
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 1

Max Weight Learning Algorithms for Scheduling in
Unknown Environments

Michael J. Neely , Scott T. Rager, Thomas F. La Porta

Abstract—We consider a discrete time queueing system where a
controller makes a 2-stage decision every slot. The decision at the
first stage reveals a hidden source of randomness with a control-
dependent (but unknown) probability distribution. The decision
at the second stage generates an attribute vector that depends on
this revealed randomness. The goal is to stabilize all queues and
optimize a utility function of time average attributes, subject to
an additional set of time average constraints. This setting fits a
wide class of stochastic optimization problems, including multi-
user wireless scheduling with dynamic channel measurement
decisions, and wireless multi-hop routing with multi-receiver
diversity and opportunistic routing decisions. We develop a
simple max-weight algorithm that learns efficient behavior by
averaging functionals of previous outcomes.

Index Terms—Wireless networks, opportunistic routing, queue-
ing analysis, overhead and feedback

I. INTRODUCTION

We consider a system with N queues that operate in discrete
time with unit timeslots t ∈ {0, 1, 2, . . .}. Let Q(t) =
(Q1(t), . . . , QN (t)) be the vector of queue backlogs. The
dynamics for each n ∈ {1, . . . , N} are:

Qn(t+ 1) = max[Qn(t)− bn(t), 0] + an(t) (1)

where an(t) and bn(t) are arrival and service processes.
The arrivals an(t) can be a sum of exogenous arrivals from
traffic sources and endogenous arrivals from other network
nodes, and so multi-hop networks can be treated using this
framework. Multi-hop problems are treated in more detail in
Section V. The units of Qn(t), an(t), bn(t) depend on the
context of the system, and these variables can be non-integer.
Every slot t, a controller makes a 2-stage control decision
that affects queue dynamics and generates a collection of
random network attributes. Specifically, for each slot t there
is a pair of random events η(t) = [β(t), ω(t)]. The value
of β(t) is assumed to be known at the beginning of slot t
and can be a multi-dimensional quantity, such as a vector of
new arrivals or channel states for slot t. The process β(t) is
assumed to be i.i.d. over slots with distribution π(β). However,
the distribution π(β) is unknown. Based on knowledge of
β(t), the controller first chooses an action k(t) from a finite

This work was presented in part at the Information Theory and Applications
Workshop (ITA), La Jolla, CA, February 2009.

M. J. Neely is with the Electrical Engineering department at the University
of Southern California, Los Angles, CA. S. T. Rager and T. F. La Porta are
with Pennsylvania State University, University Park, PA.

This material is supported in part by one or more of the following:
the DARPA IT-MANET program grant W911NF-07-0028, the NSF Career
grant CCF-0747525, NSF grant 0964479, the Network Science Collaborative
Technology Alliance sponsored by the U.S. Army Research Laboratory
W911NF-09-2-0053.

set of K “stage-1” control actions, given by an action set
K = {1, . . . ,K}.

After the action k(t) ∈ K is chosen, the additional random
event ω(t) is revealed. The events ω(t) are conditionally i.i.d.
with distribution πk(ω) over all slots for which k(t) = k.
The distribution functions πk(ω) are unknown. Based on
knowledge of the revealed ω(t) vector, the controller makes
an additional decision α(t), where α(t) is chosen from some
abstract set Aη(t) that possibly depends on η(t). This de-
cision affects the service rates and arrival processes of the
queues on slot t, and additionally generates attribute vectors
x(t) = (x1(t), . . . , xM (t)), y(t) = (y0(t), y1(t), . . . , yL(t))
for some non-negative integers M,L. These are determined
by arbitrary functions of k(t), η(t), and α(t):

an(t) = ân(k(t), η(t), α(t)) , bn(t) = b̂n(k(t), η(t), α(t))

xm(t) = x̂m(k(t), η(t), α(t)) , yl(t) = ŷl(k(t), η(t), α(t))

The xm(t) and yl(t) quantities can represent additional
rewards earned or penalties expended by the network on slot t,
such as throughput admitted at different parts of the network,
or powers expended by different network components.

For a given control policy, define time average expectation
x = (x1, . . . , xM) as follows:1

x = limt→∞
1
t

∑t−1
τ=0 E {x(τ)}

Define y = (y0, y1, . . . , yL) similarly. The goal is to develop
an algorithm that makes decisions over time to solve:

Minimize: y0 + f(x) (2)
Subject to: yl ≤ 0 ∀l ∈ {1, . . . , L} (3)

k(t) ∈ {1, . . . ,K}, α(t) ∈ Aη(t) ∀t (4)
Queues Qn(t) stable ∀n ∈ {1, . . . , N} (5)

where f(x) is a continuous and convex function of x ∈ RM ,
and where a discrete time queue Q(t) is defined to be stable
if:2

lim supt→∞
1
t

∑t−1
τ=0 E {|Q(τ)|} <∞

The above definition uses an absolute value of Q(t), even
though the processes Qn(t) in (1) are always non-negative,
because we shall soon introduce virtual queues that can
possibly be negative. We can use M = 0 and f(x) = 0 in the
above problem if there are no x(t) attributes and we seek only

1For simplicity of exposition, we temporarily assume the limiting time
average expectation exists.

2This definition of queue stability is often called strong stability.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 2

to minimize the time average of y0(t), rather than minimizing
a convex function of a time average.

As an example, suppose that f(x) = 0, there are no xm(t)
attributes, and we define y0(t) = −admit(t), being −1 times
the total amount of new packets admitted to the network on
slot t. Further, for l ∈ {1, . . . , L} define yl(t) = pl(t) − pavl ,
where pl(t) represents power incurred by some component l
in the network on slot t, and pavl is a desired average power
constraint to be enforced. Then the problem of minimizing
y0 subject to queue stability and to yl ≤ 0 is one that
seeks to maximize admitted throughput subject to stability
and to average power constraints pl ≤ pavl at each network
component l ∈ {1, . . . , L}. As another example, suppose there
are no yl(t) attributes. However, suppose that xm(t) is the
admitted data of flow type m in the network on slot t, and
f(x) = −

∑M
m=1 log(1 + xm) is −1 times a concave utility

function of admitted data. Then the problem seeks to maximize
a concave utility function of the throughput vector subject to
queue stability. This particular example is considered in more
detail in the simulation example of Section IV.

The problem (2)-(5) is similar to those treated in [2][3][4][5]
using Lyapunov optimization and a drift-plus-penalty method,
and in [6][7] using fluid limits. The problem can be partly
addressed using these prior techniques in the following special
cases:
• (Special Case 1) There is no “stage-1” control action k(t),

so that the revealed randomness ω(t) does not depend on
any control decision.

• (Special Case 2) The distribution functions πk(ω) are
known.

An example of Special Case 1 is the problem of minimizing
time average power expenditure in a multi-user wireless down-
link (or uplink) with random time-varying channel states that
are known at the beginning of every slot. Simple max-weight
transmission policies are known to solve such problems, even
without knowledge of the probability distributions for the
channels or packet arrivals [4]. An example of Special Case 2
is the same system with the additional assumption that there
is a cost to measuring channels at the beginning of each slot.
In this example, we have the option of either measuring the
channels (and thus having the hidden random channel states
revealed to us) or transmitting blindly. Such problems are
treated in [8][9], which use max-weight algorithms that include
an expectation with respect to the known joint channel state
distribution. Estimating the joint channel state distribution
can be difficult when there are many (possibly correlated)
channels. For example, if there are N channels and 1024
possible states per channel, there are 1024N probabilities to
be estimated in the joint channel state distribution.

Another important example is that of dynamic packet
routing and transmission scheduling in a multi-commodity,
multi-hop network with probabilistic channel errors and multi-
receiver diversity. The Diversity Backpressure Routing (DI-
VBAR) algorithm of [10] reduces this problem to a 2-stage
max-weight problem where each node decides which of the K
commodities to transmit at the first stage. After transmission,
the random vector of neighbor successes is revealed, and the
“stage-2” packet forwarding decision is made. The solution

given in [10] requires knowledge of the joint transmission
success probabilities for all neighboring nodes.

In this paper, we provide a framework for solving such
problems without having a-priori knowledge of the underlying
probability distributions. Our approach uses the observation
that, rather than requiring an estimate of the full probability
distributions, all that is needed is an estimate of a set of
expected max-weight functionals that depend on these distri-
butions. These can be efficiently estimated from the history
of previous events. Our analysis also provides a framework
for treating time average equality constraints via a new virtual
queue structure, and yields a generalized approximation theory
for stochastic network optimization problems. Examples in
Sections IV and V consider utility maximization and multi-
hop networking.

II. ALGORITHM DESIGN

A. Boundedness Assumptions

Assume that the functions b̂n(·), ŷl(·), x̂m(·) are arbi-
trary (possibly nonlinear, non-convex, discontinuous), but are
bounded as follows:

yl,min ≤ ŷl(·) ≤ yl,max , xm,min ≤ x̂m(·) ≤ xm,max
0 ≤ b̂n(·) ≤ bn,max

where yl,min, yl,max, xm,min, xm,max, bn,max are finite con-
stants. Assume the ân(·) functions are non-negative, and for
any (possibly randomized) control choices for k(t) and α(t)
they satisfy

E
{
ân(k(t), η(t), α(t))2

}
≤ A2

n

for some finite constant A2
n that represents an upper bound

on the second moment. For example, suppose new arrivals
an(t) are Poisson with rate λn, and do not depend on control
actions k(t), α(t). Then we can have η(t) = [β(t), ω(t)] with
β(t) = (a1(t), . . . , aN (t)), and for n ∈ {1, . . . , N} we have:

ân(k(t), η(t), α(t)) = an(t)

E
{
ân(k(t), η(t), α(t))2

}
= λn + λ2n

B. Transforming the Problem with Auxiliary Variables

Let γ(t) = (γ1(t), . . . , γM (t)) be a vector of auxiliary
variables, where for each m ∈ {1, . . . ,M} and each slot t,
the value γm(t) is chosen subject to:

xminm − σ ≤ γm(t) ≤ xmaxm + σ ∀m ∈ {1, . . . ,M} (6)

for some value σ ≥ 0 (to be chosen later). Let γ(t) =
(γ1(t), . . . , γM (t)) be a vector of γm(t) components for
m ∈ {1, . . . ,M}. Define the time average expectation γ(t)
as follows:

γ(t)M
=

1
t

∑t−1
τ=0 E {γ(τ)}

Define time average expectations yl(t), xm(t) similarly. Then
it is not difficult to show that the problem (2)-(5) is equivalent

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 3

to the following:

Min.: lim sup
t→∞

[y0(t) + f(γ(t))] (7)

Subj. to: lim sup
t→∞

yl(t) ≤ 0 ∀l ∈ {1, . . . , L} (8)

lim
t→∞

[xm(t)− γm(t)] = 0 ∀m ∈ {1, . . . ,M} (9)

k(t) ∈ {1, . . . ,K} , α(t) ∈ Aη(t) ∀t (10)
γ(t) satisfies (6) ∀t (11)
Queues Qn(t) stable ∀n ∈ {1, . . . , N} (12)

Indeed, the equality constraint (9) indicates that the auxiliary
variable γm(t) can be used as a proxy for xm(t), so that
the above problem is equivalent to (2)-(5). These auxiliary
variables are similar to those we introduced in [3][2][11] for
optimizing a convex function of a time average penalty in a
stochastic network. If M = 0 and f(·) = 0, then no auxiliary
variables are needed.

C. Virtual Queues and Lyapunov Drift

As in [4][2], for each each l ∈ {1, . . . , L}, we enforce
the inequality constraint (8) with a virtual queue Zl(t) with
dynamics:

Zl(t+ 1) = max[Zl(t) + yl(t), 0] (13)

To enforce the equality constraint (9), for each m ∈
{1, . . . ,M} we define a virtual queue Hm(t) that can be
possibly negative, with a new update structure:

Hm(t+ 1) = Hm(t) + γm(t)− xm(t) (14)

It is not difficult to show that the constraints (8),(9) are
satisfied whenever all virtual queues Zl(t) and Hm(t) are
strongly stable [12].

Now define Θ(t)M
=[Q(t);Z(t);H(t)] as the vector of all

actual and virtual queue values. To stabilize the queues, we
define the following Lyapunov function:

L(Θ(t)) M
=

1
2

∑N
n=1Qn(t)2 + 1

2

∑L
l=1Zl(t)

2

+ 1
2

∑M
m=1Hm(t)2

Intuitively, this Lyapunov function is large whenever one of
the queues is large, and so keeping it small maintains stable
queues. Define ∆(t) = L(Θ(t + 1)) − L(Θ(t)). Let V be
a non-negative parameter used to control the proximity of
our algorithm to the optimal solution of (7)-(12). Using the
framework of [2], we consider a control policy that observes
the queue backlogs Θ(t) and takes control actions on each slot
t that minimize a bound on the following “drift-plus-penalty”
expression:

E {∆(t) + V [y0(t) + f(γ(t))] | Θ(t)}

Lemma 1: (The Drift-Plus-Penalty Bound) For any control
policy, we have for any slot τ :

E {∆(τ) + V [y0(τ) + f(γ(τ))] | Θ(τ)} ≤
B + V E {y0(τ) + f(γ(τ)) | Θ(τ)}

+

N∑
n=1

Qn(τ)E {an(τ)− bn(τ) | Θ(τ)}

+

L∑
l=1

Zl(τ)E {yl(τ)|Θ(τ)}

+

M∑
m=1

Hm(τ)E {γm(τ)− xm(τ)|Θ(τ)} (15)

where B is a finite constant that depends on the bounds for
the ân(·), b̂n(·), ŷl(·), x̂m(·) functions.

Proof: See Appendix A.
As in [2], our strategy every slot τ is to observe queue

backlogs Θ(τ) and then make control actions k(τ), α(τ), γ(τ)
that attempt to minimize:

E {RHS(Θ(τ), k(τ), α(τ),γ(τ)) | Θ(τ)} (16)

where the above conditional expectation represents the right-
hand-side of the drift inequality (15). However, to enable
system learning, it is important to allow for approximate
scheduling.

Assumption A1 (Approximate Scheduling): Every slot τ
the queue backlogs Θ(τ) are observed and control decisions
k(τ) ∈ K, α(τ) ∈ Aη(τ), and γ(τ) satisfying (6) are made to
ensure:

E {RHS(Θ(τ), k(τ), α(τ),γ(τ))|Θ(τ)} ≤
E {RHS(Θ(τ), k∗(τ), α∗(τ),γ∗(τ))|Θ(τ)}

+E
{
C̃(t)|Θ(t)

}
+ V εV +

N∑
n=1

Qn(τ)εQ

+

L∑
l=1

Zl(τ)εZ +

M∑
m=1

|Hm(τ)|εH (17)

where k∗(τ), α∗(τ), γ∗(τ) are any other decisions that satisfy
the required constraints (10)-(11), εV , εQ, εZ , εH , C are non-
negative constants, and C̃(t) is a random variable such that
E
{
C̃(t)

}
≤ C. We have C = εV = εQ = εZ = εH = 0 if

decisions exactly minimize (16) every slot, although this would
typically require knowledge of the underlying probability
distributions πk(ω).

D. Feasibility and Slackness

Assume the problem (2)-(5) is feasible, so that it is possible
to satisfy its constraints using some algorithm, and define
yopt0 + fopt as the infimum value of (2) over all feasible
algorithms. In [12] it is shown that if the algorithm is feasible,
then for all δ > 0 there exists a stationary and randomized
algorithm that makes a control action k∗(τ) as a (possibly
randomized) function of the observed β(τ), revealing a corre-
sponding random vector ω∗(τ), and chooses a stage-2 control
action α∗(τ) ∈ Aη∗(τ) as a potentially randomized function of

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 4

η∗(τ) = [β(τ), ω∗(τ)] such that for any slot τ and independent
of Θ(τ):

E {ŷ0(k∗(τ), η∗(τ), α∗(τ))}+ f(γopt)

≤ yopt0 + fopt + δ (18)
E {ŷl(k∗(τ), η∗(τ), α∗(τ))} ≤ δ ∀l ∈ {1, . . . , L} (19)
E {ân(k∗(τ), η∗(τ), α∗(τ))}
−E

{
b̂n(k∗(τ), η∗(τ), α∗(τ))

}
≤ δ ∀n ∈ {1, . . . , N}(20)

|E {x̂m(k∗(τ), η∗(τ), α∗(τ))} − γoptm |
≤ δ ∀m ∈ {1, . . . ,M} (21)

where γopt = (γopt1 , . . . , γoptM) is a vector that satisfies
f(γopt) = fopt. Intuitively, this means that if the problem
is feasible, then we can achieve the desired constraints and
performance objective arbitrarily closely over the class of
stationary and randomized algorithms. The use of δ > 0
is necessary to treat general cases where infimums are not
necessarily achievable by a single randomized policy, such
as when the function ŷl(k

∗, η∗, α∗) is not continuous in α∗,
and/or the set Aη∗ is not compact. In most cases where mild
closure properties are satisfied, (18)-(21) hold with δ = 0,
although such closure properties are not needed in any of our
analysis.

The next assumption states that the constraints are not only
feasible, but have a useful slackness property, analogous to a
Slater condition for static optimization problems [13].

Assumption A2 (Slackness of Constraints): There is a value
εmax > 0 together with a stationary and randomized policy
that makes stage-1 and stage-2 control decisions k̃(τ) ∈ K
and α̃(τ) ∈ Aη̃(τ), possibly different than the decisions in
(18)-(21), such that:

E
{
ŷl(k̃(τ), η̃(τ), α̃(τ))

}
≤ −εmax ∀l ∈ {1, . . . , L} (22)

E
{
ân(k̃(τ), η̃(τ), α̃(τ))− b̂n(k̃(τ), η̃(τ), α̃(τ))

}
≤ −εmax ∀n ∈ {1, . . . , N} (23)

Theorem 1: (Performance Theorem) Suppose we use pa-
rameters V ≥ 0 and σ > 0, and Assumptions A1 and A2
hold. Define fmin, fmax as the minimum and maximum values
of f(γ) over the constraints (6), and assume these are finite.
Suppose εQ, εZ , εH are small enough, and that σ is large
enough, so that:

εQ < εmax , εZ < εmax , εH < σ (24)

Then all queues are strongly stable and so all constraints (8)-
(12) hold (and hence all constraints of the original problem
(2)-(5) hold). Further:

lim sup
t→∞

1

t

t−1∑
τ=0

N∑
n=1

E {Qn(τ)} ≤ B + C + V (εV + d)

ε1
(25)

lim sup
t→∞

[y0(t) + f(x(t))] ≤ yopt0 + fopt + εV

+ε2 +
B + C

V
(26)

where constants B, C are from Lemma 1 and Assumption A1,
respectively, and:

ε1
M
= min[εmax − εQ, εmax − εZ , σ − εH]

d M
= y0,max − y0,min + fmax − fmin

ε2
M
= dmax[εQ/εmax, εZ/εmax, εH/σ]

Additional queue and utility bounds are derived for a finite
horizon in (29) and (30) of the proof. Note that ε1 =
min[εmax, σ] and ε2 = εV = 0 if the exact minimization of
the RHS(·) function in (16) is performed every slot t. This
shows that achieved cost can be pushed to within O(1/V)
of optimality, with a corresponding O(V) tradeoff in queue
backlog, as in [2]. The difference from [2] is that we consider
the 2-stage structure, generalized approximate scheduling, and
arbitrary convex cost functions f(x) (without the entrywise
non-increasing or non-decreasing assumptions in [2]). This
latter part is achieved by the new virtual queue structure (14)
that enforces an equality constraint. This structure can also be
used to treat additional time average equality constraints.

Proof: (Theorem 1) Using Assumption A1 with (15)
yields for any slot τ :

E {∆(τ) + V [y0(τ) + f(γ(τ))] | Θ(τ)} ≤

B + E
{
C̃(t)|Θ(t)

}
+ V εV + εH

M∑
m=1

|Hm(τ)|

+V E {y′0(τ) + f(γ′(τ)) | Θ(τ)}

+

N∑
n=1

Qn(τ)E {a′n(τ)− b′n(τ) + εQ | Θ(τ)}

+

L∑
l=1

Zl(τ)E {y′l(τ) + εZ |Θ(τ)}

+

M∑
m=1

Hm(τ)E {γ′m(τ)− x′m(τ)|Θ(τ)} (27)

for any alternative decisions k′(τ), α′(τ), γ′(t) that satisfy
(11), with corresponding random event η′(τ) = [β(τ), ω′(τ)],
variables a′n(τ) = ân(k′(τ), η′(τ), α′(τ)), and variables
b′n(τ), x′m(τ), y′l(τ) defined similarly in terms of k′(τ), η′(τ),
α′(τ). Now fix δ > 0, and consider the following policy:

(k′(τ), α′(τ), γ′(τ)) =

{
(k∗(τ), α∗(τ),γopt) w.p. 1− p
(k̃(τ), α̃(τ), γ̃) w.p. p

where p is some probability (to be specified later), “w.p.”
stands for “with probability,” (k∗(τ), α∗(τ),γopt) is the sta-
tionary, randomized policy of (18)-(21), (k̃(τ), α̃(τ), γ̃) is the
policy of (22)-(23) from Assumption A2, and where γ̃m is
defined:

γ̃m = E
{
x̂m(k̃(τ), η̃(τ), α̃(τ))

}
−sign(Hm(τ))σ ∀m ∈ {1, . . . ,M}

where sign(Hm(τ)) is 1 if Hm(τ) ≥ 0, and −1 else. Using
this policy with (18)-(23) and taking a limit as δ → 0 yields

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 5

for all n, l,m:

E {y′0(τ) + f(γ′(τ))|Θ(τ)} ≤ (1− p)(yopt0 + fopt)

+p(y0,max + fmax)

E {a′n(τ)− b′n(τ) + εQ|Θ(τ)} ≤ −pεmax + εQ

E {y′l(τ) + εZ |Θ(τ)} ≤ −pεmax + εZ

Hm(τ)E {γ′m(τ)− x′m(τ)|Θ(τ)} ≤ −pσ|Hm(τ)|

Plugging these into (27) yields:

E {∆(τ) + V [y0(τ) + f(γ(τ))] | Θ(τ)} ≤
B + E

{
C̃(t)|Θ(t)

}
+ V εV

+V (1− p)(yopt0 + fopt) + V p(y0,max + fmax)

−
N∑
n=1

Qn(τ)(pεmax − εQ)−
L∑
l=1

Zl(τ)(pεmax − εZ)

−
M∑
m=1

|Hm(τ)|(pσ − εH) (28)

Inequality (28) holds for any probability p. Using p = 1 and
rearranging terms yields:

E {∆(τ)|Θ(τ)} ≤ B + E
{
C̃(t)|Θ(t)

}
+ V (εV + d)

−ε1

[
N∑
n=1

Qn(τ) +

L∑
l=1

Zl(τ) +

M∑
m=1

|Hm(τ)|

]
Taking expectations of both sides of the above, summing over
τ ∈ {0, 1, . . . , t−1}, and rearranging terms (as in [2]), yields:

E {L(Θ(t))} − E {L(Θ(0))}
ε1t

+
1

t

t−1∑
τ=0

E

{
N∑
n=1

Qn(τ) +

L∑
l=1

Zl(τ) +

M∑
m=1

|Hm(τ)|

}

≤ B + C + V (εV + d)

ε1
(29)

Using non-negativity of L(Θ(t)) and taking limits proves
strong stability of all queues, ensures all constraints (8)-(12)
hold, and proves (25).

Alternatively, using p = max[εQ/εmax, εZ/εmax, εH/σ] in
(28) yields:

E {∆(τ) + V [y0(τ) + f(γ(τ))]|Θ(τ)} ≤
B + E

{
C̃(t)|Θ(t)

}
+ V εV

+V (1− p)(yopt0 + fopt) + V p(y0,max + fmax)

Taking iterated expectations of both sides and summing over
τ ∈ {0, . . . , t− 1} as before yields:

E {L(Θ(t))} − E {L(Θ(0))}
V t

+
1

t

t−1∑
τ=0

E {y0(τ) + f(γ(τ))}

≤ yopt0 + fopt +
B + C

V
+ εV + pd

Using non-negativity of L(Θ(t)) and Jensen’s inequality
yields:

y0(t) + f(γ(t)) ≤ yopt0 + fopt + (B + C)/V + εV + pd

+E {L(Θ(0))} /(V t) (30)

The result (26) follows by taking a limit as t→∞ and using
continuity of f(γ) and (9).

E. The Drift-Plus-Penalty Algorithm

Define:

Pk(η(t), α(t),Θ(t)) M
= V ŷ0(k, η(t), α(t))

+

L∑
l=1

Zl(t)ŷl(k, η(t), α(t))

+

N∑
n=1

Qn(t)[ân(k, η(t), α(t))− b̂n(k, η(t), α(t))]

−
M∑
m=1

Hm(t)x̂m(k, η(t), α(t)) (31)

This consists of those terms of the right hand side of (15)
that do not involve the auxiliary variables γ(t). Suppose that
the action α(t) and the set Aη(t) has the structure α(t) =
[J(t), I(t)] and Aη(t) = Jβ(t) × Iη(t), where J(t) is chosen
in a set Jβ(t) (a set depending only on β(t)), and I(t) is
chosen in the set Iη(t). Suppose that:

Pk(η(t), α(t),Θ(t)) = R(β(t), J(t)) + Yk(η(t), I(t),Θ(t))

so that it can be decomposed into a term that depends only
on J(t) and β(t), and a term that does not depend on J(t).
Such a structure always exists in the trivial form when J(t)
is null, and R(·) is zero. However, this structure is useful, for
example, when β(t) represents random arrivals and J(t) a flow
control decision, which can be optimally chosen independently
of the k(t) decision and the ω(t) outcome. The algorithm that
minimizes the RHS(·) expression (16) observes β(t), Θ(t)
every slot t, and makes decisions as follows:
• (Auxiliary Variables) Observe H(t). Choose γ(t) subject

to (6) to minimize:

V f(γ(t)) +
∑M
m=1Hm(t)γm(t)

• (Stage-1 Decision k(t)) Observe β(t), Θ(t). Choose k(t)
as the integer k ∈ {1, . . . ,K} with the smallest value of
ek(t), defined (recall that η(t) = [β(t), ω(t)]):

ek(t)M
=

E
{

min
I∈Iη(t)

Yk(η(t), I,Θ(t))|Θ(t), k(t) = k, β(t)

}
(32)

where the expectation in (32) is with respect to the distri-
bution πk(ω) for the random ω(t) event given k(t) = k.

• (Stage-2 Decision α(t) = [J(t), I(t)]) Let k(t) be
the stage-1 decision, observe the resulting η(t) =
[β(t), ω(t)], and observe Θ(t). Choose action I(t) ∈
Iη(t) to minimize Yk(t)(η(t), I(t),Θ(t)). Choose action
J(t) ∈ Jβ(t) to minimize R(β(t), J(t)).3

• (Queue Updates) Update the virtual and actual queues via
(1), (13), (14).

3If the infimum of the Yk(·) and/or R(·) functions over I(t) ∈ Iη(t) and
J(t) ∈ Jβ(t) cannot be achieved, we can simply get within C of the infimum
and use Assumption A1 with C > 0.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 6

This algorithm yields εV = εQ = εZ = εH = C = 0.
However, we cannot compute the ek(t) values needed for the
stage-1 decision without knowledge of the πk(ω) distributions,
and hence we need to use efficient estimates.

III. ESTIMATING THE MAX-WEIGHT FUNCTIONAL

There may be some stage-1 control options k ∈ K that
generate outcomes ω(t) for which the outcome under another
option k̃ ∈ K can be inferred. For example, suppose we have
a wireless system where the options are to measure none of
the channels, measure some of the channels, or measure them
all, where the ω(t) outcome is a vector of channel states for
all measured channels, having “null” values for channels not
measured. Then the outcome associated with measuring any
subset of the channels can equally be inferred by measuring all
channels. Define K̃ as the subset of K such that the outcome
for any k ∈ K can be inferred by the outcome for some
k̃ ∈ K̃. To persistently explore all possible stage-1 actions,
on every slot t we independently declare an exploration event
with probability θ, where 0 < θ < 1. If an exploration event
occurs, we independently choose option k̃(t) ∈ K̃ uniformly
over all options in K̃ (regardless of the state of the network on
this slot). We say that the action is a k-inferred exploration
event if the outcome for option k can be inferred from the
outcome for the chosen k̃(t) (note that there can be many k
for which the same event is a k-inferred exploration event).

Define optθ as the optimal cost for the problem (2)-(5)
subject to the additional constraints that we use exploration
events of probability θ. For simplicity, we measure our cost
performance with respect to optθ. While optθ ≥ yopt0 + fopt,
the understanding is that the gap is small if θ is small. Indeed,
it can be shown that |optθ − (yopt0 + fopt)| ≤ O(θ). Such
probabilistic exploration events can be built into the framework
of the system by re-defining the observed random event β(t) to
have the following structure: β′(t) = [φ(t), β(t)], where β(t)
is the original event, and φ(t) is chosen independently and
i.i.d. every slot in the set {0}∪ K̃, with Pr[φ(t) = 0] = 1− θ
and Pr[φ(t) = k̃] = θ/|K̃| for all k̃ ∈ K̃, where |K̃| represents
the number of elements in K̃. If φ(t) = 0, then no exploration
event occurs. If φ(t) = k̃, then the structure of the ân(·), b̂n(·),
ŷl(·), x̂m(·) functions, which depend on β′(t) = [φ(t), β(t)],
force the stage-1 decision to be k̃ by having outcomes identical
to choosing k̃ whenever any other choice k 6= k̃ is chosen.

A. Estimating the ek(t) value — Approach 1

Define an integer W that represents a moving average
window size. For each stage-1 option k ∈ K and each time
t, define ω(k)

1 (t), . . . , ω
(k)
W (t) as the outcome that would have

occurred at the time τ ≤ t at which the wth latest k-inferred
exploration event took place. Define η

(k)
w (t)M

=[β(t), ω
(k)
w (t)]

as the outcome with the current β(t) value but the previously
observed ω(k)

w (t) value. Define the estimate êk(t) as follows:

êk(t)M
=

1
W

∑W
w=1 minI∈I

η
(k)
w (t)

[
Yk(η

(k)
w (t), I,Θ(t))

]
In the case when there have not yet been W previous k-
inferred exploration events by time t, the estimate êk(t) is

taken with respect to the (fewer than W) events, and is set
to zero if no such events have occurred. The estimates êk(t)
can be viewed as empirical averages using the current queue
backlogs Θ(t) = [Q(t);Z(t);H(t)] and the current β(t), but
using the outcomes ω(k)

w (t) observed on previous exploration
events.

Note that one might define êk(t) according to an average
over the past W slots on which an outcome of stage-1
decision k can be inferred, rather than restricting to sampling
at exploration events. The reason we have used exploration
events is to overcome the subtle “inspection paradox” issues
involved in sampling the previous ω(τ) outcomes. Indeed,
even though outcomes ω(τ) are generated in an i.i.d. way
every slot in which k(τ) = k is chosen, the distribution of the
last-seen outcome ω that corresponds to a particular decision
k may be skewed in favor of creating larger penalties. This
is because our algorithm may choose to avoid decision k
for a longer period of time if this last outcome was non-
favorable. Sampling at random exploration events ensures that
our samples indeed form an i.i.d. sequence. An additional
difficulty remains: Even though these samples {ω(k)

w (t)} form
an i.i.d. sequence, they are not independent of the queue values
Θ(t), as these prior outcomes have influenced the current
queue states. We overcome this difficulty in Section III-D via
a delayed-queue analysis.

B. Estimating the ek(t) value — Approach 2
The estimation of Approach 1 does not require knowledge

of the πk(ω) distributions. However, evaluation of êk(t) re-
quires W minimizations of Yk(·) on each slot t, according to
the value of each particular ω(k)

w (t) outcome. Here we describe
an approach that has a per-timeslot computation that is inde-
pendent of W , in the special case when the Yk(·) function does
not depend on β(t). Again let W be an integer moving average
window size, and define ω(k)

1 (t), . . . , ω
(k)
W (t) the same as in

Approach 1. Further define Θ
(k)
1 (t), . . . ,Θ

(k)
W (t) as the queue

backlogs seen at the corresponding times of these exploration
events. Define an estimate e′k(t) as follows:

e′k(t)M
=

1
W

∑W
w=1 minI∈I

η
(k)
w (t)

[
Yk(η

(k)
w (t), I,Θ(k)

w (t))
]

The e′k(t) estimate is adjusted appropriately if fewer than W
k-inferred exploration events have occurred. This approach is
different from Approach 1 in that the current queue backlogs
are not used. These minimizations can be done on every slot τ
on which an exploration event occurs and k̃ ∈ K̃ is chosen, and
the results can be stored and used for later use. This requires
one minimization of Yk(·) for each k ∈ K such that outcome
ω(k)(τ) can be inferred from the outcome ω(τ). This requires
a number of minimizations that is at most K per exploration
event, regardless of the window size W .

C. The Max-Weight Learning Algorithm
Let θ be a given exploration probability, σ > 0, V ≥ 0

be given parameters, and W a positive integer window size.4

4A variable length window size algorithm with W (t) that grows with t
is also analyzed in [1] and shown to achieve exact optimality subject to a
weaker “mean rate stability” constraint.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 7

Define K̃ M
=|K̃|. The Max-Weight Learning Algorithm is as

follows.
• (Initialization) Let Θ(−K̃W) = 0, and run the system

over slots t = {−WK̃,−WK̃ + 1, . . . ,−1}, choosing
each stage-1 decision option k̃ ∈ K̃ in a fixed round-robin
order, choosing α(t) to minimize Pk(t)(η(t), α(t),Θ(t)),
and choosing γ(t) according to the auxiliary variable
selection algorithm. This ensures that we have W inde-
pendent samples by time 0, and creates a possibly non-
zero initial queue state Θ(0). Next perform the following
sequence of actions for each slot t ≥ 0.

• (Stage-1 Decisions) Independently with probability θ,
decide to have an exploration event. If there is an explo-
ration event, choose k(t) uniformly over all options in
K̃. If there is no exploration event, then under Approach
1 we observe current queue backlogs Θ(t) and compute
êk(t) for each k ∈ {1, . . . ,K} (using window size W).
We then choose k(t) as the index k ∈ {1, . . . ,K}
that minimizes êk(t) (breaking ties arbitrarily). Under
Approach 2, if there is no exploration event we choose
k(t) to minimize e′k(t).

• (Stage-2 Decisions) Choose auxiliary variables γ(t) and
actions α(t) ∈ Aη(t) as before, using the k(t) value from
stage 1, and its resulting ω(t).

• (Past Value Storage) For Approach 1, store the ω(t) vec-
tor in memory as appropriate. For Approach 2, store the
costs from minimizing Yk(·) in memory as appropriate.

• (Queue Updates) Update virtual and actual queues via
(1), (13), (14).

D. Analysis of the Max-Weight Learning Algorithm

For brevity, we analyze only Approach 1 (Approach 2
analysis is given in [1]). Our goal is to compute parameters
C, εV , εQ, εZ , εH for (17) that can be plugged into Theorem
1.

Theorem 2: (Performance Under Approach 1) Suppose Ap-
proach 1 is implemented using an exploration probability
θ > 0, a positive integer window size W , and a fixed parameter
V ≥ 0. Then condition (17) of Assumption A1 holds with:

C = D2WKK̃/θ , εV = εQ = εZ = εH = KD1/
√
W (33)

where D1, D2 are constants independent of queue backlog and
of V , W , θ (and depend on the worst case moments of arrival,
service, and attribute functions). Alternatively, if the algorithm
is implemented using W samples of ω(t) that are somehow
independently generated with the correct distribution (but not
taken from the past), then the same holds with C = 0.

Proof: See Appendix B.
It follows that if the fixed window size W is chosen to be

suitably large, then the εV , εQ, εZ , εH constants will be small
enough to satisfy the conditions (24) required for Theorem 1.

IV. ADAPTIVE CHANNEL MEASUREMENT IN A WIRELESS
DOWNLINK

Here we consider an example of maximizing throughput-
utility in a 3-queue wireless system with joint flow control
and opportunistic transmission. The stage-1 decision chooses

whether to measure channels or to transmit blindly, where
measuring channels incurs an overhead that reduces through-
put by 1/2, with the advantage of knowing what rates can
currently be achieved on each channel. The detailed model is
in Section IV-B. We first present the simulation results.

A. Simulation Results

0 10 20 30 40 50 60 70 80 90 100
1.22

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

Window Size W
T

ot
al

 U
til

ity

Utility versus Window Size W

Always Measure

Known Channel Statistics

Max Weight Learning Sampled at Any Measurement Slot

Max Weight Learning Sampled only on Exploration Events

Fig. 1. Total utility versus W with fixed V = 100.

0 10 20 30 40 50 60 70 80 90 100
54

56

58

60

62

64

66

Window Size W

A
ve

ra
ge

 N
um

be
r

of
 P

ac
ke

ts
 P

er
 Q

ue
ue

Average Queue Size versus W

Always Measure

Known Channel Statistics

Max Weight Learning Sampled only on Exploration Events

Max Weight Learning Sampled at Any Measurement Slot

Fig. 2. Average queue backlog versus W with fixed V = 100.

The simulation results are plotted versus the moving average
window size W in Figs. 1 and 2, with a fixed V = 100.
Fig. 1 shows the simulated utility achieved by the optimal
statistics-aware policy with perfect knowledge of ek(t). This
policy is independent of W , and the small variations are due
to the independent simulation runs. The figure also shows
how the utility of the (statistics unaware) max-weight learning
algorithm (Approach 1) increases to this optimal utility as the
window size W is increased. Also plotted is the utility under a
max-weight learning policy that samples at any measurement
slot, not necessarily slots that are exploration events. The
utility is slightly worse for small W , but seems to converge
to the same value for large W , suggesting that the “inspection

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 8

0 10 20 30 40 50 60 70 80 90 100
1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

V

T
ot

al
 U

til
ity

Utility versus V (with W = 40)

Max Weight Learning Sampled at Any Measurement Slot

Max Weight Learning Sampled only on Exploration Events

Known Channel Statistics

Always Measure

Fig. 3. Total utility versus V with fixed W = 40.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120
Average Queue Backlog versus V

V

A
ve

ra
g
e

 N
u

m
b
e
r

o
f
P

a
ck

e
ts

 in
 Q

u
e
u
e

Always Measure

Known Statistics

Deterministic Upper Bound

MW Learning, Sampled at Exploration Events

MW Learning, Sampled at Measurement Slots

Fig. 4. Average backlog versus V with fixed W = 40.

paradox” issues are minimal when the window size is large.
For comparison purposes, the figure also plots the utility
achieved by a policy that always decides to measure the
channel, showing that performance is degraded. Fig. 2 plots
the average backlog in each of the queues under these same
experiments. The same qualitative performance is observed:
The statistics-aware policy performs the best (having the
lowest backlog), the “always measure” policy performs the
worst, and the max-weight learning algorithms improve as W
is increased.

Fig. 3 shows how total utility increases as V is increased,
for a fixed window size W = 40. It is seen that performance
improves quickly with V , coming very close to optimal after
V = 20. There is a small gap between the optimal utility
(achieved by the statistics-aware algorithm) and the max-
weight learning algorithms. This gap would be reduced if we
used a larger window size W . Finally, it can be shown that
worst case backlog is Qn(t) ≤ V +4+σ for all queues n and
all slots t (see analysis in next subsection). This deterministic
bound is plotted in Fig. 4 along with the average queue values.

B. System Details

The system has 3 queues with time-varying channel states
S(t) = (S1(t), S2(t), S3(t)), where Sn(t) ∈ {0, 2, 4} and
represents the number of packets that can be transmitted on
channel n on slot t. However, S(t) is unknown and there are
two stage-1 options every slot: Measure all channels (k(t) = 1)
or measure no channels (k(t) = 0). Measuring channels yields
ω(t) = S(t), while measuring no channels yields ω(t) =
Null. There is only one type of exploration event: Measuring
all channels (so that K̃ = 1). This is because the result
of transmitting blindly can be inferred by knowledge of the
channel measurements. There are randomly arriving packets
every slot, denoted by a process β(t) = (β1(t), β2(t), β3(t)),
where βn(t) ∈ {0, 1, 2} for all t and all n. Flow control
decisions J(t) = a(t) = (a1(t), a2(t), a3(t)) are made every
slot, where an(t) is the amount of newly arriving packets
admitted to queue n on slot t, subject to the constraints:
0 ≤ an(t) ≤ βn(t) for all t and all n ∈ {1, 2, 3}. Any data
that is not admitted is dropped (similar to [3][2]). Transmission
decisions are made after ω(t) is observed, and are given by
I(t) = r(t), where r(t) = (r1(t), r2(t), r3(t)) and is subject
to rn(t) ∈ {0, 2, 4} for all n and and rn(t) is non-zero for at
most one n ∈ {1, 2, 3}. The queue dynamics are given by (1)
with:

ân(k(t), β(t),a(t)) = an(t)

b̂n(k(t), ω(t), r(t))

=

{
crn(t)1{Sn(t) ≥ rn(t)} if measure
rn(t)1{Sn(t) ≥ rn(t)} else

where 1{Sn(t) ≥ rn(t)} is an indicator function that is 1 if
Sn(t) ≥ rn(t), and is zero else, and c = 1/2 is a fraction
representing channel measurement overhead. This model is
similar to [8][9], with the exception that we have no a-priori
knowledge of the channel distributions.

Define the attribute xn(t) = an(t). The goal is to maximize
a concave utility function of the time average admitted traffic:

Maximize:
∑3
n=1 gn(an) , Subject to: Queue stability

where an = limt→∞
1
t

∑t−1
τ=0 E {an(τ)}, and where gn(a) =

log(1 + a). This fits the framework with M = N = 3, L = 0,
y0(·) = 0, and f(x) = −

∑3
n=1 gn(xn). We have xmin =

0 and xmax = 2. We define σ = 1, and extend the utility
functions concavely over the range −σ ≤ a ≤ 2 + σ for the
sake of the auxiliary variable optimization:

g(a) =

{
log(1 + a) if 0 ≤ a ≤ 2 + σ
−a if −σ ≤ a < 0

The auxiliary variable optimization decouples for all n ∈
{1, 2, 3} into choosing γn(t) subject to −σ ≤ γn(t) ≤ 2 + σ
to minimize −V g(γn(t)) +Hn(t)γn(t). The solution is given
by:

γn(t) =

−σ if Hn(t) > V

min
[

V
Hn(t)

− 1, 2 + σ
]

if 0 < Hn(t) ≤ V
2 + σ if Hn(t) ≤ 0

(34)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 9

The optimal flow control decisions J(t) =
(a1(t), a2(t), a3(t)) are (for n ∈ {1, 2, 3}):

an(t) =

{
βn(t) if Qn(t) ≤ Hn(t)
0 if Qn(t) > Hn(t)

(35)

The Yk(η(t), r(t),Θ(t)) function is given by:

Yk(η(t), r(t),Θ(t)) = −
∑3
i=1Qn(t)b̂n(k(t), η(t), r(t))

It can be seen from (34) that γn(t) = −σ whenever Hn(t) >
V , and hence, by the Hn(t) updates in (14), Hn(t) cannot
increase on such a slot. Hence Hn(t) ≤ V + 2 + σ for all
t. It follows from (35) that queue backlog is deterministically
bounded as follows: Qn(t) ≤ V + 4 + σ for all n ∈ {1, 2, 3}
and all t. This deterministic bound was indeed upheld in the
simulations.

We assume channel state vectors S(t) are i.i.d. over slots
but correlated in each entry, as follows: Every slot t, S1(t) is
chosen independently according to the distribution:

Pr[S1(t) = 0] = Pr[S1(t) = 2] = 2/5 , P r[S1(t) = 4] = 1/5

Then with probability 0.2 we have: S3(t) = S2(t) = S1(t).
With probability 0.8, we have Pr[S2(t) = 2] = 1, and
we have S3(t) distributed independently according to the
same distribution as S1(t). Packets are assumed to arrive
independently over slots and channels, with Pr[βn(t) = 2] =
Pr[βn(t) = 0] = 1/2. We use an exploration probability
θ = 0.01 and a measurement loss factor c = 1/2, and we
run all simulations over 2 million slots.

V. MULTI-HOP DIVERSITY BACKPRESSURE ROUTING

0

1

4

9

5

3

2

6

7

8

B

B'

A

A'

.3

.4
.2

.3

.3

.3

.3.3

.3

.3

.3

.3

.3

.3

.3

2 commodities:

source A -> dest A'

source B -> dest B'

λ

λ

Fig. 5. An illustration of the graph showing link success probabilities for
the multi-hop network.

Here we consider the multi-hop network model of [10]. The
network of interest is shown in Fig. 5. There are two traffic
types: Traffic type A has source node 0 and destination 9.
New packets of type A arrive to node 0 according to an i.i.d.
Bernoulli process with rate λA packets/slot. Traffic type B
has source node 1 and destination 5, and this traffic arrives to
node 1 according to an i.i.d. Bernoulli process with rate λB
packets/slot. Every slot, each node chooses a single packet to
transmit. This packet is successfully received at each of the
neighboring links of the graph with their corresponding link
success probabilities, as shown in Fig. 5. For simplicity, we
assume the system uses orthogonal channels, so that there is
no interference and multiple packets can be received (from
different transmitter nodes) at one node on the same slot.

Further, we assume all link successes are independent over
links and over slots. For example, if node 0 transmits a packet
on slot t, then it is successfully received with probability 0.3
at node 1, and independently with probability 0.4 at node 2.

The 2-stage decision structure at each node is as follows:
There is no initial β(t) information. In the stage-1 decision
on slot t, every node chooses whether to transmit a packet of
type A or B (remaining idle, or equivalently, transmitting a
“null” packet if no actual packets are available). The feedback
information ω(t) represents ACK/NACK feedback that each
transmitting node receives about reception on each of the
possible outgoing links of the graph. Based on this feedback,
the stage-2 decision α(t) chooses which single next-node takes
responsibility for each transmitted packet (possibly keeping the
packet in the same transmitting node for future transmission if
none of the successful receivers are as desirable as the current
node). The packet is then deleted from the previous queue, and
retained only in the single queue chosen to take responsibility
for the packet.

Let Q(A)
n (t) and Q

(B)
n (t) be the current number of com-

modity A and commodity B packets, respectively, in node
n ∈ {0, . . . , 9} on slot t. Note that Q

(A)
9 (t) = 0 and

Q
(B)
5 (t) = 0 for all t, since packets that reach their destination

are removed from the network. The queueing dynamics for
commodity A are:

Q(A)
n (t+ 1) = max

Q(A)
n (t)−

9∑
j=0

b
(A)
nj (t), 0

+

9∑
i=0

b
(A)
in (t) + a(A)

n (t)

where a(A)
n (t) is the number of new type A packets that arrive

exogenously to node n on slot t, being zero for all n 6= 0, and
being Bernoulli with rate λA if n = 0. Further, b(A)

ij (t) is the
number of type A packets that node i transfers to node j on
slot t, being at most 1, and being 1 if and only if node i
successfully transmitted a packet to node j, and then decided
to choose node j to take responsibility of the packet in the
stage-2 decision. Similar dynamics hold for commodity B.
Further details on the structure and constraints of b(A)

ij (t) and
b
(B)
ij (t) are given in [10].

For simplicity, we consider a problem that only seeks to
stabilize the queues, so that there are no attributes yl(t),
xm(t). In [10] it is shown that the optimal max-weight stage-
2 decision is as follows: For each node n that transmits a
packet of commodity c on slot t (where c = A or c = B),
define Sn(t) as the set of nodes consisting of node n together
with all other nodes that successfully received the packet. Then
choose the next-hop as the node j ∈ Sn(t) that maximizes the
differential backlog Q(c)

n (t)−Q(c)
j (t), breaking ties arbitrarily.

This is a simple decision that requires no knowledge of the
success probability information. Thus, the main complexity of
the algorithm is in choosing the stage-1 decision of which
commodity, A or B, is transmitted. It is shown in [10] that
the optimal max-weight stage-1 decision is as follows: For
each node n, let Dn be the set of possible next-hop nodes

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 10

(including node n). For each commodity c ∈ {A,B}, rank
order the nodes in Dn from highest differential backlog to
lowest differential backlog, breaking ties arbitrarily so that a
specific rank order is obtained. This represents the preference
order for next-hop routing. Then for each c ∈ {A,B} and
each node n, compute:

e(c)(t)M
=
∑
j∈Dn

max[Q(c)
n (t)−Q(c)

j (t), 0]φ
(c)
nj (t)

where φ(c)nj (t) is the probability that, given node n transmits a
commodity c packet, node j successfully receives the packet,
but no other nodes with better rank successfully receive the
packet. This of course requires knowledge of the joint success
probability distribution at all nodes (which may not have
product form if successes are correlated, even though in our
simulation example we assume independent successes). The
values of e(A)(t) and e(B)(t) are then compared, and we
transmit commodity A whenever e(A)(t) ≥ e(B)(t), and
B else. This algorithm is called the Diversity Backpressure
Routing Algorithm (DIVBAR) [10]. The e(A)(t) and e(B)(t)
values in this case correspond to those in (32) of the general
max-weight learning algorithm.

The new max-weight learning implementation of DIVBAR,
which does not need probability information, is as follows:
First note that “success” events are independent of the packet
commodity, and so we do not need to define any exploration
events. In principle, we can assume each node transmits a
packet every slot (being a null packet if it does not have any
actual packets).5 Each node n keeps a sample-path history
ωn(t, 1), . . . , ωn(t,W) of the sets of successful receivers of
node n transmissions over the past W slots. It then computes
the following estimates ê(A)(t) and ê(B)(t), written below as
ê(c)(t) with c ∈ {A,B}:

ê(c)(t) =
1

W

W∑
w=1

∑
j∈Dn

max[Q(c)
n (t)−Q(c)

j (t), 0]1
(c)
nj (w, t)

where 1

(c)
nj (w, t) is an indicator function that is 1 if node j

successfully received a transmission from node n, but no other
nodes with rank order better than j successfully received, in
the wth sample of the sample past history.

We now present results for this max-weight learning al-
gorithm along with results for an implementation of the
algorithm that assumes a priori knowledge of all link success
probabilities for comparison. These results were obtained from
simulations performed using the Qualnet6 network simulation
environment. The network and channel success probabilities
from Fig. 5 were used, and traffic rates of the two flows
were assumed to be equal for all simulations, such that
λA = λB = λ packets/second. The time slot duration was
set to 1 second, and each simulation run was performed for 1
million slots with throughput and occupancy results averaged
over the entire run.

5In practice, we do not have to transmit null packets, and we could use the
sample-path history of the past W transmissions, which may not be the past
W slots if some of these slots did not have transmissions.

6http://www.scalable-networks.com

0 2 4 6 8 10 12 14 16 18 20
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Throughput versus Window Size W

Window Size W

A
v
e
ra

g
e
 T

o
ta

l
T

h
ro

u
g
h
p
u
t

Known Channel Statistics

Max−Weight Learning

Fig. 6. Average total throughput versus W .

0 2 4 6 8 10 12 14 16 18 20

0

2000

4000

6000

8000

10000

12000

14000
Average Total Occupancy versus Window Size W

Window Size W

A
v
e
ra

g
e
 T

o
ta

l
O

c
c
u
p
a
n
c
y

Known Channel
Statistics

Max−Weight Learning

Fig. 7. Average total occupancy versus W . The horizontal asymptote for
known channel statistics represents an average total queue backlog, summed
over all queues, of 18.8 packets.

First, we consider the scenario with a fixed value of λ =
0.3 and a varying window size, W . Fig. 6 shows how the
max-weight learning implementation approaches the optimal
total average throughput of λ ∗ 2 = 0.6 packets/second as
the window size W is increased. In this case, a value of as
low as W = 15 achieves full throughput. Fig. 7 shows the
average total occupancy of all the queues in the network for
the max-weight learning algorithm using the same values of
W and for the implementation assuming full channel state
knowledge. Again, the values approach the known channel
statistics case, being Qtot = 18.8, as W is increased, also
achieving virtually the same performance as the algorithm with
a priori knowledge at W = 15.

We also ran simulations of the same scenario using a fixed
value of W = 15 and simultaneously increasing input rates
of both flows from 0 to 0.5 packets/slot. These results are
displayed in Figs. 8 and 9. Since using a window size of this
value achieves performance virtually equal to the algorithm
assuming full knowledge of channel state distributions as
shown above, only data from the max-weight learning version

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

Average Total Occupancy versus Total Input Rate (λ * 2)

Total Input Rate (λ * 2)

A
v
e

ra
g

e
 T

o
ta

l
O

c
c
u

p
a

n
c
y
 (

lo
g

 s
c
a

le
)

Max−Weight Learning, W=15

Fig. 8. Average total occupancy versus input rate, λ ∗ 2.

of the algorithm is shown in these two figures.
The average total occupancy of all queues in the network

for increasing traffic loads is shown in Fig. 8 (with the y-
axis in log scale). Here, queue stability is achieved while
the input traffic remains within the network’s capacity region
of 0.9 packets/second. We can see the edge of this capacity
region, however, as congestion approaches the asymptote at
λ ∗ 2 = 0.9. This same limit is also evident in Fig. 9, which
plots the average delivered throughput versus the total input
rate from the same set of simulations. While input traffic is less
than 0.9 packets/second, the network’s ability to support the
offered traffic load is observed by the average throughput being
equal to the average input rate. At λ∗2 = 0.9, however, we see
that the network’s capacity region is saturated and achieved
throughput levels off. Note that this capacity limit of the
network is also intuitive from an examination of the topology
in Fig. 5. If we consider the minimum cut across the links
{(1, 5), (3, 5), (8, 9)}, the total of the link success probabilities
is equal to 0.9, the same capacity achieved through simulation.

This results in the following interesting observation: The
DIVBAR algorithm is designed to maximize throughput over
all possible routing and scheduling strategies that send packets
with reception success as described above, but does not nec-
essarily achieve the (unsolved) information theoretic network
capacity, which can also optimize over all network coding
strategies on the same problem structure. However, in this
case there is a min-cut that limits the symmetric throughput to
λA = λB ≤ 0.45 packets/slot (for a total throughput of 0.9)
for any information theoretic strategy.7 However, by analyzing
the topology and probabilities for this example, it can be
shown that there exists a 2-commodity flow that uses only
pure routing and scheduling (without network coding) that
achieves λA = λB = 0.45. Thus, the DIVBAR algorithm also
achieves this and so for this example it achieves the symmetric
information-theoretic capacity.

7We note that a remark in [10] incorrectly stated the capacity as λA =
λB = 0.455 packets/slot, rather than 0.45 packets/slot.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput versus Total Input Rate (λ * 2)

Total Input Rate (λ * 2)

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t

Max−Weight Learning, W=15

Fig. 9. Average throughput versus total input rate, λ ∗ 2.

VI. CONCLUSION

This work extends the drift-plus-penalty framework for
stochastic network optimization to a context with 2-stage de-
cisions and unknown distributions that govern the stochastics.
This is useful in a variety of contexts, including transmission
scheduling for wireless networks in unknown environments
and with unknown channels. The learning algorithms devel-
oped here are based on estimates of expected max-weight
functionals, and are much more efficient than algorithms that
would attempt to learn the complete probability distributions
associated with the system. Our analysis provides explicit
bounds on the deviation from optimality, and the correspond-
ing backlog tradeoffs, in terms of the sample size W and the
control parameter V .

Simulations were provided for an example 3-user wireless
system. Our simulations include a variation of the max-weight
learning algorithm that samples at any measurement time. This
policy is more difficult to analyze and provides slightly worse
performance in the simulations considered here. However, it
uses more recent channel realizations and thus may provide
better performance for mobile networks where the channel
probability distributions can change over time. Indeed, our
sampling method here assumes each of the W samples is
identically distributed. In networks with high mobility, one
might place a limit on the amount of samples W that are
assumed to be relevant to the existing topology. This creates
an O(1/

√
W) performance gap for mobile networks due to the

inability to adaptively estimate max-weight functionals for a
changing channel state distribution.

APPENDIX A — PROOF OF LEMMA 1

Here we prove Lemma 1. Squaring the Zl(t) update equa-
tion (13) gives:

(1/2)Zl(t+ 1)2 ≤ (1/2)(Zl(t) + yl(t))
2

= (1/2)Zl(t)
2 + (1/2)yl(t)

2 + Zl(t)yl(t)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 12

Similarly, squaring the Hm(t) update equation (14) gives:

Hm(t+ 1)2

2
=

Hm(t)2

2
+

1

2
(γm(t)− xm(t))2

+Hm(t)(γm(t)− xm(t))

Finally, using the fact that ([Q− b, 0] + a)2 ≤ Q2 + b2 + a2 +
2Q(a− b) for non-negative numbers Q, b, a, and squaring (1)
gives:

1

2
Qn(t+ 1)2 ≤ 1

2
Qn(t)2 +

1

2
(bn(t)2 + an(t)2)

+Qn(t)(an(t)− bn(t))

Summing the above over l ∈ {1, . . . , L}, m ∈ {1, . . . ,M},
n ∈ {1, . . . , N} gives:

L(Θ(t+ 1))− L(Θ(t)) ≤ B(t) +

L∑
l=1

Zl(t)yl(t)

+

M∑
m=1

Hm(t)(γm(t)− xm(t))

+

N∑
n=1

Qn(t)(an(t)− bn(t))

where B(t) is defined:

B(t) M
=

1

2

L∑
l=1

yl(t)
2 +

1

2

M∑
m=1

(γm(t)− xm(t))2

+
1

2

N∑
n=1

(bn(t)2 + an(t)2)

The boundedness assumptions in Section II-A ensure that
E {B(t)|Θ(t)} ≤ B for some finite constant B. Taking
conditional expectations of the above, given Θ(t), proves the
result.

APPENDIX B — PROOF OF THEOREM 2

To prove Theorem 2, fix time t and define Ω(Θ(t)) as
follows:

Ω(Θ(t))M
=E

{
RHS(Θ(t), k̂(t), α̂(t),γmw(t)) | Θ(t)

}
−E {RHS(Θ(t), kmw(t), αmw(t),γmw(t)) | Θ(t)}

where k̂(t), α̂(t) are the actions taken using the êk(t) estimates
of Approach 1, and kmw(t), αmw(t) are the ideal max-weight
actions based on perfectly known ek(t) values (for simplicity,
assume “max-weight” actions that achieve the appropriate
minimum exist, else we can take actions arbitrarily close to the
infimum). Because these right-hand sides differ only in terms
comprising the ek(t) expression defined in (32), we have:

Ω(Θ(t)) = E
{
ek̂(t)(t) | Θ(t)

}
−min
k∈K

[ek(t)]

where the expectation on the right hand side is over the
decision k̂(t) = arg mink∈K[êk(t)]. Now for each k ∈ K,

define δk(t)M
=êk(t)− ek(t). We thus have:

E
{
ek̂(t)(t) | Θ(t)

}
= E

{
êk̂(t)(t)− δk̂(t)(t) | Θ(t)

}
≤ E

{
êk̂(t)(t) | Θ(t)

}
+ E

{
max
k∈K

[−δk(t)] | Θ(t)

}
= E

{
min
k∈K

[êk(t)] | Θ(t)

}
+ E

{
max
k∈K

[−δk(t)] | Θ(t)

}
= E

{
min
k∈K

[ek(t) + δk(t)] | Θ(t)

}
+

E
{

max
k∈K

[−δk(t)] | Θ(t)

}
≤ min

k∈K
[ek(t)] + E

{
max
k∈K

[δk(t)] + max
k∈K

[−δk(t)] | Θ(t)

}
≤ min

k∈K
[ek(t)] +

K∑
k=1

E {|δk(t)| | Θ(t)}

It follows that:

Ω(Θ(t)) ≤
K∑
k=1

E {|δk(t)| | Θ(t)}

=

K∑
k=1

E {|êk(t)− ek(t)||Θ(t)}

Note that Ω(Θ(t)) corresponds to the desired inequality (17),
and hence it suffices to bound E {|êk(t)− ek(t)||Θ(t)}. Un-
fortunately, the W samples that generate êk(t) are not neces-
sarily conditionally i.i.d. given Θ(t), but they are conditionally
i.i.d. given Θ(t − Tk(t)), where t − Tk(t) is the time of the
earliest sampled k-inferred exploration event. Note that Tk(t)
is a sum of W geometric random variables, and has mean at
most WK̃/θ. We have:

|êk(t)− ek(t)| ≤ |êk(t)− êk(t− Tk(t))|
+|êk(t− Tk(t))− ek(t− Tk(t))|
+|ek(t− Tk(t))− ek(t)|

The expectations of the first and last terms are proportional
to the expectation of Tk(t) multiplied by a constant D2/2
that depends on the worst case moments of queue backlog
change over one slot. The expectation of the middle term is
just the expected difference between an expectation and an
estimate based on W i.i.d. samples, and hence is O(1/

√
W).

Specifically, due to the uniform bounds on first and second
moments for all k, we can show for all k ∈ {1, . . . ,K} [1]:

E {|êk(t− Tk(t))− ek(t− Tk(t))||Θ(t)}

≤ D1√
W

[
V +

N∑
n=1

Qn(t) +

L∑
l=1

Zl(t) +

M∑
m=1

|Hm(t)|

]
where D1 is a constant independent of V , W , and queue sizes
and depends on the second moments of the processes. We thus
have:

Ω(Θ(t)) ≤ C̃(t)

+
D1K√
W

[
V +

N∑
n=1

Qn(t) +

L∑
l=1

Zl(t) +

M∑
m=1

|Hm(t)|

]

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 5, PP. 1179-1191, MAY 2012 13

where C̃(t) is defined:

C̃(t)M
=

K∑
k=1

[|êk(t)− êk(t− Tk(t))|+ |ek(t− Tk(t))− ek(t)|]

Further, the unconditional expectation of C̃(t) can be shown
to be bounded by: E{C̃(t)} ≤ C M

=D2KK̃W/θ. We thus have
that (17) of Assumption A1 holds with C defined as above
and εV = εQ = εZ = εH = D1K/

√
W .

REFERENCES

[1] M. J. Neely. Max weight learning algorithms with application to
scheduling in unknown environments. arXiv:0902.0630v1, Feb. 2009.

[2] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource allocation and
cross-layer control in wireless networks. Foundations and Trends in
Networking, vol. 1, no. 1, pp. 1-149, 2006.

[3] M. J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. Proc. IEEE INFOCOM, pp. 1723-
1734, March 2005.

[4] M. J. Neely. Energy optimal control for time varying wireless networks.
IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 2915-2934,
July 2006.

[5] M. J. Neely. Dynamic Power Allocation and Routing for Satellite
and Wireless Networks with Time Varying Channels. PhD thesis,
Massachusetts Institute of Technology, LIDS, 2003.

[6] A. Stolyar. Greedy primal-dual algorithm for dynamic resource alloca-
tion in complex networks. Queueing Systems, vol. 54, no. 3, pp. 203-220,
2006.

[7] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, vol. 50, no. 4, pp.
401-457, 2005.

[8] C. Li and M. J. Neely. Energy-optimal scheduling with dynamic
channel acquisition in wireless downlinks. IEEE Transactions on Mobile
Computing, vol. 9, no. 4, pp. 527-539, April 2010.

[9] A. Gopalan, C. Caramanis, and S. Shakkottai. On wireless scheduling
with partial channel-state information. IEEE Transactions on Informa-
tion Theory, vol. 58, no. 1, pp. 403-420, Jan. 2012.

[10] M. J. Neely and R. Urgaonkar. Optimal backpressure routing in wireless
networks with multi-receiver diversity. Ad Hoc Networks (Elsevier), vol.
7, no. 5, pp. 862-881, July 2009.

[11] M. J. Neely. Super-fast delay tradeoffs for utility optimal fair scheduling
in wireless networks. IEEE Journal on Selected Areas in Commu-
nications, Special Issue on Nonlinear Optimization of Communication
Systems, vol. 24, no. 8, pp. 1489-1501, Aug. 2006.

[12] M. J. Neely. Stochastic Network Optimization with Application to
Communication and Queueing Systems. Morgan & Claypool, 2010.

[13] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont,
MA, 1995.

PLACE
PHOTO
HERE

Michael J. Neely received B.S. degrees in both
Electrical Engineering and Mathematics from the
University of Maryland, College Park, in 1997. He
was then awarded a Department of Defense NDSEG
Fellowship for graduate study at the Massachusetts
Institute of Technology, where he received an M.S.
degree in 1999 and a Ph.D. in 2003, both in Electri-
cal Engineering. In 2004 he joined the faculty of the
Electrical Engineering Department at the University
of Southern California, where he is currently an
Assistant Professor. His research is in the area of

stochastic network optimization for wireless and ad-hoc mobile networks. He
received the NSF Career Award in January 2008 and the Viterbi School of
Engineering Junior Research Award in 2009. Michael is a member of Tau
Beta Pi and Phi Beta Kappa.

PLACE
PHOTO
HERE

Scott T. Rager is a PhD candidate in the Computer
Science and Engineering Department at Penn State
University. He received a B.A. in Physics from the
Slippery Rock University of Pennsylvania and a
B.S. in Computer Engineering from Penn State both
in 2009 after completing a cooperative dual-degree
undergraduate program. He is presently a member
of the Network and Security Research Center at
Penn State, and his current research interests include
mobile ad hoc networks and distributed protocol
designs.

PLACE
PHOTO
HERE

Thomas F. La Porta is a Distinguished Professor in
the Computer Science and Engineering Department
at Penn State. He received his B.S.E.E. and M.S.E.E.
degrees from The Cooper Union, New York, NY,
and his Ph.D. degree in Electrical Engineering from
Columbia University, New York, NY. He joined
Penn State in 2002. He is the Director of the Net-
working and Security Research Center at Penn State.
Prior to joining Penn State, Dr. La Porta was with
Bell Laboratories since 1986. He was the Director of
the Mobile Networking Research Department in Bell

Laboratories, Lucent Technologies where he led various projects in wireless
and mobile networking. He is an IEEE Fellow, Bell Labs Fellow, received the
Bell Labs Distinguished Technical Staff Award in 1996, and an Eta Kappa
Nu Outstanding Young Electrical Engineer Award in 1996. He also won a
Thomas Alva Edison Patent Awards in 2005 and 2009. His research interests
include mobility management, signaling and control for wireless networks,
security for wireless systems, mobile data systems, and protocol design.

Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions
on Mobile Computing and served as Editor-in-Chief of IEEE Personal
Communications Magazine. He was the Director of Magazines for the IEEE
Communications Society and was on its Board of Governors for three years.
He has published numerous papers and holds 35 patents.

