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Abstract—An information collection problem in a wireless net-
work with random events is considered. Wireless devices report
on each event using one of multiple reporting formats. Each
format has a different quality and uses different data lengths.
Delivering all data in the highest quality format can overload sys-
tem resources. The goal is to make intelligent format selection and
routing decisions to maximize time-averaged information quality
subject to network stability. Lyapunov optimization theory can be
used to solve such a problem by repeatedly minimizing the linear
terms of a quadratic drift-plus-penalty expression. To reduce
delays, this paper proposes a novel extension of this technique
that preserves the quadratic nature of the drift minimization
while maintaining a fully separable structure. In addition, to
avoid high queuing delay, paths are restricted to at most two hops.
The resulting algorithm can push average information quality
arbitrarily close to optimum, with a tradeoff in queue backlog.
The algorithm compares favorably to the basic drift-plus-penalty
scheme in terms of backlog and delay.

I. INTRODUCTION

THIS paper investigates dynamic scheduling and data
format selection in a network where multiple wireless

devices, such as smart phones, report information to a receiver
station. The devices together act as a pervasive pool of
information about the network environment. Such scenarios
have been recently considered, for example, in applications of
social sensing [2] and personal environment monitoring [3],
[4]. Sending all information in the highest quality format can
quickly overload network resources. Thus, it is often more
important to optimize the quality of information, as defined
by an end-user, rather than the raw number of bits that are
sent. The case for quality-aware networking is made in [5],
[6], [7]. Network management with quality of information
awareness for wireless sensor networks is considered in [8].
More recently, quality metrics of accuracy and credibility are
considered in [9], [10] using simplified models that do not
consider the actual dynamics of a wireless network.

In this paper, we extend the quality-aware format selection
problem in [10] to a dynamic network setting. We particularly
focus on distributed algorithms for routing, scheduling, and
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format selection that jointly optimize quality of information.
Specifically, we assume that random events occur over time
in the network environment, and these can be sensed by
one or more of the wireless devices, perhaps at different
sensing qualities. At the transport layer, each device selects
one of multiple reporting formats, such as a video clip at
one of several resolution options, an audio clip, or a text
message. Information quality depends on the selected format.
For example, higher quality formats use messages with larger
bit lengths. The resulting bits are handed to the network layer
at each device and must be delivered to the receiver station
over possibly time-varying channels.

We first consider the case where all devices transmit directly
to the destination over uplink channels. Due to heterogeneous
channel conditions, the delivery rates in this case may be
limited. To improve performance, we next allow devices to
relay their information through other devices that have more
favorable connections to the destination. An example is a
single-cell wireless network with multiple smart phones and
one base station, where each smart phone has 4G capability for
uplink transmission and Wi-Fi capability for device-to-device
relay transmission.

Such a problem can be cast as a stochastic network opti-
mization and solved using Lyapunov optimization theory. A
“standard” method is to minimize a linear term in a quadratic
drift-plus-penalty expression, which leads to max-weight type
solutions [11], [12]. This can be shown to yield algorithms
that converge to optimal average utility with a tradeoff in
average queue size. The linearization is useful for enabling
decisions to be separated at each device. However, it can lead
to larger queue sizes and delays. In this work, we propose
a novel method that uses a quadratic minimization for the
drift-plus-penalty expression, yet still allows separability of
the decisions. This results in an algorithm that maintains
distributed format selection decisions across all devices, but
reduces average delay. Similar to the standard (linearized)
drift-plus-penalty methods, the transmission decisions can also
be made in a distributed manner under suitable physical layer
models, such as when channels are orthogonal.

Thus, the contributions of this paper are twofold: (i) We
formulate an important quality-of-information problem for
reporting information in wireless systems. This problem is of
recent interest and can be used in other contexts where data
deluge issues require selectivity in reporting of information.
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Fig. 1. An example network with N devices as queues Qn(t), and a receiver
station.

(ii) We extend Lyapunov optimization theory by presenting a
new algorithm that uses a quadratic minimization to reduce
queue sizes while maintaining separability across decisions.
This new technique is general and can be used to reduce queue
sizes in other Lyapunov optimization problems.

The next section formulates the problem for an uplink
network without relay capabilities. Section III derives the
quadratic algorithm for this network, and Section IV analyzes
and simulates its performance. Relay capabilities are intro-
duced and analyzed in Sections V-VIII. To reduce delays, this
paper restricts all paths to at most 2-hops, so that data can
pass through at most one relay. This 2-hop restriction is not
crucial to the analysis. Indeed, the same techniques can be used
to treat multi-hop routing via the backpressure methodology
[12][13], although we omit that extension for brevity.

II. SINGLE-HOP SYSTEM MODEL

Consider a network with N wireless devices that report
information to a single receiver station. Let N = {1, . . . , N}
be the set of devices. The receiver station is not part of the set
N and can be viewed as “device 0.” A network with N = 3
devices is shown in Fig. 1. The system is slotted with fixed size
slots t ∈ {0, 1, 2, . . .}. Every slot, format selection decisions
are made at the transport layer of each device, and scheduling
decisions are made at the network layer.

A. Format selection

A new event can occur on each slot. Events are observed
with different levels of quality at each device. For example,
some devices may be physically closer to the event and
hence can deliver higher quality. On slot t, each device
n ∈ N selects a format fn(t) from a set of available formats
F = {0, 1, . . . , F}. Format selection affects quality and data
lengths of the reported information. To model this, the event
on slot t is described by a vector of event characteristics
(r

(f)
n (t), a

(f)
n (t))|n∈N ,f∈F . The value r

(f)
n (t) is a numeric

reward that is earned if device n uses format f to report on the
event that occurs on slot t. The value a(f)n (t) is the amount
of data units required for this choice. This data is injected
as arrivals to a network layer queue and must eventually be
delivered to the receiver station (see Fig. 1). Each device
n observes (r

(f)
n (t), a

(f)
n (t)) at the beginning of slot t and

chooses a format fn(t). Define rn(t) and an(t) as the resulting
reward and data size:

rn(t) , r(fn(t))n (t) , an(t) , a(fn(t))n (t)

If a device n does not observe the event on slot t (which
might occur if it is physically too far from the event), then

(r
(f)
n (t), a

(f)
n (t)) = (0, 0) for all formats f ∈ F . If no event

occurs on slot t, then (r
(f)
n (t), a

(f)
n (t)) = (0, 0) for all n ∈ N

and f ∈ F . To allow a device n not to report on an event, there
is a blank format 0 ∈ F such that (r

(0)
n (t), a

(0)
n (t)) = (0, 0)

for all slots t and all devices n ∈ N .
Rewards rn(t) are assumed to be real numbers that satisfy

0 ≤ rn(t) ≤ r(max)
n for all t, where r(max)

n is a finite maximum.
Data sizes an(t) are non-negative integers that satisfy 0 ≤
an(t) ≤ a

(max)
n for all t, where a(max)

n is a finite maximum.
The vectors (r

(f)
n (t), a

(f)
n (t))|n∈N ,f∈F are independent and

identically distributed (i.i.d.) over slots t, and have a joint
probability distribution over devices n and formats f that is
arbitrary (subject to the above boundedness assumptions). This
distribution is not necessarily known.

A simple example is when there is no time-variation in the
format selection process, so that the reward and bit length
options (r

(f)
n , a

(f)
n ) are the same for all time. This holds when

each particular format always yields the same reward and has
the same bit length. The model also treats cases when these
values can change from slot to slot. This holds, for example, in
a video streaming application where format selection options
correspond to different video compression techniques. These
can have variable bit outputs depending on the content of the
current video frame. For simplicity, this paper assumes the
random processes are i.i.d. over slots. This assumption is not
crucial to the analysis, and the results can be extended to treat
non-i.i.d. scenarios using techniques in [11].

B. Uplink scheduling
At each device n ∈ N , the an(t) units of data generated

by format selection are put into input queue Qn(t). Each
device communicates directly to the receiver station through
(direct) uplink transmission as shown in Fig. 1. The amount
that can be transmitted by uplink transmission at device n is
denoted by µn(t). The µn(t) values are determined by the
current channel states and the current transmission decisions.
Specifically, define µ(t) = (µn(t))|n∈N as the transmission
vector, and define η(t) as a vector of current channel states in
the network at time t. It is assumed that µ(t) is chosen every
slot t within a set Uη(t) that depends on the observed η(t).

The sets Uη(t) are assumed to restrict transmissions to non-
negative and bounded rates, so that 0 ≤ µn(t) ≤ µ

(max)
n for

all n ∈ N and all t. Additional structure of the sets Uη(t) can
be imposed to model the physical transmission capabilities of
the network. A special case is when all uplink channels are
orthogonal and the set Uη(t) can be decomposed into a set
product of individual options for each uplink channel:

Uη(t) = U1,η1(t) × U2,η2(t) × . . .× UN,ηN (t)

where, in this case, ηn(t) represents the component of the
current channel state vector η(t) associated with channel n.

The dynamics of input queue Qn(t) are:

Qn(t+ 1) = max[Qn(t)− µn(t), 0] + an(t), (1)

which assumes that newly arriving data an(t) cannot be
transmitted on slot t. As a minor technical detail that is useful
later, the max[. . . , 0] operator above allows µn(t) to be greater
than Qn(t).
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C. Stochastic network optimization

Here we define the problem of maximizing time-averaged
quality of information subject to queue stability. We use the
following stability definition [12]:

Definition 1: Queue {X(t) : t ∈ {0, 1, 2, . . .}} is strongly
stable if

lim sup
t→∞

1

t

t−1∑
τ=0

E [X(τ)] <∞

Intuitively, this means that a queue is strongly stable if its
average backlog is finite. A network is defined to be strongly
stable if all of its queues are strongly stable.

Define y0(t) as the total quality of information from format
selection on slot t:

y0(t) ,
∑
n∈N

rn(t)

Define the upper bound y
(max)
0 ,

∑
n∈N r

(max)
n . The time-

averaged total information quality is

ȳ0 , lim inf
t→∞

1

t

t−1∑
τ=0

E [y0(τ)].

The objective is to solve:

Maximize ȳ0 (2)
Subject to Network is strongly stable

fn(t) ∈ F for all t, and all n ∈ N
µ(t) ∈ Uη(t) for all t

This problem is always feasible because stability is trivially
achieved if all devices always select the blank format.

III. DYNAMIC ALGORITHM OF THE UPLINK NETWORK

This section derives a novel quadratic policy to solve
problem (2).

A. Lyapunov optimization

Let Q(t) = (Qn(t))|n∈N represent the vector of all queues
in the system. Define a quadratic Lyapunov function:

L(t) ,
1

2

∑
n∈N

Qn(t)2

Define L(t + 1) − L(t) as the Lyapunov drift. In order to
maximize ȳ0 in (2), the drift-plus-penalty function L(t+ 1)−
L(t) − V y0(t) is considered, where V ≥ 0 is a constant that
determines a tradeoff between queue size and proximity to
optimality.1 Later, this is used to prove stability. Intuitively,
when queue lengths grow large beyond certain values, the drift
becomes negative and the system is stable because the negative
drift tends to reduce total queue lengths.

1The minus sign in front of V y0(t) comes from the fact that the quality
of information is viewed as a negative penalty.

From (1) and the definition of y0(t), the drift-plus-penalty
expression is given by:

L(t+ 1)− L(t)− V y0(t)

=
1

2

∑
n∈N

[
Qn(t+ 1)2 −Qn(t)2 − 2V rn(t)

]
=

1

2

∑
n∈N

[
(max[Qn(t)− µn(t), 0] + an(t))

2 − 2V rn(t)
]

− 1

2

∑
n∈N

Qn(t)2 (3)

Ideally, every slot t one would like to observe the current
queue values Q(t) and select decision variables rn(t), an(t),
µn(t) to minimize the above expression over all possible de-
cision options for that slot. Since the Qn(t) values are fixed in
this decision, this amounts to minimizing the first summation
term in the expression above. However, the quadratic nature of
the above expression couples all decision variables. Thus, such
an algorithm would not allow for format selection decisions
to be distributed across devices, and would not allow format
selection and transmission scheduling to be separated.

A standard simplification seeks to minimize the following
linearized approximation of the above expression [11]:∑

n∈N
[Qn(t)(an(t)− µn(t))− V rn(t)] (4)

This expression is a separable sum over individual devices.
Minimization of this expression every slot results in the drift-
plus-penalty algorithm [11]. This allows a clean separation of
format selection and transmission decisions, and allows format
selection to be distributed across all devices. It is known that
using this linearized approximation does not hinder asymp-
totic stability or time average quality. However, intuitively,
one expects that something is lost by only using the linear
approximation. Often, this loss translates into larger queue
sizes. The next section develops a novel alternative method
that preserves the quadratic nature of the minimization while
maintaining a clean separation across decision variables.

B. The separable quadratic policy

Lemma 1: Suppose a and µ are non-negative constants such
that a ≤ a(max) and µ ≤ µ(max). Then for any x ≥ 0:

(max [x− µ, 0] + a)
2 − x2

≤ (x− µ)2 + (x+ a)2 − 2x2 (5)

Proof: Note that max[x− µ, 0]2 ≤ (x− µ)2. Thus:

(max[x− µ, 0] + a)
2 − x2

≤ (x− µ)2 + a2 + 2amax[x− µ, 0]− x2

≤ (x− µ)2 + a2 + 2ax− x2

= (x− µ)2 + (x+ a)2 − 2x2
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Using the result of Lemma 1 in (3) gives:

L(t+ 1)− L(t)− V y0(t)

≤ 1

2

∑
n∈N

[
(Qn(t)− µn(t))2 + (Qn(t) + an(t))2

]
− 1

2

∑
n∈N

2V rn(t)−
∑
n∈N

Qn(t)2 (6)

Our novel separable quadratic policy observes the queue
values Qn(t) every slot t and makes format selection and
transmission decisions to minimize the right-hand-side of the
expression (6). That is, µ(t) and fn(t) decisions are made to
solve the following optimization problem:

Minimize ∑
n∈N

[
(Qn(t)−µn(t))

2+(Qn(t)+an(t))
2−2V rn(t)

]
(7)

Subject to µ(t)∈Uη(t), fn(t)∈F ∀n∈N

an(t)=a
(fn(t))
n (t), rn(t)=r

(fn(t))
n (t) ∀n∈N

where weights Qn(t) act as given constants in the above
optimization problem. The queues are then updated via (1)
and the procedure is repeated for the next slot.

Intuitively, every time slot, the bound (6) is minimized by
the quadratic policy, so its value is smaller than that resulting
from applying any other policies. This will become clear in
Section IV.

C. Separability

The control algorithm (7) can be simplified by exploiting the
separable structure as follows: Every slot t, each device n ∈ N
observes input queue Qn(t) and options (r

(f)
n (t), a

(f)
n (t))|f∈F .

It then chooses a format fn(t) according to the admission-
control problem:

Minimize
[
Qn(t) + a(fn(t))n (t)

]2
− 2V r(fn(t))n (t) (8)

Subject to fn(t) ∈ F

This is solved easily by comparing each option fn(t) ∈ F .
Intuitively, a large value of V allows more candidate formats
to be selected. As an algorithm evolves, queue Qn(t) will
enforce a system to select an optimal format at a particular
time t. Note that these decisions are distributed across users
and are separated from the uplink transmission rate decisions.

The uplink-allocation problem to determine transmission
rates µ(t) is:

Minimize
∑
n∈N [Qn(t)− µn(t)]

2 (9)
Subject to µ(t) ∈ Uη(t).

This can be solved at the receiver station. Intuitively, a system
minimizes a sum of the square of the remaining queue lengths,
so a longer queue is treated with higher priority. When
the difference between queues is small, those queues are
treated fairly equally. If all uplink channels are orthogonal,
the problem can be decomposed further so that each device n
solves:

Minimize [Qn(t)− µn(t)]
2

Subject to µn(t) ∈ Un,ηn(t)

where Un,ηn(t) is a feasible set of µn(t) options. This chooses
the uplink transmission rate which is the closest rate in
Un,ηn(t) to Qn(t). The algorithm is summarized in the al-
gorithms below.

Algorithm 1: Distributed format selection

// Device side
foreach device n ∈ N do

– Observe Qn(t) and (r
(f)
n (t), a

(f)
n (t))|f∈F

– Select format fn(t) according to (8)
end

Algorithm 2: Uplink resource allocation

// Receiver-station side
for receiver station 0 do

– Observe (Qn(t))|n∈N and Uη(t)
– Signal devices n ∈ N to make uplink transmission
µ(t) according to (9)

end

To compare this approach to the standard drift-plus-penalty
technique, consider the following example. Suppose the trans-
mission rate set is given by:

Uη(t) =

{
µ ≥ 0

∣∣∣∣∣∑
n∈N

µn
ηn(t)

≤ 1

}

This allows for a division of either time or frequency resources
over one slot, so that a fraction of the channel capacity can be
devoted to one or more users simultaneously. The standard
drift-plus-penalty approach of minimizing (4) over this set
results in a max-weight decision that allocates the full channel
to a single user n at the full rate ηn(t). This is an inefficient
use of resources if the queue backlog Qn(t) of device n is
less than ηn(t). In contrast, our separable quadratic policy
never over-allocates resources: In this example it ensures that
µn(t) ≤ Qn(t) for all slots t. Also, it often enables queues
to be emptied more quickly by allowing multiple devices to
transmit simultaneously.

IV. PERFORMANCE AND SIMULATION OF THE UPLINK
NETWORK

Compare the separable quadratic policy with any other
policy. Let (fn(τ))|n∈N ,µ(τ) be the decision variables from
the quadratic policy, which is a solution of problem (7),
and rn(t) , r

(fn(t))
n (t), an(t) , a

(fn(t))
n (t). Also let

(f̂n(τ))|n∈N , µ̂(τ) be decision variables from any other pol-
icy, and r̂n(t) , r

(f̂n(t))
n (t), ân(t) , a

(f̂n(t))
n (t). Because the

quadratic policy makes decisions that minimize the right-hand-
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side of (6), we have at every slot τ :

L(τ + 1)− L(τ)− V y0(τ)

≤ 1

2

∑
n∈N

[
(Qn(τ)− µ̂n(τ))

2
+ (Qn(τ) + ân(τ))

2
]

− 1

2

∑
n∈N

2V r̂n(τ)−
∑
n∈N

Qn(τ)2

=
∑
n∈N

[Qn(τ)(ân(τ)− µ̂n(τ))− V r̂n(τ)]

+
1

2

∑
n∈N

[
(µ̂n(τ))2 + (ân(τ))2

]
Therefore:

L(τ + 1)− L(τ)− V y0(τ)

≤ C +
∑
n∈N

[Qn(τ)(ân(τ)− µ̂n(τ))− V r̂n(τ)] (10)

where the constant C is defined:

C ,
1

2

∑
n∈N

[
(µ(max)
n )2 + (a(max)

n )2
]

(11)

Now define ω(t) as a concatenated vector of all random
events observed on slot t:

ω(t) , [η(t); (r(f)n (t), a(f)n (t))|n∈N ,f∈F ]

As discussed in Section II, vector ω(t) is i.i.d. over slots
according to some (possibly unknown) probability distribution.
The components of ω(t) on a given slot t can be arbitrarily
correlated. Define an ω-only policy as one that makes a
(possibly randomized) choice of decision variables based only
on the observed ω(t) (and hence independently of queue
backlogs). We now customize an important theorem from [11].

Theorem 1: For any δ > 0 there exists an ω-only policy
that chooses all controlled variables (f∗n(t))|n∈N ,µ∗(t) such
that:

E [y∗0(t)] ≥ y(opt)
0 − δ (12)

E [a∗n(t)− µ∗n(t)] ≤ δ for all n ∈ N (13)

where y
(opt)
0 is the optimal solution of problem (2). Also,

y∗0(t) ,
∑
n∈N r

∗
n(t) when r∗n(t) , r

(f∗n(t))
n (t) and a∗n(t) ,

a
(f∗n(t))
n (t).
We additionally assume all constraints of the network can

be achieved with ε slackness [11]. In other words, there exists
a policy that, at every queue, has average transmission rate
higher than average arrival rate.

Assumption 1: There are values ε > 0 and 0 ≤ y
(ε)
0 ≤

y
(max)
0 and an ω-only policy choosing all controlled variables

(f∗n(t))|n∈N ,µ∗(t) that satisfies:

E [y∗0(t)] = y
(ε)
0 (14)

E [a∗n(t)− µ∗n(t)] ≤ −ε for all n ∈ N (15)

A. Performance analysis

Since our quadratic algorithm satisfies the bound (10),
where the right-hand-side is in terms of any alternative
policy (f̂n(t))

∣∣
n∈N , µ̂(t), it holds for any ω-only policy

(f∗n(t))|n∈N ,µ∗(t). Substituting an ω-only policy into (10)
and taking expectations gives:

E [L(τ + 1)− L(τ)− V y0(τ)]

≤ C +
∑
n∈N E [Qn(τ)(a∗n(τ)− µ∗n(τ))− V r∗n(τ)]

= C +
∑
n∈N [E [Qn(τ)]E [a∗n(τ)− µ∗n(τ)]− V E [r∗n(τ)]]

(16)

where we have used the fact that Qn(τ) and (a∗n(τ)−µ∗n(τ))
are independent under an ω-only policy.

Theorem 2: Assume queues are initially empty, so that
Qn(0) = 0 for all n, and that Assumption 1 holds. Then the
time-averaged total quality of information ȳ0 is within O(1/V )
of optimality under the separable quadratic policy, while the
total queue backlog is O(V ).

This theorem is proven in the next two subsections.
1) Quality of Information vs. V : Using the ω-only policy

from (12)–(13) in the right-hand-side of (16) gives:

E [L(τ + 1)− L(τ)− V y0(τ)]

≤ C − V
(
y
(opt)
0 − δ

)
+ δ

∑
n∈N E [Qn(τ)]

This inequality is valid for every δ > 0. Therefore

E [L(τ + 1)− L(τ)− V y0(τ)] ≤ C − V y(opt)
0

Summing from τ = 0 to t− 1:

E
[
L(t)− L(0)− V

∑t−1
τ=0 y0(τ)

]
≤ Ct− V ty(opt)

0

Using L(t) ≥ 0, L(0) = 0 and dividing by −V t gives:

1

t

t−1∑
τ=0

E [y0(τ)] ≥ −C
V

+ y
(opt)
0 (17)

The above holds for all t > 0. Taking a limit as t → ∞
shows that y0 is at least y(opt)

0 − C/V , where the gap C/V
can be made arbitrarily small by increasing the V parameter.

2) Total Queue Backlog vs. V : Now consider the existence
of an ω-only policy that satisfies Assumption 1. Using (14)–
(15) in the right-hand-side of (16) gives:

E [L(τ + 1)− L(τ)− V y0(τ)]

≤ C − V y(ε)0 − ε
∑
n∈N E [Qn(τ)]

Thus:

E [L(τ + 1)− L(τ)]

≤ C + V
(
y
(max)
0 − y(ε)0

)
− ε
∑
n∈N E [Qn(τ)]

Summing from τ = 0 to t− 1 gives:

E [L(t)− L(0)]

≤
(
C + V (y

(max)
0 − y(ε)0 )

)
t− ε

∑t−1
τ=0

∑
n∈N E [Qn(τ)]
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Fig. 2. Small network with orthogonal channels and distributions

Using L(t) ≥ 0, L(0) = 0, and rearranging terms above gives:

1

t

t−1∑
τ=0

∑
n∈N

E [Qn(τ)] ≤ C + V (y
(max)
0 − y(ε)0 )

ε
(18)

The above holds for all t > 0. Taking a limit as t→∞ shows
that total time-average expected queue backlog is bounded by
a constant that is O(V ). In particular, this bound implies that
every queue is strongly stable.

The V parameter in (17) and (18) affects the performance
tradeoff [O(1/V ), O(V )] between quality of information and
total queue backlog. These results are similar to those that can
be derived under the standard max-weight algorithm [11][12].
However, simulation in the next section shows significant
reduction of queue backlog under the quadratic policy. Note
that our proofs are inspired by the techniques in [11][12].

In addition to the above tradeoff, it is possible to show
that queues Qn(t) are deterministically bounded by a constant
that is O(V ). This is skipped for brevity, but is shown more
generally for the 2-hop problem in Section VII-B.

B. Simulation

Simulation under the proposed quadratic policy and the
standard max-weight policy is performed over a small network
in Fig. 2. The network contains two devices, N = {1, 2}.
An event occurs in every slot with probability 0.3. Device 1
is closer to the event, but device 2 is closer to the receiver
station. Due to this, the uplink channel distribution for device
2 is better than that of device 1, as shown in Fig. 2. We assume
the uplink channels are orthogonal.

The constraints are µn(t) ∈ {0, . . . , µ(best)
n (ηn(t))} for n ∈

N . The feasible set of formats is F = {0, 1, . . . , 6} with
constant options given by
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whenever there is an event. In particular, the rewards associ-
ated with device 1 are ten times larger than those of device
2.

The separable quadratic policy minimizes (7) every slot,
while the max-weight policy minimizes (4). The time-averaged
quality of information for the two policies is shown in Fig. 3a.
From the plot, the values of ȳ0 under both policies converge

0 500 1000 1500 2000 2500 3000
V

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
g.
 q
ua

lit
y 
of
 in

fo
rm

at
io
n

QD ȳ0
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Quality of information vs. V

QD ȳ0
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Fig. 3. Quality of information versus V and averaged queue lengths under
the quadratic (QD) and max-weight (MW) policies
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Fig. 4. Averaged backlog in queues versus V under the quadratic and max-
weight policies

to optimality following the O(1/V ) performance bound. The
averaged total rewards from the quadratic policy converges
faster than that from the max-weight policy.

Fig. 4 reveals queue lengths in the inputs under the quadratic
and max-weight policies. At the same V , the quadratic policy
yields smaller or equal queue lengths compared to the cases
under the max-weight policy. The plot also shows the growth
of queue lengths with parameter V , which follows the O(V )
bound of the queue length.

Fig. 3b shows that the quadratic policy can achieve near
optimality with significantly smaller total system backlog
compared to the case under the max-weight policy. This shows
a significant advantage, which in turn affects buffer size and
packet delay.

V. SYSTEM MODEL WITH RELAY

The simulation scenario in the previous section only allows
direct transmission to the destination, which limits device 1
from reporting high-quality information. In this section, every
device has the choice of either transmitting to the destination
via the direct uplink channel, or transmitting to a neighboring
device that will act as a relay. These uplink and device-
to-device transmissions are assumed to be orthogonal, e.g.,
4G and Wi-Fi. Although muti-hop relaying is possible, the
considered system restricts to at most two hops (i.e., paths
to the destination use at most one relay). This allows tighter
control over network delay.

The definitions of format selection and uplink scheduling
in Section II-A and Section II-B are still valid and are used
for this new model. However, the input queue Qn(t) will be
redefined when routing is introduced.
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format selection

event

Fig. 5. An example network consists of devices with uplink and relay
capabilities and a receiver station.

A. Routing and scheduling

At each device n ∈ N , the an(t) units of data generated
by format selection are put into input queue Qn(t). To ensure
all data takes at most two hops to the receiver station, the
data in each queue Qn(t) is internally routed to one of two
queues Kn(t) and Jn(t), respectively holding data for uplink
and relay transmission (see Fig. 5). Data in queue Kn(t) must
be transmitted directly to the receiver station, while data in
queue Jn(t) can be transmitted to another device m, but is then
placed in queue Km(t) for that device.2 This is conceptually
similar to the hop-count based queue architecture in [14].

In each slot t, let s(k)n (t) and s(j)n (t) represent the amount of
data in Qn(t) that can be internally moved to Kn(t) and Jn(t),
respectively, as illustrated in Fig. 5. These decision variables
are chosen within sets S(k)n and S(j)n , respectively, where:

S(k)n , {0, 1, . . . , s(k)(max)
n }

S(j)n , {0, 1, . . . , s(j)(max)
n }

where s(k)(max)
n , s(j)(max)

n are finite maximum values.3

The new dynamics of Qn(t) are

Qn(t+ 1) = max[Qn(t)− s(k)n (t)− s(j)n (t), 0] + an(t). (19)

The s
(k)
n (t) and s

(j)
n (t) decisions are selected by an al-

gorithm, but the actual s(k)(act)
n (t) and s

(j)(act)
n (t) data units

moved from Qn(t) can be any values that satisfy:

s(k)(act)
n (t) + s(j)(act)

n (t) = min[Qn(t), s(k)n (t) + s(j)n (t)]
(20)

0 ≤ s(k)(act)
n (t) ≤ s(k)n (t) (21)

0 ≤ s(j)(act)
n (t) ≤ s(j)n (t) (22)

Again, wireless transmission is assumed to be channel-
aware, and decision options are determined by a vector η(t)
of current channel states in the network, which now includes
channels for both uplink and device-to-device transmission.
Let µn(t) be the uplink rate from device n to the destination,
and let µ(t) be the vector of these values. Let γnm(t) be the
amount of data selected for relay transmission from device
n to device m, and let γ(t) = (γnm(t))|n,m∈N . Assume

2It is possible to extend the model to allow at most H hops by replacing
Jn(t) with Jn,2(t), . . . , Jn,H(t) where Jn,h(t) carries data that must be
delivered to the receiver station within h hops. This extension increases
complexity linearly in H .

3These upper bounds are necessary for the performance analysis. In practice
they are not required.

γnn(t) = 0 for every t and n. Transmissions to relays are
assumed to be orthogonal to the uplink transmissions. Every
slot t, the vectors µ(t) and γ(t) are chosen within sets Uη(t)
and Aη(t), respectively (where U and A stand for uplink and
ad-hoc relay, respectively). If each relay channel is orthogonal
then set Aη(t) can be decomposed into a set product of
individual options for each relay link, where each option
depends on the component of η(t) that represents its own
relay channel.

The dynamics of relay queue Jn(t) are:

Jn(t+ 1) = max
[
Jn(t)−

∑
m∈Nγnm(t) + s(j)(act)

n (t), 0
]
.

(23)
As before, the actual amount of data γ(act)

nm (t) satisfies:∑
m∈Nγ

(act)
nm (t) = min

(
Jn(t) + s(j)(act)

n (t),
∑
m∈Nγnm(t)

)
(24)

0 ≤ γ(act)
nm (t) ≤ γnm(t) for m ∈ N − {n}. (25)

The dynamics of uplink queue Kn(t) are:

Kn(t+ 1) = max
[
Kn(t)− µn(t) + s(k)(act)

n (t), 0
]

+
∑
m∈Nγ

(act)
mn (t), (26)

The Jn(t) and Kn(t) dynamics assume the incoming data
s
(j)
n (t) and s(k)n (t) can be transmitted out on the same slot t,

since moving data between internal buffers of the same device
incurs negligible delay.

Notice that all data transmitted to a relay is placed in the
uplink queue of that relay (which ensures all paths take at
most two hops). The queueing equations (23) and (26) involve
actual amounts of data, but they can be bounded using (21),
(22) and (25) as

Jn(t+ 1) ≤ max
[
Jn(t)−

∑
m∈Nγnm(t) + s(j)n (t), 0

]
(27)

Kn(t+ 1) ≤ max
[
Kn(t)− µn(t) + s(k)n (t), 0

]
+
∑
m∈Nγmn(t). (28)

The queue dynamics (19), (27), (28) do not require the
actual variables s(j)(act)

n , s
(k)(act)
n (t), γ(act)

nm (t), and are the only
ones needed in the rest of the paper.

Assume the relay transmissions have bounded rates. Specif-
ically, let γ(max)

nm be finite maximum values of γnm(t). Fur-
ther, assume that for each n ∈ N , s(k)(max)

n ≥ µ
(max)
n and

s
(j)(max)
n ≥

∑
m∈N γ

(max)
nm , so that the maximum amount that

can be internally shifted is at least as much as the maximum
amount that can be transmitted.

B. Stochastic network optimization

From Section II-C, recall that y0(t) is the total quality of
information from format selection on slot t, and its upper
bound is y(max)

0 . The time-averaged total information quality
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is ȳ0. The objective is to solve:

Maximize ȳ0

Subject to Network is strongly stable
fn(t) ∈ F for all t and all n ∈ N
µ(t) ∈ Uη(t) for all t
γ(t) ∈ Aη(t) for all t

s(k)n (t) ∈ S(k)n for all t and all n ∈ N
s(j)n (t) ∈ S(j)n for all t and all n ∈ N

As before, this problem is always feasible.

VI. DYNAMIC ALGORITHM

To apply the separable quadratic technique to this problem,
we require the following lemma, which is an extension of
Lemma 1. The notation R denotes the real numbers, and R+

denotes the non-negative reals.
Lemma 2: Let yi ∈ R and zj ∈ R+ for i ∈ {1, 2, . . . , Y }

and j ∈ {1, 2, . . . , Z}, where Y and Z are non-negative
integers. Assume that |yi| ≤ y

(max)
i and zj ≤ z

(max)
j . Then

for any x ∈ R+,[
max

(
x+

∑Y
i=1yi, 0

)
+
∑Z
j=1zj

]2
− x2

≤
∑Y
i=1(x+ yi)

2 +
∑Z
j=1(x+ zj)

2 − (Y + Z)x2 +D

(29)

where

D ,
[∑Y

i=1 y
(max)
i +

∑Z
j=1 z

(max)
j

]2
Proof: Lemma 2 is proven in the Appendix.

A. Lyapunov optimization

Let Θ(t) = (Qn(t),Kn(t), Jn(t))|n∈N represent a vector
of all queues in the system. The quadratic Lyapunov function
becomes:

L(t) , 1
2

∑
n∈N

[
Q2
n(t) +K2

n(t) + J2
n(t)

]
Using queuing dynamics (19), (27), and (28), the drift-plus-

penalty expression is bounded by (30) below. Then, using
relation (29), the bound becomes (31).

L(τ + 1)− L(τ)− V y0(τ)

≤ 1
2

∑
n∈N

{
[max(Qn(τ)−s(k)

n (τ)−s(j)n (τ),0)+an(τ)]
2−Qn(τ)

2

+[max(Kn(τ)−µn(τ)+s
(k)
n (τ),0)+

∑
m∈N γmn(τ)]

2−Kn(τ)
2

+[max(Jn(τ)−
∑

m∈N γnm(τ)+s(j)n (τ),0)]
2−Jn(τ)2−2V rn(τ)

}
(30)

≤ 1
2

∑
n∈N

{
[Qn(τ)−s(k)

n (τ)]
2
+[Qn(τ)−s(j)n (τ)]

2
+[Qn(τ)+an(τ)]

2

+[Kn(τ)−µn(τ)]
2+[Kn(τ)+s

(k)
n (τ)]

2
+
∑

m∈N [Kn(τ)+γmn(τ)]
2

+
∑

m∈N [Jn(τ)−γnm(τ)]2+[Jn(τ)+s
(j)
n (τ)]2−2V rn(τ)+Dn(τ)

}
(31)

where

Dn(τ) ,− 3Q2
n(τ)− (2 +N)K2

n(τ)− (1 +N)J2
n(τ)

+ (s
(k)(max)
n + s

(j)(max)
n + a

(max)
n )2

+ (µ
(max)
n + s

(k)(max)
n +

∑
m∈N γ

(max)
mn )2

+ (
∑
m∈N γ

(max)
nm + s

(j)(max)
n )2

− (a
(max)
n )2 − 2(s

(j)(max)
n )2

Thus, every time t, the quadratic policy observes current
queue backlogs Θ(t) and randomness ω(t) and makes a
decision according to the following minimization problem.

Minimize ∑
n∈N

{
[Qn(t)−s(k)

n (t)]
2
+[Qn(t)−s(j)n (t)]

2 (32)
+[Qn(t)+an(t)]

2+[Kn(t)−µn(t)]
2+[Kn(t)+s

(k)
n (t)]

2

+
∑

m∈N [Kn(t)+γmn(t)]
2+

∑
m∈N [Jn(t)−γnm(t)]2

+[Jn(t)+s(j)n (t)]
2−2V rn(t)

}
Subject to s(k)

n (t)∈S(k)
n , s(j)n (t)∈S(j)

n ∀n∈N

fn(t)∈F,rn(t)=r(fn(t))
n (t), an(t)=a

(fn(t))
n (t) ∀n∈N

γ(t)∈Aη(t), µ(t)∈Uη(t)

As a result, the policy leads to a separated control algorithm
specified in the next section. The performace tradeoff and
deterministic bounds are proven in Section VII.

B. Separability

The control algorithm is derived from problem (32) by
separately minimizing each sum of terms.

At every slot t, each device n ∈ N observes input queue
Qn(t) and options (r

(f)
n (t), a

(f)
n (t))|f∈F . It then chooses a

format fn(t) according to the admission-control problem:

Minimize
[
Qn(t) + a(fn(t))n (t)

]2
− 2V r(fn(t))n (t) (33)

Subject to fn(t) ∈ F

This is solved easily by comparing each option fn(t) ∈ F .
This problem is similar to (8), and the same intuition applies.

Each device n moves data from its input queue to its uplink
queue according to the uplink routing problem

Minimize
[
Qn(t)− s(k)n (t)

]2
+
[
Kn(t) + s(k)n (t)

]2
(34)

Subject to s(k)n (t) ∈ S(k)n .

This can be solved in a closed form by letting I+K(t) ,⌈Qn(t)−Kn(t)
2

⌉
, I−K(t) ,

⌊Qn(t)−Kn(t)
2

⌋
and gK(x, t) =

[Qn(t)− x]
2

+ [Kn(t) + x]
2. Then choose

s(k)n (t) = (35)
s(k)(max)
n , Qn(t)−Kn(t)≥2s(k)(max)

n

argmin
x∈{I+K (t),I

−
K

(t)} gK(x,t) , 0<Qn(t)−Kn(t)<2s(k)(max)
n

0 , Qn(t)−Kn(t)≤0

Intuitively, the amount s(k)n (t) is half of the difference between
queues Qn(t) and Kn(t) that does not exceed s(k)(max)

n .
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Also each device n moves data from its input queue to its
relay queue according to the relay routing problem

Minimize
[
Qn(t)− s(j)n (t)

]2
+
[
Jn(t) + s(j)n (t)

]2
. (36)

Subject to s(j)n (t) ∈ S(j)n

Again, let I+J (t) ,
⌈Qn(t)−Jn(t)

2

⌉
, I−J (t) ,

⌊Qn(t)−Jn(t)
2

⌋
and

gJ(x, t) = [Qn(t)− x]
2

+ [Jn(t) + x]
2. Then choose

s(j)n (t) = (37)
s(j)(max)
n , Qn(t)−Jn(t)≥2s(j)(max)

n

argmin
x∈{I+

J
(t),I

−
J

(t)}
gJ (x,t) , 0<Qn(t)−Jn(t)<2s(j)(max)

n

0 , Qn(t)−Jn(t)≤0

An intuition of decision s
(j)
n (t) is similar to the one from

the case of s(k)n (t). Note that the solutions from the quadratic
policy are “smoother” as compared to the solutions from the
max-weight policy that would choose “bang-bang” decisions
of either 0 or s(k)(max)

n for s(k)n (t) (and 0 or s(j)(max)
n for

s
(j)
n (t)).

The uplink allocation problem determining uplink transmis-
sion of every node n ∈ N is

Minimize
∑
n∈N [Kn(t)− µn(t)]

2 (38)
Subject to µ(t) ∈ Uη(t).

This can be solved at the receiver station and is similar to
(9), so the same intuition follows. If all uplink channels are
orthogonal, the problem can be decomposed further to be
solved at each device n by

Minimize [Kn(t)− µn(t)]
2 (39)

Subject to µn(t) ∈ Un,η(t),

where Un,η(t) is a feasible set of µn(t). An optimal uplink
transmission rate is the closest rate in Un,η(t) to Kn(t).

The relay allocation problem determining relay transmis-
sion of every node n ∈ N is

Minimize
∑
n∈N

∑
m∈N

{
[Kn(t) + γmn(t)]

2

+[Jn(t)− γnm(t)]
2
}

(40)

Subject to γ(t) ∈ Aη(t).

Intuitively, the decision γnm(t) is made to balance the dif-
ference between queues Km(t) and Jn(t) while transmission
resource is shared among devices.

If channels are orthogonal so the sets have a product form,
then the decisions are separable across transmission links
(n,m) for n ∈ N ,m ∈ N as

Minimize [Km(t) + γnm(t)]
2

+ [Jn(t)− γnm(t)]
2 (41)

Subject to γnm(t) ∈ Anm,η(t),

where Anm,η(t) is a feasible set of γnm(t). The closed form
solution of this problem is

γnm(t) = (42)
γ(max)
nm , Jn(t)−Km(t)≥2γ(max)

nm

argmin
x∈{I+

A
(t),I

−
A

(t)}
gA(x,t) , 0<Jn(t)−Km(t)<2γ(max)

nm

0 , Jn(t)−Km(t)≤0

where I+A (t) , argmina∈Anm,η(t)

∣∣∣a− Jn(t)−Km(t)
2

∣∣∣ and

I−A (t) , argmina∈Anm,η(t)−{I+A (t)}

∣∣∣a− Jn(t)−Km(t)
2

∣∣∣ and

gA(x, t) = [Jn(t)− x]
2

+ [Km(t) + x]
2.

Again, due to the structure of Uη(t) and Aη(t), orthogonality
assumption may not hold, but the subproblems are always fully
separable as a result of the novel quadratic policy.

C. Algorithm

At every time slot t, our algorithm has two parts: device
side and receiver-station side, which are summarized in the
algorithms below.

Algorithm 3: Distributed format selection and routing

// Device side
foreach device n ∈ N do

– Observe Qn(t),Kn(t) and Jn(t)

– Observe (r
(f)
n (t), a

(f)
n (t))|f∈F

– Select format fn(t) according to (33)
– Move data from Qn(t) to Kn(t) and Jn(t) with
s
(k)(act)
n (t), s

(j)(act)
n (t) satisfying (20)-(22) with

values of s(k)n (t), s
(j)
n (t) calculated from (35) and

(37).
end

Algorithm 4: Uplink and Relay resource allocation

// Receiver-station side
for receiver station 0 do

– Observe (Kn(t), Jn(t))|n∈N
– Observe Uη(t) and Aη(t)

– Signal devices n ∈ N to make uplink transmission
µ(t) according to (38)

– Signal devices n ∈ N to relay data γ(t) according
to (40)

end

After these processes, queues Qn(t + 1),Kn(t + 1) and
Jn(t+ 1) are updated via (19), (23), (26).

VII. STABILITY AND PERFORMANCE BOUNDS

Compare the quadratic policy with any other
policy. Let (fn(τ), s

(k)
n (τ), s

(j)
n (τ))|n∈N ,µ(τ),γ(τ)

be the decision variables from the quadratic policy,
and rn(t) , r

(fn(t))
n (t), an(t) , a

(fn(t))
n (t).

Also let (f̂n(τ), ŝ
(k)
n (τ), ŝ

(j)
n (τ))|n∈N , µ̂(τ), γ̂(τ)

be decision variables from any other policy, and
r̂n(t) , r

(f̂n(t))
n (t), ân(t) , a

(f̂n(t))
n (t). Because the

quadratic policy minimizes the right-hand-side of (31), the
drift-plus-penalty expression under the quadratic policy
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satisfies:

L(τ + 1)− L(τ)− V y0(τ)

≤ 1
2

∑
n∈N

{
[Qn(τ)−s(k)

n (τ)]
2
+[Qn(τ)−s(j)n (τ)]

2
+[Qn(τ)+an(τ)]

2

+[Kn(τ)−µn(τ)]
2+[Kn(τ)+s

(k)
n (τ)]

2
+
∑

m∈N [Kn(τ)+γmn(τ)]
2

+
∑

m∈N [Jn(τ)−γnm(τ)]2+[Jn(τ)+s
(j)
n (τ)]2−2V rn(τ)+Dn(τ)

}
(43)

≤ 1
2

∑
n∈N

{
[Qn(τ)−ŝ(k)

n (τ)]
2
+[Qn(τ)−ŝ(j)n (τ)]

2
+[Qn(τ)+ân(τ)]

2

+[Kn(τ)−µ̂n(τ)]
2+[Kn(τ)+ŝ

(k)
n (τ)]

2
+
∑

m∈N [Kn(τ)+γ̂mn(τ)]
2

+
∑

m∈N [Jn(τ)−γ̂nm(τ)]2+[Jn(τ)+ŝ
(j)
n (τ)]2−2V r̂n(τ)+Dn(τ)

}
.

(44)

where (43) is a restatement of (31). It follows that

L(τ + 1)− L(τ)− V y0(τ)

≤
∑
n∈N

{
Qn(τ)

[
ân(τ)− ŝ(k)n (τ)− ŝ(j)n (τ)

]
+Kn(τ)

[
ŝ
(k)
n (τ) +

∑
m∈N γ̂mn(τ)− µ̂n(τ)

]
+ Jn(τ)

[
ŝ
(j)
n (τ)−

∑
m∈N γ̂nm(τ)

]
− V r̂n(τ)

}
+ E (45)

where E is a suitable constant that does not depend on V . In
particular, it can be shown that:

E ,
1

2

∑
n∈N

{[
s(k)(max)
n + s(j)(max)

n + a(max)
n

]2
+
[
s(k)(max)
n + µ(max)

n +
∑
m∈Nγ

(max)
mn

]2
+
[
s(j)(max)
n +

∑
m∈Nγ

(max)
nm

]2
+ 2(s(k)(max)

n )2 + 2(s(j)(max)
n )2 + 2(a(max)

n )2

+ 2(µ(max)
n )2 + (

∑
m∈Nγ

(max)
mn )2 + (

∑
m∈Nγ

(max)
nm )2

}
The derivations (43)–(45) show that applying the quadratic

policy to the drift-plus-penalty expression leads to the bound
(45) which is valid for every other control policy.

As discussed in Section V, ω(t) is i.i.d. over slots. Define
an ω-only policy as one that makes a (possibly randomized)
choice of decision variables based only on the observed ω(t).
Then we customize an important theorem from [11].

Theorem 3: For any δ > 0 there exists an
ω-only policy that chooses all control variables
(f∗n(t), s

(k)∗
n (t), s

(j)∗
n (t))|n∈N ,µ∗(t),γ∗(t) such that for

all n ∈ N :

E [y∗0(t)] ≥ y(opt)
0 − δ (46)

E
[
a∗n(t)− s(k)∗n (t)− s(j)∗n (t)

]
≤ δ (47)

E
[
s
(k)∗
n (t) +

∑
m∈N γ

∗
mn(t)− µ∗n(t)

]
≤ δ (48)

E
[
s
(j)∗
n (t)−

∑
m∈N γ

∗
nm(t)

]
≤ δ (49)

where y(opt)
0 is the optimal solution of the new problem defined

in Section V-B. Also, y∗0(t) ,
∑
n∈N r

∗
n(t) when r∗n(t) ,

r
(f∗n(t))
n (t) and a∗n(t) , a

(f∗n(t))
n (t).

We additionally assume all constraints of the network can
be achieved with ε slackness:

Assumption 2: There are values ε > 0 and 0 ≤ y
(ε)
0 ≤

y
(max)
0 and an ω-only policy choosing all control variables

(f∗n(t), s
(k)∗
n (t), s

(j)∗
n (t))|n∈N ,µ∗(t),γ∗(t) that satisfies for

all n ∈ N :

E [y∗0(t)] = y
(ε)
0 (50)

E
[
a∗n(t)− s(k)∗n (t)− s(j)∗n (t)

]
≤ −ε (51)

E
[
s
(k)∗
n (t) +

∑
m∈N γ

∗
mn(t)− µ∗n(t)

]
≤ −ε (52)

E
[
s
(j)∗
n (t)−

∑
m∈N γ

∗
nm(t)

]
≤ −ε. (53)

A. Performance analysis
Since our quadratic algorithm satisfies the bound (45),

where the right-hand-side is in terms of any alternative pol-
icy

(
f̂n(t), ŝ

(k)
n (t), ŝ

(j)
n (t)

)∣∣∣
n∈N

, µ̂(t), γ̂(t), it holds for any

ω-only policy
(
f∗n(t), s

(k)∗
n (t), s

(j)∗
n (t)

)∣∣∣
n∈N

,µ∗(t),γ∗(t).
Substituting an ω-only policy into (45) and taking expectations
gives:

E [L(τ + 1)− L(τ)− V y0(τ)]

≤
∑
n∈N

{
E [Qn(τ)]E

[
a∗n(τ)− s(k)∗n (τ)− s(j)∗n (τ)

]
+ E [Kn(τ)]E

[
s
(k)∗
n (τ) +

∑
m∈N γ

∗
mn(τ)− µ∗n(τ)

]
+ E [Jn(τ)]E

[
s
(j)∗
n (τ)−

∑
m∈N γ

∗
nm(τ)

]
− V E [r∗n(τ)]

}
+ E (54)

where we have used the fact that queue backlogs on slot t
are independent of the control decision variables of an ω-only
policy on that slot.

Theorem 4: If Assumption 2 holds, then the time-averaged
total quality of information ȳ0 is within O(1/V ) of optimality
under the quadratic policy, while the total queue backlog grows
with O(V ).

Proof: Theorem 4 is proven by substituting the ω-only
policies from Theorem 3 and Assumption 2 into the right-
hand-side of (54). The analysis is almost identical to that given
for the uplink problem and details are omitted for brevity.

B. Deterministic bounds of queue lengths
Here we show that, in addition to the average queue size

bounds derived in the previous subsection, our algorithm also
yields deterministic worst-case queue size bounds. Practically,
these bounds can be used to determined memory requirement
of a system for a particular value of V .

For each device n ∈ N , define βn as the maximum possible
value of the expression:

2V r
(f)
n (t)− (a

(f)
n (t))2

2a
(f)
n (t)

over all slots t and all formats f ∈ F for which a(f)n (t) 6= 0.
Define:

Q(max)
n , βn + a(max)

n for n ∈ N

K(max)
n , max

m∈N

[
Q(max)
m

]
+
∑
m∈N

γ(max)
mn + s(max)

n .
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Theorem 5: Under the separable quadratic policy, for all
devices n ∈ N and all slots t ≥ 0, we have:

Qn(t) ≤ Q(max)
n (55)

Jn(t) ≤ Q(max)
n (56)

Kn(t) ≤ K(max)
n (57)

provided that these inequalities hold at t = 0.
The bounds (55)–(57) are proven in the next subsections.
1) Input Queue: From the admission-control problem (33),

if (rn(t), an(t)) = (0, 0), then the objective value of the prob-
lem is Qn(t)2. Therefore, device n only chooses (rn(t), an(t))
such that an(t) 6= 0 when:

(Qn(t) + an(t))2 − 2V rn(t) ≤ Qn(t)2

This is equivalent to:

2Qn(t)an(t) + an(t)2 − 2V rn(t) ≤ 0

Qn(t) ≤ 2V rn(t)− an(t)2

2an(t)

≤ βn

This implies that Qn(t) can only increase when Qn(t) ≤ βn,
and it receives no new data otherwise. It follows that for all
slots t:

0 ≤ Qn(t) ≤ βn + a(max)
n

provided that this holds for slot t = 0. This proves (55).
2) Relay Queue: Fix t and assume for each device n ∈ N

that Jn(t) ≤ Q
(max)
n for this slot t. From the closed form

solution (37) and queue equation (23), there are three cases to
consider.
i) When Qn(t)− Jn(t) ≤ 0, then s(j)n (t) = 0, and

Jn(t+ 1) ≤ max
[
Jn(t) + s(j)n (t), 0

]
= Jn(t) ≤ Q(max)

n .

ii) When Qn(t) − Jn(t) ≥ 2s
(j)(max)
n (or Jn(t) ≤ Qn(t) −

2s
(j)(max)
n ), then s(j)n (t) = s

(j)(max)
n , and

Jn(t+ 1) ≤ max
[
Jn(t) + s(j)n (t), 0

]
≤ max

[
Qn(t)− s(j)(max)

n , 0
]

≤ Qn(t) ≤ Q(max)
n .

iii) When 0 < Qn(t) − Jn(t) < 2s
(j)(max)
n , then s

(j)
n (t) ≤⌈

Qn(t)−Jn(t)
2

⌉
, and

Jn(t+ 1) ≤ max
[
Jn(t) + s(j)n (t), 0

]
≤ max

[⌈
Qn(t) + Jn(t)

2

⌉
, 0

]
≤ Qn(t) ≤ Q(max)

n .

Thus, given that Jn(0) ≤ Q(max)
n , Jn(t) ≤ Q(max)

n for all t ≥ 0
by mathematical induction.

Fig. 6. Small network with independent channels and distributions

3) Uplink Queue: To provide a general upper bound for the
uplink queue, we assume that all relay channels are orthogonal.
This implies every device n ∈ N can transmit and receive
relayed data simultanously.

Fix t and assume Kn(t) ≤ K
(max)
n for this slot t. Then

consider Kn(t+ 1) from (26).
i) When Kn(t) ≥ maxm∈N

[
Q

(max)
m

]
, from (35) and (42), it

follows that s(k)n (t) = 0 and γmn(t) = 0 for all m ∈ N , so
Kn(t+ 1) ≤ Kn(t) ≤ K(max)

n .
ii) When Kn(t) < maxm∈N

[
Q

(max)
m

]
, then this queue may

received data s(k)n (t) and γmn(t) for some m ∈ N , so

Kn(t+ 1) ≤ max
[
Kn(t) + s(k)n (t), 0

]
+
∑
m∈N

γmn(t)

≤ Kn(t) + s(k)(max)
n +

∑
m∈N

γ(max)
mn

≤ K(max)
n .

Thus, given Kn(0) ≤ K
(max)
n , Kn(t) ≤ K

(max)
n for all t ≥ 0

by mathematical induction.
For comparison, using a technique in [11], the deterministic

upper bounds of queues Q(mw)
n (t),K (mw)

n (t), and J (mw)
n (t)

under the max-weight algorithm are respectively given without
proofs due to space limit.

Q(mw)(max)
n , max

t,f∈F|a(f)
n (t)6=0

[
V r

(f)
n (t)

a
(f)
n (t)

]
+ a(max)

n

J (mw)(max)
n , Q(mw)(max)

n + s(j)(max)
n

K (mw)(max)
n , max

[
Q(mw)(max)
n ,

{
J (mw)(max)
m

}
m∈N

]
+ s(k)(max)

n

+
∑
m∈N

γ(max)
mn .

It is easy to see that the deterministic bounds from the
quadratic policy are smaller than the bounds from the max-
weight algorithm.

VIII. SIMULATION

Simulation under the proposed quadratic policy and the
standard max-weight policy is performed over a small net-
work of Fig. 6. This is the same network as considered in
the simulation of the pure uplink problem (without relaying
capabilities) from Fig. 2. To compare results with and without
relaying, we use the same assumptions on event probability,
formats, and uplink channel conditions as Section IV-B. Now,
each device has another as its neighbor. We assume all uplink
and relay channels are orthogonal.
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Fig. 7. Quality of information versus V under the quadratic (QD) and max-
weight (MW) policies

For relay transmissions, the constraints are γ12(t) ∈
{0, . . . , γ(best)

12 (η(t))} and γ21(t) ∈ {0, . . . , γ(best)
21 (η(t))}.

Then set s(k)(max)
n = s

(j)(max)
n = 30.

The simulation is performed according to the algorithm in
Section VI-C. The time-averaged quality of information under
the quadratic and max-weight policies are shown in Fig. 7.
From the plot, the values of ȳ0 under both policies converge
to optimality following the O(1/V ) performance bound. The
optimal time-averaged quality of information in this relaying
system is significantly higher than that of the pure uplink
system (compare Figs. 7 and Fig. 3a). Indeed, in this example,
the time average utility increases by more than a factor of
3 when relaying is allowed. This gain is intuitive, because
additional relay capability allows device 2 to relay device 1’s
information which has higher quality.

Fig. 8abc reveals queue lengths in the input, uplink, and
relay queues of device 1 under the quadratic and max-weight
policies. At the same V , the quadratic policy reduces queue
lengths by a significant constant compared to the cases under
the max-weight policy. The plot also shows the growth of
queue lengths with parameter V , which follows the O(V )
bound of the queue length.

Fig. 9 shows that the quadratic policy can achieve near
optimality with significantly smaller total system backlog
compared to the case under the max-weight policy. This shows
a significant advantage, which in turn affects buffer size and
packet delay.

Another larger network shown in Fig. 10 is simulated to
observe convergence of the proposed algorithm. The proba-
bility of event occurrence is 0.3. Channel distributions are
configured in Fig. 10. The feasible set of formats is F =
{0, 1, 2, 3} with constant options given by, for all n ∈ N ,
(r

(0)
n , a

(0)
n ) = (0, 0), (r

(1)
n , a

(1)
n ) = (10, 10), (r

(2)
n , a

(2)
n ) =

(15, 50), (r
(3)
n , a

(3)
n ) = (20, 100) whenever there is an event.

For V = 800, the time-averaged quality of information is
25.00 after 106 time slots as shown in the upper plot of Fig.
11. The lower plot in Fig. 11 illustrates the early period of the
simulation to illustrate convergence time.
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Fig. 8. Averaged backlog in device 1’s queues versus V under the quadratic
(QD) and max-weight (MW) policies
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Fig. 10. Larger network with independent channels with distributions shown
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of the moving average is 500 slots.
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IX. CONCLUSION

We studied information quality maximization in a system
with uplink and two-hop relaying capabilities. From Lyapunov
optimization theory, we proposed a novel quadratic policy
having a separable property, which leads to a distributed
mechanism of format selection. In comparison to the standard
max-weight policy, our policy leads to an algorithm that
reduces queue backlog by a significant constant. Further, it was
shown that device-to-device relaying can significantly increase
total quality of information as compared to a network that does
not allow relaying.
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APPENDIX A
PROOF OF LEMMA 2

Let x ≥ 0, yi ∈ R and zj ∈ R+ for i ∈ {1, 2, . . . , Y } and
j ∈ {1, 2, . . . , Z}. Assume that |yi| ≤ y

(max)
i and zj ≤ z

(max)
j

for each i and j. Then:

(max[x+
∑Y

i=1 yi,0]+
∑Z

j=1 zj)
2−x2

≤(x+
∑Y

i=1 yi)
2
+(

∑Z
j=1 zj)

2
+2

∑Z
j=1 zj(x+

∑Y
i=1 |yi|)−x

2

=2x
∑Y

i=1 yi+(
∑Y

i=1 yi)
2
+(

∑Z
j=1 zj)

2
+2

∑Z
j=1 zj(x+

∑Y
i=1 |yi|)

=
∑Y

i=1(x+yi)
2+

∑Z
j=1(x+zj)

2−
∑Y

i=1 y
2
i−

∑Z
j=1 z

2
j−(Y+Z)x2

+(
∑Y

i=1 yi)
2
+(

∑Z
j=1 zj)

2
+2(

∑Z
j=1 zj)(

∑Y
i=1 |yi|)

≤
∑Y

i=1(x+yi)
2+

∑Z
j=1(x+zj)

2−(Y+Z)x2

+(
∑Y

i=1 |yi|+
∑Z

j=1 zj)
2−

∑Y
i=1 y

2
i−

∑Z
j=1 z

2
j

and the sum of the final three terms is upper bounded by the
D constant from Lemma 2.
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