise greater than or equal to (a1, . . . , aK+1) are also in A.
It follows that the values γi must be non-negative for all i ∈ {1, . . . ,K + 1} (else, if there is an index j ∈ {1, . . . ,K + 1}
such that γj < 0, we could let aj → ∞, which would make the left-hand-side of (195) arbitrarily small (negative), which
would violate that inequality). We have γK+1 6= 0 if a non-vertical hyperplane exists. If a non-vertical hyperplane exists, then
γK+1 > 0 and we can divide (195) by γK+1 and define µk = γk/γK+1 for all k ∈ {1, . . . ,K} to obtain the following for all
(a1, . . . , aK , aK+1) ∈ A:

aK+1 +

K∑
k=1

µkak ≥ f(x∗) +

K∑
k=1

µkck

Since (g1(x), . . . , gK(x), f(x)) ∈ A whenever x ∈ X , this implies:

f(x) +

K∑
k=1

µkgk(x) ≥ f(x∗) +

K∑
k=1

µkck ∀x ∈ X (196)

Since µkck ≥ µkgk(x∗) for all k ∈ {1, . . . ,K}, the above implies:

f(x) +

K∑
k=1

µkgk(x) ≥ f(x∗) +

K∑
k=1

µkgk(x∗) ∀x ∈ X

Thus, x∗ solves the global minimization of f(x) +
∑K
k=1 µkgk(x) over x ∈ X .

The non-vertical assumption is justified under certain regularity conditions. The simplest is the Slater condition, which says
that there exists an x̃ ∈ X such that gk(x̃) < ck for all k ∈ {1, . . . ,K}. Indeed, suppose this condition is satisfied, but
γK+1 = 0. It is easy to obtain a contradiction to equation (195) (just consider (a1, . . . , aK+1) = (g1(x̃), . . . , gK(x̃), f(x̃)) and
recall that the γk values are non-negative and not all zero). Additional regularity conditions (which do not require the Slater
assumption) are given in [1].
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APPENDIX C—IMPROVED CONVERGENCE TIME ANALYSIS OF DRIFT-PLUS-PENALTY

This appendix proves part (b) of Theorem VI.2. This result was developed in [4]. Recall that the convex program seeks to
find a vector x = (x1, . . . , xN ) to solve:

Minimize: f(x) (197)
Subject to: gk(x) ≤ ck ∀k ∈ {1, . . . ,K} (198)

x ∈ X (199)

where X is a compact and convex subset of RN , the functions f(x), g1(x), . . . , gK(x) are continuous and convex over x ∈ X ,
and ck are given real numbers for all k ∈ {1, . . . ,K}. Suppose the problem (197)-(199) is feasible. Let x∗ be an optimal
solution, with optimal objective function value f∗ = f(x∗). Suppose the drift-plus-penalty algorithm is implemented using a
particular value of V ≥ 0, and with initial conditions Qk(0) = 0 for all k ∈ {1, . . . ,K}.

A restatement of Theorem VI.2 is given below: Suppose the problem (197)-(199) is feasible, and that a Lagrange multiplier
vector µ = (µ1, . . . , µk) exists (so that (196) holds). Then the drift-plus-penalty algorithm with V ≥ 0 and initial conditions
Qk(0) = 0 for all k ∈ {1, . . . ,K} ensures:

(a) f(x(t)) ≤ f∗ + B
V for all slots t ∈ {1, 2, 3, . . .}, where B is the constant used in (76).

(b) ||Q(t)||
t ≤ V ||µ||+

√
V 2||µ||2+2Bt

t for all t ∈ {1, 2, 3, . . .}.
(c) Define V = 1/ε. Then for any integer t ≥ 1/ε2 we have:

f(x(t)) ≤ f∗ +O(ε)

gk(x(t)) ≤ ck +O(ε) ∀k ∈ {1, . . . ,K}
x(t) ∈ X

Hence, the drift-plus-penalty algorithm produces an O(ε) approximation to the solution with a convergence time of O(1/ε2).

Proof. Part (a) is already known from Theorem VI.1, and part (c) follows immediately from (a) and (b) together with the virtual
queue lemma (Lemma VI.1). It remains to prove part (b). The proof of Theorem VI.1 establishes the following inequality for
all slots τ ∈ {0, 1, 2, . . .} (see (93)):

∆(τ) + V f(x(τ)) ≤ B + V f(x∗)

where ∆(τ) = ||Q(τ + 1)||2/2− ||Q(τ)||2/2. Let t be a positive integer. Summing the above over τ ∈ {0, 1, . . . , t− 1} gives:

||Q(t)||2

2
− ||Q(0)||2

2
+ V

t−1∑
τ=0

f(x(τ)) ≤ Bt+ tV f(x∗) (200)

However, ||Q(0)|| = 0 since queues are initially empty. Further, applying Jensen’s inequality to the convex function f(x) gives:

f(x(t)) ≤ 1

t

t−1∑
τ=0

f(x(τ))

Substituting the above into (200) gives:

||Q(t)||2

2
+ V tf(x(t)) ≤ Bt+ tV f(x∗)

Rearranging terms gives:
||Q(t)||2 ≤ 2Bt+ 2V t[f(x∗)− f(x(t))] (201)

Since x(τ) ∈ X for all τ and X is a convex set, it follows that x(t) ∈ X . Thus, from (196) we have:

f(x(t)) +

K∑
k=1

µkgk(x(t)) ≥ f(x∗) +

K∑
k=1

µkck

Substituting the above inequality into (201) yields:

||Q(t)||2 ≤ 2Bt+ 2V t

K∑
k=1

µk[gk(x(t))− ck]

However, Lemma VI.1 implies that gk(x(t)) ≤ ck +Qk(t)/t for all k ∈ {1, . . . ,K}, and so:

||Q(t)||2 ≤ 2Bt+ 2V t

K∑
k=1

µkQk(t)/t

≤ 2Bt+ 2V ||Q(t)|| · ||µ||
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where the final inequality uses the fact that the dot product of two vectors is less than or equal to the product of their norms.
Define b = −2V ||µ|| and c = −2Bt. Then:

||Q(t)||2 + b||Q(t)||+ c ≤ 0

The largest possible value of ||Q(t)|| that satisfies the above inequality is found from taking the largest solution to the quadratic
equation x2 + bx+ c = 0. Thus:

||Q(t)|| ≤ −b+
√
b2 − 4c

2

=
2V ||µ||+

√
4V 2||µ||2 + 8Bt

2

= V ||µ||+
√
V 2||µ||2 + 2Bt

This completes the proof of part (b).
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